二次根式提高练习2
二次根式练习题及答案
一、填空题1.(1)如果一个数的平方等于a ,这个数叫做a 的______. (2)一个正数有_______个平方根,它们是______关系.(3)0的平方根是________. (4)9的平方根是___________. (5)5.0-是________的平方根. (6)平方根是23±的数是_____________. (7)16的正的平方根是___________. (8)41的负的平方根是__________________. (9)5是_______的算术平方根. (10)7的平方根是______________. 2.(1)149±是_________的平方根. (2)0169.0的平方根是_________. (3)_______的平方等于.25681 (4)972的平方根为_________.(5)81的算术平方根是_______. (6)2)3.1(-的平方根是________.(7)31-是a 的平方根,则=a _______. (8)_______是17的算术平方根. (9)2)8(-的算术平方根是_____. (10)若42=x ,则=x _______. 3.(1)412-的平方根是_______. (2)a 有意义,则a _________. (3)若7=x ,则=x __________. (4)=-222029______________.(5)若==x x ,62__________. (6)当4=a 时,=--aa 5)5(2________.(7)若22)71(=x ,则=x _____________. (8)当5=x 时2)9(-x 的平方根为_______. (9)求值:=-±2)16(___________. (10)若1)1(2=+x ,则=x ________________. 4.(1)8-的立方根是_____________. (2)1251的立方根是________________. (3)0的立方根是______. (4)7的立方根是_______.(5)1-是___________的立方根. (6)若x 的立方根是6,则=x _______.5.(1)3216-的倒数为________. (2)49的算术平方根的立方根是________.(3)若33)5(-=x ,则=x . (4)=⨯⨯32004524______.(5)=-3187________. (6)33)117(-的绝对值为_______. (7)=--3027.0_______. (8)1011的立方根为_______. 6.(1)327的立方根是_______. (2)311-是_____的立方根. (3)81的平方根的立方根是_______. (4)=⨯⨯375315_______.(5)3a 的立方根是______. (6)若8=x ,则=-3x _______. 7 .2的相反数是 , 倒数是 , 6-的绝对值是 .8.一个数的平方根与立方根相等,这个数是 ;立方根等于本身的数是_________。
考点02 二次根式的运算与化简求值专项练习(解析版)
人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)﹣(1﹣);(2)(2+6)×÷2.【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据二次根式的乘除法和加法可以解答本题.【解答】解:(1)﹣(1﹣)=﹣+3=3;(2)(2+6)×÷2=(2×+6×)×=(4+18)×=2+9.2.(2020秋•太平区期末)计算题:(1);(2)×﹣;(3)(+3)×(3﹣)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后约分即可;(2)利用二次根式的乘除法则运算;(3)根据平方差公式和完全平方公式计算.【解答】解:(1)原式==6;(2)原式=﹣(﹣)=10﹣(2﹣)=8+;(3)原式=9﹣5﹣(3﹣2+1)=4﹣4+2=2.3.(2020秋•市中区期末)计算:(1)﹣4+2;(2)﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:(1)原式=3﹣2+4=5;(2)原式=+﹣4=2+3﹣4=1.4.(2020秋•项城市期末)计算:(1);(2).【分析】(1)根据二次根式的乘法法则运算;(2)根据平方差公式计算.【解答】解:(1)原式=2××+5=3+5;(2)原式=(2)2﹣()2=12﹣6=6.5.(2020秋•织金县期末)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和完全平方公式计算.【解答】解:(1)原式=3﹣+=;(2)原式=+﹣(18﹣6+1)=2+4﹣19+6=6﹣13.6.(2020秋•沈河区期末)计算:(1)﹣+2÷;(2)﹣×.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.7.(2020秋•碑林区校级期末)计算:(1)2﹣2+;(2)(﹣2)2﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=6﹣+=6;(2)原式=3﹣4+4﹣(﹣)=7﹣4﹣3+2=6﹣4.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).【分析】(1)根据零指数幂、立方根的定义和绝对值的意义计算;(2)根据二次根式的除法法则和平方差公式计算.【解答】解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.9.(2020秋•郫都区期末)计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则化简得出答案.【解答】解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.10.(2020秋•龙华区期末)计算题(1)+(+2)(﹣2);(2)6+|1﹣|﹣(+1)÷.【分析】(1)先化简二次根式,利用平方差公式计算,再进一步计算即可;(2)先化简二次根式、去绝对值符号、除法转化为乘法,再计算乘法,最后计算加减即可.【解答】解:(1)原式=+()2﹣22=2+3﹣4=1;(2)原式=6×+﹣1﹣(+1)×=3+﹣1﹣3﹣=﹣1.11.(2020秋•新化县期末)已知a=1+,b=1﹣,求:(1)求a2﹣2a﹣1的值;(2)求a2﹣2ab+b2的值.【分析】(1)根据完全平方公式把原式变形,把a的值代入计算即可;(2)根据完全平方公式把原式变形,把a、b的值代入计算即可.【解答】解:(1)原式=a2﹣2a+1﹣2=(a﹣1)2﹣2,当a=1+时,原式=(1+﹣1)2﹣2=0;(2)a2﹣2ab+b2=(a﹣b)2,当a=1+,b=1﹣时,原式=(1+﹣1+)2=8.12.(2020秋•永年区期末)已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.【分析】(1)根据分母有理化把x的值化简,计算即可;(2)根据二次根式的混合运算法则计算,得到答案.【解答】解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.13.(2020春•遵义期末)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2;(2).【分析】(1)原式利用完全平方公式变形,把a与b的值代入计算即可求出值;(2)原式通分并利用同分母分式的减法法则变形,把a与b的值代入计算即可求出值.【解答】解:(1)∵x=+1,y=﹣1,∴原式=(x+y)2=(+1+﹣1)2=(2)2=8;(2)∵x=+1,y=﹣1,∴原式====2.14.(2020春•浦北县期末)已知:m=+2,n=﹣2,求(1)m﹣n的值;(2)mn的值.【分析】(1)把m与n的值代入原式计算即可求出值;(2)把m与n的值代入原式计算即可求出值.【解答】解:(1)当m=+2,n=﹣2时,m﹣n=(+2)﹣(﹣2)=+2﹣+2=4;(2)当m=+2,n=﹣2时,mn=(+2)×(﹣2)=5﹣4=1.15.(2020春•和县期末)已知x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据二次根式的加减法法则分别求出x+y、x﹣y,根据平方差公式把原式变形,代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=8.16.(2020春•潮南区期末)已知a=+2,b=﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).【分析】(1)将所求式子因式分解,然后将a+b和ab的值代入即可解答本题;(2)将a、b的值代入所求式子,即可解答本题.【解答】解:(1)∵a=+2,b=﹣2,∴a+b=2,ab=1,∴a2b+ab2=ab(a+b)=1×2=2;(2)∵a=+2,b=﹣2,∴(a﹣2)(b﹣2)=(+2﹣2)×(﹣2﹣2)=×(﹣4)=5﹣4.17.(2020春•姑苏区期末)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.18.(2020春•临邑县期末)已知x=,y=.(1)计算x+y=2;xy=4;(2)求x2﹣xy+y2的值;【分析】(1)先将知x=,y=进行分母有理化.然后代入求值;(2)将x2﹣xy+y2的化成(x+y)2﹣3xy,然后将(1)中数据代入求值.【解答】解:∵已知x=,y=.∴x==,y==﹣1.(1)x+y=+1+﹣1=2,xy=(+1)(﹣1)=4.故答案为2,4;(2)x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×4=20﹣12=8.19.(2020春•鱼台县期末)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.【分析】原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【解答】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.20.(2020春•马山县期末)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x2﹣y2+5xy=(x+y)(x﹣y)+5xy=2×2+5(+)(﹣)=4+5.。
二次根式提高练习题(含答案)解析
一.计算题: 1.(235+-)(235--);2. 1145--7114--732+;3.(a 2mn -m abmn +mn nm )÷a 2b 2mn ;4.(a +ba abb +-)÷(bab a ++aab b --abb a +)(a ≠b ).二.求值:1.已知x =2323-+,y =2323+-,求32234232yx y x y x xy x ++-的值. 2.当x =1-2时,求2222ax x a x x+-++222222ax x x ax x +-+-+221ax +的值.三.解答题: 1.计算(25+1)(211++321++431++…+100991+).2.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xy y x +-2的值.计算题: 1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 2、【提示】先分别分母有理化,再合并同类二次根式. 【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -mab mn +mn nm)·221b a n m=21b nmm n ⋅-mab 1n m mn ⋅+22b ma n n m n m ⋅=21b -ab 1+221b a =2221ba ab a +-. 4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+-- =ba ba ++÷))((2222b a b a ab ba b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-ba +.【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 2、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x(22ax +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)(()2(22222222222x a x a x x ax x a x x a x x -+++++-+-=)()(22222222222222x a x a x x xa x x a x a x x x -++-+++++-=)()(222222222x a x a x x ax x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++=x1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)11(2222ax xa x +--+-)11(22x x a x --++221ax +=x1.解答题: 1、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.2、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x 【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵xy y x ++2-xyy x +-2=2)(xy y x+-2)(xy y x -=|xy y x +|-|x yyx -|∵ x =41,y =21,∴yx <xy .∴ 原式=xy y x +-yx x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。
