2012高考数学二轮名师精编精析(17):概率与统计
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)
2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。
高三数学二轮复习建议——专题二:概率统计 PPT课件 图文
目目 录录
CCOONNTTEENNTTSS
1 历年高考分析 22 重点、热点分析 3 复习目标、方案专题 4 命题预测、优题展示
一 高考试题分析
1.1 2012——2017年高考考查内容分析
2 道 小 题
1 道 大 题
年份 题号
理科 考查 内容
题号
文科 考查 内容
2017 年
2016 年 2015 年 2014 年 2013 年 2012 年
T1 9
相关系数、统计、均值、方差、3 σ原则、概率的意义
T14 二项式定理
2016 年
T4 几何概型
T3 古典概型
从文科高考试题看,解答题一般以工农业生产和生活中的实 频数分布、频率与概率、事件的
频数分布、频率与概率、事件的
T19 独立性、互斥事件、分布列、概 T19 独立性、互斥事件、分布列、概
√√
√
古典概型
几何概型 率 随机模拟
√√√ √ √
随机变量间的函数关系
√
√
二 重点、热点分析
重点、热点、规律方法(一)二项式定理
例
1.(1)(2017▪全国卷Ⅰ理科▪T6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15
B.20
C.30
D.35
(2)(2016▪全国卷Ⅰ理科▪T14) (2x x )5 的展开式中,x3 的系数是
T1 8
分步乘法计数原理、组合
正态分布、对立事件
T3
函数、频率与概率、分布列、期 望、方差、概率的意义
T 18
数字特征及其意义 几何概型
相关系数、统计、均值、方差、3 σ原则、概率的意义
文科数学专题概率与统计(学案)高考二轮复习资料含答案
文科数学专题概率与统计(学案)高考二轮复习资料含答案1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算.4.与统计结合在大题中考查古典概型与几何概型.(1)在频率分布直方图中:频率①各小矩形的面积表示相应各组的频率,各小矩形的高=;②各小矩形面积之和等于1;③中位数组距左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,从总体中逐个抽取少在起始部分抽样时采按事先确定的规则在各用简单随机抽样总体中的个体数较多分层抽样时采用简单总体由差异明显的随机抽样或系统抽样几部分组成即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推).3.样本的数字特征(1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据).(2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差-1样本数据的平均数某=(某1+某2++某n).n1-2-2-22方差=[(某1-某)+(某2-某)++(某n-某)].n注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量某和y具有线性相关关系.(2)用最小二乘法求回归直线的方程^^^设线性回归方程为y=b某+a,则^b=-某-某^-^-a=y-b某ni=1nii=1--某i-某yi-y=--某iyi-n某yi=1nn22i-n某某2-i=1.--注意:回归直线一定经过样本的中心点(某,y),据此性质可以解决有关的计算问题.5.回归分析n某i-某yi-yi=1--r=n,叫做相关系数.某i-某2yi-y2i=1i=1-n-相关系数用来衡量变量某与y之间的线性相关程度;|r|≤1,且|r|越接近于1,相关程度越高,|r|越接近于0,相关程度越低.6.独立性检验假设有两个分类变量某和Y,它们的取值分别为{某1,某2}和{y1,y2},其样本频数列联表(称为2某2列联表)为某1某2总计2y1aca+c2y2bdb+d总计a+bc+da+b+c+da+b+c+dad-bc则K=,a+bc+da+cb+d若K>3.841,则有95%的把握说两个事件有关;若K>6.635,则有99%的把握说两个事件有关;若K<2.706,则没有充分理由认为两个事件有关.7.随机事件的概率随机事件的概率范围:0≤P(A)≤1;必然事件的概率为1,不可能事件的概率为0.8.古典概型①计算一次试验中基本事件的总数n;②求事件A包含的基本事件的个数m;③利用公式P(A)=计算.9.一般地,如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率的和,即P(A+B)=P(A)+P(B).-10.对立事件:在每一次试验中,相互对立的事件A和A不会同时发生,但一定有一个发生,因此有222mnP(A)=1-P(A).11.互斥事件与对立事件的关系-对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D内随机地取一点,记事件“该点落在其内部区域d内”为事件A,则事件A发生的概率P(A)=考点一几何概型例1.【2022课标1,】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是d的测度.D的测度141C.2A.【答案】Bπ8πD.4B.【变式探究】(2022·江苏卷)记函数f(某)=6+某-某的定义域为D.在区间[-4,5]上随机取一个数某,则某∈D的概率是________.5【答案】93--252【解析】由6+某-某≥0,解得-2≤某≤3,则D=[-2,3],则所求概率为=.5--49【变式探究】从区间[0,1]随机抽取2n个数某1,某2,,某n,y1,y2,,yn,构成n个数对(某1,y1),(某2,y2),,(某n,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4n2m2nB.mC.4mn2mD.n【答案】Cmπ4m4m【解析】由题意知,=,故π=,即圆周率π的近似值为.n4nn考点二古典概型例2.(2022·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.【答案】D3102511015【2022山东】从分别标有1,2,,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)5475(B)(C)(D)18999【答案】C【解析】标有1,2,,9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡112C5C45,选C.片上的数奇偶性不同的概率是989【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.51011B.C.D.1212121【变式探究】(2022·天津卷)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【答案】C【解析】从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共424种,所以所求概率P==.105故选C.考点三概率与其他知识的交汇例3、(2022·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数[10,15)2[15,20)16[20,25)36[25,30)25[30,35)7[35,40)44 5352515以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.【变式探究】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数收费比例第1次1第2次0.95第3次0.90第4次0.85第5次及以上0.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下表:消费次数频数第1次60第2次20第3次10第4次5第5次及以上5假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.40【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元).50+40第2次消费时,公司获得的利润为200某0.95-150=40(元),所以,公司获得的平均利润为=245(元)。
高考数学理二轮专题复习课件专题六概率与统计第二讲概率【精选】
专题六 概率与统计
强 化 训 练 2 (2013·成 都 市 诊 断 性 检 测 ) 已 知 集 合 {(x ,
2x+y-4≤0 y)|x+y≥0 }表示的平面区域为 Ω,若在区域 Ω 内任取一
x-y≥0
点 P(x,y),则点 P 的坐标满足不等式 x2+y2≤2 的概率为( A )
栏目 导引
专题六 概率与统计
【解】因玩具是均匀的,所以玩具各面朝下的可能性相等, 出现的可能情况有(1,1),(1,2),(1,3),(1,5),(2,1), (2,2),(2,3),(2,5),(3,1),(3,2),(3,3),(3,5), (5,1),(5,2),(5,3),(5,5)共 16 种. (1)事件“m 不小于 6”包含其中(1,5),(2,5),(3,5),(3, 3),(5,1),(5,2),(5,3),(5,5)共 8 个基本事件,所以 P(m≥6)=186=12.
3π A. 32
3π B. 16
π
π
C.32
D.16
栏目 导引
专题六 概率与统计
【解析】 作出不等式组
2x+y-4≤0 x+y≥0 表示的平面区域,如图三角形 x-y≥0
ABO,且有
A(43,
43),B(4,-4),所以 S△ABO=12×4 3 2×4 2=136,点 P 的坐
标满足不等式 x2+y2≤2 的面积 S 扇形=14×π ( 2)2=π2 ,
3.(2013·高考辽宁卷)现有6道题,其中4道甲类题,2道 乙类题,张同学从中任取2道题解答.试求: (1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.
栏目 导引
专题六 概率与统计
【解】(1)将 4 道甲类题依次编号为 1,2,3,4;2 道乙类 题依次编号为 5,6.任取 2 道题,基本事件为:{1,2},{1, 3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2, 6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共 15 个,而且这些基本事件的出现是等可能的.用 A 表示“都 是甲类题”这一事件,则 A 包含的基本事件有{1,2},{1, 3},{1,4},{2,3},{2,4},{3,4},共 6 个,所以 P(A) =165=25. (2)基本事件同(1),用 B 表示“不是同一类题”这一事件, 则 B 包含的基本事件有{1,5},{1,6},{2,5},{2,6}, {3,5},{3,6},{4,5},{4,6},共 8 个,所以 P(B)=185.
