(数学)专题五:解析几何(教师版)
专题五 第二讲 椭圆、双曲线、抛物线的定义、方程与性质
考点一 考点二 考点三 课后训练 提升能力
首页 上页 下页 尾页
考点一 圆锥曲线的定义与标准方程
[全练——快速解答]
1根.据(20双17曲·高线考C全的国渐卷近Ⅲ线)已方知程双为曲y=线 25Cx:,xa22-by22=1(a>0,b>0) 的可一知条ba=渐近25线.①方程为 y= 25x,且与椭圆1x22+y32=1 有公共焦点, 则 A又所.x8C2椭以-的圆a1y方2021+x=22程+b12为=y32(=9.②B1 的)B焦.x4点2-坐y52标=为1 (3,0)和(-3,0), C根所.x52据以-①Cy42②=的可1方知程为a2=x42-4D,.yx542b2=-2=1y3. 椭圆离心率求法·T10
学科素养 通过对椭圆、双曲线、抛物线的定义、 方程及几何性质的考查,着重考查了
数学抽象、数学建模与数学运算三大
核心素养.
考情分析 明确方向
考查角度及命题 年份 卷别
位置
命题分析及学科素养
抛物线与圆的综 命题分析
Ⅰ卷
合问题·T10
1.圆锥曲线的定义、方程与性质是每年高
线与双曲线的位置关 空题的形式考查,常出现在第 4~
系·T11 双曲线的渐近线方
11 或 15~16 题的位置,着重考查 圆锥曲线的几何性质与标准方程,
Ⅱ卷 程·T5
2018
椭圆的离心率·T12
双曲线的离心率·T11
难度中等. 2.圆锥曲线的综合问题多以解答题 的形式考查,常作为压轴题出现在 第 20 题的位置,一般难度较大.
3.(2018·惠州模拟)已知 F1,F2 是双曲线ay22-xb22=1(a>0,b>
0)的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的
高考数学 专题05 解析几何中的对称解法(解析版)
专题05 解析几何中的对称解法一.【学习目标】1.掌握点关于直线,直线关于直线,曲线关于点,曲线关于直线的对称2.对称思想的应用 二.【知识点】 1.中心对称(1)设平面上的点M (a ,b ),P (x ,y ),P ′(x ′,y ′),若满足:x +x ′2=a ,y +y ′2=b ,那么,我们称P ,P ′两点关于点M 对称,点M 叫做对称中心.(2)点与点对称的坐标关系:设点P (x ,y )关于M (x 0,y 0)的对称点P ′的坐标是(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2x 0-xy ′=2y 0-y . 2.轴对称(1)设平面上有直线l :Ax +By +C =0和两点P (x ,y ),P ′(x ′,y ′),若满足下列两个条件:①__________________;②_______________________,则点P ,P ′关于直线l 对称. (2)对称轴是特殊直线的对称问题对称轴是特殊直线时可直接通过代换法得解:①关于x 轴对称(以_____代______); ②关于y 轴对称(以_______代_______); ③关于y =x 对称(_______互换);④关于x +y =0对称(以_______代_____,以_____代______); ⑤关于x =a 对称(以______代______); ⑥关于y =b 对称(以________代________). (3)对称轴为一般直线的对称问题可根据对称的意义,由垂直平分列方程,从而找到坐标之间的关系:设点P (x 1,y 1),Q (x 2,y 2)关于直线l :Ax +By +C =0(AB ≠0)对称,则 三.【题型】(一)点关于直线的对称 (二)光线的对称问题 (三)圆关于直线的对称 (四)利用对称求最值 (五)圆锥曲线的对称 (六)椭圆的中点弦问题 (七)双曲线的中点弦 (八)抛物线的对称问题 (九)椭圆中的对称方法 (十)对称的综合应用 四.【题型解法】(一)点关于直线的对称例1.已知坐标原点()0,0O 关于直线L 对称的点()3,3M -,则直线L 的方程是( ) A .210x y -+= B .210x y --= C .30x y -+= D .30x y --=【答案】D【解析】由(0,0)O , (3,3)M -, 可得OM 的中点坐标为33,22⎛⎫-⎪⎝⎭,又313OMk-==-, OM∴的垂直平分线的斜率为1, ∴直线L的方程为33122y x⎛⎫+=⨯-⎪⎝⎭,即30x y--=,故选D.练习1.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称为欧拉线,已知ABC∆的顶点(20)(04)A B,,,,若其欧拉线方程为20x y-+=, 则顶点C的坐标为()A.04-(,)B.4,0-()C.4,0()或4,0-()D.4,0()【答案】B【解析】设C坐标x,y(),所以重心坐标为2+4(,)33x y+,因此2+4204033x yx y+-+=∴-+=,从而顶点C的坐标可以为4,0-(),选B.(二)光线的对称问题例2.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.5B.33C.6D.210【答案】D【解析】点P关于y轴的对称点P'坐标是()2,0-,设点P关于直线:40AB x y+-=的对称点()",P a b,由()112204022baa b-⎧⨯-=-⎪⎪-⎨++⎪+-=⎪⎩,解得42ab=⎧⎨=⎩,故光线所经过的路程()22'"242210P P=--+=,故选D.练习1.一条光线从点()2,3-射出,经x轴反射后与圆2264120x y x y+--+=相切,则反射光线所在直线的斜率为()A.65或56B.45或54C.43或34D.32或23【解析】点()2,3-关于x 轴的对称点Q 的坐标为()2,3--, 圆2264120x y x y +--+=的圆心为()3,2,半径为1R =.设过()2,3--且与已知圆相切的直线的斜率为k , 则切线方程为()23y k x =+-即230kx y k -+-=, 所以圆心()3,2到切线的距离为25511k d R k-===+,解得43k =或34k =,故选C.(三)圆关于直线的对称例3..直线1l :y x =、2l :2y x =+与C e :22220x y mx ny +--= 的四个交点把C e 分成的四条弧长相等,则(m = ) A .0或1 B .0或1-C .1-D .1【答案】B【解析】直线l 1:y=x 与l 2:y=x+2之间的距离为2,⊙C :22220x y mx ny +--=的圆心为(m ,m ),半径r 2=m 2+m 2,由题意可得222222222()()22{22()()2m nm n m n m n -+=+-++=+解得 m=0或m=-1,故选B.练习1.已知圆关于对称,则的值为 A .B .1C .D .0【答案】A 【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得. 当时,,不合题意,.故选A .练习2.已知直线3420x y ++=与圆2240x y y ++=相交于,A B 两点,则线段AB 的垂直平分线的方程为A .4360x y --=B .4320x y --=C .4360x y ++=D .3480x y ++= 【答案】A【解析】圆2240x y y ++=的圆心坐标为()0,2C -,AB 的中垂线垂直于AB 且过C ,故可设中垂线的方程为:430x y m -+=,代入()0,2C -可得6m =-,故所求的垂直平分线的方程为4360x y --=,故选A.(四)利用对称求最值例4.已知点P ,Q 分别在直线1:20l x y ++=与直线2:10l x y +-=上,且1PQ l ⊥,点()3,3A --,31,22B ⎛⎫⎪⎝⎭,则AP PQ QB ++的最小值为().A .130B .3213+C .13D .32【答案】B【解析】因为112,P l l l Q ⊥P ,故()21322PQ --==1AA k '=,故1AA l '⊥,所以A P A Q 'P ,又322AA '=,所以AA PQ '=,故四边形AA QP '为平行四边形, 322AP PQ QB A Q QB '++=++, 因为13A Q QB A B ''+≥=,当且仅当,,A Q B '三点共线时等号成立,AP PQ QB ++的最小值为32132+,选B.(五)圆锥曲线的对称例5.已知F 是双曲线2218y C x -=:的右焦点,P 是C 左支上一点,)66,0(A ,当APF ∆周长最小时,则点P 的纵坐标为( ) A .66 B .26C .46D .86-【答案】B【解析】如图:由双曲线C 的方程可知:a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9,∴c=3,∴左焦点E (-3,0),右焦点F (3,0), ∵|AF|=223(66)15+=,所以当三角形APF 的周长最小时,|PA|+|PF|最小. 由双曲线的性质得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,又|PE|+|PA|≥|AE|=|AF|=15,当且仅当A ,P ,E 三点共线时,等号成立. ∴三角形APF 的周长:|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.此时,直线AE 的方程为y=2666x +,将其代入到双曲线方程得:x 2+9x+14=0, 解得x=-7(舍)或x=-2, 由x=-2得6(负值已舍) 故选:B .练习1.椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,若F 关于直线0x y +=的对称点A 是椭圆C 上的点,则椭圆的离心率为( ) ABC1 D1【答案】A【解析】∵点()0F c -,关于直线0x y +=的对称点A 为()0,A c ,且A 在椭圆上, 即22b c =,∴c b =,∴椭圆C的离心率2e ===.故选A .(六)椭圆的中点弦问题例1.如果椭圆22193x y +=的弦被点(1,1)M 平分,则这条弦所在的直线方程是( )A .340x y +-=B .320x y -+=C .320x y --=D .340x y +-=【答案】A【解析】设直线与椭圆交点为()11,A x y ,()22,B x y22112222193193x y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩,两式作差得:1212121213ABy y x x k x x y y -+==-⋅-+ 又M 为AB 中点 122x x ∴+=,122y y += 13AB k ∴=-∴直线方程为:()1113y x -=--,即:340x y +-= 本题正确选项:A练习1.已知椭圆()222210x y a b a b+=>>,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于,A B两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.22B.12C.14D.32【答案】A【解析】设A(1x,1y),B(2x,2y),又AB的中点为11,2M⎛⎫⎪⎝⎭,则121221x x y y+=+=,,又因为A、B在椭圆上所以22221122222211x y x ya b a b+=+=,两式相减,得:2121221212y y y y bx x x x a-+⋅=--+∵12121212b1c2AB FP OMy y y yk k kx x x x,-+===-==-+,∴22b2cba=,,∴22a bc=,平方可得()42224a a c c=-, ∴22ca=12,c2a2=,故选A.练习2.已知椭圆22142x y+=,则以点(1,1)为中点的弦的长度为()A.2B.3C30D36【答案】C【解析】设直线方程为y=k(x﹣1)+1,代入椭圆方程,消去y得:(1+2k2)x2﹣(4k2﹣4k)x+2k2﹣4k﹣2=0,设交点坐标为A(x1,y1),B(x2,y2),则x1+x2=2,解得k=﹣12,∴x1x2=13,∴221212301()43k x x x x++-=.故选C.练习3.已知椭圆C :()2222100x y a b a b +=>,>的离心率为2,直线l 与椭圆C 交于A B ,两点,且线段AB 的中点为()21M -,,则直线l 的斜率为( )A.13B.23C.12D.1【答案】C【解析】由c e a ==,得2222234c a b a a -==, ∴224a b =,则椭圆方程为22244x y b +=,设()()1122A x y B x y ,,,,则121242x x y y ,+=-+=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:()()()()121212124x x x x y y y y -+=--+,∴()12121212414422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C .(七)双曲线的中点弦例7.直线l 与双曲线2212y x -=交于A ,B 两点,以AB 为直径的圆C 的方程为22240x y x y m ++++=,则m =( )A.-3B.3C.5-D.【答案】A【解析】设11(,)A x y ,22(,)B x y由根据圆的方程可知(1,2)C --,C 为AB 的中点根据双曲线中点差法的结论202021112ABx b k a y -=⨯=⨯=- 由点斜式可得直线AB 的方程为1y x =-将直线AB 方程与双曲线方程联立22121y x y x ⎧-=⎪⎨⎪=-⎩解得34x y =-⎧⎨=-⎩或10x y =⎧⎨=⎩,所以AB =由圆的直径AB ===3m =-故选A.练习1.双曲线221369x y -=的一条弦被点(4,2)P 平分,那么这条弦所在的直线方程是( )A .20x y --=B .2100x y +-=C .20x y -=D .280x y +-=【答案】C【解析】设弦的两端点1(A x ,1)y ,2(B x ,2)y ,斜率为k ,则22111369x y -=,22221369x y -=,两式相减得12121212()()()()369x x x x y y y y -+-+=, 即121212129()98136()3642y y x x k x x y y -+⨯====-+⨯,∴弦所在的直线方程12(4)2y x -=-,即20x y -=. 故选:C练习2.已知双曲线C的焦点在坐标轴上,其渐近线方程为y =,过点P ⎫⎪⎪⎝⎭. ()1求双曲线C 的标准方程;()2是否存在被点()1,1B 平分的弦?如果存在,求出弦所在的直线方程;如果不存在,请说明理由.【答案】(1)2212y x -=(2)直线l 不存在.详见解析【解析】()1双曲线C的焦点在坐标轴上,其渐近线方程为y =,设双曲线方程为:22y x λ2-=,过点P ⎫⎪⎪⎝⎭.可得λ1=,所求双曲线方程为:22y x 12-=. ()2假设直线l 存在.设()B 1,1是弦MN 的中点,且()11M x ,y ,()22N x ,y ,则12x x 2+=,12y y 2+=.M Q ,N 在双曲线上,22112x y 122222x y 1-=⎧⎪∴-=⎨⎪⎩, ()()()()121212122x x x x y y y y 0∴+---+=,()()12124x x 2y y ∴-=-,1212y y k 2x x -∴==-,∴直线l 的方程为()y 12x 1-=-,即2x y 10--=,联立方程组222x y 22x y 10-=⎧--=⎨⎩,得22x 4x 30-+=1643280QV =-⨯⨯=-<,∴直线l 与双曲线无交点,∴直线l 不存在.练习3.已知双曲线的中心在原点,焦点为,且离心率.(1)求双曲线的方程; (2)求以点为中点的弦所在的直线方程.【答案】(1);(2).【解析】(1) 由题可得,,∴,,所以双曲线方程 .(2)设弦的两端点分别为,,则由点差法有: , 上下式相减有:又因为为中点,所以,,∴,所以由直线的点斜式可得,即直线的方程为.经检验满足题意.(八)抛物线的对称问题例8.已知抛物线2:2(0)C y px p =>,倾斜角为4π的直线交抛物线C 于A ,B 两点,且线段AB 中点的纵坐标为1,则抛物线C 的准线方程是________ 【答案】12x =-【解析】设1122(,),(,)A x y B x y ,则有2211222,2y px y px ==,两式相减得:()()()1212122y y y y p x x -+=-,又因为直线的斜率为1,所以12121y y x x -=-, 所以有122y y p +=,又线段AB 的中点的纵坐标为1, 即122y y +=,所以1p =,所以抛物线的准线方程为12x =-.故答案为:12x =-.练习1.如图所示,点P 为抛物线E :28y x =上的动点,点Q 为圆:M 22430x y x +-+=上的动点,则PQ的最小值为___________.【答案】1【解析】圆:M 22430x y x +-+=可化为22(2)1x y -+=, 故圆M 的圆心(2,0),半径为1.设000(,)(0)P x y x ≥为抛物线28y x =上任意一点,故有2008y x =,∴00(,)P x y 与(2,0)的距离2222200000000(2)44844(2)d x y x x x x x x =-+=-++=++=+当00x =时, 00(,)P x y 与(2,0)的距离取最小值2,PQ ∴的最小值为211-=,故答案为:1.(九)椭圆中的对称方法例9.如图,椭圆()222210x y a b a b+=>>的右焦点为F ,过F 的直线交椭圆于,A B 两点,点C 是A 点关于原点O 的对称点,若CF AB ⊥且CF AB =,则椭圆的离心率为__________.【答案】63-【解析】作另一焦点F ',连接AF '和BF '和CF ',则四边形FAF C '为平行四边,所以AF CF AB '==,且AF AB '⊥,则三角形ABF '为等腰直角三角形, 设AF AB x '== ,则24x x x a +=,解得(422)x a =-,(222)AF a =,在三角形AFF ' 中由勾股定理得222()()(2)AF AF c '+=,所以2962,63e e =-=,故答案为63-.练习1.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点为1F ,2F ,点P 在椭圆C 上,且12PF F ∆面积3 6.(1)求椭圆C 的方程,并求椭圆C 的离心率;(2)已知直线l :1(0)y kx k =+>与椭圆C 交于不同的两点AB ,若在x 轴上存在点(,0)M m ,使得M 与AB 中点的连线与直线l 垂直,求实数m 的取值范围【答案】(1)22143x y +=,椭圆的离心率12e =(2)3,012⎡⎫-⎪⎢⎪⎣⎭【解析】(1)由题意得2223226bc c a a b c ⎧=⎪+=⎨⎪=+⎩,解之得2a =,3b =1c =,所以椭圆C 的方程为22143x y +=,椭圆的离心率12e =; (2)由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2243880k x kx ++-=,设()11,A x y ,()22,B x y ,则122843kx x k -+=+,122643y y k +=+, 所以线段AB 中点的坐标为2243,4343k k k -⎛⎫⎪++⎝⎭, 则223143443k k k m k -+=-++,整理得213434k m k k k=-=-++, 因为0k >,所以34k k +≥=34k k =,即k =时上式取得等号,此时m取得最小值12-, 因为0k >,所以2043k m k =-<+,所以实数m的取值范围是⎡⎫⎪⎢⎪⎣⎭. 练习2.已知椭圆22:194x y C +=,若不与坐标轴垂直的直线l 与椭圆C 交于,M N 两点.(1)若线段MN 的中点坐标为()1,1,求直线l 的方程;(2)若直线l 过点()6,0,点()0,0P x 满足0PM PN k k +=(,PM PN k k 分别是直线,PM PN 的斜率),求0x 的值.