二次根式练习题附答案
.二次根式练习题附答案一、选择题1.计算÷=()A.B.5 C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.计算:﹣的结果是()A. B .2 C.2 D .2.84.下列运算正确的是()A.2+ =2 B.5 ﹣=5 C.5+=6 D .+2 =3 5.计算 |2﹣|+|4 ﹣| 的值是()A.﹣ 2B.2 C.2 ﹣6 D.6﹣26.小明的作业本上有以下四题:①=4a 2;②? =5 a;③a= = ;④÷=4.做错的题是()A.①B.②C.③D.④7.下列四个命题,正确的有()个.① 有理数与无理数之和是有理数② 有理数与无理数之和是无理数③ 无理数与无理数之和是无理数④ 无理数与无理数之积是无理数.A.1 B.2 C.3 D. 48.若最简二次根式和能合并,则 x 的值可能为()A.B.C.2 D. 59.已知等腰三角形的两边长为 2 和 5 ,则此等腰三角形的周长为()A.4 +5 B. 2 +10C.4 +10 D.4 +5 或 2 +10....二、填空题10.×= ;= .11.计算:(+1 )(﹣1) = .12.(+2)2= .13.若一个长方体的长为,宽为,高为,则它的体积为cm3.14.化简:= .15.计算(+1)2015(﹣ 1)2014= .16.已知 x1= + , x2= ﹣,则 x12+x22=.三、解答题17.计算:( 1)(﹣)2;( 2)(+ )(﹣).( 3)(+3 )2.18.化简:( 1);( 2)19.计算:(1)× +3;( 2)(﹣)×;( 3).20.( 6 分)计算:( 3+ )( 3﹣)﹣(﹣1)2.21.计算:( 1)(﹣) + ;( 2).(用两种方法解)22.计算:(1)9 ﹣7 +5 ;(2)÷﹣×+ .23.已知: x=1﹣, y=1+ ,求 x2+y2﹣ xy ﹣ 2x+2y 的值.....《2.7 二次根式(一)》参考答案与试题解析一、选择题1.计算÷=()A.B.5 C.D.【考点】二次根式的乘除法.【专题】计算题.【分析】根据÷= ( a≥ 0, b>0)计算即可.【解答】解:原式= = ,故选 A.【点评】本题考查了二次根式的乘除法,解题的关键是掌握二次根式除法计算公式.2.下列二次根式中,不能与合并的是()A.B.C.D.【考点】同类二次根式.【专题】计算题.【分析】原式各项化简,找出与不是同类项的即可.【解答】解: A、原式 = ,不合题意;B、原式 =2 ,不合题意;C、原式 =2 ,符合题意;D、原式 =3 ,不合题意,故选 C【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.3.计算:﹣的结果是()A. B .2 C.2 D .2.8....【考点】二次根式的加减法.【专题】计算题.【分析】原式各项化简后,合并即可得到结果.【解答】解:原式=4 ﹣ 2 =2 ,故选 C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.下列运算正确的是()A.2+ =2 B.5 ﹣=5 C.5 + =6 D .+2 =3 【考点】二次根式的加减法.【专题】计算题.【分析】原式各项合并得到结果,即可做出判断.【解答】解: A、原式不能合并,错误;B、原式 =4 ,错误;C、原式 =6 ,正确;D、原式不能合并,错误,故选 C【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.计算 |2 ﹣|+|4 ﹣| 的值是()A.﹣ 2 B.2 C.2 ﹣6 D.6﹣2【考点】二次根式的加减法.【分析】先进行绝对值的化简,然后合并同类二次根式求解.【解答】解:原式= ﹣ 2+4﹣=2.故选 B.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简.....6.小明的作业本上有以下四题:①=4a 2;②? =5 a;③a = = ;④÷=4.做错的题是()A.①B.②C.③D.④【考点】二次根式的乘除法.【分析】利用二次根式的性质进而化简求出即可.【解答】解:①=4a 2,正确;②? =5 a,正确;③ a = = ,正确;④÷= =2,故此选项错误.故选: D.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.7.下列四个命题,正确的有()个.① 有理数与无理数之和是有理数② 有理数与无理数之和是无理数③ 无理数与无理数之和是无理数④ 无理数与无理数之积是无理数.A.1 B.2 C.3 D. 4【考点】实数的运算.【专题】探究型.【分析】根据无理数、有理数的定义及实数的混合运算进行解答即可.【解答】解:① 有理数与无理数的和一定是有理数,故本小题错误;② 有理数与无理数的和一定是无理数,故本小题正确;③例如﹣+ =0,0 是有理数,故本小题错误;④例如(﹣)×=﹣ 2,﹣ 2 是有理数,故本小题错误.故选 A.【点评】本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.8.若最简二次根式和能合并,则 x 的值可能为()....A.B.C.2 D. 5【考点】同类二次根式.【分析】根据能合并的最简二次根式是同类二次根式列出方程求解即可.【解答】解:∵最简二次根式和能合并,∴2x+1=4x﹣3,解得 x=2.故选 C.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.9.已知等腰三角形的两边长为 2 和 5 ,则此等腰三角形的周长为()A.4 +5 B. 2 +10C.4 +10 D.4 +5 或2 +10【考点】二次根式的应用;等腰三角形的性质.【专题】计算题.【分析】先由三角形的三边关系确定出第三边的长,再求周长.【解答】解:∵2× 2 < 5∴只能是腰长为 5∴等腰三角形的周长 =2× 5 +2 =10 +2 .故选 B.【点评】本题考查了等腰三角形的性质:两腰相等,注意要用三角形的三边关系确定出第三边.二、填空题10.×= 2 ;= .【考点】二次根式的乘除法.【分析】直接利用二次根式的性质化简求出即可.【解答】解:×= =2,= = ....故答案为: 2,.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.11.计算:(+1 )(﹣1) = 1 .【考点】二次根式的乘除法;平方差公式.【专题】计算题.【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(+1 )(﹣1)= .故答案为: 1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.(+2)2= 9+4 .【考点】二次根式的混合运算.【专题】计算题.【分析】利用完全平方公式计算.【解答】解:原式=5+4 +4=9+4 .故答案为 9+4 .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.若一个长方体的长为,宽为,高为,则它的体积为3.12 cm【考点】二次根式的乘除法.【分析】首先根据正方体的体积列出计算式,然后利用二次根式的乘除法法则计算即可求解.【解答】解:依题意得,正方体的体积为:2 ××=12cm3.故答案为: 12....【点评】此题主要考查了二次根式的乘法,同时也利用了正方体的体积公式,正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.14.化简:= .【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并即可.【解答】解:原式=3 +2 +=.【点评】本题考查了二次根式的加减法,属于基础题,关键是掌握二次根式的化简.15.计算(+1)2015(﹣ 1)2014= +1 .【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[ (?﹣1)]2014+1)(? +1),然后利用平方差公式计(算.【解答】解:原式 =[ (+1) ?(﹣1)]2014+1)?(2014+1)=(2﹣ 1) ?(=+1.故答案为+1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.16.已知 x1= + , x2= ﹣,则x12+x2 2=10.【考点】二次根式的混合运算.【分析】首先把x12 +x22 =(x1+x2)2﹣ 2x1x2,再进一步代入求得数值即可.【解答】解:∵x1= + , x2 = ﹣,∴x12+x22=(x1 +x2)2﹣ 2x1x2=(+ + ﹣)2﹣2(+ )×(﹣)....=12﹣ 2=10.故答案为: 10.【点评】此题考查二次根式的混合运算,把代数式利用完全平方公式化简是解决问题的关键.三、解答题17.计算:(1)(﹣)2;(2)(+ )(﹣).(3)(+3 )2.【考点】二次根式的混合运算.【分析】( 1)( 3)利用完全平方公式计算即可;(2)利用平方差公式计算即可.【解答】解:(1)原式 =2﹣ 2+=;(2)原式 =2﹣3 =﹣1;( 3)原式 =5+6 +18=23+6 .【点评】此题考查二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键.18.化简:( 1);( 2)【考点】二次根式的乘除法.【分析】( 1)根据二次根式的乘法法则计算;( 2)可以直接进行分母有理化.【解答】解:(1)=4× 2 =8 ;(2)= .【点评】此题考查了乘法法则、分母有理化和二次根式的性质:=|a| ....19.计算:(1)× +3;(2)(﹣)×;(3).【考点】二次根式的混合运算.【专题】计算题.【分析】( 1)利用二次根式的乘法法则运算;(2)先利用二次根式的乘法法则运算,然后合并即可;(3)先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【解答】解:(1)原式 = +3=4+3=7;(2)原式 = ﹣=﹣ 3=﹣2 ;( 3)原式 ===2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.20.计算:( 3+ )( 3﹣)﹣(﹣ 1)2.【考点】二次根式的混合运算.【分析】利用完全平方公式和平方差公式计算,再进一步合并即可.【解答】解:原式=9﹣5﹣ 4+2=2 .【点评】本题考查的是二次根式的混合运算,掌握完全平方公式和平方差公式是解决问题的关键....21.计算:(1)(﹣)+ ;( 2).(用两种方法解)【考点】二次根式的混合运算.【分析】( 1)先算乘法,再算加减;( 2)先化简,再算除法或利用二次根式的除法计算.【解答】解:(1)原式 =2﹣+=2;( 2)方法一:原式= ﹣=﹣ 1;方法二:原式 = =﹣ 1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.22.计算:(1)9 ﹣7 +5 ;(2)÷﹣×+ .【考点】二次根式的混合运算.【专题】计算题.【分析】( 1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的除法和乘法法则运算,然后合并即可.【解答】解:( 1)原式 =9 ﹣ 14 +20=15 ;(2)原式 = ﹣+2=4﹣+2=4+ .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式....23.已知: x=1﹣, y=1+ ,求 x2+y2﹣ xy ﹣ 2x+2y 的值.【考点】二次根式的化简求值;因式分解的应用.【专题】计算题.【分析】根据 x、 y 的值,先求出x﹣ y 和 xy ,再化简原式,代入求值即可.【解答】解:∵x=1﹣, y=1+ ,∴ x﹣ y=( 1﹣)﹣( 1+ )=﹣ 2 ,xy=( 1﹣)( 1+ ) =﹣1,∴x2+y2﹣ xy ﹣2x+2y= (x﹣ y)2﹣ 2( x﹣y) +xy=(﹣ 2 )2﹣2×(﹣ 2 ) +(﹣1)=7+4 .【点评】本题考查了二次根式的化简以及因式分解的应用,要熟练掌握平方差公式和完全平方公式..... ...。