高考数学第二轮专题复习----概论统计专题
《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2003年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2003年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2003年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2004重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
专题五:概率与统计综合性题型分析及解题策略
专题五:概率与统计综合性题型分析及解题策略【命题趋向】概率与统计以其独特的研究对象和研究方法,在中学数学中是相对独立的,但是,概率与统计试题的背景与日常生活最贴近,联系最为紧密,不管是从内容上,还是从思想方法上,都体现着应用的观念与意识,在展现分类讨论、化归思想与同时,培养学生解决问题的能力.在高考的考查中,基本上都是1道小题以及1道解答题,其中小题较容易,解答题逐渐取代了90年代兴起的应用题,其难度不大,但有一定的灵活性,对题目的背景和题意理解要求较高,如08年重庆理5题(5分)为容易题,考查正态分布的计算及密度曲线性质、08年湖南文12题(12分)为中档题,考查样本的识别与抽样、08年安徽高考理科第19题(12分)是中档题,考查几种事件的交汇、08年福建理20题(12分)中等难度,考查概率的计算与离散随机变量的分布列及期望,等等.预计在09年高考中解答题仍可能是文科题重点考查古典概率,互斥事件的概率,独立事件的概率,独立重复事件的概率等,考查应用意识和实践能力;理科重点考查随机变量的分布列与期望,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复事件的概率等,穿插考查合情推理能力和有关优化决策能力,难度可能有所提升,考生应有心理准备.文科一般两个问题都考查概率问题,而理科一般第1问考概率的计算,第2问考分布列、期望的计算.【考试要求】1.了解等可能性事件的概念的意义,会用排列组合的基本公式计算一些等可能性事件的概率.2.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.会计算事件在n次独立重复试验中恰好发生k次的概率.3.了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列.4.了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.5.会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本.6.会用样本频率分布去估计总体分布,了解正态分布的意义与主要性质及线性回归的方法和简单应用.【考点透视】主要考点:(1)等可能事件、互斥事件(对立事件)、相互独立事件及独立重复实验的基本知识及四种概率计算公式的应用,考查基础知识和基本计算能力.(2)求简单随机变量的分布列、数学期望及方差,特别是二项分布,常以现实生活、社会热点为载体.(3)抽样方法的确定与计算、总体分布的估计.【典例分析】题型一几类基本概型之间的综合在高考解答题中,常常是将等可能事件、互斥事件、相互独立事件等多种事件交汇在一起进行考查,主要考查综合计算方法和能力.此类问题一般都同时涉及几类事件,它们相互交织在一起,难度较大,因此在解答此类题时,在透彻理解各类事件的基础上,准确把题中所涉及的事件进行分解,明确所求问题所包含的所属的事件类型.特别是要注意挖掘题目中的隐含条件.【例1】 (08·安徽高考)在某次普通话测试中,为测试汉字发音水平,设置了10张 卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g”.(Ⅰ) 现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测 试后放回,余下2位的测试,也按同样的方法进行。
高三数学大题专项训练 概率与统计(答案)
1.【2012高考真题辽宁理19】(本小题满分12分)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。
现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。
若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。
附:22112212211212(),n n n n n n n n n χ++++-=【答案】【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。
准确读取频率分布直方图中的数据是解题的关键。
9.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。
【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10.【2012高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 【答案】(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=,降水量X 300X <300700X ≤< 700900X ≤<900X ≥工期延误天数Y2610(700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=.由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.11.【2012高考江苏25】(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C 对相交棱。
高考数学专题《概率与统计》解读含答案解析
重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。
新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
高中数学经典概率与统计(解析版)
概率与统计统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】1 .抽样方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海闵行区·高三二模)某县共有300个村,现采用系统抽样方法,抽取15个村作为样本,调查农民的生活和生产状况,将300个村编上1到300的号码,求得间隔数3002015k==,即每20个村抽取一个村,在1到20中随机抽取一个数,如果抽到的是7,则从41到60这20个数中应取的号码数是( ) A .45B .46C .47D .48 【答案】C【分析】根据系统抽样的定义和性质即可得到结论.【详解】解:根据题意,样本间隔数3002015k ==,在1到20中抽到的是7, 则41到60为第3组,此时对应的数为7+2×20=47.故选:C.【点睛】本题主要考查系统抽样的应用,样本间距是解决本题的关键,比较基础.2.(2020·上海松江区·高三其他模拟)已知6260126(1)x a a x a x a x +=+++⋯+,在0,a 1,a 2,a ,⋅⋅⋅6a 这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( )A .12B .37C .47D .821【答案】B【分析】根据6260126(1)x a a x a x a x +=+++⋯+,将0,a 1,a 2,a ,⋅⋅⋅6a 计算出来,分清几个奇数,几个偶数, 得到从中任取两数的种数;所取的两数之和为偶数的种数,代入古典概型的概率公式求解.【详解】因为6260126(1)x a a x a x a x +=+++⋯+,0,a 1,a 2,a ,⋅⋅⋅6a 这7个数分别为:061,C =166,C =2615,C =3620,C =4615,C =566,C =661,C =. 4个奇数,3个偶数;从中任取两数共有:2721C =种;所取的两数之和为偶数的有:22439C C +=;∴所取的两数之和为偶数的概率为:93217=. 故选:B.【点睛】本题主要考查二项式系数和古典概型的概率,还考查了运算求解的能力,属于基础题.3.(2019·上海杨浦区·高三一模)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为( )A .310B .35C .25D .23【答案】B【分析】直接利用概率公式计算得到答案.【详解】11322563105C C P C ⨯=== ,故选:B 【点睛】本题考查了概率的计算,属于简单题.4.(2019·上海黄浦区·高三二模)在某段时间内,甲地不下雨的概率为1P (101P <<),乙地不下雨的概率为2P (201P <<),若在这段时间内两地下雨相互独立,则这段时间内两地都下雨的概率为( ) A .12PPB .121PP -C .12(1)P P -D .12(1)(1)P P -- 【答案】D【分析】根据相互独立事件的概率,可直接写出结果.【详解】因为甲地不下雨的概率为1P ,乙地不下雨的概率为2P ,且在这段时间内两地下雨相互独立, 所以这段时间内两地都下雨的概率为()()1211P P P =--.故选D【点睛】本题主要考查相互独立事件的概率,熟记概念即可,属于基础题型.二、填空题5.(2020·上海奉贤区·高三一模)某工厂生产A 、B 两种型号的不同产品,产品数量之比为2:3.用分层抽样的方法抽出一个样本容量为n 的样本,则其中A 种型号的产品有14件.现从样本中抽出两件产品,此时含有A 型号产品的概率为__________. 【答案】1117【分析】先由分层抽样抽样比求B 种型号抽取件数,以及n ,再根据古典概型公式求概率. 