【答案】(1)49130x y +-=(2)32【解析】(1)设()11,M x y ,()22,N x y ,由点,M N 都在椭圆22:194x y C +=上,故22112222194194x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩22222121094x x y y --⇒+=,则()()212121214499x x y y k x x y y +-==-=--+故直线l 的方程为()411491309y x x y -=--⇒+-= (2)由题可知,直线l 的斜率必存在,设直线l 的方程为()6y k x =-,()0,0P x , 则()()()()1212021010200660PM PN y y k k k x x x k x x x x x x x +=+=⇒--+--=--即()()12012026120x x x x x x -+++=①联立()()222222149108936360946x y k x k x k y k x ⎧+=⎪⇒+-+⨯-=⎨⎪=-⎩,则21222122108499363649k x x k k x x k ⎧+=⎪⎪+⎨⨯-⎪=⎪+⎩将其代入①得()()2220003546964902k k x x k x --+++=⇒=故0x 的值为32(十)对称的综合应用例10.在直角坐标系xOy 中,抛物线2:4x C y =与直线:4l y kx =+ 交于M ,N 两点.(1)当0k =时,分别求抛物线C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【答案】(1) 过点M 和点N 的切线方程分别为24,24y x y x =-=--.(2)存在点()0,4P -,理由见解析【解析】(1)由题意知0k =时,联立244y x y =⎧⎪⎨=⎪⎩,解得()4,4M ,()4,4N -.设过点()4,4M 的切线方程为(4)4y k x =-+,联立2444y kx kx y =+-⎧⎪⎨=⎪⎩得:2416160x kx k -+-=, 由题意:2164(1616)0k k ∆=--=,即2440k k -+=,解得2k =, 根据对称性,过点()4,4N -的切线斜率为2k =-,所以过点M 和点N 的切线方程分别为24,24y x y x =-=--. (2)存在符合题意的点,证明如下:设点P ()0,b 为符合题意的点,()11,M x y ,()22,N x y ,直线PM ,PN 的斜率分别为1k ,2k .联立方程244y kx x y =+⎧⎪⎨=⎪⎩,得24160x kx --=,故124x x k +=,1216x x =-, 从而121212y b y b k k x x --+=+=()()12121224kx x b x x x x +-+=()44k b +.当4b =-时,有120k k +=,则直线PM 与直线PN 的倾斜角互补, 故OPM OPN ∠=∠,所以点()0,4P -符合题意.练习2.已知抛物线2:2(0)C y px p =>的焦点为F,点(,B m 在抛物线C上,A ,且||2||BF AF =.(1)求抛物线C 的标准方程;(2)过点(1,2)P 作直线PM ,PN 分别交抛物线C 于M ,N 两点,若直线PM ,PN 的倾斜角互补,求直线MN 的斜率.【答案】(1)24y x =(2)1-【解析】(1)由题得,02p F ⎛⎫⎪⎝⎭,则||2p BF m =+,||AF =因为|2||BF AF =,所以2P m +=因为点B 在抛物线C 上,所以122pm =,即6pm =.②联立①②得428480p p +-=,解得2p =或2p =-(舍去),所以抛物线C 的标准方程为24y x =.(2)由题知直线PM ,PN 的斜率存在,且不为零,且两直线的斜率互为相反数 设()11,M x y ,()22,N x y ,直线:(1)2(0)PM y k x k =-+≠由2(1)24y k x y x =-+⎧⎨=⎩,得()2222244440k x k k x k k --++-+=,则()222222444(2)16(1)0k k k k k ∆=-+--=->,又点P 在抛物线C 上,所以21244k k x k -+=同理得22244k k x k++=.则212228kx xk+ +=,12288kx xk k---==,()()12121212y y k x k x⎡⎤⎡⎤-=-+---+⎣⎦⎣⎦()122k x x k=+-22282kk kk+=⋅-8k=,所以1212818MNy y kkx xk-===---即直线MN的斜率为-1.练习3.如图, 直线12y x=与抛物线2148y x=-交于,A B两点, 线段AB的垂直平分线与直线5y=-交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含,A B)的动点时, 求ΔOPQ面积的最大值.【答案】(1) ()5,5Q-;(2) 最大值30【解析】(1) 解方程组212148y xy x⎧=⎪⎪⎨⎪=-⎪⎩得11-4-2xy=⎧⎨=⎩或2284xy=⎧⎨=⎩即A(-4,-2),B(8,4), 从而AB的中点为M(2,1).由12ABK=,直线AB的垂直平分线方程()122y x-=--令5y=-, 得5x=, ∴()5,5Q-(2)直线OQ的方程为x+y=0, 设21,48P x x⎛⎫-⎪⎝⎭∵点P 到直线OQ 的距离2832x +-,OQ =, ∴12OPQ S ∆=OQ d =2583216x x +-. ∵P 为抛物线上位于线段AB 下方的点, 且P 不在直线OQ 上, ∴-4≤x4或4< x ≤8.∵函数2832y x x =+-在区间[]4,8-上单调递增,∴当x =8时, ΔOPQ 的面积取到最大值30。
高中数学竞赛专题讲座之五:解析几何_2_
高中数学竞赛专题讲座之五: 《解析几何》各类竞赛试题选讲一、选择题1.(04湖南)湖南)已知曲线已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是(C) A .)2,12(-- B .)12,2(--C .)12,0[-D .)12,0(-2.(05全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是表示的曲线是( )A .焦点在x 轴上的椭圆轴上的椭圆B .焦点在x 轴上的双曲线轴上的双曲线C .焦点在y 轴上的椭圆轴上的椭圆D .焦点在y 轴上的双曲线轴上的双曲线3.(06浙江)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有(共有( C )条. A .1 B .2 C .3 D .4 解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。
正确答案为C. 4.(06安徽)过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线(线( )上)上A .2213,22y x y x == B .2235,22y x y x ==C .22,3y x y x ==D .223,5y x y x ==5.若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是(A ) A .a 21 B .a1C .aD .a 26.(06江苏)已知抛物线y 2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B) A .0个B .2个C .4个D .6个7.(06全国)如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐为坐 标原点,则||||MO MT -与b a -的大小关系为(的大小关系为( ) A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定.不确定8.(05四川)双曲线12222=-b y a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定为直径的两圆一定 ( )A .相交.相交B .内切.内切C .外切.外切D .相离.相离解:设双曲线的另一个焦点为2F ,线段1PF 的中点为C ,在△PF F 21中,C 为1PF 的中点,O 为21F F 的中点,从而|)||(|21||212112A A PF PF OC -==,从而以线段211,A A PF 为直径的两圆一定内切. 9.点A 是直线x y l 3:=上一点,且在第一象限,点B 的坐标为(3,2),直线AB 交x 轴正半轴于点C ,那么三角形AOC 面积的最小值是(A )10.(02湖南)已知A (-7,0),B (7,0),C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(两点,此椭圆的另一个焦点的轨迹为( )(奥析263) A .双曲线.双曲线 B .椭圆.椭圆 C .椭圆的一部分.椭圆的一部分 D .双曲线的一部分.双曲线的一部分11.(03全国)过抛物线)2(82+=x y 的焦点F 作倾斜角为60O的直线。
解析几何专题教师
第1讲圆与圆锥曲线的基本问题高考定位 1.圆的方程及直线与圆的位置关系是高考对本讲内容考查的重点,涉及圆的方程的求法、直线与圆的位置关系的判断、弦长问题及切线问题等.2.圆锥曲线中的基本问题一般以椭圆、双曲线、抛物线的定义、标准方程、几何性质等作为考查的重点,多为选择题或填空题.[真题感悟]1.(2014·北京卷)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为().A.7 B.6C.5 D.4解析设P(x,y),因为∠APB=90°,所以yx+m ×yx-m=-1⇒m2=x2+y2,即m=x2+y2又P在圆上,所以4≤x2+y2≤6,故选B. 答案 B2.(2014·广东卷)若实数k满足0<k<5,则曲线x216-y25-k=1与曲线x216-k-y25=1的().A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等解析由0<k<5易知两曲线均为双曲线且焦点都在x轴上,由于16+5-k =16-k+5,所以两曲线的焦距相等.选D.答案 D3.(2014·新课标全国卷Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=().A.303B.6C.12 D.7 3解析抛物线C:y2=3x的焦点为F(34,0),所以AB所在的直线方程为y=33(x -34),将y =33(x -34)代入y 2=3x ,消去y 整理得x 2-212x +916=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=212,由抛物线的定义可得|AB |=x 1+x 2+p =212+32=12,故选C. 答案 C4.(2014·辽宁卷)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.解析 设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1F 2分别是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12. 答案 12 [考点整合] 1.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为r =D 2+E 2-4F 2.答案 D0),圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为r =D 2+E 2-4F 2.2.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离). 3.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上);(2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上);(3)抛物线:y 2=2px ,y 2=-2px ,x 2=2py ,x 2=-2py (p >0). 4.圆锥曲线的几何性质 (1)椭圆:e =ca =1-b 2a 2.(2)双曲线:①e =ca =1+b 2a 2;②渐近线方程:y =±b a x 或y =±ab x ;(3)抛物线:设y 2=2px (p >0),C (x 1,y 1),D (x 2,y 2)为抛物线上的点,F 为其焦点.①焦半径|CF |=x 1+p2;②过焦点的弦长|CD |=x 1+x 2+p ; ③x 1x 2=p 24,y 1y 2=-p 2. 5.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2|x 2-x 1|或|P 1P 2|=1+1k 2|y 2-y 1|.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”、“设而不求法”来简化运算. 对应学生用书P36热点一 圆的方程及其应用【例1】 (2014·潍坊一模)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ). A .(x -2)2+(y ±2)2=3B .(x -2)2+(y ±3)2=3C.(x-2)2+(y±2)2=4 D.(x-2)2+(y±3)2=4解析因为圆C经过(1,0),(3,0)两点,所以圆心在直线x=2上,又圆与y轴相切,所以半径为2,设圆心坐标为(2,b),则(2-1)2+b2=4,∴b2=3,b =±3.答案 D规律方法圆的标准方程直接表示出了圆心和半径,而圆的一般方程则表示出了曲线与二元二次方程的关系,在求解圆的方程时,要根据所给条件选取适当的方程形式.【训练1】(2014·重庆卷)已知直线x-y+a=0与圆心为C的圆x2+y2+2x -4y-4=0相交于A,B两点,且AC⊥BC,则实数a的值为________.解析圆C:x2+y2+2x-4y-4=0的标准方程为(x+1)2+(y-2)2=9,所以圆心为C(-1,2),半径为3.因为AC⊥BC,所以圆心C到直线x-y+a=0的距离为322,于是有|-1-2+a|2=322,所以a=0或6.答案0或6热点二圆锥曲线的定义、方程、性质的应用[微题型1]定义与标准方程的应用【例2-1】(1)(2014·雅安诊断)已知椭圆x29+y2m=1(0<m<9),左、右焦点分别为F1,F2,过F1的直线交椭圆与A,B两点,若|AF2|+|BF2|的最大值为10,则m的值为().A.3 B.2 C.1D. 3(2)(2014·新课标全国卷Ⅰ)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=54x0,则x0=().A.1 B.2 C.4 D.8解析(1)已知椭圆x29+y2m=1(0<m<9)中,a2=9,b2=m.|AF2|+|BF2|=4a-|AB|≤10,∴|AB|≥2,|AB|min=2b2a=2m3=2,解得m=3.(2)由y2=x,可得p2=14.由抛物线的定义知:|AF|=x0+p2=x0+14=54x0,∴x0=1,故选A.答案(1)A(2)A探究提高(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF1|+|PF2|>|F1F2|,双曲线的定义中要求||PF1|-|PF2||<|F1F2|,抛物线上的点到焦点的距离与到准线的距离相等的转化.(2)注意数形结合,提倡画出合理草图.[微题型2]几何性质与标准方程的应用【例2-2】(1)已知离心率等于2的双曲线的一个焦点与抛物线x=18y2的焦点重合,则该双曲线的方程为().A.y2-x23=1 B.x23-y24=1C.x23-y2=1 D.x2-y23=1(2)(2014·北京顺义区统练)过椭圆x2a2+y2b2=1(a>b>0)的焦点且垂直于x轴的弦长为12a,则双曲线x2a2-y2b2=1的离心率e的值是().A.54B.54C.32D.52解析(1)抛物线的标准方程为y2=8x,故其焦点为F(2,0),所以双曲线的焦点在x轴上,设其方程为x2a2-y2b2=1(a>0,b>0),则由已知得c=2,又e=ca=2,解得a=1,所以b2=c2-a2=3.故双曲线的方程为x2-y23=1.(2)设过焦点F(c,0)的弦的端点分别为A,B,令x=c,则y2=b2(1-c2a2)=b4a2,y=±b2a,而|AB|=2b2 a,故2b2a=12a,a2=4b2,则e2=c2a2=a2+b2a2=5b24b2=54,∴e=5 2.答案(1)D(2)D探究提高(1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.[微题型3]有关圆锥曲线的弦长问题【例2-3】(2014·广安诊断)在平面直角坐标系xOy中,已知椭圆C∶x2a2+y2b2=1(a>b≥1)过点P(2,1),且离心率e=3 2.(1)求椭圆C的方程;(2)直线l的斜率为12,直线l与椭圆C交于A,B两点,求△P AB面积的最大值.解(1)∵e2=c2a2=a2-b2a2=34,∴a2=4b2.又4a2+1b2=1,∴a2=8,b2=2.故所求椭圆C的方程为x28+y22=1.(2)设l的方程为y=12x+m,点A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1,整理得x 2+2mx +2m 2-4=0, 判别式Δ=16-4m 2>0,即m 2<4. 又x 1+x 2=-2m ,x 1·x 2=2m 2-4, 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2), 点P 到直线l 的距离d =|m |1+14=2|m |5. 因此S △P AB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2,当且仅当m 2=2时取等号. 故△P AB 面积的最大值为2.探究提高 (1)涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.(2)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件Δ≥0,在用“点差法”时,要检验直线与圆锥曲线是否相交. 【训练2】 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,AF →=2FB →. (1)求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程. 解 设A (x 1,y 1),B (x 2,y 2), 由题意知y 1<0,y 2>0.(1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3(x -c ),x 2a 2+y 2b 2=1,得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2.因为AF →=2FB →,所以-y 1=2y 2,即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2,得离心率e =c a =23. (2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b 2=154,由c a =23,得b =53a ,所以54a =154,得a =3,b =5, 故椭圆C 的方程为x 29+y 25=1.对应学生用书P371.确定圆的方程时,常用到圆的几个性质:(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径); (2)圆心在过切点且与切线垂直的直线上; (3)圆心在任一弦的中垂线上;(4)两圆内切或外切时,切点与两圆圆心三点共线;(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称.2.对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.3.椭圆、双曲线的方程形式上可统一为Ax 2+By 2=1,其中A ,B 是不等的常数,A >B >0时,表示焦点在y 轴上的椭圆;B >A >0时,表示焦点在x轴上的椭圆;AB<0时表示双曲线.4.求双曲线、椭圆的离心率的方法:方法一:直接求出a,c,计算e=ca;方法二:根据已知条件确定a,b,c的等量关系,然后把b用a,c代换,求c a.5.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b2a,过椭圆焦点的弦中通径最短;抛物线通径长是2p,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a+c,最短距离为a -c.一、选择题1.(2014·陕西长安五校联考)过P(2,0)的直线l被圆(x-2)2+(y-3)2=9截得的线段长为2时,直线l的斜率为().A.±24B.±22C.±1 D.±3 3解析由题意直线l的斜率存在,设为k,则直线l的方程为y=k(x-2),即kx-y-2k=0.由点到直线的距离公式得,圆心到直线l的距离为d=|2k-3-2k|k2+1=3k2+1,由圆的性质可得d2+12=r2,即⎝⎛⎭⎪⎫3k2+12+12=9,解得k2=18,即k=±24.答案 A2.