二次根式练习10套(附答案)
二次根式演习01一.填空题 1.下列和数1415926.3)1(.3.0)2(722)3(2)4(38)5(-2)6(π (3030030003).0)7( 个中无理数有________,有理数有________(填序号)2.94的平方根________,216.0的立方根________. 3.16的平方根________,64的立方根________. 4.算术平方根等于它本身的数有________,立方根等于本身的数有________.5.若2562=x ,则=x ________,若2163-=x ,则=x ________.6.已知ABC Rt ∆双方为3,4,则第三边长________.7.若三角形三边之比为3:4:5,周长为24,则三角形面积________.8.已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形.9.假如0)6(42=++-y x ,则=+y x ________. 10.假如12-a 和a -5是一个数m 的平方根,则.__________,==m a11.三角形三边分离为8,15,17,那么最长边上的高为________.12.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________. 二.选择题13.下列几组数中不克不及作为直角三角形三边长度的是( )A.25,24,6===c b aB.5.2,2,5.1===c b aC.45,2,32===c b aD.17,8,15===c b a14.小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C.29英寸(cm 74) D .34英寸(cm 87)15.等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB.248cmC.224cmD.232cm16.三角形三边c b a ,,知足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17.2)6(-的平方根是( )A .6-B .36C.±6D.6±18.下列命题准确的个数有:a a a a ==233)2(,)1((3)无穷小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( )A .1个 B. 2个 C .3个D.4个19.x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B.7C.3,7D. 1,720.直角三角形边长度为5,12,则斜边上的高( )A. 6B.8C.1318D.1360 21.直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A.2h ab =B.2222h b a =+C.h b a 111=+ D.222111hb a =+22.如图一向角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2 B.cm 3 C.cm 4D.cm 5三.盘算题23.求下列各式中x 的值:24.用盘算器盘算:(成果保存3个有用数字)四.作图题25.在数轴上画出8-的点.26.下图的正方形网格,每个正方形极点叫格点,请在图中画一个面积为10的正方形. 五.解答题27.已知如图所示,四边形ABCD中,,12,13,4,3cm CD cm BC cm AD cm AB ====090=∠A 求四边形ABCD 的面积.28.如图所示,在边长为c 直角边为b a ,勾股定理吗?写出来由.29.如图所示,15cm 60)堆在一路,30.如图所示,在ABC Rt ∆中,∠若AD=8,BD=2,求CD.31.在△ABC 中ABC 周长.二次根式演习01AEBDC第22题图第25题图第26题图第28题图 A第30题图AD答案:一.填空题:1.4.6.7,1.2.3.5;2.32±,0.6;3.±2,2;4.0和1,0和±1;5.±16,-4;6.5或7;7.24;8.直角;9.-2;10.-4,81;11.17120;12.1 二.选择题:13-22:ACBCCBDDDB 三.盘算题:23.(1)x=47±;(2)x=6或x=-4;(3)x=-1;(4)x=6;24.用盘算器盘算答案略 四.作图题:(略)五.解答题:27.提醒:贯穿连接BD,面积为56;28.提醒:应用面积证实;29.327.8;30.CD=4;31.周长为42.二次根式演习02一.选择题(每小题2分,共30分) 1.25的平方根是( )A.5B.–5C.5±D.5± 2.2)3(-的算术平方根是( )A.9B.–3C.3±D.3 3.下列论述准确的是( )2.0± B.32)(--的立方根不消失C.6±是36的算术平方根D.–27的立方根是–34.下列等式中,错误的是( ) A.864±=± B.1511225121±= C.62163-=- D.1.0001.03-=- 5.下列各数中,无理数的个数有( )A.1B.2C.3D.46.假如x -2有意义,则x 的取值规模是( )A.2≥xB.2<xC.2≤xD.2>x 7.化简1|21|+-的成果是( )A.22-B.22+C.2D.28.下列各式比较大小准确的是( )A.32-<-B.6655->-C.14.3-<-πD.310->-9.用盘算器求得333+的成果(保存4个有用数字)是( )A.3.1742B.3.174 C 10.假如mmm m -=-33成立,则实数m 的取值规模是( )A.3≥mB.0≤mC.30≤<mD.30≤≤m11.盘算5155⨯÷,所得成果准确的是( )A.5B.25C.1D.5512.若0<x ,则xx x 2-的成果为( )A.2B.0C.0或–2D.–213.a.b 为实数,在数轴上的地位如图所示,则2a b a +-的值是( )A.-bB.bC.b -2aD.2a -ba 0 b14.下列算式中准确的是( )A.333n m n m -=-B.ab b a 835=+C.1037=+x xD.52523521=+ 15.在二次根式:①12;④27中,与3是同类二次根式的是( )A.①和③B.②和③C.①和④D.③和④二.填空题(每小题2分,共20分)16.–125的立方根是_____.17.假如9=x ,那么x =________;假如92=x ,那么=x ________.18.要使53-x 有意义,则x 可以取的最小整数是. 19.平方根等于本身的数是________;立方根等于本身的数是_______20.x 是实数,且02122=-x ,则.____=x21.若b a 、是实数,012|1|=++-b a ,则._____22=-b a 22.盘算:①____;)32(2=-②._____1964522=-23.2.645==,24.盘算:._____1882=++ 25.已知正数a 和b ,有下列命题: (1)若2=+b a ,则ab ≤1 (2)若3=+b a ,则ab ≤23(3)若6=+b a ,则ab ≤3依据以上三个命题所供给的纪律猜测:若9=+b a ,则ab ≤________. 三.解答题(共50分) 26.直接写出答案(10分)④⑦348-⑧()225+⑨27.盘算.化简:(请求有须要的解答进程)(18分) ①8612⨯②)7533(3-③32 -321+2④123127+-⑤(2+2363327⨯-+28.探讨题(10分)=______.依据盘算成果,答复:(1)a吗?你发明个中的纪律了吗?请你用本身的说话描写出来.(2).应用你总结的纪律,盘算①若2x〈,则=②29.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(准确到)30.(6分)已知yx、知足0|22|132=+-+--yxyx,求yx542-的平方根.附加题:31.(5分)已知21,31==yx,求下列各式的值①3223441yxyxyx++②32241yxyyx+-32.(5分)已知ABC∆的三边为cba、、.化简根式002参考答案一.CDDBCCDCBCCACDC二.-5; ±9; ±3; 2; 0; ±1.0; ±0.5; 2;12;314;122.8;;92;三.12;±23;-0.4;5;;9+33;0.5;6;34;13;0;不必定.a=;2-x; 3.14π-;6cm;±4c.二次根式演习03一.填空题(每题2分,共28分)1.4的平方根是_____________.2.的平方根是_____________.7.在实数规模内分化因式:a4-4=____________.二.选择题(每题4分,共20分)15.下列说法准确的是( ).(A) x≥1 (B)x>1且x≠-2(C) x≠-2 (D) x≥1且x≠-2(A)2x-4 (B)-2 (C)4-2x (D)2三.盘算题(各小题6分,共30分)四.化简求值(各小题5分,共10分)五.解答题(各小题8分,共24分)29. 有一块面积为(2a + b)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a - b)2π,问所挖去的圆的半径若干?32cm2,假如将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是若干(保存3个有用数字)?根式003答案1.±22. ±23. –ab4. –25. 0或46. m≥112. -x-y13. x≤414.15. B 16. A 17. D 18. A 19.A 20. D23. 2430.二次根式演习04一.填空题(每题3分,共54分)2.-27的立方根=.二.选择题(每题4分,共20分)15.下列式子成立的是( ). 17.下列盘算准确的是( ).三.盘算题(各小题6分,共30分)四.化简求值(各小题8分,共16分)五.解答题(各小题8分,共24分)根式004答案2. -33. -a-66. 07. 18. ≤012. 200315. D 16. C 17. C 18. C 19.B 20. A二次根式演习05二次根式:1..2. 当__________时.3.11m+意义,则m的取值规模是.4. 当__________x时是二次根式.5. 在实数规模内分化因式:429__________,2__________x x-=-+=.6. 2x=,则x的取值规模是.7. 2x=-,则x的取值规模是.8. )1x的成果是.9. 当15x≤时5_____________x-=.10. 把.11.11x=+成立的前提是.12.若1a b-+互为相反数,则()2005_____________ab-=.13. 在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A. 2个B. 3个C. 4个D. 5个14. 下列各式必定是二次根式的是()15. 若23a,)A. 52a- B. 12a- C. 25a- D. 21a-16.若A==()A. 24a+ B. 22a+ C. ()222a+ D.()224a+17. 若1a≤,)A. (1a-B. (1a-C. (1a-D. (1a-18.=成立的x的取值规模是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开端出错的步调是()A. ()1B. ()2C. ()3D. ()421. 2440y y-+=,求xy的值.22. 当a取什么值时,1取值最小,并求出这个最小值.23. 去失落下列各根式内的分母:24. 已知2310x x-+=,.25. 已知,ab为实数,(10b-=,求20052006a b-的值.二次根式演习05答案:二次根式:1. 4x ≥;2. 122x -≤≤; 3. 01m m ≤≠-且; 4. 随意率性实数;5. ()((223;x x x x +; 6. 