【详解】设B 种型号抽取m 件,所以1423m =,解得:21m =,142135n =+=, 从样本中抽取2件,含有A 型号产品的概率2111414212351117C C C P C +==.故答案为:11176.(2019·上海市建平中学高三月考)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为 _____ . 【答案】40【解析】设B 层中的个体数为n ,则211828nn C =⇒=,则总体中的个体数为8540.⨯=7.(2020·上海黄浦区·高三二模)某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有14028080500++=户.利用分层抽样的方法, 中等收入家庭应选28010056500⨯=户,故答案为:56 【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.8.(2020·上海高三其他模拟)某校三个年级中,高一年级有学生400人,高二年级有学生360人,高三年级有学生340人,现采用分层抽样的方法从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.【答案】17【分析】由于分层抽样是按比例抽取,若设高三年级的学生抽取了x 人,则有40034020x=,求出x 的值即可【详解】解:设高三年级的学生抽取了x 人,则由题意得 40034020x=,解得17x =,故答案为:17 【点睛】此题考查分层抽样,属于基础题.9.(2016·上海杨浦区·复旦附中高三月考)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.【答案】9【分析】根据频率分布直方图计算出日销售量不少于150个的频率,然后乘以30即可.【详解】根据频率分布直方图可知,一个月内日销售量不少于150个的频率为()0.0040.002500.3+⨯=, 因此,这家面包店一个月内日销售量不少于150个的天数为300.39⨯=.故答案为9.【点睛】本题考查频率分布直方图的应用,解题时要明确频数、频率和样本容量三者之间的关系,考查计算能力,属于基础题.10.(2020·上海高三专题练习)中位数为1010的一组数构成等差数列,其末项为 2015,则该数列的首项为__________.【答案】5.【解析】设数列的首项为1a ,则12015210102020a+=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.11.(2020·上海浦东新区·高三一模)在7(2)x +的二项展开式中任取一项,则该项系数为有理数的概率为_________.(用数字作答)【答案】12【分析】根据二项展开式的通项,确定有理项所对应的r 的值,从而确定其概率. 【详解】7(2)x +展开式的通项为()77217722rr rr rr r T C x C x --+==,07,r r N ≤≤∈, 当且仅当r 为偶数时,该项系数为有理数,故有0,2,4,6r =满足题意,故所求概率4182P ==.【点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.12.(2020·上海松江区·高三一模)从包含学生甲的1200名学生中随机抽取一个容量为80的样本,则学生甲被抽到的概率___.【答案】115【分析】基本事件总数801200n C =,学生甲被抽到包含的基本事件个数79112001m C C =,由此能求出学生甲被抽到的概率.【详解】解:从包含学生甲的1200名学生中随机抽取一个容量为80的样本,基本事件总数801200n C =, 学生甲被抽到包含的基本事件个数79112001m C C =,∴学生甲被抽到的概率79111991801200115C C m P n C ===. 故答案为:115. 【点睛】方法点睛:求概率常用的方法是:先定性(六种概率:古典概型的概率、几何概型的概率、独立事件的概率、互斥事件的概率、条件概率和独立重复试验的概率),再定量.13.(2019·上海市建平中学高三月考)已知方程221x y a b+=表示的曲线为C ,任取a 、{}1,2,3,4,5b ∈,则曲线C 表示焦距等于2的椭圆的概率等于________. 【答案】825【分析】计算出基本事件的总数,并列举出事件“曲线C 表示焦距等于2的椭圆”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】所有可能的(),a b 的组数为:5525⨯=,又因为焦距22c =,所以1c =,所以1a b -=±, 则满足条件的有:()1,2、()2,3、()3,4、()4,5、()5,4、()4,3、()3,2、()2,1,共8组, 所以概率为:825P =.故答案为:825. 【点睛】方法点睛:计算古典概型概率的方法如下:(1)列举法;(2)数状图法;(3)列表法;(4)排列、组合数的应用.14.(2020·上海徐汇区·高三一模)小王同学有4本不同的数学书,3本不同的物理书和3本不同的化学书,从中任取2本,则这2本书属于不同学科的概率为______________(结果用分数表示). 【答案】1115【分析】利用古典概型公式计算概率.【详解】共43310++=本不同的数,任取2本包含21045C =种方法,若从中任取两本,这2本书属于不同学科的情况有11111143433333C C C C C C ⋅+⋅+⋅=,所以这2本书属于不同学科的概率33114515P ==. 故答案为:111515.(2020·上海高三一模)近年来,人们的支付方式发生了巨大转变,使用移动支付购买商品已成为一部分人的消费习惯.某企业为了解该企业员工A 、B 两种移动支付方式的使用情况,从全体员工中随机抽取了100人,统计了他们在某个月的消费支出情况.发现样本中A ,B 两种支付方式都没有使用过的有5人;使用了A 、B 两种方式支付的员工,支付金额和相应人数分布如下:依据以上数据估算:若从该公司随机抽取1名员工,则该员工在该月A 、B 两种支付方式都使用过的概率为______.【答案】310【分析】根据题意,计算出两种支付方式都使用过的人数,即可得到该员工在该月A 、B 两种支付方式都使用过的概率.【详解】解:依题意,使用过A 种支付方式的人数为:18292370++=,使用过B 种支付方式的人数为:10242155++=,又两种支付方式都没用过的有5人,所以两种支付方式都用过的有()()7055100530+--=,所以该员工在该月A 、B 两种支付方式都使用过的概率30310010p ==. 故答案为:310. 【点睛】本题考查了古典概型的概率,主要考查计算能力,属于基础题.16.(2020·上海大学附属中学高三三模)一名工人维护甲、乙两台独立的机床,在一小时内,甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,则一小时内没有一台机床需要维护的概率为________【答案】0.42【分析】根据甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,利用独立事件和对立事件的概率求法求解.【详解】因为甲需要维护和乙需要维护相互独立,它们的概率分别为0.4和0.3,所以一小时内没有一台机床需要维护的概率为()()10.410.30.42-⨯-=,故答案为:0.42【点睛】本题主要考查独立事件和对立事件的概率,属于基础题.17.(2020·上海长宁区·高三三模)2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为________ 【答案】14【分析】甲同学从物理、历史二选一,其中选历史的概率为12,从化学、生物、政治、地理四选二,有6种选法,其中选化学的有3种,从而可得四选二,选化学的概率为12,然后由分步原理可得同时选择历史和化学的概率.【详解】解:由甲同学选科没有偏好,且不受其他因素影响,所以甲同学从物理、历史二选一选历史的概率为12,甲同学从化学、生物、政治、地理四选二有:化学与生物,化学与政治,化学与地理,生物与政治,生物与地理,政治与地理共6种不同的选法,其中选化学的有3种,所以四选二中有化学的概率为12, 所以由分步原理可知甲同学同时选择历史和化学的概率为111=224⨯, 故答案为:14 【点睛】此题考查古典概型概率以及独立事件概率乘法公式的求法,考查理解运算能力,属于基础题. 18.(2019·上海市七宝中学高三三模)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________【答案】0.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可.【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护",所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=,故答案为0.88.【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用. 19.(2019·上海金山区·高三二模)若生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别为0.01、0.02,每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率是________(结果用小数表示)【答案】0.9702【分析】利用对立事件概率计算公式和相互独立事件概率乘法公式能求出经过两道工序后得到的零件不是废品的概率.【详解】生产某种零件需要经过两道工序,在第一、二道工序中生产出废品的概率分别0.01、0.02, 每道工序生产废品相互独立,则经过两道工序后得到的零件不是废品的概率:p =(1﹣0.01)(1﹣0.02)=0.9702.