(2014·绵阳诊断)已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的焦距是实轴长的2倍,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为().A.x2=833y B.x2=1633yC.x2=8y D.x2=16y解析∵2c=4a,∴c=2a,又a2+b2=c2,∴b=3a,∴渐近线y=±3x,焦点(0,p2),d =p 22=2,∴p =8,∴抛物线方程为x 2=16y . 答案 D3.(2014·重庆卷)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ).A. 2 B .15 C .4D .17解析 由双曲线的定义可得 (|PF 1|-|PF 2|)2=4a 2=b 2-3ab , 即4a 2-b 2+3ab =0, ∴(4a -b )(a +b )=0, 解得ba =4, 又e =c a =1+b 2a 2=17.答案 D4.(2014·淄博一模)过抛物线y 2=4x 焦点F 的直线交其于A ,B 两点,O 为坐标原点,若|AF |=3,则△AOB 的面积为( ). A.22 B . 2 C.322D .2 2解析 设直线AB 的倾斜角为θ(0<θ<π)及|BF |=m , ∵|AF |=3,∴点A 到准线l :x =-1的距离为3, ∴2+3cos θ=3,即cos θ=13,则sin θ=223. ∵m =2+m cos(π-θ),∴m =21+cos θ=32,∴△AOB 的面积为S =12×|OF |×|AB |×sin θ=12×1×(3+32)×223=322. 答案 C 二、填空题5.(2014·威海模拟)已知圆O 过椭圆x 26+y 22=1的两焦点且关于直线x -y +1=0对称,则圆O 的方程为________.解析 由题可知a 2=6,b 2=2,所以c 2=a 2-b 2=4,椭圆的焦点为F 1(-2,0),F 2(2,0),故圆的圆心在直线x =0上,又圆O 关于直线x -y +1=0对称,圆心也在该直线上,与方程x =0联立可得圆心坐标为(0,1),半径为r =(2-0)2+(0-1)2= 5.故圆的方程为x 2+(y -1)2=5. 答案 x 2+(y -1)2=56.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为________.解析 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7. 答案 77.(2014·金丽衢十二校联考)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线上且不与顶点重合,过F 2作∠F 1PF 2的角平分线的垂线,垂足为A .若|OA |=b ,则该双曲线的离心率为________. 解析 如图,延长F 2A 交PF 1于B 点,依题意可得|BF 1|= |PF 1|-|PF 2|=2a . 又点A 是BF 2的中点,所以|OA |=12|BF 1|, 即b =a ,∴c =2a ,即e = 2. 答案28.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1的直线l 与椭圆C 交于A ,B 两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则椭圆的离心率为________.解析 设|AB |=3t (t >0),则|BF 2|=4t ,|AF 2|=5t ,则|AB |+|BF 2|+|AF 2|=12t . 因为|AB |+|BF 2|+|AF 2|=4a ,所以12t =4a , 即t =13a .又|F 1A |+|AF 2|=2a , 所以|F 1A |=2a -53a =13a , |F 1B |=23a ,|BF 2|=43a .由|AB |∶|BF 2|∶|AF 2|=3∶4∶5, 知AB ⊥BF 2,故|F 1B |2+|BF 2|2=4c 2,即 (23a )2+(43a )2=4c 2,得59a 2=c 2. 所以e 2=c 2a 2=59,即e =53. 答案53三、解答题9.(2014·长沙模拟改编)如图,已知直线l :y =k (x +1)(k >0)与抛物线C :y 2=4x 相交于A ,B 两点,且A ,B 两点在抛物线C 准线上的射影分别是M ,N .且|AM |=2|BN |,求k 值.解 设A (x 1,y 1),B (x 2,y 2), 联立方程组:⎩⎨⎧y 2=4x ,y =k (x +1),消去x 得:ky 2-4y +4k =0. ① 因为直线与抛物线相交,所以有,Δ=(-4)2-4×k ×4k =16(1-k 2)>0, (*) y 1,y 2是方程①的两根,所以有⎩⎪⎨⎪⎧y 1+y 2=4k , ②y 1·y 2=4. ③又因为|AM |=2|BN |,所以,y 1=2y 2, ④ 解由②③④组成的方程组,得k =223,把k =223代入(*)式检验,不等式成立.所以,k =223.10.(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1,即1≤a 2+(2a -3)2≤3.整理得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0, 得0≤a ≤125.所以点C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125.11.(2014·广东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解 (1)可知c =5,又c a =53, ∴a =3,b 2=a 2-c 2=4, 椭圆C 的标准方程为x 29+y 24=1; (2)设两切线为l 1,l 2,①当l 1⊥x 轴或l 1∥x 轴时,对应l 2∥x 轴或l 2⊥x 轴,可知P (±3,±2); ②当l 1与x 轴不垂直且不平行时,x 0≠±3, 设l 1的斜率为k ,则k ≠0,l 2的斜率为-1k , l 1的方程为y -y 0=k (x -x 0),联立x 29+y 24=1, 得(9k 2+4)x 2+18(y 0-kx 0)kx +9(y 0-kx 0)2-36=0,因为直线与椭圆相切,所以Δ=0,得9(y 0-kx 0)2k 2-(9k 2+4)[(y 0-kx 0)2-4]=0, ∴-36k 2+4[(y 0-kx 0)2-4]=0,∴(x 20-9)k 2-2x 0y 0k +y 20-4=0,所以k 是方程(x 20-9)x 2-2x 0y 0x +y 20-4=0(x 0≠±3)的一个根, 同理-1k 是方程(x 20-9)x 2-2x 0y 0x +y 20-4=0(x 0≠±3)的另一个根, ∴k ·⎝ ⎛⎭⎪⎫-1k =y 20-4x 20-9,得x 20+y 20=13,其中x 0≠±3, 所以点P 的轨迹方程为x 2+y 2=13(x ≠±3), 因为P (±3,±2)满足上式,综上知:点P 的轨迹方程为x 2+y 2=13.第2讲 圆锥曲线中的定点、定值、最值、范围问题高考定位 圆锥曲线的综合问题包括:探索性问题、定点与定值问题、范围与最值问题等,一般试题难度较大.这类问题以直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要综合运用函数与方程、不等式、平面向量等诸多知识以及数形结合、分类讨论等多种数学思想方法进行求解,对考生的代数恒等变形能力、计算能力等有较高的要求.[真题感悟](2014·北京卷)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点.若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.解 (1)由题意,椭圆C 的标准方程为x 24+y 22=1. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0,即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 20+y 2+4y 20x 20+4 =x 20+4-x 202+2(4-x 20)x 2+4 =x 202+8x 20+4(0<x 20≤4).因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2. [考点整合] 1.定点、定值问题在解析几何中,有些含有参数的直线或曲线,不论参数如何变化,其都过某定点,这类问题称为定点问题;有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题. 2.圆锥曲线中的最值 (1)椭圆中的最值F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]; ②|PF 1|∈[a -c ,a +c ]; ③|PF 1|·|PF 2|∈[b 2,a 2]; ④∠F 1PF 2≤∠F 1BF 2. (2)双曲线中的最值F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有①|OP |≥a ; ②|PF 1|≥c -a . (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有 ①|PF |≥p2;②A (m ,n )为一定点,则|PA |+|PF |有最小值. 对应学生用书P38热点一 定点、定值问题 [微题型1] 定点的探究与证明【例1-1】 (2014·益阳模拟改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,离心率为22,过点M (2,0)的直线l 与椭圆C 相交于A ,B 两点,O 为坐标原点. (1)求椭圆C 的方程;(2)若B 点关于x 轴的对称点是N ,证明:直线AN 恒过一定点. (1)解 由题意知b =1,e =c a =22,得a 2=2c 2=2a 2-2b 2,故a 2=2. 故所求椭圆C 的方程为:x 22+y 2=1. (2)证明 设直线l 的方程为y =k (x -2), 则由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k 21+2k 2,x 1·x 2=8k 2-21+2k 2.由对称性可知N (x 2,-y 2),定点在x 轴上, 直线AN :y -y 1=y 1+y 2x 1-x 2(x -x 1).令y =0得:x =x 1-y 1(x 1-x 2)y 1+y 2=x 1y 2+x 2y 1y 1+y 2=2kx 1x 2-2k (x 1+x 2)k (x 1+x 2-4)=2x 1x 2-2(x 1+x 2)x 1+x 2-4=16k 2-41+2k 2-16k 21+2k 28k 21+2k 2-4=1,故直线AN 恒过定点(1,0).探究提高 (1)动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).(2)动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. [微题型2] 定值的探究与证明【例1-2】 (2014·江西卷)如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.证明 (1)依题意可设AB 方程为y =kx +2,代入x 2=4y ,得x 2=4(kx +2),即x 2-4kx -8=0.设A (x 1,y 1),B (x 2,y 2),则有x 1x 2=-8, 直线AO 的方程为y =y 1x 1x ;BD 的方程为x =x 2.解得交点D 的坐标为⎩⎪⎨⎪⎧x =x 2,y =y 1x 2x 1.注意到x 1x 2=-8及x 21=4y 1,则有y =y 1x 1x 2x 21=-8y 14y 1=-2,因此D 点在定直线y =-2(x ≠0)上.(2)依题设,切线l 的斜率存在且不等于0,设切线l 的方程为y =ax +b (a ≠0),代入x 2=4y 得x 2=4(ax +b ), 即x 2-4ax -4b =0,由Δ=0得(4a )2+16b =0,化简整理得b =-a 2. 故切线l 的方程可写为y =ax -a 2. 分别令y =2,y =-2得N 1,N 2的坐标为 N 1⎝ ⎛⎭⎪⎫2a +a ,2,N 2⎝ ⎛⎭⎪⎫-2a +a ,-2, 则|MN 2|2-|MN 1|2=⎝ ⎛⎭⎪⎫2a -a 2+42-⎝ ⎛⎭⎪⎫2a +a 2=8,即|MN 2|2-|MN 1|2为定值8.规律方法 (1)先由特例得出一个值(此值一般就是定值),再证明定值:将问题转化为证明待证式与参数(某些变量)无关.(2)先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.【训练1】 (2014·南昌模拟)已知点P (1,-32)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,过椭圆C 的右焦点F 2(1,0)的直线l 与椭圆C 交于M ,N 两点. (1)求椭圆C 的方程;(2)若AB 是椭圆C 经过原点O 的弦,且MN ∥AB ,W =|AB |2|MN |,试判断W 是否为定值?若W 为定值,请求出这个定值;若W 不是定值,请说明理由. 解 (1)椭圆C 的右焦点为(1,0),∴c =1,椭圆C 的左焦点为(-1,0), 可得2a =(1+1)2+(-32)2+(1-1)2+(-32)2=52+32=4,解得a =2,∴b 2=a 2-c 2=4-1=3, ∴椭圆C 的标准方程为x 24+y 23=1. (2)①当直线l 斜率不存在时,|AB |2=(2b )2=4b 2,|MN |=2b 2a ,所以W =|AB |2|MN |=4b 22b 2a=2a =4.②当直线l 斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0),且M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4k 2-12=0,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,则|MN |=1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[(8k 23+4k 2)2-4(4k 2-123+4k 2)]=12(k 2+1)3+4k 2.由⎩⎪⎨⎪⎧x 24+y 23=1,y =kx ,消去y ,并整理得:x 2=123+4k 2,设A (x 3,y 3),B (x 4,y 4),则 |AB |=1+k 2|x 3-x 4|=43(1+k 2)3+4k 2,所以W =|AB |2|MN |=48(1+k 2)3+4k 212(1+k 2)3+4k 2=4.综上所述,W 为定值4. 热点二 最值、范围问题[微题型1] 求线段长度、三角形面积、圆锥曲线离心率等的最值【例2-1】 (2014·上饶模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,右焦点为F ,直线x =a 2c 与x 轴交于点B 且与直线y =ba x 交于点C ,点O 为坐标原点. OB →=2OA →,OA →·OC →=8,过点F 的直线l 与椭圆交于不同的两点M ,N .(1)求椭圆的方程;(2)求△BMN 的面积的最大值. 解 (1)∵OB →=2OA →,OA →·OC →=8. ∴a 2c =2a 且a 3c =8,∴a =2,c =1,则b 2=a 2-c 2=3, 故椭圆方程为x 24+y 23=1.(2)当直线l 与x 轴不垂直时,设直线l :y =k (x -1),M (x 1,y 1),N (x 2,y 2), 则⎩⎨⎧y =k (x -1),3x 2+4y 2=12,消去y 得(3+4k 2)x -8k 2x +4k 2-12=0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2.记d 为点B 到直线l 的距离,则d =3|k |1+k 2,则|MN |=1+k 2(x 1+x 2)2-4x 1x 2,所以 S =12d |MN |=32|k |(8k 23+4k 2)2-4·4k 2-123+4k 2=921-8k 2+916k 4+24k 2+9<92.当直线l ⊥x 轴时,S =92, 所以△BMN 的面积的最大值为92.规律方法 解决最值问题的常用方法:(1)数形结合法:根据待求值的几何意义,充分利用平面图形的几何性质求解.(2)构建函数法:先引入变量,构建以待求量为因变量的函数,再求其最值,常用基本不等式或导数法求最值(注意:有时需要换元后再求最值). [微题型2] 求几何量、某个参数的取值范围【例2-2】 (2014·北京朝阳区测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(1,32),一个焦点为(3,0). (1)求椭圆C 的方程;(2)若直线y =k (x -1)(k ≠0)与x 轴交于点P ,与椭圆C 交于A ,B 两点,线段AB 的垂直平分线与x 轴交于点Q .求|AB ||PQ |的取值范围. 解 (1)由题意得⎩⎪⎨⎪⎧a 2-b 2=3,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1,得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,y 1+y 2=k (x 1+x 2-2)=-2k1+4k 2.所以线段AB 的中点坐标为(4k 21+4k 2,-k 1+4k 2),所以线段AB 的垂直平分线方程为 y --k 1+4k 2=-1k (x -4k 21+4k 2). 于是,线段AB 的垂直平分线与x 轴的交点Q (3k 21+4k 2,0),又点P (1,0),所以|PQ |=⎪⎪⎪⎪⎪⎪1-3k 21+4k 2=1+k 21+4k 2.又|AB |=(1+k 2)[(8k 21+4k 2)2-4·4k 2-41+4k 2]=4(1+k 2)(1+3k 2)1+4k 2.于是,|AB ||PQ |=4(1+k 2)(1+3k 2)1+4k 21+k 21+4k 2=41+3k 21+k 2=43-21+k 2. 因为k ≠0,所以1<3-21+k 2<3. 所以|AB ||PQ |的取值范围为(4,43).规律方法 解决范围问题的常用方法:(1)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.【训练2】 已知椭圆C 1与抛物线C 2的焦点均在x 轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上各取两个点,其坐标如下表所示:12(2)过点A (m,0)作倾斜角为π6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以线段CD 为直径的圆的外部,求m 的取值范围.解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 22=1,抛物线C 2的方程为y 2=9x .(2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =33(x -m ), 由⎩⎪⎨⎪⎧y =33(x -m ),x 26+y 22=1,消去y 整理得2x 2-2mx +m 2-6=0, 由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23<m <23, ① 而x 1x 2=m 2-62,x 1+x 2=m , 故y 1y 2=33(x 1-m )·33(x 2-m ) =13[x 1x 2-m (x 1+x 2)+m 2]=m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,又F (-2,0), 即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0. ②由①②可得m 的取值范围是(-23,-3)∪(0,23).对应学生用书P401.定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明,对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果. 2.圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围是( ). A .(1,2) B .(1,2] C .(1,5)D .