0x ≥;7. 2x ≤; 8.1x -;9. 4; 10. 1x ≥; 12. -1; 13——20:CCCABCDB21. 4; 22. 12a =-,最小值为1; 23.()()3121x x +;二次根式演习061. 当0a ≤,0b时__________=.2.,则_____,______m n ==.3.__________==.4.盘算:_____________=.5.面积为,则长方形的长约为(准确到0.01).6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式( )8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9.-和-)A. 32-- B. 32--C. -=-D. 不克不及肯定10.以下说法中不准确的是( )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 盘算: 12. 化简:13. 把根号外的因式移到根号内:二次根式演习0621.2 二次根式的乘除:1. - 6——10: DDCAB11. ()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a -- 12. ()()()123.0ab ;13. ()()1.2. 根式013答案: 1——5: ABDDD6. 25x ≤≤; 7. 8; 8. ; 9. ()(22x x x +; 10. 0;11.36-15. 底面边长为; 高为; 16. 26x -; 17. ()41.3x y =⎧⎨=⎩. ()2.5 二次根式演习071. 下列根式中,)2. 下面说法准确的是( )A. 被开方数雷同的二次根式必定是同类二次根式D. 同类二次根式是根指数为2的根式3.)4. 下列根式中,是最简二次根式的是()D.5. 若12x,()A. 21x- B. 21x-+ C. 3 D. -36.10=,则x的值等于()A. 4B. 2±C. 2D. 4±7.x,小数部分为y,y-的值是()A. 38. 下列式子中准确的是()=a b=-C. (a b=-22==9.,.是同类二次根式,则____,____a b==.11.,则它的周长是cm.12.式,则______a=.13.已知x y==则33_________x y xy+=.14.已知x =则21________x x -+=.15. )()20002001232______________+=.16. 盘算:⑴.⑵(231⎛++ ⎝⑶. (()2771+--⑷. ((((22221111+17. 盘算及化简:⑴. 22-⑵⑶⑷. a b a b ⎛⎫+--18.已知:x y ==求32432232x xy x y x y x y -++的值.19. 已知:11a a +=+求221a a +的值.20. 已知:,xy 为实数,且13yx -+,化简:3y -.21. 已知11039322++=+-+-y x x x y x ,求的值. 二次根式演习07答案21.3 二次根式的加减:1——8:BAACCCCC9. ; 10. 1.1; 11. (; 12. 1; 13. 10;14. 42; 16. ()()()()122,3.454.4-+; 17. ()()()()()21.4,23.,4.1x yy x-+-;18. 5; 19. 9+二次根式演习08一.选择题1.假如-3x+5是二次根式,则x的取值规模是()A.x≠-5B.x>-5C.x<-5D.x≤-52.等式x2-1 =x+1 ·x-1 成立的前提是()A.x>1B.x<-1C.x≥1D.x≤-13.已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A.3B.4C.5D.64.下列二次根式中,x的取值规模是x≥2的是()A.2-xB.x+2C.x-2D.1 x-25.鄙人列根式中,不是最简二次根式的是()A.a2 +1 B.2x+1 C.2b4D.0.1y6.下面的等式总能成立的是()A.a2 =aB.a a2 =a2C. a · b =abD.ab = a · b7.m为实数,则m2+4m+5 的值必定是()A.整数B.正整数C.正数D.负数8.已知xy>0,化简二次根式x-yx2的准确成果为()A.yB.-yC.-yD.--y9.若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值规模是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.下列根式不克不及与48 归并的是()A.0.12B.18C.113D.-7511.假如最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的规模是()A.x≤10B.x≥10C.x<10D.x>1012.若实数x.y知足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A.1B.32+ 2 C.3+2 2 D.3-2 2二.填空题1.要使x-13-x有意义,则x的取值规模是.2.若a+4 +a+2b-2 =0,则ab=.3.若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 =.4.若y=1-2x +2x-1 +(x-1)2 ,则(x+y)2003=.5.若 2 x>1+ 3 x,化简(x+2)2-3(x+3)3 =.6.若(a+1)2 =(a-1)2 ,则a=.7.比较大小:⑴3 5 2 6 ⑵11 -10 14 -138.若最简根式m2-3 与5m+3 是同类二次根式,则m=.9.已知223=223,338=338,4415=4415,…请你用含n的式子将个中蕴涵的纪律暗示出来:.10.若 5 的整数部分是a,小数部分是b,则a-1b=.11.已知x =1a- a ,则4x+x2 =.12.已知a=3- 5 -3+ 5 ,则化简a得.三.盘算与化简1.( 3 + 2 )-1+(-2)2 +3-82.13 +1+15 - 3+15 +33.(1+ 2 - 3 )(1- 2 + 3 )+2 64.9a + a31a +12aa 3 四.先化简再求值1.已知a=3,b= 4,求[4( a + b )( a - b ) +a +b ab ( b - a ) ]÷ a - bab的值.2.化简:a+2+a 2-4 a+2-a 2-4 - a+2-a 2-4 a+2+a 2-4 取本身爱好的a 的值盘算.3.当a= 3 + 2 3 - 2 ,b= 3 - 2 3 + 2 时,求a 2-3ab+b 2的值.4.当a= 21- 3 时,求a 2-1a -1 - a 2+2a+1 a 2+a - 1a 的值.五.解答下列各题1.解方程: 3 (x -1)= 2 (x+1)2.3.已知直角三角形两直角边长分离为a= 12 3 -11 ,b= 12 3 +11 ,求斜边的长.4.先浏览下列的解答进程,然后作答:形如m ±2n 的化简,只要我们找到两个数a.b 使a+b=m,ab=n,如许( a )2+( b )2=m, a · b =n,那么便有m ±2n =( a ± b )2= a ± b (a>b)例如:化简7+4 3 解:起首把7+4 3 化为7+212 ,这里m=7,n=12;因为4+3=7,4×3=12,即( 4 )2+( 3 )2=7, 4 · 3 =12 ,∴7+4 3 =7+212 =( 4 + 3 )2=2+ 3 由上述例题的办法化简:⑴13-242 ⑵7-40 ⑶2- 3二次根式演习08参考答案一.选择题1.C2.C3.)C4.C5.D6.C7.C8.D9.C10.B11.A12.C二.填空题1.1≤x<32.-123.04.15.-2x-56.07.>>8.69.n+nn2-1=nnn2-1(n≥2且n为整数)10.- 511.1a-a12.- 2三.盘算与化简1. 3 - 22. 3 +13.-4+4 64.236 a四.先化简再求值1. 3 -22.a3.954.- 3五.解答下列各题1.x=5+2 62.x=2 3 -2 y=6-2 33.464.⑴7 - 6 ⑵ 5 - 2 ⑶ 2 - 62二次根式演习09一.选择题1.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是( )A.a 2+3 B.-a 2+3 C.±a 2+3 D.±a+3 2.若式子(x -1)2+|x -2|化简的成果为2x -3,则x的取值规模是( )A.x ≤1B.x ≥2C.1≤x ≤2D.x>03.下列说法错误的是( )A.a 2-6x+9 是最简二次根式 B. 4 是二次根式 C.a 2+b 2长短负数 D.a 2+16 的最小值是44.式子m m +6mm 4 -5m 21m的值是( ) A.正数 B.负数 C.非负数 D.可为正数也可为负数 5.等式x ÷1-x =x1-x成立的前提是( )A.0≤x ≤1B.x<1C.x ≥0D.0≤x <16.下列各组代数式中,互为有理化因式的是( )A.3x +1与1-3xB.x +y 与-x -yC.2-x 与x -2D.x 与 3 x7.下列断定中准确的是( )A.m -n 的有理化因式是m+nB.3-2 2 的倒数是2 2 -3C. 2 - 5 的绝对值是 5 - 2D. 3 不是方程x+1x -1-3x=2的解 8.下列盘算准确的是( )A. 2 + 3 = 5B.2+ 2 =2 2C.63 +28 =57D.8 +18 2= 4 +99.已知a<0,那么(2a -|a|)2的值是( ) A.a B.-a C.3a D.-3a10.在5a ,8b ,m 4,a 2+b 2 ,a 3中,是最简二次根式的有( )A.1个B.2个C.3个D.4个11.不等式(2- 5 )x<1的解集为( )A.x<-2- 5B.x>-2- 5C.x<2- 5D.x>-2+ 512.已知ba -ab =3 2 2 ,那么b a +a b的值为( )A.52B.72C.92D.132 二.填空题1. 2 2分数(填“是”或“不是”)2.最简二次根式a 2+a 与a+9 是同类二次根式,则a=. 3.将a-1a根号外的因式移入根号内的成果是.4.代数式(x +1)2 +(x -3)2的最小值是. 5.代数式2-a +9 的最值是.6.合适不等式15 ≤x ≤27 的整数x 的值是.7.化简:aa -ba 2-ab a 3-2a 2b+ab2 (a>b)=. 8.化简:(12 +1 +13 + 2 +14 + 3 +…+12006 +2005)(2006 +1)=.9.分化因式x 2(x - 3 )-3(x - 3 )=. 10.当a 时,a+2a -4是二次根式. 11.若(-2a )2=2a,则a=. 12.已知x+1x =4,则x -1x = .三.盘算与化简1. 6 ÷(12 +13 )2.22(212 +418-348 ) 3.22 -( 3 -2)0+20 4.22- 3 -12 +( 3 +1)25.aa -ab - ba -b 6.(ab -ab a +ab)·ab -ba -b7.a -9 a +3 8.1x +3 四.化简求值1.已知x= 3 +1,,求x21+2x+x2 的值.2.已知a= 2 5 +2 ,y=10 +2 2 ,求x 2+2xy+y 2+18 (x-y)的值.五.解答题1.解不等式: 2 x-1< 3 x2.解方程组:3.设等式a(x-a) +a(y-a) =x-a -a-y 在实数规模内成立,个中a.x.y是两两不合的实数,求3x2+xy-y2x2-xy+y2的值.4.已知x>0,y>0,且有x (x +2y )=y (6x+5y )求x+xy -y2x+xy +3y的值.5.若a+b=2ab (a>0,b>0),求a+b3a+5b的值.6.已知实数a知足|2003-a|+a-2004 =a,则a-20032的值是若干?二次根式演习09参考答案一.选择题1.C2.B3.A4.负数5.D6.A7.C8.C9.D10.B11.B12.D二.填空题1.不是2.-33.--a4.45.大 26.4或57.a(a-b)2a-b8.20059.(x- 3 )2(x+ 3 )10.a>4或a≤-211.012.±3 3三.盘算与化简1.6 3 -6 22.2-8 33. 2 -1+2 54.8+2 35.16.a7. a -38.当x≠9时,原式=x -3x-9当x≠9时,原式=16四.化简求值1. 3 -12.16五.解答题1. x>- 2 - 32.x=3 2 +2 35,y=3 3 -2 253.36.2004二次根式演习10一.选择题1.下列断定⑴12 3 和1348 不是同类二次根式;⑵145和125不是同类二次根式;⑶8x 与8x不是同类二次根式,个中错误的个数是( ) A.3 B.2 C.1 D.02.