故答案为0.9702.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.三、解答题20.(2019·上海普陀区·)某城市自2014年至2019年每年年初统计得到的人口数量如表所示.(1)设第n 年的人口数量为n a (2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;(2)研究统计人员用函数0.6544450()2000 4.48781x P x e -=++拟合该城市的人口数量,其中x 的单位是年.假设2014年初对应0x =,()P x 的单位是万.设()P x 的反函数为()T x ,求(2440)T 的值(精确到0.1),并解释其实际意义.【分析】(1)根据表中的数据可得从2014年到2019年人口增加的数量,逐年增多,从2017年后,增加的人数逐年减少,但人口总数是逐年增加的;(2)根据函数的表达式,以及反函数的定义,代值计算即可.【详解】(1)201520142135208253f f -=-=,201620152203213568f f -=-=,201720162276220373f f -=-=,201820172339227663f f -=-=,201920182385233946f f -=-=,由上述计算可知,该地区2014年至2019年每年人口增长数量呈先增后减的变化趋势,每一年任可总数呈逐渐递增的趋势;(2)因为0.65444.48781x e -+为单调递减函数,则()P x 为单调递增函数,则0(2440)T x =0()2440P x ⇒=, 代入000.6544450()200024404.48781x P x e -=+=+,解得08.1x =,即(2440)8.1T =, 其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,到2022年人口接近2440万.【点睛】该题考查的是有关统计的问题,涉及到的知识点有利用表格判断其变化趋势,利用题中所给的函数解析式,计算相关的量,反函数的定义,属于中档题目.。
高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)
5概率与一、数原理1.分加法数原理和分步乘法数原理的区是什么?分加法数原理“分” ,此中各样方法互相独立 ,用此中任何一种方法都能够做完件事 ;分步乘法数原理“分步” ,各个步互相依存 ,只有各个步都达成了才算达成件事 .2.摆列数、合数的公式及性是什么?(1)=n(n-1)(n-2) ⋯(n-m+1)=公(2)= =式=(n,m∈N+ ,且 m≤n)特地 , =1性(1)0!= 1; =n!(2) =;=+3.二式系数的性是什么?性性描绘称与首末两头“等距离”的两个二式系数相等 ,即 =性增减二式系当 k<(n∈N+ ) ,二式系数是增的性数(n∈N+ ) ,二式系数是减的当 k>二式当 n 偶数 ,中的一获得最大系数的最大当 n 奇数 ,中的两与获得最大而且相等4.各二式系数的和是什么?(1)(a+b )n睁开式的各二式系数的和+ + + ⋯+= 2n.(2)偶数的二式系数的和等于奇数的二式系数的和,即+ + + ⋯= + ++ ⋯= 2n- 1.二、概率1.互斥事件与立事件有什么区与系?互斥与立都是两个事件的关系,互斥事件是不行能同生的两个事件,而立事件除要求两个事件不一样生外 ,要求两者之一必有一个生 .所以 ,立事件是互斥事件的特别状况 ,而互斥事件不必定是立事件 .2.基本领件的三个特色是什么?(1)每一个基本领件生的可能性都是相等的;(2)任何两个基本领件都是互斥的;(3)任何事件 (除不行能事件 )都能够表示成基本领件的和.3.古典概型、几何概型的概率公式分是什么?古典概型的概率公式 :P(A)=.几何概型的概率公式 :P(A)=.三、统计初步与统计事例1.分层抽样的合用范围是什么?当整体是由差别明显的几个部分构成时,常常采纳分层抽样的方法.2.怎样作频次分布直方图?(1)求极差 (即一组数据中最大值与最小值的差).(2)决定组距与组数 .(3)将数据分组 .(4)列频次分布表 .(5)画频次分布直方图 .3.频次分布直方图的特色是什么?(1)频次分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)在频次分布直方图中 ,各小长方形的面积总和等于 1.由于在频次分布直方图中组距是一个固定值 ,所以各小长方形高的比也就是频次比 .(3)频次分布表和频次分布直方图是一组数据频次分布的两种形式,前者正确 ,后者直观 .4.怎样进行回归剖析 ?(1)定义 :对拥有有关关系的两个变量进行统计剖析的一种常用方法.(2)本点的中心于一拥有性有关关系的数据 (x1,y1),(x2,y2), ⋯ ,(x n,y n),此中 ( , )称本点的中心 .(3)有关系数当r> 0 ,表示两个量正有关; 当r< 0 ,表示两个量有关 .r 的越靠近于 1,表示两个量的性有关性越 .r 的越靠近于 0,表示两个量之的性有关性越弱 .往常当 |r|大于 0.75 ,两个量有很的性有关性.5.独立性的一般步是什么?解决独立性的用,必定要依照独立性的步得出.独立性的一般步 :(1)依据本数据制成2×2 列表 ;(2)依据公式 K2=算K2的k;(3)比 k 与界的大小关系 ,做出推测 .四、随机量及其用1.失散型随机量的分布列及性是什么?(1)失散型随机量的分布列:若失散型随机量X 全部可能的取x1,x2, ⋯,x i⋯,x n,X 取每一个 x i(i= 1,2, ⋯,n)的概率 p1,p2, ⋯,p n,表X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n称失散型随机量X 的概率分布列或称失散型随机量X 的分布列.(2)失散型随机量的分布列的性:①0≤p≤1(i= 1,2,3,⋯,i n);②p1+p2+ ⋯+p n= 1;③P(x i≤X≤x j)=p i+p i+ 1+ ⋯+p j .2.事件的互相独立性的观点及公式是什么?(1)互相独立的定 :事件 A 能否生事件 B 能否生的概率没有影响,即 P(B|A)=P (B). ,称事件 A 与事件 B 互相独立 ,并把两个事件叫作互相独立事件 .(2)概率公式条件事件 A,B 互相独立事件 A⋯,1,A2, A n互相独立公式P(A∩B)=P (A) ·P(B) P(A1∩A2∩⋯∩A n) =P (A1) ·P(A2) ·⋯·P(A n)3.独立重复与二分布的观点和公式是什么?(1)独立重复①定 :在同样条件下 ,重复地做n 次 ,各次互相独立 ,那么一般就称它 n 次独立重复 .②概率公式 :在一次中事件 A 生的概率p, n 次独立重复中,事件 A 恰巧生 k 次的概率 P k n-k⋯,n(k)=p (1-p)(k=0,1,2,n).(2)二分布 :在 n 次独立重复中 ,事件 A 生的次数 X,事件 A 不生的概率 q= 1-p, n 次独立重复中事件 A 恰巧生 k 次的概率是P(X=k)= p k q n-k,此中 k=0,1,2,⋯,n于是 X 的分布列 :X 0 1 ⋯k ⋯np0pq p k q n p n qP⋯⋯q n n-1-k0此称失散型随机量X 听从参数 n,p 的二分布 ,作 X~B(n,p).4.正分布的观点及性是什么?(1)正曲 :正量的概率密度函数的象叫作正曲,其函数表达式 f(x)=·,x∈R,此中μ,σ 参数 ,且σ>0,-∞<μ<+∞.(2)正曲的性①曲位于 x 上方 ,与 x 不订交 ,与 x 之的面1;②曲是峰的 ,它对于直 x=μ 称 ;③曲在 x=μ 达到峰;④当μ必定 ,曲的形状由σ确立 ,σ越小 ,曲越“瘦高”,表示体的分布越集中 ;σ越大 ,曲越“矮胖”,表示体的分布越分别 .(3)正体在三个特别区内取的概率①P(μ-σ<X≤μ+σ)= 0.6826;②P(μ-2σ<X≤μ+2σ)= 0.9544;③P(μ-3σ<X≤μ+3σ)= 0.9974.5.失散型随机量的数学希望(或均 )与方差的观点是什么 ?一个失散型随机量X 全部可能取的是x1,x2, ⋯,x n些的概率分是 p1,p2, ⋯,p n.(1)数学希望 :称 E(X)=x 1p1+x2p2+ ⋯+x n p n失散型随机量 X 的均或数学希望 (称希望 ),它刻画了个失散型随机量取的均匀水平 .(2)方差 :称 D(X)= (x1-E(X))2p1+ (x2-E(X))2p2+ ⋯+ (x n-E(X))2p n失散型随机量 X 的方差 ,它反应了失散型随机量取相于希望的均匀波大小(或失散程度 ),D(X)的算平方根叫作失散型随机量X 的准差 .6.均与方差的性有哪些?(1)E(aX+b)=aE (X)+b(a,b 常数 ).(2)D(aX+b )=a2D(X)(a,b 常数 ).(3)两点分布与二分布的均、方差的公式①若 X 听从两点分布 ,E(X)=p ,D(X)=p (1-p).②若 X~B(n,p), E(X)=np,D(X)=np(1-p).几何概型、古典概型、互相独立事件与互斥事件的概率、条件概率是高考的点 ,几何概型主要以客形式考,求解的关在于找准度(度或面 );互相独立事件、互斥事件常作解答的一部分考,也是一步求分布列、希望与方差的基础,求解该类问题要正确理解题意,正确判断概率模型,恰当选择概率公式 .近几年的高考数学试题对统计事例的考察一般不独自命题 ,而是与概率、随机变量的数学希望交汇命题 ,高考对此类题目的要求是能依据给出的或经过统计图表给出的有关数据求线性回归方程,认识独立性查验的思想方法 ,会判断两个分类变量能否有关.从近几年高考情况来看,该类专题在高考取占的比率大概为15%,以简单题、中档题为主,考察题型分选择题、填空题和解答题 .一、选择题、填空题的命题特色(一)考察摆列、组合的应用 ,以考察两个计数原理和摆列、组合的应用为主,难度中等 ,常常以选择题、填空题的形式出现.1.(2018 ·全国Ⅰ卷·理 T15 改编 )从 2 名女生 ,4 名男生中选 3 人参加科技竞赛 ,恰有 1 名女生当选 ,则不一样的选法共有种.