(1,5]解析 因为双曲线的渐近线为y =±ba x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有ba ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2. 答案 B2.已知椭圆x 24+y 2b 2=1(0<b <2),左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( ). A .1 B .2 C.32D . 3解析 由椭圆的方程,可知长半轴长为a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2a =3,可求得b 2=3,即b = 3. 答案 D3.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为该椭圆的一个焦点,则△ABF 的面积的最大值为( ). A .1 B .2 C .4D .8解析 不妨设点F 的坐标为(4-b 2,0),而|AB |=2b ,∴S △ABF =12×2b ×4-b 2=b 4-b 2=b 2(4-b 2)≤b 2+4-b 22=2(当且仅当b2=4-b 2,即b 2=2时取等号),故△ABF 面积的最大值为2. 答案 B4.(2014·四川卷)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ). A .2 B .3 C.1728D .10解析 设直线AB 的方程为x =ny +m (如图),A (x 1,y 1),B (x 2,y 2), ∵OA →·OB →=2, ∴x 1x 2+y 1y 2=2.又y 21=x 1,y 22=x 2,∴y 1y 2=-2.联立⎩⎨⎧y 2=x ,x =ny +m ,得y 2-ny -m =0,∴y 1y 2=-m =-2,∴m =2,即点M (2,0). 又S △ABO =S △AMO +S △BMO =12|OM ||y 1|+12|OM ||y 2| =y 1-y 2,S △AFO =12|OF |·|y 1|=18y 1, ∴S △ABO +S △AFO =y 1-y 2+18y 1 =98y 1+2y 1≥298y 1·2y 1=3,当且仅当y 1=43时,等号成立. 答案 B 二、填空题5.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则P A 1→·PF 2→的最小值为________.解析 由已知得A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则P A 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=4x 2-x -5.令f (x )=4x 2-x -5,则f (x )在[1,+∞)上单调递增,所以当x =1时,函数f (x )取最小值,即P A 1→·PF 2→取最小值,最小值为-2. 答案 -26.已知A (1,2),B (-1,2),动点P 满足AP →⊥BP →.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是________.解析 设P (x ,y ),由题设条件,得动点P 的轨迹为(x -1)(x +1)+(y -2)(y -2)=0,即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x ,即bx ±ay =0,由题意,可得2aa 2+b 2>1,即2ac >1,所以e =ca <2,又e >1,故1<e <2. 答案 (1,2)7.若椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2a 2-y 2b 2=1的离心率分别为e 1,e 2,则e 1e 2的取值范围为________. 解析 可知e 21=a 2-b 2a 2=1-b 2a 2,e 22=a 2+b 2a 2=1+b 2a 2,所以e 21+e 22=2>2e 1e 2⇒0<e 1e 2<1.答案 (0,1)8.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A ,B ,C ,D ,则ABCD 的值为________. 解析 由⎩⎨⎧3x -4y +4=0,x 2=4y ,得x 2-3x -4=0,∴x A =-1,x D =4,∴y A =14,y D =4.直线3x -4y +4=0恰过抛物线的焦点F (0,1). ∴AF =y A +1=54,DF =y D +1=5, ∴AB CD =AF -1DF -1=116.答案 116 三、解答题9.(2014·新课标全国卷Ⅰ)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.解 (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4.。
【精品】高三数学经典讲义解析几何专题教师版
高三数学寒假班(教师版)(一)直线①直线方程的适用范围,只有点法向式和一般式可以表示坐标平面内的所有直线 ②倾斜角的范围:[0,)π ③两直线夹角的范围:[0,2π(二)圆弦长公式:(三)椭圆①定义:1212||||22||PF PF a c F F +=>=【1212||||||PF PF F F +=表示的是线段】,222a b c =+ ②1||[,]PF a c a c ∈-+ ③焦点三角形面积122tan2PF F S b θ=△,12F PF θ=∠(四)双曲线①定义:1212||||||22||P F P F a c F F-=<=【1212||||||||PF PF F F -=表示的是两条射线】,222c a b =+②1||[,)PF c a ∈-+∞③焦点三角形面积122cot2PF F S b θ=△,12F PF θ=∠④渐近线(五)抛物线①定义中注意定点不在直线上,在直线上的时候表示的是直线 ②焦点弦公式12||AB x x p =++或12||AB y y p =++ (六)其他注意事项1、弦长公式1212||||x AB x x y y =-==-= 2、椭圆、双曲线、抛物线焦点位置的讨论解析几何知识梳理1、直线与圆锥曲线的概念、性质类问题【例1】设i ,j 分别表示平面直角坐标系x ,y 轴上的单位向量,且25a i a j -+-=,则2a i+的取值范围为. 【难度】★★ 【答案】⎤⎥⎦【解析】由25a i a j -+-=,可得a 在坐标平面上的轨迹为线段AB 【注意,不是椭圆】2a i +看成线段上的动点P 到定点(2,0)Q -的距离,数形结合即可得答案⎤⎥⎦. 其中min2a i +为点Q 到直线AB 的距离;max2a i +为QB .【例2】平面直角坐标系xOy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线22:2C x py =()0p >交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的ca的值为 . 【难度】★★ 【答案】32【例3】如果函数2y x =-的图像与曲线22:4C x y λ+=恰好有两个不同的公共点,则实数λ的 取值范围是( )A .[1,1)-B .{}1,0-C .(,1][0,1)-∞- D.[1,0](1,)-+∞【难度】★★ 【答案】A例题解析【解析】①两平行直线:0λ=(符合) ②圆:1λ=(符合) ③椭圆ⅰ)焦点在x 轴的椭圆:(1,)λ∈+∞(不符合)ⅱ)焦点在y 轴的椭圆:(0,1)λ∈(符合)④双曲线ⅰ)等轴双曲线:1λ=-(符合)ⅱ)渐近线较陡:(1,0)λ∈-(符合)ⅲ)渐近线较平:(,1)λ∈-∞-(不符合)【例4】在平面直角坐标系中有两点(A -、(1B ,以原点为圆心、(0)r r >为半径作一个圆,与射线(0)y x =<交于M ,与x 轴正半轴交于N ,则当r 变化时||||AM BN +的最小值为 .【难度】★★【答案】【解析】y =的倾斜角为120︒,OB l 的倾斜角为60︒ 易证BOM BON △≌△,∴||||BM BN =∴|||||||||'||||'|AM BN AM BM A M BM A B +=+=+≥='(A -【例5】设圆O 1和圆O 2是两个相离的定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹可能是①两条双曲线;②一条双曲线和一条直线;③一条双曲线和一个椭圆.以上命题正确的是( )A .① ③B .② ③C .① ②D .① ② ③ 【难度】★★★ 【答案】C【解析】(1)12r r =,① 动圆与这两个圆都外切,此时轨迹为一条直线(12O O 的中垂线)② 动圆与这两个圆都内切,情况同①③ 动圆与这两个圆一个外切、一个内切, 设动圆半径为R ,12r r r == 则111222||2PO R r PO R rPO PO r PO R r PO R r ⎧=+=-⎧⎪⇒-=⎨⎨=-=+⎪⎩⎩或,此时轨迹为一条双曲线(2)12r r ≠(以12r r >为例进行分析) ① 动圆与这两个圆都外切, 11121222||PO R r PO PO r r PO R r =+⎧⇒-=-⎨=+⎩此时轨迹为双曲线的一支② 动圆与这两个圆都内切, 11122122||PO R r PO PO r r PO R r =-⎧⇒-=-⎨=-⎩此时轨迹为双曲线的一支③ 动圆与这两个圆一个外切、一个内切,则111112122222||PO R r PO R r PO PO r r PO R r PO R r ⎧=+=-⎧⎪⇒-=+⎨⎨=-=+⎪⎩⎩或, 此时轨迹为一条双曲线 综上,选C【巩固训练】1.已知曲线C :22||||1x x y y a b-=,下列叙述中错误的是( ). A .垂直于x 轴的直线与曲线C 只有一个交点B .直线y kx m =+(,k m ∈R )与曲线C 最多有三个交点 C .曲线C 关于直线y x =-对称D .若111(,)P x y ,222(,)P x y 为曲线C 上任意两点,则有12120y y x x ->-【难度】★★ 【答案】C2.给定平面上四点,,,O A B C 满足4,3,2,3OA OB OC OB OC ===⋅=,则ABC ∆面积的最大值为 . 【难度】★★【答案】【解析】∵BC 为定值,∴BC 边上的高最长 由3,2,3OB OC OB OC ==⋅=,可得60BOC ∠=︒利用余弦定理,可求得BC =11sin 22BOC S OB OC BOC BC OH =⋅⋅⋅∠=⋅⋅△,解得OH =max 1()(4)22ABC S BC OH =⋅⋅+=△2、圆锥曲线解答题【例6】已知椭圆2222+=1(0)x y a b a b >>的左焦点为(,0)F c -,c a =,点M 在椭圆上且位于第一象限,直线FM 被圆2224b x y +=截得的线段的长为c ,||FM .(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围. 【难度】★★【答案】(1)由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有22222c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得k = (2)由(1)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =, 因为点M 在第一象限,可得M的坐标为c ⎛⎫⎪⎝⎭,=,解得1c =, 所以椭圆方程为22132x y +=(3)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-, 与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得t =>312x -<<-或10x -<<, 设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠, 与椭圆方程联立,整理可得22223m x =-.①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =,得m ∈ ②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝综上,直线OP的斜率的取值范围是22,,⎛⎛-∞ ⎝【例7】已知双曲线C 的右顶点为(1,0)A ,左焦点为F ,过A 且倾斜角为150︒的直线l 与双曲线C 的另一个交点为B ,线段AB 的中点的横坐标是18-. (1)求双曲线C 的标准方程; (2)求AFB ∠的大小;(3)若动点B '在双曲线C 的左支上,设AFB FAB λ''∠=∠,问λ的值是否随点B '的位置改变而改变?试说明理由. 【难度】★★【答案】(1)直线l的斜率tan150k =︒=l 的方程为1)y x =-, 设双曲线C 的标准方程为2221(0)y x bb-=>,点B 的坐标为11(,)x y ,则由2221)1y x y x b ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得222(31)2130b x x b -+--=,得122131x b +=--,由121112318x b +=-=--,解得b =C 的标准方程为2213y x -= (2)由(1)知直线l 与双曲线C 的交点的横坐标满足方程 2450x x +-=,解得125,14x x =-=,得点B 的坐标为5(4-, 又点F 的坐标为(2,0)-,所以直线BF 的斜率为BF k =60AFB ∠=︒; (3)满足AFB FAB λ''∠=∠的2λ=不随点B '位置的改变而改变.证明:设点00(,)B x y ',则22013y x -=, 当B F x '⊥轴时,(2,3)B '-±,AFB '∆为等腰三角形,2AFB FAB ''∠=∠; 当B F x '与轴不垂直时,B F '的斜率为00tan 2B F y k FAB x ''=∠=+, AB '的斜率为001AB y k x '=-,所以00tan 1AB yB AF k x ''∠=-=--, 0022002()12tan tan 21tan 1()1y x FAB FAB y FAB x -'-∠'∠=='-∠---,将220013y x -=代入上式,整理得:00tan 22y FAB x '∠=+, 所以tan tan 2AFB FAB ''∠=∠,故在AFB '∆∠中,2AFB FAB ''∠=∠,因此,当动点B '在双曲线的左支上时,满足AFB FAB λ''∠=∠的2λ=不随点B '位置的改变而改变.【例8】已知椭圆22122:1(0)x y C a b a b+=>> 经过点3(1,)2M,且其右焦点与抛物线22:4C y x = 的焦 点F 重合,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点. (1)求椭圆1C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)N n,使得QP NP PQ NQ ⋅=⋅? 若存在,求出n 的取值范围;若不存在,说明理由;(3)过点0(4,0)P且不垂直于x 轴的直线与椭圆交于,A B 两点,点B 关于x 轴的对称点为E , 试证明:直线AE 过定点.【难度】★★★【答案】(1)由题意,得:(1,0)F所以222291411a b a b ⎧⎪⎪+=⎨⎪-=⎪⎩,解得2243a b ⎧=⎪⎨=⎪⎩,所以椭圆的方程为:22143x y +=;(2)设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y +=,得:2222(34)88120k x k x k +-+-=2222(8)4(34)(812)0k k k ∆=--+-> 恒成立. 设1122(,),(,),P x y Q x y 线段PQ 的中点为33(,)R x y ,则2123332243,(1)23434x x k kx y k x k k +===-=-++, 由QP NP PQ NQ ⋅=⋅ 得:()(2)0PQ NQ NP PQ NR ⋅+=⋅=, 所以直线NR 为直线PQ 的垂直平分线,直线NR 的方程为:222314(3434k k y x k k k +=--++, 令0y =得:N 点的横坐标22213344k n k k ==++, 因为2(0,)k ∈+∞,所以234(4,)k +∈+∞,所以1(0,4n ∈. 所以线段OF 上存在点(,0)N n 使得QP NP PQ NQ ⋅=⋅,其中1(0,)4n ∈.(3)证明:设直线AB 的方程为:(4),(0)y k x k =-≠,代入22143x y +=,得:2222(34)3264120k x k x k +-+-=, 由2222(32)4(34)(6412)0k k k ∆=--+->,得:11(,22k ∈-, 设334444(,),(,),(,)A x y B x y E x y -,则22343422326412,3434k k x x x x k k -+==++,则直线AE 的方程为343334()y y y y x x x x +-=--,令0y =得:343443344333343434(4)(4)(8)x x x y x y x k x x k x x y x y y y y k x x -+⋅-+⋅-=-⋅+==+++-2222343423426412322424()34341328834k k x x x x k k k x x k -⋅-⋅⋅-+++===+--+, 所以直线AE 过定点(1,0).【巩固训练】3.如图,椭圆2222:1(0)x y E a b a b+=>> 的左焦点为1F ,右焦点为2F ,过1F 的直线交椭圆于,A B两点,2ABF △的周长为8,且12AF F △面积最大时,12AF F △为正三角形. (1)求椭圆E 的方程;(2)设动直线:l y kx m =+与椭圆E 有且只有一个公共点P , 且与直线4x =相交于点Q .试探究:① 以PQ 为直径的圆与x 轴的位置关系?② 在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求 出M 的坐标;若不存在,说明理由.【难度】★★ 【答案】(1)当三角形面积最大时,为正三角形,所以(0,),2,48A b a c a ==224,3a b ∴==,椭圆E 的方程为22+=143x y(2)①由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得方程222(43)84120k x kmx m +++-=由直线与椭圆相切得220,0,430.m k m ≠∆=⇒-+=求得43(,)k P m m -,(4,4)Q k m +,PQ 中点到x 轴距离223(222m d k m=++ 2222212()(1)0(4302)2kPQ d k m m k m-=->-+=⇒≠. 所以圆与x 轴相交.(2)②假设平面内存在定点M 满足条件,由对称性知点M 在x 轴上,设点M 坐标为1(,0)M x ,1143(,(4,4)k MP x MQ x k m m m=--=-+.由0MP MQ ⋅=得2111(44)430kx x x m-+-+= 所以211144430x x x -=-+=,即11x =所以定点为(1,0)M .解析几何的考查离不开对相关定义的理解,所以复习的时候必须要弄清相应的定义,尤其是注意事项,如设点斜式的时候勿忘斜率不存在的情况;椭圆、双曲线中三个基本量a,b,c 的关系式的区别等等。
高考总复习二轮理科数学精品课件 专题5 解析几何 专题5 解析几何
形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆
2 2
+ 2
2
=1(a>b>0)中,
①当P为短轴端点时,θ最大.
1
②S=2|PF1||PF2|·sin
θ=b tan
2
=c|y0|,当|y0|=b
2
大值,最大值为bc.
2
2
− 2 =1(a>0,b>0)(焦点在 x 轴上)或 2
2
− 2 =1(a>0,b>0)(焦点在 y
轴上).
(3)抛物线:y2=2px(p>0),y2=-2px(p>0),x2=2py(p>0),x2=-2py(p>0).
5.圆锥曲线的几何性质
性质
椭圆
c2
b2
=a 2 =1-a 2 ,e→0,椭圆越
-1.
(2)若直线l1和l2的方程分别是A1x+B1y+C1=0,A2x+B2y+C2=0,则l1∥l2
1 2 -2 1 = 0,
1 2 -2 1 = 0,
⇔
或
l1⊥l2⇔A1A2+B1B2=0.
1 2 -2 1 ≠ 0
1 2 -2 1 ≠ 0,
名师点析与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0(m≠C);
2
kAB·
kOM=2 =9.
9
kAB=-2,不满足;对
9
kAB=4,满足.故选
D.