假如a 是随意率性实数,下列各式中必定有意义的是( ) A. a B.1a2 C.3-a D.-a 23.下列各组中的两个根式是同类二次根式的是( ) A.52x 和3x B.12ab 和13abC.x 2y 和xy 2D. a 和1a2 4.下列二次根式中,是最简二次根式的是( ) A.8x B.x 2-3 C.x -y xD.3a 2b 5.在27 .112.112中与 3 是同类二次根式的个数是( )A.0B.1C.2D.36.若a<0,则|a 2-a|的值是( ) A.0 B.2a C.2a 或-2a D.-2a 7.把(a -1)11-a根号外的因式移入根号内,其成果是( )A.1-aB.-1-aC.a -1D.-a -1 8.若a+b4b 与3a +b 是同类二次根式,则a.b 的值为( )A.a=2.b=2B.a=2.b=0C.a=1.b=1D.a=0.b=2 或a=1.b=19.下列说法错误的是( )A.(-2)2的算术平方根是2 B. 3 - 2 的倒数是3 + 2C.当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D.方程x+1 +2=0无解10.若 a + b 与 a - b 互为倒数,则( )A.a=b -1B.a=b+1C.a+b=1D.a+b=-1 11.若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a可化简为( )A.1-a 1+aB.a -11+aC.1-a 2D.a 2-112.在化简x -y x +y时,甲.乙两位同窗的解答如下:甲:x -y x +y = (x -y)(x -y )(x +y )(x -y )=(x -y)(x -y )(x )2-(y )2 =x -y 乙:x -y x +y =(x )2-(y )2x +y =(x -y )(x +y )x +y=x -yA.两人解法都对B.甲错乙对C.甲对乙错D.两人都错( )二.填空题1.要使1-2x x+3 +(-x)0有意义,则x 的取值规模是.2.若a 2=( a )2,则a 的取值规模是.3.若x 3+3x 2=-x x+3 ,则x 的取值规模是.4.不雅察下列各式:1+13 =213 ,2+14=314,3+15=415,……请你将猜测到的纪律用含天然数n(n ≥1)的代数式暗示出来是. 5.若a>0,化简-4ab =.6.若o<x<1,化简(x -1x)2+4 -(x+1x)2-4 =.7.化简:||-x 2-1|-2|=.8.在实数规模内分化因式:x 4+x 2-6=.9.已知x>0,y>0且x -2xy -15y=0,则2x+xy +3yx+xy -y =.10.若5+7 的小数部分是a,5-7 的小数部分是b,则ab+5b=.11.设 3 =a,30 =b,则0.9 =. 12.已知a<0,化简4-(a+1a)2-4+(a -1a)2=.三.盘算与化简 1.13(212 -75 ) 2.24 - 1.5 +223 - 3 + 2 3 - 23.(-2 2 )2-( 2 +1)2+( 2 -1)-14.7a 8a -2a218a+7a 2a 5.2nm n -3mn m 3n 3 +5m m 3n (m<0.n<0) 6.1a+ b7.x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8.x+xyxy +y+xy -y x -xy 四.化简求值1.已知x= 2 +12 -1 ,y= 3 -13 +1,求x 2-y 2的值.2.已知x=2+ 3 ,y=2- 3 ,求x +yx -y -x -yx +y的值.3.当a= 12+ 3 时,求1-2a+a 2a -1 - a 2-2a+1a 2-a 的值. 五.已知x +1x =4,求x -1x的值.二次根式演习10参考答案 一.选择题 1.B 2.C 3.B 4.B 5.C 6.D7.B 8.D 9.C 10.B 11.A 12.B 二.填空题1.x ≤x ≠-3,x ≠02.a ≥03.-3≤x ≤04. -55 (n+1) 1n+25.-2b -ab6.2x7.18.(x+ 3 )(x+ 2 )(x - 2 ) 9.2927 10.2 11.3a b12.-4三.盘算与化简 1. -1 2. 6 6 -53.6- 24.412 a 2a5.-10mn6. (1)当a ≠ b 时,原式=12a 或 b2b (2)当a= b 时,原式=a - ba 2-b7.18.(x+y)xy xy四.化简求值1.-11+12 2 +16 62.2 3 33.3五.±2 3。
二次根式练习题及答案
二次根式练习题及答案一、选择题1. 计算下列二次根式的结果:A. √16 = 4B. √25 = 5C. √36 = 6D. √49 = 7正确答案:A2. 以下哪个二次根式是同类二次根式?A. √2 和3√2B. √3 和√12C. √5 和2√5D. √7 和√49正确答案:B3. 计算下列二次根式的加法:√5 + √3 =A. √8B. √15C. √18D. 无法计算正确答案:D二、填空题4. 将下列二次根式化简:√121 = ____答案:115. 合并同类二次根式:3√2 + √2 = ____答案:4√26. 计算二次根式的除法:(√6 / √3) = ____答案:√2三、计算题7. 计算下列表达式的值:(√8 + √18) / √2解:首先化简根式,√8 = 2√2,√18 = 3√2,代入原式得:(2√2 + 3√2) / √2 = 5√2/ √2 = 58. 解二次根式方程:x√2 = √3解:将方程两边同时除以√2,得:x = √(3/2) = √6 / 2四、应用题9. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
解:根据勾股定理,斜边长度为:c = √(3² + 4²) = √(9 + 16) = √25 = 510. 一个正方形的面积为16平方厘米,求其边长。
解:设边长为a,则a² = 16,所以a = √16 = 4厘米。
五、证明题11. 证明√2是一个无理数。
证明:假设√2是有理数,即存在两个互质整数m和n,使得√2= m/n。
根据有理数的性质,可以设m和n的最大公约数为1。
将等式两边平方,得到2n² = m²,从而m²是偶数,所以m也是偶数,设m = 2k。
代入原等式,得到2n² = (2k)²,即n² = 2k²,说明n也是偶数,这与m和n互质矛盾。
专题02 二次根式的运算(专题强化-提高)解析版
专题02 二次根式的运算(专题强化-提高)一、单选题(共40分)1.(本题4分)(2020·南通市八一中学八年级月考)下列计算正确的是( )A 2=-B .257a a a +=C .()5210a a =D .=【答案】C 【分析】直接利用二次根式的性质化简以及结合合并同类项法则和幂的乘方运算法则化简求出答案; 【详解】A 2= ,故此选项错误;B 、2525a a a a +=+,故此选项错误;C 、()5210aa =,故此选项正确;D 、5=60⨯,故此选项错误; 故选:C . 【点睛】本题主要考查了二次根式的性质以及结合合并同类项法则和幂的乘方运算法则,正确化简各式是解题的关键;2.(本题4分)(2020·四川成都市·北大附中成都为明学校八年级期中)估计 ) A .在2~3之间 B .在3~4之间 C .在4~5之间 D .在5~6之间【答案】C 【分析】先根据二次根式的乘法法则可知再由16<24<25,利用算术平方根的性质可得45,可得结果. 【详解】解:∵16<24<25,∴4<5,即4<5,故选:C . 【点睛】本题主要考查了估算无理数的大小,熟练掌握算术平方根的性质及二次根式的乘法法则是解答此题的关键. 3.(本题4分)(2020·黑龙江齐齐哈尔市·八年级期末)下列计算正确的是( )A =B =C 6=-D 1=【答案】B 【分析】根据二次根式加减运算和二次根式的性质逐项排除即可. 【详解】A 选项错误;===B 选项正确;321=-=,所以C 选项错误;D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.4.(本题4分)(2020·江苏镇江市·八年级期末)下列运算正确的是( )A =B .(28-= C 12= D 1=【答案】B 【分析】根据二次根式的性质及运算法则依次计算各项后即可解答. 【详解】选项A +A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C124==,选项C错误;选项D1=,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.5.(本题4分)(2020·上海浦东新区·八年级月考)下列各式中,计算正确的是()A=B=C=D xy=【答案】C【分析】根据二次根式的运算法则逐一计算即可完成求解.【详解】不是同类二次根式,不能计算,故该选项计算错误,不符合题意,不是同类二次根式,不能计算,故该选项计算错误,不符合题意,===故选:C.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.6.(本题4分)(2020·全国八年级课时练习)已知,的值为()A.B.C.4 D.±【答案】B【解析】把x= +1,y= 1==.7.(本题4分)(2020·浙江杭州市·八年级其他模拟)下列根式是最简二次根式的是( )A B C D 【答案】B 【分析】利用最简二次根式定义判断即可. 【详解】A =BC 2=,不是最简二次根式,该选项不符合题意;D =,不是最简二次根式,该选项不符合题意; 故选:B . 【点睛】本题考查了最简二次根式.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.(本题4分)(2020·贵州毕节市·a 的值是( ) A .52-B .-1C .1D .2【答案】D 【分析】根据最简二次根式与同类二次根式的定义列方程组求解. 【详解】解:= 根据题意,得:723a -=, 解得:2a =;【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.9.(本题4分)(2020·的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间【答案】B【分析】首先把二次根式的化简计算,然后估算无理数的大小即可解决问题.【详解】=∵2 2.5<<,∴45<<,∴738<+<,的结果在7至8之间,故选:B.【点睛】本题考查了无理数的估算,二次根式的混合运算,解题的关键是掌握运算法则进行计算.10.(本题4分)(2020·山东济南市·八年级月考)已知a=,b=,c=,则下列大小关系正确的是( )A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A【分析】将a,b,c变形后,根据分母大的反而小比较大小即可.解:∵a ==,b ==,c ==,>>,∴a b c >>. 故选:A. 【点睛】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键.二、填空题(共20分)11.(本题5分)(2020·四川雅安市·雅安中学八年级期中),><或=填空) 【答案】< 【分析】先把两个式子分母有理化,再比较化简后的结果的大小,从而得到原式的大小关系. 【详解】65===-76===->>>.故答案是:<. 【点睛】本题考查二次根式的化简和大小比较,解题的关键是掌握二次根式的化简方法和比较大小的方法.12.(本题5分)(2020·运城市景胜中学八年级期中)已知==a b ,则二次根式________.【答案】11 【分析】先把a ,b 的值通过分母有理化化简,在根号下的立方和展开代入计算; 【详解】∵842-===a 4==b∴()()3322367367+-=+-+-a b a b a ab b,(((((22444444367⎡⎤=-++--+-++-⎢⎥⎣⎦,()8161516151615367⎡=⨯+---+++-⎣,()8621367488367121=⨯--=-=,11=. 故答案是11. 【点睛】本题主要考查了分母有理化和二次根式的性质与化简,准确计算是解题的关键.13.(本题5分)(2020·南通市八一中学八年级月考)已知a 、b 为有理数,m 、n 分别表示5-分和小数部分,且21amn bn +=,则3a b +=_________. 【答案】4 【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52-=3-,把m=2,n=37-代入21amn bn += ∴ ()()2237371a b -+-=,化简得:()()6167261a b a b +-+= , ∴ 6161a b +=且260a b +=, 解得: 1.5a =,0.5b =- ∴33 1.50.54a b +=⨯-=,故答案为:4. 