(用数字填写答案)分析 ?由题意可得有1名女生,2名男生,则有 C = 12 种不一样的选法 .答案?122.(2018 ·浙江卷·T16 改编 )从 1,3,5,7,9 中任取 2 个数字 ,从 2,4,6 中任取 2 个数字,一共能够构成个没有重复数字的四位数.(用数字作答 )分析 ?一共能够构成 A = 720 个没有重复数字的四位数.答案 ?7203.(2017 ·全国Ⅱ卷·理 T6 改编 )安排 5 名志愿者达成 4 项工作 ,每项工作只需由1 人达成 ,则不一样的安排方式共有 ().A.120 种B.180 种C.240 种D.360 种分析 ?由题意可得 ,5 人中选出 4 人达成工作 ,剩下 1 人没有工作 ,故不同的安排方式有 A = 120(种).答案 ?A(二)考察二项式定理的应用,以考察运用二项式定理求特定项、求项数和二项式定理性质的应用为主,难度中等 ,常常以选择题、填空题的形式出现.4.(2018 ·全国Ⅲ卷·理 T5 改编 )的睁开式中x的系数为().A.10B.20C.40D.80分析 ?由题可得 Tr+ 1C25-rC·r ·10-3r, (x ) 2 x令 10-3r= 1,得 r= 3.所以·2r=·32 =80.答案 ?D5.(2017 ·全国Ⅰ卷·理 T6 改编 )(1+x )6的睁开式中 x4的系数为 ().A.15B.16C.30D.35分析 ?由于 (1+x)6睁开式的通项为 T r 所以(1+x)6的展r+ 1C x ,开式中含 x4的项为 1C x4和C x6.由于+= 16,所以(1+x)6的睁开式中x4的系数为16.答案 ?B(三)考察随机事件的概率 ,以考察随机事件、互斥事件与对峙事件的概率为主 ,难度中等 ,常与事件的频次交汇考察.本节内容在高考取三种题型都有可能出现 ,随机事件的频次与概率题目常常以解答题的形式出现,互斥事件、对峙事件的观点及概率题目常常以选择、填空题的形式出现.6.(2018 ·全国Ⅲ卷·文 T5 改编 )若某集体中的成员只用现金支付的概率为0.25,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为().分析 ? 设事件 A 为“不用现金支付”,事件 B 为“既用现金支付也用非现金支付”,事件 C 为“只用现金支付”,则 P(A)= 1-P(B)-P(C)= 1-0.15-0.25= 0.6,故选 C.答案?C(四)考察古典概型 ,全国卷对古典概型每年都会考察 ,难度中等 ,主要考察实质背景的可能事件 ,往常与互斥事件、对峙事件一同考察 .在高考取独自命题时 ,往常以选择题、填空题形式出现 ,属于中低档题 .7.(2018 ·全国Ⅱ卷·理 T8 改编 )我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就 .哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30= 7+ 23.在不超出 30 的素数中 ,随机选用 2 个不一样的数 ,其和等于26 的概率是 ().A. B. C. D.分析 ?不超出30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选用 2 个不一样的数 ,共有 C= 45 种取法 .由于 3+ 23= 7+ 19= 26,所以随机选用2 个不一样的数 ,其和等于 26 的有 2 种取法 ,故所求概率为.答案?D8.(2018 ·江苏卷·T6 改编 )某兴趣小组有 2 名男生和 3 名女生 ,现从中任选 2 名学生去参加活动 ,则恰巧选中 1 名男生和 1 名女生的概率为.分析 ?从5名学生中任选2 名学生 ,共有 C = 10 种选法 ,此中恰巧选中1 名男生和 1 名女生的选法有 C C= 6 种,所以所求概率为= .答案 ?(五)考察几何概型 ,难度较大 ,以理解几何概型的观点、概率公式为主,会求一些简单的几何概型的概率 ,常与平面几何、线性规划、不等式的解集等知识交汇考察 ,在高考取多以选择题、填空题的形式考察 ,难度中等 .9.(2018 ·全国Ⅰ卷·理 T10 改编 )折纸艺术是我国古代留下来可贵的民间艺术,拥有很高的审美价值和应用价值.以下图的是一个折纸图案,由一个正方形内切一个圆形 ,而后在四个极点处罚别嵌入半径为正方形边长一半的扇形 .向图中随机投入一个质点 ,则质点落在暗影部分的概率 P1与质点落在正方形内圆形地区外面的概率P2的大小关系是 ().A.P1>P 2B.P1<P 2C.P1=P 2D.不可以确立分析 ?将正方形内圆形地区外面的四个角进行沿直角边重合组合,恰好获得的图形就是暗影部分图形,所以暗影部分地区的面积等于正方形内圆形地区外面的面积 ,故 P1=P 2.答案?C10.(2016 ·全国Ⅱ卷·文 T8 改编 )某路口人行横道的信号灯为红灯和绿灯交替出现 ,红灯连续时间为40 秒.若一名行人到达该路口碰到红灯,则起码需要等待 10 秒才出现绿灯的概率为().A. B. C. D.分析 ?起码需要等候10秒才出现绿灯的概率为= ,应选 A .答案?A(六)考察随机抽样 ,在抽样方法的考察中,系统抽样、分层抽样是考察的要点 ,题型主要以选择题和填空题为主,属于中低档题 .11.(2017 ·江苏卷·T3 改编 )某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为 200、400、300、100 件,为查验产品的质量 ,现用分层抽样的方法从以上全部的产品中抽取60 件进行查验 ,则应从甲种型号的产品中抽取件.分析 ?∵==,∴应从甲种型号的产品中抽取×200= 12(件 ).答案?12(七)用样本预计整体 ,主要考察均匀数、方差等的计算以及茎叶图、频次分布直方图的简单应用 .题型以选择题和填空题为主 ,出现解答题时常常与概率相联合 ,属于中档题 .12.(2018 ·全国Ⅰ卷·理 T3 改编 )某地域经过一年的新乡村建设,乡村的经济收入增添了一倍 ,实现翻番 .为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入构成比率,获得以下饼图 :则以下选项中不正确的选项是().A.新乡村建设后 ,栽种收入增添B.新乡村建设后 ,其余收入增添了一倍以上C.新乡村建设后 ,养殖收入没有增添D.新乡村建设后 ,养殖收入与第三家产收入的总和超出了经济收入的一半分析 ? 由题干可知 ,乡村的经济收入增添了一倍 ,实现翻番 .为方即可设建设前后的经济收入分别为 100,200(单位省去 ).A 中,栽种收入前后分别为60,74,收入增添了 ,A 正确 ;B 中,其余收入前后分别为 4,10,增添了一倍以上 ,B 正确 ;C 中,养殖收入前后分别为 30,60,收入增添了一倍 ,C 错误 ;D 中,建设后 ,养殖收入与第三家产收入的总和为(30+ 28)×2= 116> 100,D 正确 .应选 C.答案?C13.(2017 ·全国Ⅲ卷·理 T3)某城市为认识旅客人数的变化规律 ,提升旅行服务质量 ,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量 (单位 :万人)的数据 ,绘制了下边的折线图 .依据该折线图 ,以下结论错误的选项是 ().A.月招待旅客量逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小 ,变化比较安稳分析 ? 对于选项 A, 由图易知 ,月招待旅客量每年 7,8 月份明显高于 12 月份 ,故 A 错误 ;对于选项 B,察看折线图的变化趋向可知 ,年招待旅客量逐年增添 ,故 B 正确 ;对于选项 C,D,由图可知明显正确 .答案?A(八)考察失散型随机变量分布列、超几何分布、条件概率、正态分布、数学希望与方差 ,求失散型随机变量的数学希望是全国卷高考要点考察的内容,在选择题、填空题中有时会出现.主要考察失散型随机变量的分布列、数学希望、正态分布等 .14.(2018 ·全国Ⅲ卷·理 T8 改编 )某集体中的每位成员使用挪动支付的概率都为 p,各成员的支付方式互相独立,设 X 为该集体的 10 位成员中使用挪动支付的人数 ,D(X)= 2.1,P(X= 4)<P (X= 6),则 p= ().分析 ? 由于 X~B(n,p),所以 D(X)=np(1-p)= 2.1,所以 p= 0.3 或 p=0.7.由于 P(X= 4)=p4(1-p)6<P (X= 6)=p6(1-p)4,所以 (1-p)2 2可得p> 0.5.故p=0.7.<p ,答案?A15.(2017 ·全国Ⅱ卷·理 T13 改编 )一批产品的二等品率为 0.08,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到的二等品件数,则D(X)=.分析 ?有放回地抽取,是一个二项分布模型, 此中p=0.08,n=100,则D(X)=np(1-p)= 100×0.08×0.92= 7.36.答案 ?7.36二、解答题的命题特色概率与统计综合试题的题干阅读量大,简单造成考生在数学模型转变过程中失误,得分率不高 .这些试题主要考察古典概型,用样本预计整体,利用回归方程进行展望 ,独立性查验的应用 ,失散型随机变量的分布列和数学希望 ,正分布等 .概率、随机量的数学希望交命,高考此目的要求是能依据出的或通表出的有关数据求性回方程.1.(2018 ·全国Ⅱ卷·理 T18)下是某地域 2000 年至 2016 年境基施投y(位 :元)的折.了地域 2018 年的境基施投 ,成立了 y 与量 t 的两个性回模型 .依据2000 年至 2016 年的数据 (量 t 的挨次1,2, ⋯ ,17)成立模型①: =- 30.4+ 13.5t;依据 2010年至 2016 年的数据 (量t 的挨次 1,2, ⋯,7)成立模型②: = 99+ 17.5t.(1)分利用两个模型 ,求地域 2018 年的境基施投的.(2)你用哪个模型获得的更靠谱?并明原因 .