6.(2022全国乙,理14)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程
专题五 解析几何(教师用书) (1)
2 专题五 解析几何第 1 讲 直线与圆【考纲要求】直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标. 圆与方程掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 圆与点、直线、圆的位置关系(1) 能根据给定直线、圆的方程判断直线与圆的位置关系; 能根据给定两个圆的方程判断两圆的位置关系.(2)能用直线和圆的方程解决一些简单的问题. (3)初步了解用代数方法处理几何问题的思想.【考点定位】高考对直线的方程和圆的方程的考查有三种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.高考对圆与直线、圆位置关系的考查有六种主要形式:一是考查直线与圆的位置关系;二是考查圆的切线问题;三是与圆有关的弦长问题;四是考查圆与圆的位置关系;五是考查与圆有关的最值问题;六是考查与圆有关的轨迹问题,注意几何法在解题中的重大作用.【备考工具】直线的方程1、直线的倾斜角和斜率(1)直线的的斜率为 k ,倾斜角为 α,它们的关系为:k =tanα⎛≠ ⎫;(2)若A(x ,y ),B(x,y ),则 K=y 2 - y 1⎪ ⎝⎭(x ≠ x ).1 12 2AB2x 12.直线的方程x 12(x - x ) + (y - y ) 221 2 1 2A 2+B 2x y a.点斜式:y - y 1 = k (x - x 1 ); b.斜截式: y = kx + b ;c.两点式: y - y 1=x - x 1 ; d.截距式: + = 1;y 2 - y 1 x 2 - x 1 a be.一般式: Ax + By + C = 0,其中 A 、B 不同时为 0.两条直线的位置关系(1)若 l 1,l 2 均存在斜率且不重合:①l 1//l 2 ⇔k 1=k 2;②l 1 ⊥l 2 ⇔k 1k 2=-1;③ l 1 l 2 ⇔ k 1 ≠ k 2(2)若l 1 : A 1 x + B 1 y + C 1 = 0,l 2 : A 2 x +B 2 y + C 2 = 0当 A 1B 2 = A 2 B 1时, l 1,l 2平行或重合,代入检验;当 A 1B 2 ≠ A 2 B 1时, l 1,l 2相交;当 A 1 A 2 +A 2 B 2 =0时, l 1 ⊥ l 2.几种距离(1)两点间的距离:平面上的两点 A (x 1,y ,1 ),B (x 2y 2 )间的距离公式: AB = .(2)点到直线的距离:点 P (x 1,y 1 )到直线l :A +x +B =y C 0的距离d=1 1 .(3)两条平行线间的距离:两条平行线 Ax +B +y =C 1 0与 Ax +B +y =C 20间的距离d=1 2(C 1 ≠ C 2 ).圆的方程标准式: (x - a )2 + ( y - b )2 = r 2,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小.⎛ - D ,- E ⎫1一般式:x 2 + y 2 + Dx + Ey + F = 0,其中⎝ 2⎪⎭为圆心 2 为半径,,圆的一般A 2 +B 2D 2 +E 2 - 4F 2⎩方程中也有三个待定系数,即 D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.点、直线、圆与圆的位置关系1.直线 Ax + By + C = 0与圆(x - a )2+ ( y - b )2= r 2的位置关系有三种 :(1)若 d =, d > r ⇔ 相离 ⇔ ∆ < 0;(2) d = r ⇔ 相切 ⇔ ∆ = 0;(3) d < r ⇔ 相交 ⇔ ∆ > 0. 还可以⎧Ax + By + C = 0利用直线方程与圆的方程联立方程组⎨x 2 + y 2+ Dx + Ey + F = 0求解,通过解的个数来判断:(1)当 方程组有 2 个公共解时(直线与圆有 2 个交点),直线与圆相交;(2)当方程组有且只有 1 个公共解时(直线与圆只有 1 个交点),直线与圆相切;(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为 Δ,圆心 C 到直线 l 的距离为 d,则直线与圆的位置关系满足以下关系: 相切⇔d=r ⇔Δ=0;相交⇔d<r ⇔Δ>0;相离⇔d>r ⇔ Δ<0.2. 两圆位置关系的判定方法:设两圆圆心分别为 O 1,O 2,半径分别为 r 1,r 2, O 1O 2d > r 1 + r 2 ⇔ 外离 ⇔ 4条公切线; d = r 1 + r 2 ⇔ 外切 ⇔ 3条公切线;= d .r 1 - r 2 < d < r 1 + r 2 ⇔ 相交 ⇔ 2条公切线; d = r 1 - r 2⇔ 内切 ⇔ 1条公切线;0 < d < r 1 - r 2 ⇔ 内含 ⇔ 无公切线;判断两个圆的位置关系也可以通过联立方程组判断公共解的个数来解决 圆的切线问题过切点和圆心的直线垂直于切线,即圆心到直线的距离等于半径Aa + Bb + CA 2 +B 21+ k 2[(x + x )2- 4x x ] 1 2 1 2a 2 +b 23a + 4 -1 a 2 +11 2 弦长问题求圆的弦长的常用方法(1)几何法:设圆的半径为 r ,弦心距为 d ,弦长为l l ,则( l)2 = r 2 - d 2.2(2)代数方法:运用根与系数的关系及弦长公式: AB|= 1+ k 2 |x -x |= .注意:常用几何法研究圆的弦的有关问题. 与圆有关的最值问题与圆有关的最值问题也是命题的热点内容,它着重考查数形结合与转化思想.归纳起来常见的命题角度有:1.斜率型最值问题;2.截距型最值问题;3.距离型最值问题。
解析几何专题教案
解析几何专题教案一、教学目标1. 知识与技能:(1)掌握解析几何的基本概念和基本公式;(2)学会用坐标系表示点、直线、圆等几何图形;(3)能够运用解析几何方法解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)运用数形结合的方法,提高学生的问题解决能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、克服困难的精神。
二、教学内容1. 解析几何基本概念(1)坐标系(2)点、直线、圆的坐标表示2. 解析几何基本公式(1)两点间的距离公式(2)直线的一般方程与斜率(3)圆的标准方程与直径公式三、教学重点与难点1. 教学重点:(1)解析几何的基本概念和基本公式;(2)坐标系下点、直线、圆的表示方法。
2. 教学难点:(1)直线、圆的方程的求解;(2)运用解析几何解决实际问题。
四、教学过程1. 导入:(1)复习相关知识点,如坐标系、两点间的距离公式等;(2)通过实例引入解析几何的概念。
2. 讲解:(1)讲解解析几何的基本概念,如点、直线、圆的坐标表示;(2)引导学生掌握解析几何的基本公式,如直线的一般方程与斜率、圆的标准方程与直径公式。
3. 练习:(1)让学生独立完成相关练习题,巩固所学知识;(2)引导学生运用解析几何方法解决问题。
五、课后作业1. 完成教材后的练习题;2. 运用解析几何方法解决实际问题,如测量两地间的距离、计算圆的面积等。
教学评价:通过课后作业的完成情况,评价学生对解析几何知识的掌握程度以及运用能力。
六、教学案例分析1. 案例一:直线与圆的位置关系(1)问题描述:分析直线与圆的位置关系,判断直线是否与圆相交、相切或相离;(2)解决方案:运用解析几何公式,求解直线与圆的交点,分析位置关系;(3)案例分析:培养学生运用解析几何方法分析问题、解决问题的能力。
2. 案例二:几何图形的面积计算(1)问题描述:计算三角形、四边形的面积;(2)解决方案:运用解析几何方法,求解坐标系的交点,运用公式计算面积;(3)案例分析:培养学生运用解析几何方法解决实际问题的能力。
专题五 解析几何
时斜率不存在.
在涉
及 求直线方 程的题 型时,一 般可以用 待定系 数法,但
一定要弄清楚直线方程的各自适用范围. 同时注意灵
活 适用(如例 2,待 定系 数设 直线 方程 计算 量就 会很
大些).
热点二 圆及直线与圆的位置关系
理 解直线 与圆的 位置关 系、两圆 的位置 关系,会
用直线和圆的方程解决一些简单的问题. 掌握圆的标
4
A. 相切
B. 相离
C. 相交
D. 不能确定
解析 圆心到直线的距离为
| | d = sin αcos β+ cos αsin β+ 1 = sin(α+ β) + 1 ,
∵向量
a
与
b 的夹角为
2π 3
,
35
高三二轮复习专题·数学(理)
∴
-
1 2
=
cos 23π =
a
|a
b
|||b
| |
=
3
s
in
知 识. 例 1 平 面 上 有 相 异 的 两 点 A(cos θ, sin2θ) 和
B(0, 1),求经 过 A , B 两 点的 直线的 斜率及 倾斜角
的取值范围.
解析 ∵ A , B 是相异两点,
∴cos θ≠0, sin2θ≠1 .
设直线 AB 的倾斜角为 α,斜率为 k ,
则 k = tan α=
解 析 设 直 线 l 与 直 线 l1 ,l2 的 交 点 分 别 为 A, B , 点 A( x0, 2 - 3x0) ,
因为点 D(2, - 3) 是线段 AB 的中点,
所以点 B 的坐标为 (4 - x0, 3x0 - 8) . 又因为点 B 在直线 l2 上, 所以,(4 - x0) + 5(3x0 - 8) + 10 = 0 ,
15第一部分 板块二 专题五 解析几何 第1讲 直线与圆(小题)
第1讲 直线与圆(小题)热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2(A 2+B 2≠0).(2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2(A 2+B2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( )A .1B .-2C .1或-2D .-32(2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0D .(2-1)x -y +2=0跟踪演练1 (1)已知直线l 1:x ·sin α+y -1=0,直线l 2:x -3y ·cos α+1=0,若l 1⊥l 2, 则sin 2α等于( ) A.23 B .±35 C .-35 D.35(2)已知直线l 的斜率为3,在y 轴上的截距为直线x -2y -4=0的斜率的倒数,则直线l 的方程为( ) A .y =3x +2 B .y =3x -2 C .y =3x +12D .y =-3x +2热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2. 2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.3.解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.例2 (1)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为____________.方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.(2)抛物线x 2=4y 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,则△FPM 的外接圆的方程为________.跟踪演练2 (1)(2019·黄冈调研)已知圆x 2+y 2+2k 2x +2y +4k =0关于y =x 对称,则k 的值为( )A .-1B .1C .±1D .0(2)(2019·河北省级示范性高中联合体联考)已知A ,B 分别是双曲线C :x 2m -y 22=1的左、右顶点,P (3,4)为C 上一点,则△P AB 的外接圆的标准方程为________________. 热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法 (1)点线距离法.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r 2, 消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.3.圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.例3 (1)(2019·莆田质检)直线y =x +m 与圆x 2+y 2=4相交于M ,N 两点.若|MN |≥22,则m 的取值范围是( ) A .[-2,2] B .[-4,4]C .[0,2]D .(-22,-2]∪[2,22)(2)(2019·长沙市长郡中学模拟)已知圆C 1:(x -2)2+(y -2)2=r 21(r 1>0),圆C 2:(x +1)2+(y +1)2=r 22(r 2>0),圆C 1与圆C 2相切,并且两圆的一条外公切线的斜率为7,则r 1r 2为________. 跟踪演练3 (1)(2019·柳州模拟)已知点M 是抛物线y 2=2x 上的动点,以点M 为圆心的圆被y 轴截得的弦长为8,则该圆被x 轴截得的弦长的最小值为( ) A .10 B .4 3 C .8 D .215(2)(2019·绵阳诊断)已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,给出下列结论:①a (x 1-x 2)+b (y 1-y 2)=0;②2ax 1+2by 1=a 2+b 2;③x 1+x 2=a ,y 1+y 2=b .其中正确结论的个数是( ) A .0 B .1 C .2 D .3真题体验1.(2018·全国Ⅲ,文,8)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]2.(2016·全国Ⅱ,文,6)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34C. 3 D .23.(2018·全国Ⅰ,文,15)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 押题预测1.圆(x -2)2+y 2=1与直线3x +4y +2=0的位置关系是( ) A .相交 B .相切C .相离D .以上三种情况都有可能2.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 3.甲、乙两人参加歌咏比赛的得分(均为两位数)如茎叶图所示,甲的平均数为b ,乙的众数为a ,且直线ax +by +8=0与以A (1,-1)为圆心的圆交于B ,C 两点,且∠BAC =120°,则圆A 的标准方程为________.A 组 专题通关1.(2019·衡水质检)直线2x ·sin 210°-y -2=0的倾斜角是( ) A .45° B .135° C .30° D .150°2.(2019·黄冈调研)过点A (1,2)的直线在两坐标轴上的截距相等,则该直线方程为( ) A .y -x =1B .y +x =3C .2x -y =0或x +y =3D .2x -y =0或-x +y =13.(2019·厦门模拟)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切,则圆O 的方程为( ) A .x 2+(y -1)2=4 B .(x -1)2+y 2=4 C .(x +1)2+(y -1)2=4D .x 2+y 2=44.(2019·湘赣十四校联考)圆(x +2)2+(y -3)2=9上到直线x +y =0的距离等于2的点有( ) A .4个 B .3个 C .2个 D .1个5.(2019·黄山质检)直线2x -y -3=0与y 轴的交点为P ,点P 把圆(x +1)2+y 2=36的直径分为两段,则较长一段与较短一段的长度的比值等于( ) A .2 B .3 C .4 D .56.若直线ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0,则(a -2)2+(b -2)2的最小值为( )A. 5 B .5 C .2 5 D .107.(2019·河北省五个一名校联盟诊断)已知点P 为圆C :(x -1)2+(y -2)2=4上一点,A (0,-6),B (4,0),则|P A →+PB →|的最大值为( ) A.26+2 B.26+4 C .226+4D .226+28.(2019·菏泽模拟)已知点P 是直线l :3x +4y -7=0上的动点,过点P 引圆C :(x +1)2+y 2=r 2(r >0)的两条切线PM ,PN .M ,N 为切点,当∠MPN 的最大值为π3时,则r 的值为( )A .4B .3C .2D .1 9.(2019·宝鸡模拟)设D 为椭圆x 2+y 25=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为( ) A .x 2+(y -2)2=20 B .x 2+(y -2)2=5 C .x 2+(y +2)2=20D .x 2+(y +2)2=510.(2019·德阳模拟)已知点P (-3,0)在动直线m (x -1)+n (y -3)=0上的投影为点M ,若点N ⎝⎛⎭⎫2,32,那么|MN |的最小值为( ) A .2 B.32 C .1 D.1211.已知圆C :x 2+y 2=1,点P 为直线x +2y -4=0上一动点,过点P 向圆C 引两条切线分别为P A ,PB ,A ,B 为切点,则直线AB 经过定点( ) A.⎝⎛⎭⎫12,14 B.⎝⎛⎭⎫14,12 C.⎝⎛⎭⎫34,0D.⎝⎛⎭⎫0,34 12.(2019·南昌模拟)已知A (-3,0),B (3,0),P 为圆x 2+y 2=1上的动点,AP →=PQ →,过点P 作与AP 垂直的直线l 交直线QB 于点M ,则M 的横坐标的取值范围是( ) A .|x |≥1 B .|x |>1 C .|x |≥2D .|x |≥2213.(2019·福建四校联考)已知直线3x +4y -3=0,6x +my +14=0平行,则它们之间的距离是________.14.(2019·天津市十二重点中学联考)已知圆C 的圆心在x 轴的正半轴上,且y 轴和直线3x +4y +4=0均与圆C 相切,则圆C 的标准方程为________.15.(2019·晋中模拟)已知圆C 经过点A (1,3),B (4,2),与直线2x +y -10=0相切,则圆C 的标准方程为________.16.(2019·宝鸡质检)圆x 2+y 2=1的任意一条切线与圆x 2+y 2=4相交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点,则x 1x 2+y 1y 2=________.B 组 能力提高17.(2019·齐齐哈尔模拟)已知半圆C :x 2+y 2=1(y ≥0),A ,B 分别为半圆C 与x 轴的左、右交点,直线m 过点B 且与x 轴垂直,点P 在直线m 上,纵坐标为t ,若在半圆C 上存在点Q 使∠BPQ =π3,则t 的取值范围是( )A.⎣⎡⎭⎫-233,0∪(0,3] B .[-3,0)∪⎝⎛⎦⎤0,233C.⎣⎡⎭⎫-33,0∪⎝⎛⎦⎤0,33 D.⎣⎡⎭⎫-233,0∪⎝⎛⎦⎤0,233 18.(2019·淮南模拟)在平面直角坐标系中,设点P (x ,y ),定义[OP ]=|x |+|y |,其中O 为坐标原点,对于下列结论:①符合[OP ]=2的点P 的轨迹围成的图形面积为8;②设点P 是直线l 1:3x +2y -2=0上任意一点,则[OP ]min =1;③设点P 是直线l 2:y =kx +1(k ∈R )上任意一点,则使得“[OP ]最小的点P 有无数个”的充要条件是k =1;④设点P 是圆x 2+y 2=2上任意一点,则[OP ]max =2. 其中正确的结论序号为( ) A .①②③ B .①③④ C .②③④ D .①②④。