【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;14.(本题5分)(2020·浙江金华市·八年级期末)对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:431232753)2=※________. 【答案】132-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可. 【详解】 解:43)@127543)232※ =243()12753)32 =243(1212)(53)323- 21)1863 =4332- =132-故答案为:132-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.三、解答题(共90分)15.(本题8分)(2020·【答案】2 【分析】先利用分母有理化、二次根式乘法以及二次根式的性质化简,然后利用二次根式的加减运算法则计算即可. 【详解】++13--+=2. 【点睛】本题考查了二次根式的混合运算,灵活运用分母有理化、二次根式乘法以及二次根式的性质成为解答本题的关键.16.(本题8分)(2020·陕西咸阳市·八年级期末)计算:21-.【答案】1. 【分析】按照二次根式性质,立方根的定义,绝对值的意义,化简即可. 【详解】解:原式12412=-⨯=1. 【点睛】本题考查了二次根式的性质,立方根的定义,绝对值的化简,熟记性质是解题的关键.17.(本题8分)(2020·陕西咸阳市·八年级期末)已知;a =,b = (1)ab ;(2)223a ab b -+; 【答案】(1)2;(2)10. 【分析】(1)根据二次根式的乘法法则求出ab 即可;(2)根据二次根式的减法法则求出-a b ,根据二次根式的乘法法则求出ab ,把原式化简,把a b ab -、代入计算即可. 【详解】解:5a =+b =532ab ∴==-=,a b -==∴ (1)ab =2(2)()(22223210a ab b a b ab -+=--=-=.【点睛】本题是一道求代数式值的问题,考查了的是二次根式的减法和乘法和整式的完全平方公式,掌握二次根式的减法法则、乘法法则是解题的关键.18.(本题8分)(2020·福建省泉州实验中学八年级月考)已知1x =,x 的整数部分为a ,小数部分为b ,求ab的值.【分析】由2<31+的整数部分与小数部分,即,a b 的值,再代入ab进行分母有理化,从而可得答案. 【详解】解:2<3,3∴<4,x 的整数部分为a ,小数部分为b ,3a ∴=,132b =-=,)32322.74ab∴====-【点睛】本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.19.(本题10分)(2020·山东济南市·八年级期中)[阅读材料]把分母中的根号化去,使分母转化为有理数的过过程,叫做分母有理化.通常把分子、分母同时乘以同一个不等于0的数,以达到化去分母中根号的目的..=.[理解应用](1(2)若a3a;(3.【答案】(1(2)+3;(3【分析】(1(2)表示出a的值,再代入计算即可;(3)将每一个式子都进行分母有理化,再根据规律得出答案.【详解】(1=22⨯;(2)∵a的小数部分,∴a ﹣1,∴3a =+3; (3=122+=120192-+-【点睛】本题考查二次根式的化简,无理数的估算,以及数字的变化规律等知识,掌握分母有理化的方法是解决问题的关键.20.(本题10分)(2020·江苏南通市·南通第一初中八年级月考)(1)先化简,再求值:22121124m m m m ++⎛⎫-÷ ⎪+-⎝⎭.其中22m -≤≤且m 为整数,请你从中选取一个喜欢的数代入求值.(2)已知1x =,1y =,求下列各式的值:①22x xy y -+ ②2y x x y ++ 【答案】(1)21m m -+,将1m =代入,原式12=-;(2)①6;②6. 【分析】 (1)根据分式混合运算法则先化简,然后选择m 的值时要注意使分式或运算有意义;(2)利用二次根式乘法和二次根式加减法计算xy 、x+y 、x-y 的值,再利用完全平方公式变形求解即可.【详解】(1)原式=()()()222121m m m m m +-+⨯++=21m m -+, ∵其中22m -≤≤且m 为整数,∴不能选择21,±-,则在0,1中选择即可,将1m =代入原式得:121112-=-+, ∴当1m =时,原式12=-;(2)由题意可得:)11312xy ==-=,x y +=2x y -=-,①()()222222426x y x x y y y x =-+=-+=++=-;②()(22222262x y y x x y xy x y xy xy +++++====.【点睛】本题考查分式的化简求值,二次根式的运算以及完全平方公式的变形求解,注意在分式代入求值时要使得分式有意义,灵活对完全平方公式变形是解题关键.21.(本题12分)(2020·成都西川中学八年级月考)计算:(1(2)求3y =的最大值.【答案】(1<-(23【分析】(1的大小即可.(21,当1x =,故y 的3.【详解】(1)15141514-=+, 14131413-=+, 而1513>,15141413∴+>+,15141413∴-<-.(2)10x +≥,10x -≥,1x ∴≥,113y x x =+--+311x x =+++-, 当1x =时,分母11x x ++-有最小值2,311y x x ∴=+++-有最大值是23+. 【点睛】本题主要考查二次根式有意义的条件以及分子有理化在二次根式中的应用,此类问题掌握分子、分母有理化的方法是解题关键.22.(本题12分)(2020·长沙市中雅培粹学校八年级月考)人教版初中数学教科书八年级下册第16页阅读与思考给我们介绍了“海伦—秦九韶公式”,它是利用三角形的三条边的边长直接求三角形面积的公式:即如果一个三角形的三边长分别为a 、b 、c ,记2a b c p ++=,那么这个三角形的面积为()()()S p p a p b p c =--- ,如图,在ABC ∆中,8a =,4b =,6c =.(1)求ABC ∆的面积;(2)设AB 边上的高为1h ,AC 边上的高为2h ,BC 边上的高为3h ,求123h h h ++的值.【答案】(1) ;(2). 【分析】 (1)直接将三角形的三边代入计算,再根据根式的性质进行化简计算;(2)通过三角形面积公式以及第一问求出来的结果进行计算,可分别得出三角形三边的高,最后求和即可得出最终结果.【详解】解:(1) S =2a b c p ++=,在ABC ∆中,8a =,4b =,6c =, 代入可得84692p ++==,S ∴===;(2) 设AB 边上的高为1h ,AC 边上的高为2h ,BC 边上的高为3h ,则123111222ABC S ch bh ah ====,可得到11162h h ⨯==221422h h ⨯==,331824h h ⨯==,1234h h h ∴++=. 【点睛】本题主要考查二次根式的运算,需要有较强的运算求解能力,熟练掌握二次根式的运算法则是解决本题的关键.23.(本题14分)(2020·三明市第四中学八年级月考)细心观察图形,认真分析各式,然后回答问题:(1)推算出OA 10的长和S 10的值.(2)直接用含n (为正整数)的式子表示OA n 的长和S n 的值. (3)求222212310S S S S +++⋯+的值.【答案】(1)OA 1010;S 1010;(2)OA n n ;S n n ;(3)554【分析】(1)根据表格中式子规律即可求出结论;(2)根据表格中式子规律即可求出结论;(3)根据(2)的公式代入求值即可.【详解】解:由题意可得:OA 102=21011-+=10,S 10=102∴OA 1010;(2)由题意可得:OA n 2=(211n -+=n ,S n n∴OA n n ;(3)222212310S S S S +++⋯+ =222212310⎛++++ ⎝⎭⎝⎭⎝⎭⎝⎭=123104444++++=()1123104++++=554【点睛】此题考查的是探索规律题,根据已知等式,找出运算规律是解题关键.。
二次根式练习题及答案(2)(可编辑修改word版)
若代数式V 乔(X-1)。
在实数范用内有意义,则X 的取值范用为.四-解答题(共8小题)10.若禹 b 为实数,a={2b- 14+\/7-bD 抑G-b)2・二次根式练习题 A. 要使式子字有意义,则X 的取值范囤是( x>l B. x> - 1 C. x>l D. x> - 12. A. 式子/丄圧实数范用内有意义,则S 的取值范用是( V X - 1 x<l B. xWl C. x>l D. s213. 下列结论正确的是( A ・ 3a'b - a'b=2B .单项式-x=的系数是-1 C .使式子\忌有意义的X 的取值范用是x> - 2 D . 4. A. 5. 色2-1 若分1 _的值等于 a+1要使式子』应有意义,则a 的取值范囤是( )a aHO B. a> • 2 且 aT^O C ・ a> ・ 2 或 aHO D, aM - 2 且 aHO 使返豆有意义,则s 的取值范用是—• X 0,则 a=+l 6.若代数仔有意义,则X 的取值范帥 7. 已知屈二£是正整数,则实数n 的最大值为.9. 若实数a 满足a ・8 +Ja- 10=a ,则a=11.已知也=返垒陌1_3,求伽+ “严的值?n +412.已知小y为等腰三角形的两条边长,且X, y满足y = 二雄二r + 4,求此三角形的周长13.己知a、b、c满足J2d+b - 4小-c+l|=JL^+需丸.求a+b+c的平方根.14・若a、b为实数,且沪\/14 ■ Zb+Jb ■ 7+3・求寸(自• b) 2•15・已知yVJx■旷02・Z化简ly・3l - Jy2 - 8y+16・16. 已知a 、b 满足等式br/2a- 6+的-3d - 9・求出a. b 的值分别是多少? 试求五亦-傅十需溯值•已知实数a 满足{(2008- d) 2009",求" 2008=的值是多少?(1) (2)参考答素与试8解析 J Y — 11・(2016•划门)要使式- —j 恿义,则X 的取值范隔是(2A. x>l B ・ x> - 1 C. xMl D ・ xM - 1J V — 1 【解答】解:要使式子P c 有意义,2 故乳・1MS 解得:xN 】・ 则X 的取值范困是:xMl.故选:C. 2.(缈6•贵港)式勺E 做数范碉内《义,则•,的取值范碉是C A. x<l B ・ xWl C. x>l D. xNl【解答】解:依題总得:X-1>O. 解得x>l ・ 故选:C. 3. (2016-杭州校级自主招生)下列结论正确的是( A. 3a-b - a-b=2 in 项式-x :的系数是-1使式-"h+2右恿义的X 的取值范用是x> - 2 B. C, D ・ 界-1若分式 -------- 的值等于0,则沪±1a+1【解答】解:3a=b - a^b=2a=b, A 错熙爪项式的系数是• 1. B 正确:使式fVx+2竹意义的X 的取值范用是xM-2. C 错決界-1若分式 -------- 的值等于0.则沪1,错误,a+1故选:B. 4. <2016•博野县校级自主招生)要使式子』应有恿义・则a 的取值范ra 是( A ・ aHO B. a> - 2 且 aHO C ・ a> -2 或 aHO D ・ aM ・ 2 且 a 工0 【解答】解:由題意得・計2M0. aHO.解斜• aM ・2且aHO.故选:D. 5."州校级自主招生)沮警有意义,则•,的取值范収亠寻9. 【解答】解:根据题意得,3X-2M0且xHO.9 解斜x>-三且xHO ・ 3 故答案为.xM-gL xHO.yA/ V — 26.(沁•永«模拟)若代数式匕有意义,则•,的取值范册.【解答】解2根据题御X-2MS 且X-3H0. 解得• xN2且x#3:故答案是:xN2且xH3, 7.(2016春•固始县期末)已知(12- n是正整数・则实数n 的报大值为_ H・【解答】解:由题总可知12-n是一个完全平方数,且不为0.嚴小为1-所以n的最大值为12-1=11.8. (2016-大悟县_模)若代数式”x+3牛(x-l)°在实数范困内有意义,则X的取值范隔为xN・3且xH【解答】解:由題总得:寸3MS且x・lH0・解得:xM・3且xHl.故答案为.xM- 3且xHl.9・(2009 -兴化市模拟)若实数a满足la-8 认 -]0% 则沪_Ll【解答】解,根据题意得,a-105^0,解得a^lO.•••原等式可化为S a・8+&- 10%叭/d-10冷Aa- 10=61,解御:a=74.10. <2015 #•绵阳期中〉若 a. b 为实数,叫2b - 14+"7 - 2 求J(a- b) 2.