分析 ? (1)利用模型①,从 2000 年开始算起 ,2018 年即 t= 19,所以地域2018 年的境基施投的=- 30.4+ 13.5×19= 226.1(元).利用模型②,从 2010 年开始算起 ,2018 年即 t= 9,所以地域 2018 年的境基施投的= 99+ 17.5×9= 256.5(元).(2)利用模型②获得的更靠谱 .原因以下 :(i) 从折能够看出 ,2000年至 2016 年的数据的点没有随机分布在直线 y=- 30.4+ 13.5t 上下 ,这说明利用 2000 年至 2016 年的数据成立的线性模型①不可以很好地描绘环境基础设备投资额的变化趋向.2010 年相对 2009 年的环境基础设备投资额有明显增添,2010 年至 2016 年的数据对应的点位于一条直线的邻近 ,这说明从 2010 年开始环境基础设备投资额的变化规律呈线性增添趋向,利用2010年至2016年的数据成立的线性模型= 99+ 17.5t能够,所以利用模型②较好地描绘2010年此后的环境基础设备投资额的变化趋向获得的展望值更靠谱.(ii)从计算结果看 ,相对于 2016 年的环境基础设备投资额 220 亿元 ,由模型①获得的展望值 226.1 亿元的增幅明显偏低 ,而利用模型②获得的展望值的增幅比较合理 ,说明利用模型②获得的展望值更靠谱 .2.(2018 ·全国Ⅰ卷,理 T20)某工厂的某种产品成箱包装 ,每箱 200 件,每一箱产品在交托用户以前要对产品作查验,如查验出不合格品,则改换为合格品 .查验时 ,先从这箱产品中任取 20 件作查验 ,再依据查验结果断定能否对余下的全部产品作查验 .设每件产品为不合格品的概率都为p(0<p< 1),且各件产品能否为不合格品互相独立.(1)记 20 件产品中恰有 2 件不合格品的概率为f(p),求 f(p)的最大值点 p0.(2)现对一箱产品查验了20 件,结果恰有 2 件不合格品 ,以(1)中确立的 p0作为p 的值 .已知每件产品的查验花费为 2 元,如有不合格品进入用户手中,则工厂要对每件不合格品支付25 元的补偿花费 .(i)若不对该箱余下的产品作查验 ,这一箱产品的查验花费与补偿花费的和记为 X,求 E(X).(ii)以查验花费与补偿花费和的希望值为决议依照 ,能否该对这箱余下的全部产品作查验 ?分析 ? (1)由题意可知 ,独立重复试验切合二项分布 ,20 件产品中恰有 2 件不合格品的概率为f(p)C p2(1-p)18= 190p2(1-p)18,对上式求导得 f'(p)= [190p2(1-p)18]'=190[2p(1-p)18-18p2(1-p)17]=190p(1-p)17[2(1-p)-18p]=380p(1-p)17(1-10p).当 f'(p)= 0 时,有 p(1-p)17由适当∈时(1-10p)= 0,0<p< 1,p,f'(p)> 0,f(p)单一递加 ;当 p∈时,f'(p)< 0,f(p)单一递减.故 f(p)max=f (p0)=f,即 p0= .(2)(i) 由题意 ,节余未作查验的产品有180件,此中 Y表示不合格品的件数 ,其听从二项分布Y~B.故 E(Y)= 180× = 18.又 X= 40+ 25Y,故 E(X)=E (40+ 25Y)= 40+ 25×18= 490(元).(ii)若对这箱余下的全部产品作查验 ,则需要的查验费为 200×2= 400(元).由于 E(X)= 490> 400,所以需要对这箱余下的全部产品作查验.3.(2018 ·全国Ⅲ卷·理 T18)某工厂为提升生产效率 ,睁开技术创新活动 ,提出了达成某项生产任务的两种新的生产方式 .为比较两种生产方式的效率,选用40 名工人 ,将他们随机分红两组 ,每组 20 人,第一组工人用第一种生产方式 , 第二组工人用第二种生产方式 .依据工人达成生产任务的工作时间 (单位 :min) 绘制了以下茎叶图 :(1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因 .(2)求 40 名工人达成生产任务所需时间的中位数 m,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表 :不超出超出 mm第一种生产方式第二种生产方式(3)依据 (2)中的列联表 ,可否有 99%的掌握以为两种生产方式的效率有差别?附:K2=,P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828分析 ? (1)第二种生产方式的效率更高.原因以下 :(i)由茎叶图可知 ,用第一种生产方式的工人中 ,有 75%的工人达成生产任务所需时间起码 80 分钟 ,用第二种生产方式的工人中 ,有 75%的工人达成生产任务所需时间至多 79 分钟 ,所以第二种生产方式的效率更高 .(ii)由茎叶图可知,用第一种生产方式的工人达成生产任务所需时间的中位数为 85.5 分钟 ,用第二种生产方式的工人达成生产任务所需时间的中位数为 73.5 分钟 ,所以第二种生产方式的效率更高 .(iii)由茎叶图可知,用第一种生产方式的工人达成生产任务均匀所需时间高于 80 分钟 ,用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟 ,所以第二种生产方式的效率更高.(iv)由茎叶图可知 ,用第一种生产方式的工人达成生产任务所需时间分布在茎 8 上的最多 ,对于茎 8 大概呈对称分布 ;用第二种生产方式的工人达成生产任务所需时间分布在茎 7 上的最多 ,对于茎 7 大概呈对称分布 .又用两种生产方式的工人达成生产任务所需时间分布的区间同样 ,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少 ,所以第二种生产方式的效率更高 .(2)由茎叶图知 m== 80.列联表以下 :超出 m不超出第一种生产方m 155式第二种生产方515式(3)因 K2的 k== 10> 6.635,所以有 99%的掌握两种生方式的效率有差别.4.(2017 ·全国Ⅰ卷·理 T19)了控某种部件的一条生的生程,每日从生上随机抽取16 个部件 ,并量其尺寸 (位 :cm).依据期生 ,能够条生正常状下生的部件的尺寸听从正分布2N(μ,σ).(1) 假生状正常,X 表示一天内抽取的16 个部件中其尺寸在(μ-3σ,μ+3σ)以外的部件数,求P(X≥1)及X 的数学希望.(2)一天内抽部件中 ,假如出了尺寸在 (μ-3σ,μ+3σ)以外的部件 ,就条生在一天的生程可能出了异样状况 ,需当日的生程行 .(i)明上述控生程方法的合理性 .(ii)下边是在一天内抽取的 16 个部件的尺寸 :9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95算得 =xi= 9.97,s==≈0 .212,此中 x i抽取的第 i 个部件的尺寸 ,i= 1,2,⋯,16.用本均匀数作μ的估 ,用本准差 s 作σ的估 ,利用估判断能否需当日的生程行?剔除 ( -3, + 3 )以外的数据 ,用剩下的数据估μ和σ(精准到 0.01).2附:若随机量Z服从正分布N(μ,σ),P(μ-3σ<Z<μ+3σ)= 0.9974,0.997416≈0.9592,≈0.09.分析 ? (1)由题可知抽取的一个部件的尺寸落在(μ-3σ,μ+3σ)以内的概率为 0.9974,进而部件的尺寸落在 (μ-3σ,μ+3σ)以外的概率为0.0026,故 X~B(16,0.0026).所以 P(X≥1)= 1-P(X= 0)= 1-0.997416≈1-0.9592=0.0408, X 的数学希望 E(X)= 16×0.0026= 0.0416.(2)(i) 假如生产状态正常 ,一个部件尺寸在 (μ-3σ,μ+3σ)以外的概率只有0.0026,一天内抽取的16 个部件中,出现尺寸在(μ-3σ,μ+3σ)以外的部件的概率只有0.0408,发生的概率很小,所以一旦发生这种状况,就有原因以为这条生产线在这天的生产过程可能出现了异样状况,需对当日的生产过程进行检查,可见上述监控生产过程的方法是合理的 .(ii) 由 = 9.97,s≈0.212,得μ的预计值为 = 9.97,σ的预计值为 = 0.212,由样本数据能够看出有一个部件的尺寸在 ( -3 , + 3 )以外 ,所以需对当日的生产过程进行检查 .剔除( -3 , +3 )以外的数据9.22,剩下数据的均匀数为×(16×9.97-9.22)= 10.02,所以μ的预计值为 10.02.= 16×0.2122+ 16×9.972≈ 1591.134,剔除( -3 , +3 )以外的数据9.22,剩下数据的样本方差为×2-15×10.022) ≈0.008,所以σ的预计值为≈0.09.1.样本数据(1)众数、中位数及均匀数都是描绘一组数据集中趋向的量 ,均匀数是最重要的量 ,与每个样本数占有关 ,这是中位数、众数所不拥有的性质 .(2)标准差、方差描绘了一组数据环绕均匀数颠簸的大小.标准差、方差越大 ,数据的失散程度就越大.(3)茎叶图、频次分布表和频次分布直方图都是用图表直观描绘样本数据的分布规律的 .2.频次分布直方图(1)用样本预计整体是统计的基本思想,而利用频次分布表和频次分布直方图来预计整体则是用样本的频次分布去预计整体分布的两种主要方法 .频次分布表在数目表示上比较正确 ,频次分布直方图比较直观 .(2)频次分布表中的频数之和等于样本容量,各组中的频次之和等于1;在频次分布直方图中,各小长方形的面积表示相应各组的频次,所以全部小长方形的面积的和等于 1;均匀数是频次分布直方图各个小矩形的面积×底边中点的横坐标之和 .3.摆列与组合(1)①解决“在”与“不在”的有限制条件的摆列问题 ,既能够从元素下手 ,也能够从地点下手 ,原则是谁“特别”谁优先 .不论是从元素考虑仍是从地点考虑 , 都要贯彻究竟 ,不可以既考虑元素又考虑地点 .②解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其余元素一同摆列,同时要注意捆绑元素的内部摆列 .③解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中间.④对于定序问题,可先不考虑次序限制,摆列后 ,再除以定序元素的全摆列.⑤若某些问题从正面考虑比较复杂 ,可从其反面下手 ,即采纳“间接法”.(2)组合问题的限制条件主要表此刻拿出元素中“含”或“不含”某些元素,或许“起码”或“最多”含有几个元素 :①“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素拿出 ,再由此外元素补足 ; “不含”,则先将这些元素剔除,再从剩下的元素中去选用 .②“起码”或“最多”含有几个元素的题型 .考虑逆向思想 ,用间接法办理 .(3)分组分派问题是摆列、组合问题的综合运用,解决这种问题的一个基本指导思想就是先分组后分派 .对于分组问题,有整体均分、部分均分和不平分三种 ,不论分红几组 ,都应注意只需有一些组中元素的个数相等 ,就存在均分现象 .4.随机变量的均值与方差一般计算步骤 :(1)理解 X 的意义 ,写出 X 的全部可能取的值 .(2)求 X 取各个值的概率 ,写出分布列 .(3)依据分布列,由均值的定义求出均值 E(X),进一步由公式D(X)=(x i -E(X))2p i=E(X2)-(E(X))2求出 D(X).(4)以特别分布 (两点分布、二项分布、超几何分布 )为背景的均值与方差。