高中数学解析几何教案
高中数学解析几何教案
目标:学生掌握平面几何的基本概念,包括点、线、角等,能够运用这些概念解决相关问题。
教学重点:点、线、角的基本性质,平面几何的基本概念。
教学难点:对相关定义的理解和应用。
教学准备:
1. 教师准备相关的教学素材,包括图纸、尺子等。
2. 学生准备相关的学习用具,包括笔、纸等。
教学活动:
1. 热身:教师给学生出示一些平面几何图形,让学生观察并描述其中的点、线、角等基本
元素。
2. 导入:教师引导学生回顾点、线、角的定义,并解释它们在平面几何中的重要性。
3. 学习:
a. 点的性质:教师讲解点的定义及性质,要求学生掌握点的概念和特点。
b. 线的性质:教师讲解直线、射线、线段的定义及性质,要求学生会区分不同类型的线。
c. 角的性质:教师讲解角的定义及性质,包括顶点、边、内角和外角等概念,要求学生能
正确识别各种角。
4. 练习:教师设计一些练习题,让学生巩固所学知识,并在实践中掌握点、线、角的应用。
5. 总结:教师总结本节课的重点内容,强调点、线、角是平面几何的基本要素,学生需要
在后续学习中不断运用这些概念。
6. 作业:布置相关的作业,让学生继续巩固所学知识。
教学反馈:通过课堂练习和作业检查,及时发现并纠正学生的错误,确保他们对平面几何
的基本概念有深入理解。
解析几何专题教案
解析几何专题教案一、教学目标1. 知识与技能:(1)理解解析几何的基本概念,掌握直角坐标系中点的坐标表示方法。
(2)熟练运用解析几何方法解决实际问题,提高空间想象能力。
2. 过程与方法:(1)通过实例分析,引导学生掌握点的坐标表示方法,培养学生的抽象思维能力。
(2)运用图形直观展示解析几何问题,培养学生数形结合的解题思想。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生探索几何问题的热情。
(2)培养学生克服困难的意志,增强学生解决问题的信心。
二、教学内容1. 解析几何基本概念(1)直角坐标系(2)点的坐标表示方法(3)直线、圆的方程2. 点的坐标表示方法及应用(1)坐标轴上的点(2)坐标轴上的点与几何图形的关系(3)点的坐标在实际问题中的应用三、教学重点与难点1. 教学重点:(1)解析几何的基本概念(2)点的坐标表示方法及应用2. 教学难点:(1)直线、圆的方程的推导与理解(2)坐标轴上的点与几何图形的关系四、教学方法与手段1. 教学方法:(1)讲授法:讲解解析几何基本概念、直线的方程等。
(2)实践操作法:引导学生动手绘制图形,分析点的坐标表示方法。
(3)案例分析法:分析实际问题,培养学生运用解析几何方法解决问题的能力。
2. 教学手段:(1)黑板:板书关键知识点、解题步骤等。
(2)多媒体课件:展示图形、动态演示等。
(3)练习题:巩固所学知识,提高解题能力。
五、教学过程1. 导入新课:(1)复习相关知识点,如坐标轴、坐标系等。
(2)通过实例引入解析几何的基本概念。
2. 讲解新课:(1)讲解直线的方程,引导学生理解直线的几何性质。
(2)讲解点的坐标表示方法,结合实例进行分析。
3. 课堂练习:(1)布置练习题,巩固点的坐标表示方法。
(2)选讲典型题目,分析解题思路和方法。
4. 课堂小结:总结本节课所学内容,强调解析几何的基本概念和点的坐标表示方法的重要性。
5. 课后作业:布置作业,要求学生掌握点的坐标表示方法,并能运用解析几何解决实际问题。
解答题针对训练: 解析几何(解析版)
专题五 解答题针对训练之解析几何1.已知椭圆x 2a2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【分析】(Ⅰ)根据可得c =b =3,由a 2=b 2+c 2,可得a 2=18,即可求出椭圆方程; (Ⅱ)根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3,联立方程组,求出点B 的坐标,再根据中点坐标公式可得点P 的坐标,根据向量的知识求出点C 的坐标,即可求出CP 的斜率,根据直线垂直即可求出k 的值,可得直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k2k 2+1,6k 2−32k 2+1), ∵P 为线段AB 的中点,点A 的坐标为(0,﹣3),∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP ,∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3.2.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【分析】(1)方法一:设直线AB 的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k 的值,即可求得直线l 的方程;方法二:根据抛物线的焦点弦公式|AB |=2p sin 2θ,求得直线AB 的倾斜角,即可求得直线l的斜率,求得直线l 的方程;(2)根据过A ,B 分别向准线l 作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线C :y 2=4x 的焦点为F (1,0), 设直线AB 的方程为:y =k (x ﹣1),设A (x 1,y 1),B (x 2,y 2),则{y =k(x −1)y 2=4x ,整理得:k 2x 2﹣2(k 2+2)x +k 2=0,则x 1+x 2=2(k 2+2)k 2,x 1x 2=1,由|AB |=x 1+x 2+p =2(k 2+2)k 2+2=8,解得:k 2=1,则k =1,∴直线l 的方程y =x ﹣1;方法二:抛物线C :y 2=4x 的焦点为F (1,0),设直线AB 的倾斜角为θ,由抛物线的弦长公式|AB |=2psin 2θ=4sin 2θ=8,解得:sin 2θ=12, ∴θ=π4,则直线的斜率k =1,∴直线l 的方程y =x ﹣1;(2)由(1)可得AB 的中点坐标为D (3,2),则直线AB 的垂直平分线方程为y ﹣2=﹣(x ﹣3),即y =﹣x +5,设所求圆的圆心坐标为(x 0,y 0),则{y 0=−x 0+5(x 0+1)2=(y 0−x 0+1)22+16, 解得:{x 0=3y 0=2或{x 0=11y 0=−6,因此,所求圆的方程为(x ﹣3)2+(y ﹣2)2=16或(x ﹣11)2+(y +6)2=144.3.已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【分析】(1)设D (t ,−12),A (x 1,y 1),则x 12=2y 1,利用导数求斜率及两点求斜率可得2tx 1﹣2y 1+1=0,设B (x 2,y 2),同理可得2tx 2﹣2y 2+1=0,得到直线AB 的方程为2tx ﹣2y +1=0,再由直线系方程求直线AB 过的定点;(2)由(1)得直线AB 的方程y =tx +12,与抛物线方程联立,利用中点坐标公式及根与系数的关系求得线段AB 的中点M (t ,t 2+12),再由EM →⊥AB →,可得关于t 的方程,求得t =0或t =±1.然后分类求得|EM →|=2及所求圆的方程. 【解答】(1)证明:设D (t ,−12),A (x 1,y 1),则x 12=2y 1,由于y ′=x ,∴切线DA 的斜率为x 1,故y 1+12x 1−t=x 1,整理得:2tx 1﹣2y 1+1=0.设B (x 2,y 2),同理可得2tx 2﹣2y 2+1=0. 故直线AB 的方程为2tx ﹣2y +1=0.∴直线AB 过定点(0,12);(2)解:由(1)得直线AB 的方程y =tx +12.由{y =tx +12y =x22,可得x 2﹣2tx ﹣1=0. 于是x 1+x 2=2t ,y 1+y 2=t(x 1+x 2)+1=2t 2+1. 设M 为线段AB 的中点,则M (t ,t 2+12),由于EM →⊥AB →,而EM →=(t ,t 2−2),AB →与向量(1,t )平行,∴t +(t 2﹣2)t =0,解得t =0或t =±1.当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4;当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.4.已知椭圆C 的中心在原点O ,焦点在x 轴上,左、右焦点分别为F 1,F 2,离心率为12,右焦点到右顶点的距离为1. (1)求椭圆C 的方程;(2)过F 2的直线l 与椭圆C 交于不同的两点A ,B ,则△F 1AB 的面积是否存在最大值?若存在,求出这个最大值及直线l 的方程;若不存在,请说明理由. 【分析】(1)利用椭圆的简单性质,结合离心率求解椭圆方程即可.(2)设A (x 1,y 1),B (x 2,y 2),不妨设 y 1>0,y 2<0由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,通过直线与椭圆方程联立,几何韦达定理,弦长公式求解三角形的面积.然后求解直线方程.【解答】解:(1)设椭圆C :x 2a 2+y 2b 2=1(a >b >0) 因为e =ca =12,a ﹣c =1 所以a =2,c =1, 即椭圆C :x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),不妨设 y 1>0,y 2<0由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由{x =my +1x 24+y 23=1得(3m 2+4)y 2+6my ﹣9=0,则y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4, ∴S △F 1AB =12|F 1F 2|(y 1−y 2)=12√m 2+13m 2+4,令√m 2+1=t ,可知t ≥1则m 2=t 2﹣1, ∴S △F 1AB =12t3t 2+1+123t+1t令f(t)=3t +1t ,则f ′(t)=3−1t 2,当t ≥1时,f '(t )>0,即f (t )在区间[1,+∞)上单调递增, ∴f (t )≥f (1)=4,∴S △F 1AB ≤3,即当t =1,m =0时,△F 1AB 的面积取得最大值3, 此时直线l 的方程为x =1.5.已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 【分析】(1)设A (x 1,y 1),B (x 2,y 2),利用点差法得6(x 1﹣x 2)+8m (y 1﹣y 2)=0,k =y 1−y 2x 1−x 2=−68m=−34m又点M (1,m )在椭圆内,即14+m 23<1,(m >0),解得m 的取值范围,即可得k <−12,(2)设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),可得x 1+x 2=2由FP →+FA →+FB →=0→,可得x 3﹣1=0,由椭圆的焦半径公式得则|F A |=a ﹣ex 1=2−12x 1,|FB |=2−12x 2,|FP |=2−12x 3=32.即可证明|F A |+|FB |=2|FP |.【解答】解:(1)设A (x 1,y 1),B (x 2,y 2), ∵线段AB 的中点为M (1,m ), ∴x 1+x 2=2,y 1+y 2=2m 将A ,B 代入椭圆C :x 24+y 23=1中,可得{3x 12+4y 12=123x 22+4y 22=12, 两式相减可得,3(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, 即6(x 1﹣x 2)+8m (y 1﹣y 2)=0, ∴k =y 1−y 2x 1−x 2=−68m=−34m点M (1,m )在椭圆内,即14+m 23<1,(m >0),解得0<m <32 ∴k =−34m <−12.(2)证明:设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3), 可得x 1+x 2=2∵FP →+FA →+FB →=0→,F (1,0),∴x 1﹣1+x 2﹣1+x 3﹣1=0, ∴x 3=1由椭圆的焦半径公式得则|F A |=a ﹣ex 1=2−12x 1,|FB |=2−12x 2,|FP |=2−12x 3=32. 则|F A |+|FB |=4−12(x 1+x 2)=3,∴|F A |+|FB |=2|FP |,6.已知A ,B 分别为椭圆E :x 2a2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →•GB →=8.P为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【分析】(1)求出AG →•GB →=a 2﹣1=8,解出a ,求出E 的方程即可;(2)联立直线和椭圆的方程求出C ,D 的坐标,求出直线CD 的方程,判断即可. 【解答】解:如图所示:(1)由题意A (﹣a ,0),B (a ,0),G (0,1),∴AG →=(a ,1),GB →=(a ,﹣1),AG →•GB →=a 2﹣1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1;(2)由(1)知A (﹣3,0),B (3,0),设P (6,m ), 则直线P A 的方程是y =m9(x +3),联立{x 29+y 2=1y =m 9(x +3)⇒(9+m 2)x 2+6m 2x +9m 2﹣81=0,由韦达定理﹣3x c =9m 2−819+m 2⇒x c =−3m 2+279+m 2,代入直线P A 的方程为y =m9(x +3)得: y c =6m 9+m2,即C (−3m 2+279+m 2,6m 9+m 2),直线PB 的方程是y =m3(x ﹣3),联立方程{x 29+y 2=1y =m 3(x −3)⇒(1+m 2)x 2﹣6m 2x +9m 2﹣9=0,由韦达定理3x D =9m 2−91+m 2⇒x D =3m 2−31+m 2,代入直线PB 的方程为y =m3(x ﹣3)得y D =−2m1+m 2, 即D (3m 2−31+m 2,−2m1+m 2), 则①当x c =x D 即27−3m 29+m 2=3m 2−3m 2+1时,有m 2=3,此时x c =x D =32,即CD 为直线x =32,②当x c ≠x D 时,直线CD 的斜率K CD =y C −y D x C−x D=4m3(3−m 2),∴直线CD 的方程是y −−2m 1+m 2=4m3(3−m 2)(x −3m 2−31+m 2),整理得:y =4m3(3−m 2)(x −32),直线CD 过定点(32,0). 综合①②故直线CD 过定点(32,0).7.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |. (1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .【分析】(1)利用已知条件可得,c +a =b 2a=c 2−a 2a,化简得到a 和c 的关系,即可得到答案;(2)法一:设B (x 0,y 0),然后分两种情况进行证明,①当BF ⊥AF 时,∠BF A =2∠BAF =90°;②当BF 与AF 不垂直时,然后利用同角三角函数关系以及二倍角公式进行化简变形,即可证明.法二:延长AF 至点B ',使FB '=FB ,设出点B 的坐标,然后利用焦半径公式得到BF ,从而得到B '的坐标,再通过分析得到BA =BB ',从而证明得到答案.【解答】解:(1)当|AF |=|BF |且BF ⊥AF 时,有c +a =b 2a=c 2−a 2a,所以a =c ﹣a ,则e =c a=2;(2)法一:由(1)得c =2a ,b =√3c , 设B (x 0,y 0),则x 0>0,y 0>0,且x 02a 2−y 023a 2=1,即y 02=3x 02﹣3a 2.①当|BF |=|AF |且BF ⊥AF 时,∠BF A =2∠BAF =90°; ②当BF 与AF 不垂直时, tan ∠BAF =y 0x+a,tan ∠BF A =−y 0x0−c,∴tan2∠BAF =2tan∠BAF1−tan 2∠BAF =2(x 0+a)y 0(x0+a)2−y 02=2(x 0+a)y 0−2(x0+a)(x 0−2a)=−y 0x 0−c,∴tan2∠BAF =tan ∠BF A ,即∠BF A =2∠BAF , 综上∠BF A =2∠BAF . 法二:延长AF 至点B ',使FB '=FB ,设B (x 0,y 0),则BF =ex 0﹣a =2x 0﹣a , 所以B ′(2x 0﹣a +c ,0),又因为点A (﹣a ,0),所以x B′+x A2=2x0−2a+c2=2x0−2a+2a2=x0=x B,所以BA=BB',所以∠BAF=∠BB'F=12∠BFA,即∠BF A=2∠BAF.8.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,点A(b,0),点B、F分别为椭圆的上顶点和左焦点,且|BF|⋅|BA|=2√6.(Ⅰ)求椭圆C的方程;(Ⅱ)若过定点M(0,2)的直线l与椭圆C交于G,H两点(G在M,H之间)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围?如果不存在,请说明理由.【分析】(Ⅰ)根据离心率可得ba =√32,再根据且|BF|⋅|BA|=2√6,可得ab=√12,由此能求出椭圆的方程.(Ⅱ)将直线l1:y=x+2代入椭圆中,得7x2+16x+4=0,由此利用韦达定理能求出GH 的中点M,再由菱形的对角线互相垂直平分能求出存在满足题意的点P,且能求出m的值.