【解答】解:由題总得・2b - 115= 0且7-b>0. 解得bN7且bW7, a=3i 所以• J(a-b)&J(3-7)S・L r _ 2di 7求(mF宀的值?H. <2016-^顺县校级篠拟〉已知n+4【解答】解.由題意得.16・£MO. n=- 16^0.十4H0. 则n'=16. nH - 4.解得■ n=*L则m= - 3,(m+n)浹=】• 12. (2016春•微ft县校级〃考〉已知M.y为等腰三角形的两条边长,且斗y满足尸{齐左(2« - 6別・求此三允形的周长.【解答】解:由題意得・3-x^O. 2K・6M0・解斜• x=3.则 y=4i半腰为3•底边为4时,-角形的周长为:3+3+4=10, 腰为4•底边为3时,三角形的周长为:3+4+4=11, 答:此三角形的周长为10或H ・13. (2015 春•武昌区期中)已知 a 、b 、c 满足V2d+b -4+ a-crln/b-求屮br 的 平方根.【解答】解:由題总b • cM 0且c - bMO. 所以• bNc 且cNb,所以• b=c.所以.等式可变为"2册 -4Ta ・bT =°,解 <a=tlb=2 所以•c=2.所以.a+b+c 的平方根是±>/^・ 14. (2015 R-宜兴市校级期中)若a 、b 为实数,且知期-2b+{b-7+3,求寸(a - b ) 2.【解答】解:根据题氫得:”4 我Aolb-7>0解斜:b=7 •则 a=3.则原式=a-b| = |3-7|=4.15. (2015 #•荣县校级JJ 考)已知y v#x-卩/2 - Z 化简1厂3| -£2_ 8y+16・【解答】解:根据题意得:, 2^匕 解得:E12-x>0则yV3・则原式=3 - y - y - 4|=3 - y - <4-y ) = -2y-l.16.(2014春•富顺县校级期末)已知a 、b 满足等式b 二y2a • 6十“9 - 33 -9(1)求出a 、b 的值分别是多少?⑵试求A ZT 亦-的忆【解答】解:(1)由题总:得.2a-6^0且9・3aM0, 解得&S 且aW3・所以,a=3> b=・ 9;由非负数的性质斜.2a+b-4=0, a- b+l=O- d(-9)2+ 引3%(-9)・=6-9-3.=-6・17. (2014秋•宝兴县校级期末)已知实数a满足+乜8・2009% 求a・2008’的值是多少?【解答】解:72:次根式有恿义.Aa- 20095=0.即a5= 2009,•••2008・aW-lV0・•"・2008勺0- 2009"・解得寸Q-2009=2°°&等式两边平方,整理a -2008^2009.。
《二次根式》提高练习题(含答案)
《二次根式》提高训练题(一)判断题:1.ab 2)2(-=-2ab . ( ) 2.3-2的倒数是3+2. ( ) 3.2)1(-x =2)1(-x . ( ) 4.ab 、31b a 3、bax 2-是同类二次根式. ( ) 5.x 8,31,29x +都不是最简二次根式. ( ). (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a =___________. 8.a -12-a 的有理化因式是__________. 9.当1<x <4时,|x -4|+122+-x x =__________. 10.方程2(x -1)=x +1的解是____________. 11.比较大小:-721______-341.12.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=_________.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………………………………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=……………………………( )(A )2x (B )2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于……………………………( )(A )x 2 (B )-x2(C )-2x (D )2x19.化简aa 3-(a <0)得……………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)在实数范围内因式分解:21.9x 2-5y 2; 22.4x 4-4x 2+1.(五)计算题:(每小题6分,共24分)23.(235+-)(235--); 24.1145--7114--732+;25.20102009)23()23(+∙-; 26.(a 2m n -m abmn +m nn m )÷a 2b 2mn (六)求值:27.已知a -1a求a +1a 的值。
二次根式计算及化简练习题.doc
二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。
m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。
4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。
6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。
a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。
2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。
x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。
x 3yx 291的值。
14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。
二次根式练习题及答案
二次根式练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二次根式练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为二次根式练习题及答案的全部内容。
二次根式练习题及答案(一)一、选择题(每小题2分,共24分)1.(2012·武汉中考)若在实数范围内有意义,则的取值范围是()A。
B. C. D。
2.在下列二次根式中,的取值范围是≥的是()A. B. C. D。
3.如果,那么()A。
< B。
≤ C.> D。
≥4。
下列二次根式,不能与合并的是()A. B。
C. D.5. 如果最简二次根式与能够合并,那么的值为()A.2B.3C.4 D。
56。
(2011·四川凉山中考)已知,则的值为()A. B. C。
D.7。
下列各式计算正确的是()A. B.C. D.8.等式成立的条件是( )A. B。
C. D。
9。
下列运算正确的是()A。
B。
C。
D.10.已知是整数,则正整数的最小值是()A。
4B。
5 C。
6D。
211。
(2012·山东潍坊中考)如果代数式有意义,那么的取值范围是()A. B. C。
D。
12.(2012·湖南永州中考)下列说法正确的是()A。
B。
C。
不等式的解集为D.当时,反比例函数的函数值随自变量取值的增大而减小二、填空题(每小题3分,共18分)13。
化简:;=_________.14.比较大小:3;______。
15.(1)(2012·吉林中考)计算________;(2)(2012·山东临沂中考)计算.16.已知为两个连续的整数,且,则.17.若实数满足,则的值为.18.(2011·四川凉山中考)已知为有理数,分别表示的整数部分和小数部分,且,则。
完整版二次根式培优练习题
第1页(共4页)二次根式培优练习题一•选择题(共14小题)1 •使代数式有意义的自变量x 的取值范围是()x-4A . x > 3 B. x >3 且 X M 4 C. x > 3 且 X M 4 D . x >32•若.■ .... .=3-a ,则a 与3的大小关系是( )A . a v 3 B. a W 3C . a >3D . a 》33.如果等式(x+1) °=1和寸⑶€=2- 3x 同时成立,那么需要的条件是()A . X M - 1 B. x v 二且 X M - 1 C. x W 二或 X M 1D . x <3 3 4.若ab v 0,则代数式 仁呪可化简为( )A . a . • B. a* C .- a. 1 ‘ D .- a 1 ‘5.已知xy v 0,则—•化简后为()A .丁 B .6 .如果实数a 、b 满足需%3=-曲麻,那么点(a , b ) A .第一象限B .第二象限C.第二象限或坐标轴上7.化简二次根式;一,结果正确的是( )A . ■8.若 a+ 「=0 成立,贝U a 的取值范围是( )A . a >0 B . a >0 C. a w 0 D . a v 09.如果ab >0,a+b v 0,那么下面各式:①命书,②濡=1,③*‘丸十濡=-b ,其 中正确的是()A .①② B •②③C .①③D .①②③10.下列各式中正确的是( )A .寸(_¥)2二但 的=± 3 C .(-占)2=4 D . 迈-五=2 11.在二次根式 '中与小是同类二次根式的有()X M - 1-一 丁 C .D .在( )D .第四象限或坐标轴上 B. - :. C. 、D .■'A. 2个B. 3个C. 4个D. 5个12. 若.,「「是一个实数,则满足这个条件的a的值有()A . 0个B. 1个C. 3个D.无数个13 .当a v0 时,化简一,一的结果是()A . —■. B . 一•、 C.亍 .D .—.14 .下列计算正确的是()A . : 二7(3)7(3)(1) 观察上面的解题过程,请直接写出式子 (2) 观察上面的解题过程,请直接写出式子利用上面所提供的解法,请求血十1十忑+忑+五“用十忑换+••+ —I — 7100 W99 的值.B•也丿以二如'b C + 5生田"5=13D4/252 -24Mt25+24) (25-24)-V49-7二•填空题(共13小题)15.二次根式讥十与.二-:••的和是一个二次根式,贝U 正整数 a 的最小值为 _________ ;其和 为^16 •已知 a 、b 满足7(2-a ) 2=&+3?且{二巧+1 =a - b+1,则 ab 的值为 ______ . 17.已知 | a-2007|+ . .- __________ i :-=a ,则 a - 20072 的值是 .18. ________________________________________________________________________ 如果・」泊勺值是一个整数,且是大于1的数,那么满足条件的最小的整数 a= _____________ . 19•已知 mn=5, m :+n J= ________ . 20.已知 av0,那么 | .: - 2a| 可化简为 _____ .21 .计算::_的结果为 _________________ .V322 .若最简二次根式2血尹1与-莎药是同类二次根式,则x ______________ .23 .若厂-f.,则 x= ________ ;若 x 2= (- 3) 2,则 x= _____ ;若(x - 1) 2=16,x= ______ . 24 .化简a的最后结果为 _______ .25 .观察分析,探求出规律,然后填空: 二,2, ■■,2. ■:, I , _____ ,…, _______ (第 n 个数).26 .把根号外的因式移到根号内:• I - J =-“*:'[-;p 27 .若a 是.丨的小数部分,则a (a+6) = ______ . 三.解答题(共7小题) 28 .阅读下列解题过程:鮎爲=〔暑誥黑巳=勝爲 ?砸卫卫-2低十界_ (晶+妬〕(讥i )2-(亦)2请回答下列问题:29•—个三角形的三边长分别为 厝、知莎、*桧(1) 求它的周长(要求结果化简);(2) 请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.30.如图,实数a、b在数轴上的位置,化简:31 •先阅读下列的解答过程,然后作答: 形如.厂丄■,的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样(.J 2+ ( b) 2=m,,那么便有Vb) + Vb (a> b)例如:化简占+4翻解:首先把.I I :;化为J • : . I :,这里m=7,n=12;由于4+3=7, 4X 3=12,即(.)2+ (■;)2=7, ? = ■:,••• .II:-2+.:';由上述例题的方法化简:(1) 1 ;• 一「;(2) .. H;(3 )『'-.;.32. 已知x=2-二,求代数式(7+4. ;) x2+ (2+ :;) x+ -;的值.33. 实数a、b在数轴上的位置如图所示,请化简:| a| -:-::.请你猜想:(3) 请你将猜想到的规律用含有自然数n (n》1)的代数式表达出来第4页(共4页)参考答案一•选择题(共14小题)1. C;2. B;3. D;4. C;5. B;6. C;7. D;8. C;9. B; 10. A; 11. B; 12. B; 13. A;14. D;二.填空题(共13小题)15. 6;^^E;16.±j-; 17. 2008; 18. 1; 19.土述;20.- 3a; 21.丄;22. 0; 23.±5;± 3; 5 或-3; 24.- 2^23; 25. 2^5;炼;26. 27. 2;三.解答题(共7小题)28. 一二_二-1 ; 29.; 30. ; 31. ; 32.; 33. ; 34.77第3页(共4页)。