高考《概率与统计初步》知识点和高考题、配套练习题(很全面)
专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。
② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
② 理解样本数据标准差的意义和作用,会计算数据标准差。
③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。
④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。
①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
②假设检验了解假设检验的基本思想、方法及其简单应用。
③回归分析了解回归的基本思想、方法及其简单应用。
2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
② 了解两个互斥事件的概率加法公式。
(2)古典概型① 理解古典概型及其概率计算公式。
② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。
2012高考理科数学概率统计 (答案详解)
2012年高考试题汇编(理) ---概率统计(一)选择题1、(全国卷大纲版)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有( )(A )12种 (B )18种 (C )24种 (D )36种 2、(全国卷新课标版)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) (A )12种 (B )10种 (C )9种 (D )8种3、(北京卷)设不等式组⎩⎨⎧≤≤≤≤20,20y x 表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) (A )4π (B )22π- (C )6π(D )44π-4、(北京卷)从0,2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数。
其中奇数的个数为( )(A ) 24 (B ) 18 (C ) 12 (D ) 65、(福建卷)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )(A )41 (B )51 (C )61 (D )716、(湖北卷)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(A )21π-(B )112π-(C )2π (D )1π7、(辽宁卷)一排9个座位坐了3个三口之家。
若每家人坐在一起,则不同的坐法种数为 (A )!33⨯(B )3)!3(3⨯ (C )4)!3((D )!98、(辽宁卷)在长为12cm 的线段AB 上任取一点C 。
现做一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为 (A )61 (B )31 (C )32 (D )54 9、(山东卷)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C )10 (D )15 10、(山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A )232 (B)252 (C)472 (D)48411、(陕西卷)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( )(A ) x x <甲乙,m 甲>m 乙 (B ) x x <甲乙,m 甲<m 乙 (C ) x x >甲乙,m 甲>m 乙 (D ) x x >甲乙,m 甲<m 乙12、(陕西卷)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )(A ) 10种 (B )15种 (C ) 20种 (D ) 30种13、(上海卷)设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )(A )21ξξD D > (B )21ξξD D =(C )21ξξD D < (D )1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关14、(浙江卷)若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )(A )60种 (B )63种 (C )65种 (D )66种15、(安徽卷)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )(A )甲的成绩的平均数小于乙的成绩的平均数 (B )甲的成绩的中位数等于乙的成绩的中位数 (C )甲的成绩的方差小于乙的成绩的方差 (D )甲的成绩的极差小于乙的成绩的极差 16、(安徽卷))6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品。
概率统计二级结论-概述说明以及解释
概率统计二级结论-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度进行展开:概率统计是一门研究随机现象规律的学科,它是数学的一个重要分支,也是现代科学领域中不可或缺的一部分。
其主要研究对象为随机事件的出现规律和概率分布以及基于概率的推断和决策方法。
通过统计概率,我们可以揭示自然界和社会现象中的客观规律,并为科学研究提供重要的工具和方法。
概率统计的发展可以追溯到17世纪,伽利略和费马等伟大科学家对概率问题进行了初步研究,随后由拉普拉斯、贝叶斯等人的贡献,使概率统计学逐渐形成独立的理论体系,并在各个学科领域中得到广泛应用。
概率统计通过建立数学模型来描述和分析随机现象,通过收集样本数据进行推断和预测,从而对不确定性进行量化和控制。
在概率统计的研究中,我们普遍使用统计模型、概率分布和统计方法等工具来分析和解决实际问题。
通过对概率统计的学习和应用,我们可以了解和理解事件发生的可能性,并通过样本数据的收集和分析,得出结论并做出决策。
概率统计的应用广泛涉及自然科学、社会科学、工程技术等众多领域,如风险管理、市场调查、质量控制等。
本文主要围绕概率统计的二级结论展开,通过引言给读者提供一个全面而清晰的概述,介绍概率统计的基本概念、历史发展以及应用领域,为读者提供一个全面理解概率统计的基础。
接下来的章节将分析和总结概率统计的关键要点,并给出相应的结论,以进一步巩固读者对概率统计的理解和应用能力。
通过本文的阅读,我们将能够更深入地了解概率统计的核心观点和方法,为我们在实际问题中的决策和推断提供一种科学且可靠的工具。
最后,本文还将总结概率统计的核心要点,并展望它在未来的发展前景。
1.2文章结构文章结构是指文章的组织和安排方式,它是整篇文章的骨架和框架,决定了文章内容的展开和发展。
良好的文章结构能够使读者更好地理解作者的观点和思路。
本文的结构包括引言、正文和结论三个部分。
引言部分主要是对文章主题进行概述,从宏观角度对读者进行引导和导入,使其了解文章的目的和意义。
概率论与数理统计经管类试题
概率论与数理统计经管类试题浙江省2012年1⽉⾼等教育⾃学考试概率论与数理统计(经管类)试题课程代码:04183⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.已知P(A)=0.75, P(B)=0.25, 则事件A与B的关系是( )A.互相独⽴B.互逆C.A BD.不能确定2.对于任意⼆事件A、B, 有P(A-B)=( )A.P(A)-P(B)B.P(A)-P(B) + P(AB)C.P(A)-P(AB)D.P(A) + P(B)-P(A B)3.设每次试验成功率为p(0A.(1-p)3B.1-p3C.1-(1-p)3D.(1-p)3+p(1-p)2+p2(1-p)4.设x1与x2为取⾃总体X的简单随机样本, T=23x1+kx2. 若T是E(X)的⽆偏估计, 则k等于( )A.19B.13C.12D.15.已知随机变量X服从区间(1, a)上的均匀分布, 若概率P{X<2a3}=12, 则a 等于( )A.2B.3C.4D.56.设两个随机变量X与Y相互独⽴且同分布:P(X =-1) = P(Y =-1) =0.5, P(X =1) = P(Y =1) =0.5,则下列各式中成⽴的是( )A.P(X =Y) = 0.5B.P(X =Y) = 1C.P(X +Y = 0) = 0.25D.P(XY = 1) = 0.257.设随机变量X服从正态分布N(µ,σ2), 则随着σ增⼤, 概率P{|X-µ|<σ}( )A.增减不定B.单调增⼤C.单调减少D.保持不变8.设随机变量X和Y都服从标准正态分布, 则必有( )A.X2和Y2都服从χ2分布B.X + Y服从正态分布C.X 2 + Y 2服从χ2分布D.X 2/ Y 2服从F 分布9.对于任意两个随机变量X 和Y , 若E(XY) = E(X) E(Y), 则 ( )A.D(XY) = D(X)D(Y)B.D(X + Y) = D(X)+D(Y)C.X 和Y 独⽴D.X 和Y 不独⽴ 10.设随机变量X 服从正态分布N(0,1), 对给定的α(0<α<1), 数u α满⾜P{X >u α}=α.若P{|X| u α- C.12u α- D.12u α- ⼆、填空题(本⼤题共15⼩题,每⼩题2分,共30分)请在每⼩题的空格中填上正确答案。