【解答】解:(Ⅰ)∵椭圆C:x 2a2+y2b2=1(a>b>0)的离心率e=12,∴e2=1−b 2a2=14∴ba =√32∵|BF|=√b2+c2=a,|BA|=√2b,∴√2ab=2√6,∴ab=√12,∴a=2,b=√3,故椭圆的方程为x 24+y 23=1;(Ⅱ)设l 的方程为y =kx +2(k >0),与椭圆方程联立,消去y 可得(3+4k 2)x 2+16kx +4=0.设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=−16k3+4k 2∴PG →+PH →=(x 1﹣m ,y 1)+(x 2﹣m ,y 2)=(x 1+x 2﹣2m ,y 1+y 2). =(x 1+x 2﹣2m ,k (x 1+x 2)+4)又GH →=(x 2﹣x 1,y 2﹣y 1)=(x 2﹣x 1,k (x 2﹣x 1)).由于菱形对角线互相垂直,则(PG →+PH →)•GH →=0,∴(x 2﹣x 1)[(x 1+x 2)﹣2m ]+k (x 2﹣x 1)[k (x 1+x 2)+4]=0. 故(x 2﹣x 1)[(x 1+x 2)﹣2m +k 2(x 1+x 2)+4k ]=0. ∵k >0,所以x 2﹣x 1≠0.∴(x 1+x 2)﹣2m +k 2(x 1+x 2)+4k =0,即(1+k 2)(x 1+x 2)+4k ﹣2m =0. ∴(1+k 2)(−16k3+4k 2)+4k ﹣2m =0. 解得m =−2k 3+4k2,即m =−23k+4k∵3k+4k ≥2√3k⋅4k =4√3,当且仅当3k=4k ,即k =√32时取等号, 所以−√36≤m <0,故存在满足题意的点P 且m 的取值范围是[−√36,0). 9.设D 是圆O :x 2+y 2=16上的任意一点,m 是过点D 且与x 轴垂直的直线,E 是直线m 与x 轴的交点,点Q 在直线m 上,且满足2|EQ |=√3|ED |.当点D 在圆O 上运动时,记点Q 的轨迹为曲线C . (1)求曲线C 的方程.(2)已知点P (2,3),过F (2,0)的直线l 交曲线C 于A ,B 两点,交直线x =8于点M .判定直线P A ,PM ,PB 的斜率是否依次构成等差数列?并说明理由.【分析】(1)由题意设Q (x ,y ),D (x 0,y 0),根据2|EQ |=√3|ED |,Q 在直线m 上,则椭圆的方程即可得到;(2)设出直线l 的方程,和椭圆方程联立,利用根与系数的关系得到k 1+k 3,并求得k 2的值,由k 1+k 3=2k 2说明直线P A ,PM ,PB 的斜率成等差数列.【解答】解:(1)设Q (x ,y ),D (x 0,y 0),∵2|EQ |=√3|ED |,Q 在直线m 上, ∴x 0=x ,|y 0||√3y |.①∵点D 在圆x 2+y 2=16上运动, ∴x 02+y 02=16,将①式代入②式即得曲线C 的方程为x 2+43y 2=16,即x 216+y 212=1, (2)直线P A ,PM ,PB 的斜率成等差数列,证明如下: 由(1)知椭圆C :3x 2+4y 2=48, 直线l 的方程为y =k (x ﹣2),代入椭圆方程并整理,得(3+4k 2)x 2﹣16k 2x +16k 2﹣48=0.设A (x 1,y 1),B (x 2,y 2),直线P A ,PM ,PB 的斜率分别为k 1,k 2,k 3, 则有x 1+x 2=16k 23+4k 2,x 1x 2=16k 2−483+4k 2,可知M 的坐标为(8,6k ). ∴k 1+k 3=y 1−3x 1−2+y 2−3x 2−2=k(x 1−2)−3x 1−2+k(x 2−2)−3x 2−2=2k ﹣3•x 1+x 2−4x 1x 2+4−2(x 1+x 2)=2k ﹣3•−12−36=2k ﹣1,2k 2=2•6k−38−2=2k ﹣1. ∴k 1+k 3=2k 2.故直线P A ,PM ,PB 的斜率成等差数列.10.已知抛物线C :y 2=2px (p >0),圆E :(x ﹣3)2+y 2=1.(Ⅰ)F 是抛物线C 的焦点,A 是抛物线C 上的定点,AF →=(0,2),求抛物线C 的方程;(Ⅱ)在(Ⅰ)的条件下,过点F 的直线l 与圆E 相切,设直线l 交抛物线C 于P ,Q 两点,则在x 轴上是否存在点M 使∠PMO =∠QMO (O 为坐标原点)?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)将A 的坐标代入抛物线可得p =2,可得抛物线C 的方程;(Ⅱ)∠PMO =∠QMO ⇔k PM +k QM =0. 【解答】解:(Ⅰ)抛物线C 的焦点为F(p2,0),由AF →=(0,2)知A(p2,−2),代入抛物线方程得p =2,故抛物线C 的方程为:y 2=4x(Ⅱ)当直线的斜率不存在时,过点F (1,0)的直线不可能与圆E 相切; 所以过抛物线焦点与圆相切的直线的斜率存在, 设直线斜率为k ,则所求的直线方程为y =k (x ﹣1),所以圆心到直线l 的距离为d =√1+k 2,当直线l 与圆相切时,有d =1=√1+k 2,k =±√33所以所求的切线方程为y=√33(x−1)或y=−√33(x−1)不妨设直线l:y=√33(x−1),交抛物线于P(x1,y1),Q(x2,y2)两点,联立方程组{y=√33(x−1)y2=4x,得x2﹣14x+1=0.所以x1+x2=14,x1•x2=1,假设存在点M(t,0)使,∠PMO=∠QMO则k PM+k QM=0.所以k PM+k QM=y1x1−t +y2x2−t=√33(x1−1)x1−t+√33(x2−1)x2−t=√33[(x1−1)(x2−t)+(x2−1)(x1−t)(x1−t)(x2−t)]=√33[2x1x2−(t+1)(x1+x2)+2t(x1−t)(x2−t)]=√33[2−(t+1)⋅14+2t(x1−t)(x2−t)]=√33(−12−12t)(x1−t)(x2−t)=0即t=﹣1故存在点M(﹣1,0)符合条件,当直线l:y=−√33(x−1)时,由对称性易知点M(﹣1,0)也符合条件综上存在点M(﹣1,0)使∠PMO=∠QMO.11.设椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若椭圆E的离心率为√22,△ABF2的周长为4√6.(Ⅰ)求椭圆E的方程;(Ⅱ)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点C,D,设弦AB,CD的中点分别为M,N,证明:O,M,N三点共线.【分析】(Ⅰ)由已知椭圆E的离心率为√22,△ABF2的周长为4√6,解得:a,c,b值,可得椭圆E的方程;(Ⅱ)设A(x1,y1),B(x2,y2),M(x0,y0).利用点差法,可得k OM=−12k ,k ON=−12k,进而证得结论.【解答】(本小题满分12分)(Ⅰ)由题意知,4a =4√6,a =√6.又∵e =√22,∴c =√3,b =√3,∴椭圆E 的方程为x 26+y 23=1.…………………………(5分)(Ⅱ)易知,当直线AB 、CD 的斜率不存在时,由椭圆的对称性知,中点M ,N 在x 轴上,O ,M ,N 三点共线;当直线AB ,CD 的斜率存在时,设其斜率为k ,且设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).联立方程得{x 126+y 123=1x 226+y 223=1相减得x 126+y 123−(x 226+y 223)=0,∴x 12−x 226=−y 12−y 223,(x 1−x 2)(x 1+x 2)6=−(y 1−y 2)(y 1+y 2)3,∴y 1−y 2x 1−x 2⋅y 1+y2x 1+x 2=−36,y 1−y 2x 1−x 2⋅y 0x 0=−36,即k ⋅k OM =−12,∴k OM =−12k.同理可得k ON =−12k ,∴k OM =k ON ,所以O ,M ,N 三点共线.………………(12分) 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)离心率e =√32,短轴长为2.(Ⅰ)求椭圆C 的标准方程;(Ⅱ) 设直线l 过椭圆C 的右焦点,并与椭圆相交于E ,F 两点,截得的弦长为52,求直线l 的方程;(Ⅲ) 如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点.试问:以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.【分析】(Ⅰ)由题意可得b =1,由离心率公式和a ,b ,c 的关系,解得a ,进而得到椭圆方程;(Ⅱ)当直线的斜率存在时,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,解方程可得k ,再由直线的斜率不存在,不成立.即可得到所求直线的方程;(Ⅲ)以MN 为直径的圆过定点(±1,0).求得M ,N 的坐标,由直径式的圆的方程可得MN 为直径的圆的方程,整理得一般式方程,令y =0,即可得到所求定点的坐标. 【解答】解:(Ⅰ)由短轴长为2,得b =1,由e =ca =√a 2−b 2a=√32,得a 2=4,b 2=1.∴椭圆C 的标准方程为x 24+y 2=1;(Ⅱ)(1)当直线的斜率存在时,设直线方程:y =k(x −√3),E (x 1,y 1),F (x 2,y 2), 由{y =k(x −√3)x 24+y 2=1可得(4k 2+1)x 2−8√3k 2x +12k 2−4=0, ∴x 1+x 2=8√3k 24k 2+1,x 1x 2=12k 2−44k 2+1,∴|EF|=√1+k 2⋅(8√3k 24k 2+1)4(12k 2−44k 2+1)=52, ∴k =±12;(2)当直线的斜率不存在时,|EF |=1不符合.∴直线方程为x −2y −√3=0和x +2y −√3=0. (Ⅲ)以MN 为直径的圆过定点(±1,0).证明如下:设P (x 0,y 0),则Q (﹣x 0,﹣y 0),且x 024+y 02=1,即x 02+4y 02=4,∵A (﹣2,0),∴直线P A 方程为:y =y 0x 0+2(x +2),∴M(0,2y 0x0+2),直线QA 方程为:y =−y 0−x+2(x +2),∴N(0,2y 0x 0−2),以MN 为直径的圆为(x −0)(x −0)+(y −2y 0x 0+2)(y −2y 0x 0−2)=0,或通过求得圆心O ′(0,2x 0y 0x 02−4),r =|4y 0x 02−4|得到圆的方程.即x 2+y 2−4x 0y 0x 02−4y +4y 02x 02−4=0,∵x 02−4=−4y 02,∴x 2+y 2+x0y 0y −1=0,令y =0,则x 2﹣1=0,解得x =±1. ∴以MN 为直径的圆过定点(±1,0).13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,点A 为椭圆的右顶点,点B 为椭圆的上顶点,点F 为椭圆的左焦点,且△F AB 的面积是1+√32. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x =my +1与椭圆C 交于P 、Q 两点,点P 关于x 轴的对称点为P 1(P 1与Q 不重合),则直线P 1Q 与x 轴交于点H ,若点H 为定值,则求出点H 坐标;否则,请说明理由.【分析】(Ⅰ)利用椭圆的定义离心率和三角形的面积公式可得abc 的等量关系式,从而可求椭圆C 的方程;(Ⅱ)设直线x =my +1与椭圆C 交于P 、Q 两点,点P 关于x 轴的对称点为P 1(P 1与Q不重合),即P (x 1,y 1)、Q (x 2,y 2)、P (x 1,﹣y 1),联立方程组由{x =my +1,x 24+y 2=1,化简由韦达定理表达直线P 1Q 的方程,根据题意可得直线P 1Q 与x 轴交点H (4,0). 【解答】解:(I )由题意点A 为椭圆的右项点,点B 为椭圆的上顶点,点F 为椭圆的左焦点,可得F (﹣c ,0),B (0,b ),A (a ,0),因为离心率为√32,即ca=√32,① △F AB 的面积是1+√32.即12b (a +c )=1+√32;② 又因为a 2=b 2+c 2;③ 由①②③解得 a =2,b =1所以椭圆C :x 24+y 2=1;(Ⅱ)设P (x 1,y 1)、Q (x 2,y 2)、P (x 1,﹣y 1), 由{x =my +1,x 24+y 2=1,得(m 2+4)y 2+2my ﹣3=0,(m ≠0)显然△>0,由韦达定理有:y 1+y 2=−2m m 2+4.y 1•y 2=−3m 2+4. 直线P 1Q 的方程为:y +y 1=y 2+y1x 2−x 1(x ﹣x 1),因为直线P 1Q 与x 轴交于点H ,若点H 为定值, 令y =0,则x =x 2−x1y 2+y 1y 1+x 1=x 2y 1+x 1y 2y 1+y 2;又x 1=my 1+1,x 2=my 2+1;x=(my2+1)y1+(my1+1)y2y1+y2=2my1y2+(y1+y2)y1+y2=4;所以直线P1Q与x轴交点H(4,0).14.已知O为坐标原点,点F1,F2为椭圆M:x2a2+y2b2=1(a>b>0)的左右焦点,点E(a,b)在抛物线N:x2=4√33y上,直线EF2与椭圆M的一个交点为F,且EF的中点恰为F2.(1)求椭圆M的标准方程;(2)过抛物线N上一点P与抛物线N相切的直线l与椭圆M相交于A、B两点,设AB 中点为C,直线OP与直线OC的斜率分别是k1,k2,证明:k1k2为定值.【分析】(1)根据题意求得F及中点F2,根据a与b,c的关系,即可求得a和b的值,求得椭圆方程;(2)根据导数的几何意义,求得直线AB的方程,利用韦达定理及中点坐标公式即可求得C点坐标,即可求得k1k2为定值.【解答】解:(1)由题意F恰为(0,b),所以中点F2(c,0)满足c=a2,因为a2=b2+c2,所以a2=43b2,由①②解得a=2,b=√3,c=1,所以椭圆M的标准方程为x 24+y23=1;(2)证明:设P(t,√3t 24),因为抛物线N:y=√34x2,求导y′=√32x,则直线AB方程:y=√32t(x﹣t)+√34t2,A(x1,y1),B(x2,y2),将直线AB代入椭圆x 24+y23=1得:12(1+t2)x2﹣12t3x+3t4﹣48=0,因此x1+x2=t31+t2,y1+y2=√32t(x1+x2)−√32t2=−√3t22(1+t2),所以C (t 32(1+t 2),−√3t 24(1+t 2)),则k 1=√34t ,k 2=−√32t ,所以k 1k 2=−38(点差法等其他方法正常给分).15.已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (﹣2,1),且右焦点F(√3,0). (Ⅰ)求椭圆Γ的标准方程;(Ⅱ)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点,记t =MA →⋅MB →,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值. 【分析】(Ⅰ)列方程组求解出a 2,b 2即可;(Ⅱ)对k 讨论,分别建立方程组,找到根与系数关系,建立t 的恒成立方程进行求解. 【解答】解:(Ⅰ)由题意可知,{a 2−b 2=3,4a 2+1b 2=1,解之得a 2=6,b 2=3, 故椭圆Γ的标准方程为x 26+y 23=1.(Ⅱ)当直线AB 斜率存在时,设AB 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2), 由{x 26+y 23=1,y =k(x −1),得x 2+2k 2(x ﹣1)2=6,即(1+2k 2)x 2﹣4k 2x +2k 2﹣6=0,因为(1,0)在椭圆内部,△>0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−61+2k 2,则t =MA →⋅MB →=(x 1+2)(x 2+2)+(y 1−1)(y 2﹣1) =x 1x 2+2(x 1+x 2)+4+(kx 1﹣k ﹣1)(kx 1﹣k ﹣1) =(1+k 2)x 1x 2+(2−k 2−k)(x 1+x 2)+k 2+2k +5 =(1+k 2)⋅2k 2−62k 2+1+(2−k 2−k)⋅4k 22k 2+1+k 2+2k +5,=15k 2+2k−12k 2+1,所以(15﹣2t )k 2+2k ﹣1﹣t =0.k ∈R , 则△=22+4(15﹣2t )(1+t )≥0,∴(2t ﹣15)(t +1)﹣1≤0,即2t 2﹣13t ﹣16≤0, 又t 1,t 2是2t 2﹣13t ﹣16=0的两根,∴t 1+t 2=132,当直线AB 斜率不存在时,联立{x 26+y 23=1,x =1,得y =±√102,不妨设A(1,√102),B(1,−√102), MA →=(3,√102−1),MB →=(3,−√102−1),MA →⋅MB →=9−104+1=152,可知t 1<152<t 2.综上所述,t 1+t 2=132.16.已知抛物线D :x 2=4y ,过x 轴上一点E (不同于原点)的直线l 与抛物线D 交于两点A (x 1,y 1),B (x 2,y 2),与y 轴交于C 点.(1)若EA →=λ1EC →,EB →=λ2EC →,求乘积λ1•λ2的值;(2)若E (4,0),过A ,B 分别作抛物线D 的切线,两切线交于点M ,证明:点M 在定直线上,求出此定直线方程.【分析】(1)设E (t ,0)t ≠0,C (0,m ),用t ,m 表示出λ1,λ2,设直线l 斜率为k ,联立方程组,根据根与系数的关系即可得出λ1λ2的值;(2)利用导数求出抛物线在A ,B 处的切线方程,联立方程组得出M 的交点坐标,再根据根与系数的关系消去参数即可得出定直线方程. 【解答】解:(1)设E (t ,0)t ≠0,C (0,m ), ∵EA →=λ1EC →,EB →=λ2EC →,∴{(x 1−t ,y 1)=λ1(−t ,m)(x 2−t ,y 2)=λ2(−t ,m),解得{λ1=t−x1t λ2=t−x 2t,设直线l 的斜率为k ,方程为y =k (x ﹣t ), 由{y =k(x −t)x 2=4y得x 2﹣4kx +4kt =0, 当△=16k 2﹣16kt >0时,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=4kt , ∴λ1λ2=t 2−(x 1+x 2)t+x 1x 2t 2=t 2−4kt+4ktt 2=1.(2)设M (x ,y ),由x 2=4y 可得y =x 24,故y ′=x2, ∴抛物线在A (x 1,x 124)处的切线方程为y −x 124=x 12(x ﹣x 1),即y =x 12x −x 124,同理可得抛物线在B (x 2,x 224)处的切线方程为y =x 22x −x 224,联立方程组{y =x12x −x124y =x 22x −x 224,得{x =x 1+x22y =x 1x 24, ∵E (4,0),即t =4,由(1)可得x 1+x 2=4k ,x 1x 2=16k , ∴{x =2ky =4k,即y =2x . ∴点M (x ,y )在直线y =2x 上.17.