初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
二次根式练习题及答案
二次根式练习题一•选择题(共4小题)/ X -11 •要使式子… 有意义,则X的取值范围是()2A • x> 1B • x> - 1 C. X≥1 D • x≥- 12. ------------------- 式子在实数范围内有意义,则X的取值范围是()√χ-lA • X V 1B • x≤ 1C • x> 1D . X ≥ 13•下列结论正确的是()2 2A • 3a b - a b=22B •单项式-X的系数是-1C•使式子.,:丨Y有意义的X的取值范围是x>- 2D •若分式——的值等于0,则a=± 1a+14•要使式子」二有意义,则a的取值范围是()aA • a≠ 0B • a>- 2 且a≠ 0C • a>- 2 或a≠ 0D . a≥- 2 且a≠ 0二.选择题(共5小题)5. 使」1二有意义,则X的取值范围是 _ .X6. ___________________________________________ 若代数式.-'有意义,则X的取值范围为_______________________________________ .X - 37. ___________________________________________ 已知仁-二是正整数,则实数n的最大值为____________________________________ .&若代数式• ’:1^∙+ (X - 1)°在实数范围内有意义,则X的取值范围为9. _______________________________________ 若实数a满足| a- 8∣+寸厂一∣∣=a,则a= _____________________________ .三•解答题(共8小题)10•若a, b为实数,a= _ - :.‘+3,求,I「I '■'11 •已知卄冇…n +4-3 ,求(m n)2016的值?12•已知X, y为等腰三角形的两条边长,且X , y满足y h)3-x∙.2x-6 • 4 ,求此三角形的周长13. 已知a、b、C满足二二+|a- c+1∣,求a+b+c 的平方根.14•若a、b为实数,且-■■- _--_:,求乂厂.'一L'15. 已知yv —^++3,化简1y- 3|—忙E-I-1 ■:16. 已知a、b满足等式■ ■ ∙∣J . (1)求出a、b的值分别是多少?(2)试求√⅛- √√' ≡ L丁的值.17. 已知实数a满足 .. :+.1- m=a,求a- 20082的值是多少?参考答案与试题解析一•选择题(共4小题)∖/ X -11. (2016?荆门)要使式子…有意义,则X的取值范围是()2A . x> 1B . x> - 1 C. X≥1 D . x≥- 1【解答】解:要使式子丄一有意义,2故X - 1≥0,解得:X ≥1.则X的取值范围是:X ≥1.故选:C.2. -------------------------------------- (2016?贵港)式子在实数范围内有意义,则X的取值范围是(---- )√χ - 1A . X V 1B . X≤ 1C . X> 1D . X ≥ 1【解答】解:依题意得:X- 1 > 0,解得X > 1 .故选:C .3. (2016?杭州校级自主招生)下列结论正确的是()2 2A . 3a b - a b=2B .单项式-X2的系数是-1C.使式子.,:I二有意义的X的取值范围是x>- 22-1D .若分式一的值等于0,则a=± 1a÷l2 2 2【解答】解:3a b - a b=2a b, A错误;2单项式-X的系数是-1, B正确;使式子吋\;】有意义的X的取值范围是X ≥- 2, C错误;2-1若分式的值等于0 ,则a=1 ,错误,a+1故选:B .4. (2016?博野县校级自主招生)要使式子a的取值范围是(有意义,则二 .选择题(共5小题)5. (2017?德州校级自主招生)使有意义,则X的取值范围是2X ≥- 日x≠ 0—A . a≠ 0B . a>- 2 且a≠ 0C . a>- 2 或a≠ 0D . a≥- 2 且a≠ 0【解答】解:由题意得,a+2 ≥0, a≠ 0,解得,a ≥- 2且a≠ 0,故选:D .【解答】解:根据题意得,3x+2≥0且X≠ 0,解得X ≥ -三且X ≠ 0.3故答案为:X ≥-丄且x≠ 0.3√κ- 26. (2016?永泰县模拟)若代数式——有意义,则X的取值范围为X ≥2且x≠ 3 .X ^ 3【解答】解:根据题意,得X- 2≥0,且X - 3≠ 0,解得,X ≥2且X≠ 3;故答案是:X≥2且x≠ 3.7. (2016春?固始县期末)已知匸—是正整数,则实数n的最大值为11 .【解答】解:由题意可知12- n是一个完全平方数,且不为0,最小为1,所以n的最大值为12-仁11.&(2016?大悟县二模)若代数式.Th;+ (X - 1)0在实数范围内有意义,则X的取值范围为x≥- 3且x≠ 1 .【解答】解:由题意得:x+3≥0,且X - 1 ≠ 0,解得:X ≥- 3且X ≠ 1.故答案为:X≥- 3且x≠ 1.9. (2009?兴化市模拟)若实数a满足Ia-8∣+ _ ∙∣ =a ,则a= 74 .【解答】解:根据题意得:a- 10≥0,解得a≥10,•••原等式可化为:a- 8+ ——=a,即一 (8)• a- 10=64 ,解得:a=74.四.解答题(共8小题)10. (2015 春?绵阳期中)若a, b 为实数,a=二- - +3,求…Xe【解答】解:由题意得,2b- 14≥0且7 - b≥0,解得b≥7且b≤7,a=3,所以,」=_:•、:=.:;- 「=4 .第4页(共6页)【解答】解:由题意得, 则 n 2=i6, n ≠ - 4, 解得,n=4, 贝U m= - 3,12. ( 2016春?微山县校级月考)已知 X , y 为等腰三角形的两条边长,且 X , y 满足y=」:-;- 「■+4,求此三角形的周长.【解答】解:由题意得,3 - X ≥ 0, 2x - 6≥ 0, 解得,x=3, 则 y=4,当腰为3 ,底边为4时,三角形的周长为:3+3+4=10 , 当腰为4,底边为3时,三角形的周长为:3+4+4=11, 答:此三角形的周长为 10或11.13. (2015 春?武昌区期中)已知 a 、b 、C 满足 J*-心一 ^∣+∣a - c+1|=.:I 一 .::+ ^,求 a+b+c的平方根.【解答】解:由题意得,b - c ≥0且C - b ≥0, 所以,b ≥ C 且c ≥ b , 所以,b=c , 所以,等式可变为'-α-r ∙.- - ,:+| a -b+1| =0,由非负数的性质得,解得(E ,Ib 二 2所以,c=2,a+b+c=1+2+2=5,_ 所以,a+b+c 的平方根是±7.14. ( 2015秋?宜兴市校级期中)若 a 、b 为实数,且I lL- I -“-[:,求」I I l -解得:b=7, 则 a=3. 则原式=Ia -b ∣=∣3-7|=4 .15. ( 2015春?荣县校级月考)已知 yv . —J+窪-龙+3 ,化简|y - 3| -V -则 y V 3,贝U 原式=3 - y - | y - 4|=3 - y -( 4 - y ) = - 2y - 1.2 216- n ≥0, n - 16≥0, n+4≠ 0,(m+n )2016=1.Ξa+b - 4=0 a- b+l=0【解答】解:根据题意得:'14- Ξb>O ∖b-7>0【解答】解:根据题意得:16. (2014春?富顺县校级期末)已知a、b满足等式•;— - ^—二'.(1)求出a、b的值分别是多少?(2)试求V- _ S L丁的值.【解答】解:(1)由题意得,2a- 6≥0且9 - 3a≥0,解得a≥3且a≤3,所以,a=3,b= - 9;(2)・一;-r +:〒=JJ」-.'1 -+-;丄,=6 - 9 - 3, =-6.17. (2014秋?宝兴县校级期末)已知实数a满足€「:.. X X=a,求a- 2008?的值是多少?【解答】解:•••二次根式有意义,∙∙∙ a- 2009≥0,即a≥2009,.∙. 2008 - a≤- 1 V 0,∙a- 2008Jr =a,解得--:-II- =2008 ,等式两边平方,整理得a- 20082=2009 .。
二次根式提高练习题(含答案)
一.计算题:1. (235+-)(235--);2. 1145--7114--732+;3.(a2mn-mab mn +mn nm )÷a 2b2mn ;4.(a +ba ab b +-)÷(b ab a ++aab b--ab b a +)(a ≠b ).二.求值:1.已知x =2323-+,y =2323+-,求32234232y x y x y x xyx ++-的值.2.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.三.解答题:1.计算(25+1)(211++321++431++…+100991+).2.若x ,y 为实数,且y =x 41-+14-x +21.求xy y x ++2-xyy x +-2的值. 计算题: 1、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(35-)2-2)2(=5-215+3-2=6-215.2、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.3、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a2mn-m ab mn+mnnm)·221b a nm=21bnm m n ⋅-mab 1nmmn ⋅+22b ma n nmn m ⋅ =21b-ab 1+221b a =2221b a ab a +-.4、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=ba ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=ba ba ++÷))((2222b a b a ab b a b ab b ab a a -++----=ba b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐. 求值: 1.、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232y x y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 2、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22ax +=22ax +(22ax +-x ),x 2-x22ax +=-x (22a x +-x ).【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+- =)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)11(2222ax x a x +--+-)11(22x x a x --++221a x +=x1.解答题: 1、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--)=(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.2、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21. 又∵xyy x ++2-xyy x +-2=2)(x y y x+-2)(xy y x - =|xy y x+|-|x yyx -|∵ x =41,y =21,∴ yx <xy .∴ 原式=xy y x +-yx xy +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。