在直角坐标系xOy中,动圆P与圆Q:(x﹣2)2+y2=1外切,且圆P与直线x=﹣1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(﹣2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)设P(x,y),圆P的半径为r,根据动圆P与圆Q:(x﹣2)2+y2=1外切,可得√(x−2)2+y2=r+1,又动圆P与直线x=﹣1相切,可得r=x+1,消去r得曲线C的轨迹方程.(2)假设存在曲线C上的点M满足题设条件,不妨设M(x0,y0),A(x1,y1),B(x2,y2),则y02=8x0,y12=8x1,y22=8x2,k MA=y1−y0x1−x0=8y1+y0,k MB=y2−y0x2−x0=8y2+y0,可得:k MA+k MB=8y1+y0+8y2+y0=8(y1+y2+2y0)y02+(y1+y2)y0+y1y2,显然动直线l的斜率存在且非零,设l:x=ty﹣2,与抛物线方程联立得:y2﹣8ty+16=0,利用根与系数的关系代入上式,进而得出结论.【解答】解:(1)设P(x,y),圆P的半径为r,因为动圆P与圆Q:(x﹣2)2+y2=1外切,………………………………………(1分)所以√(x−2)2+y2=r+1,①………………………………………………………(2分)又动圆P与直线x=﹣1相切,所以r=x+1,②………………………………………………………………………(3分)由①②消去r得y2=8x,所以曲线C的轨迹方程为y2=8x.…………………………………………………(5分)(2)假设存在曲线C上的点M满足题设条件,不妨设M(x0,y0),A(x1,y1),B(x2,y2),则y 02=8x 0,y 12=8x 1,y 22=8x 2,k MA =y 1−y 0x 1−x 0=8y1+y 0,k MB =y 2−y 0x 2−x 0=8y2+y 0,…(6分)所以k MA +k MB =8y1+y 0+8y2+y 0=8(y 1+y 2+2y 0)y 02+(y 1+y 2)y0+y 1y 2,③…………(7分)显然动直线l 的斜率存在且非零,设l :x =ty ﹣2, 联立方程组{y 2=8x x =ty −2,消去x 得y 2﹣8ty +16=0,由△>0得t >1或t <﹣1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2.…………………(8分) 代入③式得k MA +k MB =8(8t+2y 0)y 02+8ty+16,令8(8t+2y 0)y 02+8ty0+16=m (m 为常数),整理得(8my 0−64)t +(my 02−16y 0+16m)=0,④………………………(9分)因为④式对任意t ∈(﹣∞,﹣1)∪(1,+∞)恒成立,所以{8my 0−64=0my 02−16y 0+16m =0,…………………………………………………(10分)所以{m =2y 0=4或{m =−2y 0=−4,即M (2,4)或M (2,﹣4),即存在曲线C 上的点M (2,4)或M (2,﹣4)满足题意.…………………(12分) 18.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,右焦点为F ,上、下顶点分别是B ,C ,|AB|=√7,直线CF 交线段AB 于点D ,且|BD |=2|DA |. (1)求E 的标准方程;(2)是否存在直线l ,使得l 交E 于M ,N 两点,且F 恰是△BMN 的垂心?若存在,求l 的方程;若不存在,说明理由.【分析】(1)方法一先分别求出直线AB ,CF 的方程,再求得D 的坐标.然后将|BD |=2|DA |转化为BD →=2DA →,得到a =2c ,再结合|AB|=√7,求得a 和b 的值,从而得到椭圆的标准方程;方法二:设椭圆的左焦点G ,由椭圆的对称性可知BG ∥CF ,根据平行线的性质,即可求得a =2c ,再结合|AB|=√7,求得a 和b 的值,从而得到椭圆的标准方程; (2)只要能通过假设存在满足题意的直线,根据F 是△BMN 的垂心,得到BF ⊥MN ,进而确定直线MN 的斜率,由此设出直线MN 的方程并与椭圆方程联立;再根据F 是△BMN 的垂心,得到MF ⊥BN ,将其转化为MF →⋅BN →=0或k MF •k BN =﹣1,并结合韦达定理,即可求得m 的值,求得直线l 的方程.【解答】解:(1)方法一:设椭圆E 的右焦点F (c ,0), 则直线AB 的方程:xa +yb =1,直线CF 的方程:xc −yb =1, 联立解得:{x =2aca+c y =b(a−c)a+c ,则D (2ac a+c ,b(a−c)a+c ), 由|BD |=2|DA |,则BD →=2DA →,则(2aca+c ,−2bca+c )=2(a(a−c)a+c,−b(a−c)a+c),则a =2c ,由|AB |=√a 2+b 2=√7,a 2=b 2+c 2,解得:c =1,a =2,b =√3, ∵椭圆E 的标准方程为x 24+y 23=1.方法二:设椭圆的左焦点G ,由椭圆的对称性可知BG ∥CF , ∵|BD |=2|DA |,则|GF |=2|F A |,即2c =2(a ﹣c ),则a =2c , 由|AB |=√a 2+b 2=√7,a 2=b 2+c 2,解得:c =1,a =2,b =√3, ∵椭圆E 的标准方程为x 24+y 23=1.(2)假设存在满足条件的直线MN ,由垂心的性质可得BF ⊥MN ,从而得到直线l 的斜率k =√33, 设l 的方程为y =√33x +m ,M (x 1,y 1),N (x 2,y 2),联立{y =√33x +m x 24+y 23=1,整理得:13x 2+8√3mx +12(m 2﹣3)=0,由△=(8√3m )2﹣4×13×12(m 2﹣3)>0,解得:−√393<m <√393, x 1+x 2=−8√3m13,x 1x 2=12(m 2−3)13.由MF ⊥BN ,则MF →⋅BN →=0,即(1−x 1)x 2−y 1(y 2−√3)=0, 整理得y 1y 2−√3y 1+x 1x 2﹣x 2=0, 将y 1=√33x 1+m ,y 2=√33x 2+m , 代入化简得43x 1x 2+√33(m −√3)(x 1+x 2)+m 2−√3m =0, ∴1613(m 2﹣3)−813(m 2−√3m )+m 2−√3m =0,∴16(m 2﹣3)﹣8(m 2−√3m )+13(m 2−√3m )=0,提取公因式(m −√3),(m −√3)[16(m +√3)﹣8m +13m ](m −√3)=0, 即(21m +16√3)(m −√3)=0, 由B (0,√3),则m ≠√3,解得m =−16√321,满足−√393<m <√393, ∴m 的值−16√321,直线l 的方程y =√33x −16√321.。
数学专题五
专题五:解析几何【备考策略】根据近几年高考命题特点和规律,复习本专题时,要注意以下几个方面:1.直线的倾斜角、斜率及它们间的关系。
2.两直线平行与垂直的充要条件。
3.点到直线的距离、两平行线间的距离。
4.圆的方程(标准方程和一般方程)。
5.直线与圆的位置关系。
6.椭圆、双曲线、抛物线的定义、性质。
7.直线和圆锥曲线的位置关系,同时常与平面向量、数列、不等式结合,且每年必考。
第一讲直线与圆【最新考纲透析】1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
(3)能根据两条直线的斜率判定这两条直线平行或垂直。
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
(5)能用解方程组的方法求两条相交直线的交点坐标。
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系。
(3)能用直线和圆的方程解决一些简单的问题。
(4)初步了解用代数方法处理几何问题的思想。
3.空间直角在系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置。
(2)会推导空间两点间的距离公式。
【核心要点突破】要点考向1:直线的倾斜角、斜率、距离问题考情聚焦:1.直线的倾斜角、斜率、距离问题是最基本问题,是高考中常考的知识。
2.该类问题常与平面向量结合,体现知识的交汇。
3.多以选择题、填空题的形式考查,属容易题。
考向链接:1.直线的倾斜角和斜率反映了直线的倾斜程度。
已知斜率求倾斜角时,通常可以结合正切函数的图象求解,要注意当斜率的取值范围有正有负时,倾斜角是分段的,如直线斜率的范围是[-1,1],则倾斜角的取值范围是,而不是2.对于距离要熟记有关公式,并能灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考题型专题冲刺精讲(数学)专题五解析几何【命题特点】近三年高考解析几何每年出一道满分为12分的解析几何大题.究其原因,一是解析几何是中学数学的一个重要组成部分,二是同学们在未来学习、发展中的需要所致.细细品读这三年的解析几何大题,感觉如山间的涓涓清泉滋润心田,甘甜可口,不愿离去.为了找到清泉流向远方的目标,我从其志、探其源、求其真.经过探究,发现这几年的解析几何大题的命题特点可概括如下:依纲靠本,查基考能;朴实取材,独具匠心;不断创新,关注交汇;交切中点,核是线圆;长度面积,最值定值;平行垂直,向量驾驭;求轨探迹,运动探究;数形结合,各领风骚;灵气十足,回味无穷;文理有别,意境深远.复习建议1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。
2.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。
3.在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。
4.在注重提高计算能力的同时,要加强心理辅导,帮助学生克服惧怕计算的心态。
【试题常见设计形式】近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;解析几何虽然内容庞杂,但基本问题却只有几个.如①求直线与圆锥曲线的方程;②求动点的轨迹或轨迹方程;③求特定对象的值;④求变量的取值范围或最值;⑤不等关系的判定与证明;⑥圆锥曲线有关性质的探求与证明等.对各类问题,学生应从理论上掌握几种基本方法,使之在实际应用中有法可依,克服解题的盲目性.如“求变量的取值范围”,可指导学生掌握三种方法:几何法(数形结合),函数法和不等式法. 从宏观上把握解决直线与圆锥曲线问题的解题要点,能帮助学生易于找到解题切入点,优化解题过程,常用的解题策略有:①建立适当的平面直角坐标系;②设而不求,变式消元;③利用韦达定理沟通坐标与参数的关系;④发掘平面几何性质,简化代数运算;⑤用函数与方程思想沟通等与不等的关系;⑥注意对特殊情形的检验和补充;⑦充分利用向量的工具作用;⑧注意运算的可行性分析,等等。
运算是解析几何的瓶颈,它严重制约考生得分的高低,甚至形成心理障碍.教学中要指导学生注重算理、算法,细化运算过程,转化相关条件,回避非必求量,注意整体代换等运算技能,从能力的角度提高对运算的认识,反思运算失误的经验教训,不断提高运算水平.【突破方法技巧】1.突出解析几何的基本思想:解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等量关系式.(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x ,y )表示出已知动点的坐标,然后代入已知的曲线方程.(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.(4)交轨法:动点是两条动曲线的交点构成的,由x ,y 满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.2.熟练掌握直线、圆及圆锥曲线的基本知识 (1)直线和圆①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x 轴,y 轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.(2)椭圆①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F 1,F 2的距离之和等于常数2a (2a >|F 1F 2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e (0<e <1)的动点轨迹为椭圆,(顺便指出:e >1,e =1时的轨迹分别为双曲线和抛物线).②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点是F (±c ,0)时,标准方程为2222x y a b+=1(a >b >0);焦点是F (0,±c )时,标准方程为2222y x a b +=1(a>b >0).这里隐含222a b c =+,此关系体现在△OFB (B 为短轴端点)中.③深刻理解a ,b ,c ,e ,2a c的本质含义及相互关系,实际上就掌握了几何性质.(3)双曲线①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深刻理解几何量a ,b ,c ,e ,2a c的本质含义及其相互间的关系.②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).③双曲线2222x y a b-=±1(a >0,b >0)隐含了一个附加公式222c a b =+此关系体现在△OAB (A ,B 分别为实轴,虚轴的一个端点)中;特别地,当a =b .(4)抛物线①抛物线的定义:平面内到一个定点F 和一条定直线l 的距离相等的点的轨迹(F ∉l ).定义指明了抛物线上的点到焦点与准线的距离相等,并在解题中有突出的运用.②抛物线方程(标准)有四种形式:22y px =±和22x py =± (p >0),选择时必须判定开口与对称轴.③掌握几何性质,注意分清2p , p ,2p的几何意义. 3.掌握直线与圆锥曲线的位置关系的研究方法(1)判断直线l 与圆锥曲线C 的位置关系,可将直线l 的方程代入曲线C 的方程,消去y (也可以消去x )得到一个关于变量x 的一元方程ax 2+bx +c =0,然后利用“Δ”法.(2)有关弦长问题,应用弦长公式及韦达定理,设而不求;有关焦点弦长问题,要重视圆锥曲线的定义的运用,以简化运算.(3)有关弦的中点问题,除了利用韦达定理外,要注意灵活运用“点差法”,设而不求,简化运算. (4)有关垂直关系问题,应注意运用斜率关系(或向量方法)及韦达定理,设而不求,整体处理. (5)有关圆锥曲线关于直线l 的对称问题中,若A ,A ′是对称点,则应抓住AA ′的中点在l 上及kAA ′²kl =-1这两个关键条件解决问题.(6)有关直线与圆锥曲线的位置关系中的存在性问题,一般采用“假设反证法”或“假设验证法”来解决.【典型例题分析】考点一、曲线(轨迹)方程的求法 常见的求轨迹方程的方法:(1)单动点的轨迹问题——直接法(五步曲)+ 待定系数法(定义法); (2)双动点的轨迹问题——代入法;(3)多动点的轨迹问题——参数法 + 交轨法。
【例1】2010宁夏、设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程(II )设AB 的中点为()00,N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+=。
由P A P B =,得1PNk =-,即0011y x +=-得3c =,从而3a b ==故椭圆E 的方程为221189x y +=。
【例2】2010北京、在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-.(Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。
(I )解:因为点B 与A (1,1)-关于原点O 对称,所以点B 得坐标为(1,1)-. 设点P 的坐标为(,)x y 由题意得111113y y x x -+=-+- 化简得 2234(1)x y x +=≠±. 故动点P 的轨迹方程为2234(1)x y x +=≠±(II )解法一:设点P 的坐标为00(,)x y ,点M ,N 得坐标分别为(3,)M y ,(3,)N y . 则直线AP 的方程为0011(1)1y y x x --=++,直线BP 的方程为0011(1)1y y x x ++=-- 令3x =得000431M y x y x +-=+,000231N y x y x -+=-.于是PMN 得面积2000020||(3)1||(3)2|1|PMNM N x y x S y y x x +-=--=- 又直线AB 的方程为0x y +=,||AB = 点P 到直线AB的距离d =于是PAB 的面积001||||2PAB S AB d x y ==+ 当PABPMN S S = 时,得20000020||(3)|||1|x y x x y x +-+=-又00||0x y +≠, 所以20(3)x -=20|1|x -,解得05|3x =。
因为220034x y +=,所以09y =±故存在点P 使得PAB 与PMN 的面积相等,此时点P的坐标为5(,39±. 解法二:若存在点P 使得PAB 与PMN 的面积相等,设点P 的坐标为00(,)x y 则11||||sin ||||sin 22PA PB APB PM PN MPN ∠=∠ .因为sin sin APB MPN ∠=∠,所以 ||||||||PA PN PM PB =所以000|1||3||3||1|x x x x +-=--即2200(3)|1|x x -=-,解得0x 53=因为220034x y +=,所以09y =±故存在点P S 使得PAB 与PMN 的面积相等,此时点P的坐标为5(,39±. 【例3】2010辽宁、设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o,2AF FB = . (I )求椭圆C 的离心率;(II )如果|AB|=154,求椭圆C 的方程.由23c a =得3b a =.所以51544a =,得a=3,b =.椭圆C 的方程为22195x y +=. …12分【例4】2010广东、一条双曲线2212x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点。