2024高考数学概率与统计历年题目大盘点
2024高考数学概率与统计历年题目大盘点概率与统计作为高中数学的重要内容之一,一直以来都是高考中的必考内容。
掌握好概率与统计的理论知识,并通过做题来加深对知识点的理解和应用能力的培养,对于顺利应对高考数学考试至关重要。
本文将通过对2024年高考数学概率与统计部分的历年题目进行大盘点,帮助同学们更好地掌握和复习这一知识点。
一、选择题1. 设随机变量X的概率密度函数为f(x) = kx^2,其中0<x<1,求k的值。
2. 设随机变量X的概率密度函数为f(x) = cx(1-x),其中0<x<1,求c的值。
3. 已知事件A发生的概率为P(A) = 0.4,事件B发生的概率为P(B) = 0.5,事件A与事件B独立,求事件A与事件B同时发生的概率P(A∩B)。
4. 写出使得事件A、B、C相互独立的随机试验的条件。
5. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,事件A与事件B互斥,求事件"A或B发生"的概率P(A∪B)。
6. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,且P(A∪B) = 0.6,求事件"A与B互斥"的概率P(A∩B)。
7. 一批产品共100个,其中有4个次品。
从中任意取出5个,求取出的样本中有2个次品的概率。
8. 已知事件A、B独立,P(A) = 0.4,P(B) = 0.6,求P(A∪B)与P(A∩B)。
二、计算题1. 某汽车4个月出事故的概率为0.01,问8个月中出事故至少2次的概率是多少?2. 某商品的销售量服从正态分布N(400,100),求销售量大于380的概率。
3. 某座城市的某个月的降水量服从正态分布N(150,25),求该月降水量大于200的概率。
4. 某厂生产的电视机寿命服从正态分布N(1000,100^2),求电视机寿命小于900的概率。
概率与统计初步习题答案及分析
概率与统计初步§ 9.1计数原理(1)某人到S城出差,在解决住宿问题时发现只有甲、乙两间旅社还有空房,其中甲旅社还剩4间单人房、6间双人房,乙旅社剩下 9间单人房、2间双人房,则现在住宿有种不同的选择;解:共有4 • 6 • 9 • 2 = 21不同的选择;(分析:只需要订一间房,“一步可以做完”,应该用加法计数原理)(2)一家人到S城旅游,入住旅社的空房只剩下12间单人房和8间双人房,现需要订一间单人房和一间双人房,有___________________________________ 种不同的选择;解:共有:12 8 =96种不同选择;(分析:要订两间房,可以分成两步完成:第一步, 先订一间单人房,有 12种不同选择;第二步,再订一间双人房,有 8种不同选择;用乘法计数原理,共有12 8 =96种不同选择;)(3)4封不同的信,要投到 3个不同的信箱中,共有_______________ 种不同的投递的方法;分析:“投递的是信件”,从信件入手考虑问题;本题没有其它限制条件,一共有四封信,分成四步完成:第一步,投递第一封信,投入3个信箱中的1个,有3种不同的投递方法;第二步考虑第二封信的投递方法,同样是投入3个信箱中的1个,有3种不同的投递方法;第三步考虑第三圭寸信、第四步考虑第四圭寸信,同样都有3种不同的投递方法所以完成这件事情共有: 3 3 3 3 = 34 =81种不同的投递方法;(4)4封不同的信,要投到 3个不同的信箱中,并且每个信箱中至少有一封信,不同的投递方法共有 _____________ 种;2分析:(捆绑法)分两步:第一步在四封信中抽出两封,有 C 4种不同的方法;第二步把这两圭寸信捆绑,看成一圭寸信,和剩下的另外两圭寸信构成三圭寸信,按排列的方法放入三3个邮箱(即:三个位置),有A3种不同的方法;所以完成这件事情共有:c4 A3二 g 3 2 1 = 36种不同的投递方法;2沢1(5)3封不同的信,要投到 4个不同的信箱中,共有种不同的投递的方法;分析:从信件入手考虑问题;共 3封信,每封信都可以投入 4个信箱中的任意一个,即每封信均有4种不同的投递方法,分四步投递四封信,方法同题 3 ,,所以共有34 4 4 =4 =64种不同的投递方法;⑹ 一个学生从7本不同的科技书、8本不同的文艺书、6本不同的外语书中任选一本阅读,不同的选法有 _______________________________________________________ 种;解:共有:7 8 6 21种不同的选法;(只选一本书,“一步可完成”,用加法原理)⑺ 一个学生从7本不同的科技书、8本不同的文艺书、6本不同的外语书中任选一本文艺书和一本科技书回家阅读,不同的选法有__________________________________ 种; 解:共有:8 7 =56种不同的选法;(分析:需要选两本不同的书,可以两步完成,用乘法原理:第一步,从 8本不同的文艺书中任选一本,有8种不同的选法;第二步,从7本不同的科技书中任选一本,有 7种不同的选法)(8) ____________________________________________________________________ 由1,2,3,4,5五个数字组成的三位数,共有_____________________________________________ 个;一 3解:共有5 5 5 =5 =125个三位数;(分析组成三位数的各个位数上的数字可以重复,分三步完成:第一步,填写百位上的数字,从5个数字中任取一个,有 5种选法;第二步,填写十位上的数字,由于数字允许重复,仍然从5个数字中任取一个,同样有5种选法;第三步,填写个位上的数字,与第二步相同,有5种选法;所以完成这件事情,共有5 5 5 =53 =125个三位数,如图:方法数: 5 5 5 )百位十位个位(9) ____________________________________________________________________ 由1,2,3,4,5五个数字组成没有重复数字的三位数,共有_________________________________ 个; 解:共有5 4 3 =60个三位数;(组成三位数的各个位数上的数字不可以重复,可以分三步完成:第一步,填写百位上的数字,从5个数字中任取一个,有 5种选法;第二步,填写十位上的数字,由于数字不允许重复,只能从剩下的4个数字中任取一个,有4种选法;第三步,填写个位上的数字,从剩下的3个数字中任取一个,有 3种选法;完成这件事情,共有5 4 3 = 60个三位数,如图:方法数: 5 4 3百位十位个位§ 9.2排列组合(10)7人站成一排,一共有_____________ 种不同的排法;解:共有Aj =765432 1 =5040种;(分析:与顺序有关,是排列问题)(11)7人中选出3人排成一排,一共有_________________ 种不同的排法;3解:共有A;7 6 5 = 210种不同的排法;(分析:与顺序有关,是排列问题)(12)7人中选出3人组成一组,代表班级参加辩论比赛,一共有_________ 种不同的选法;37汇6汇5解:共有C7 35种不同的选法;(分析:与顺序无关,是组合问题)3汉2汉1(13)5人站成一排,若甲必须站在第一位,一共有________________ 种不同的排法;解:共有1 A:=24种不同的排法;(分析:分两步完成:第一步,先排头,把甲放到第一位,有1种排法;第二步,将剩下的四个人排在后面,有A: =4 3 2 1 =24种4不同的排法;所以共有:1 A4 =24种不同的排法;)小结:若某些元素或某些位置有特殊要求的时候,那么,一般先安排这些特殊元素或位置,然后再安排其它元素或位置,这种方法叫特殊元素(位置)分析法,计算方法用分步乘法原理;(14)___________________________________________________________ 8人排成一排,其中 A、B 两人必须排在一起,一共有________________________________________ 种不同的排法;7 2解:共有A7 A2 =5040 2 =10080种不同的排法;(分析:分两步完成:第一步,将A、B两人捆绑,看成一个人,则原来的8个人可以看成是 7个人排成一排,共有A;=765432 1 =5040种不同的排法;第二步,将A、B两人在队伍中进2行排列,不同的排法有 A 2 =2 1=2种;用分步乘法计算,完成这件事情共有:A7 A2 = 5040 2 = 10080种不同的排法)小结:如果排列中有某些元素需要排在一起,可以先将它们捆绑,看成一个元素与其它元素进行排列后,再松绑,将需要排在一起的元素在队伍里进行第二步排列,这种方法称为"捆绑法”;(15)_________________________________________________________________________ 8人排成一排,其中 A、B、C三人不在排头并且要互相隔开,一共有________________________________________________________________________________________ 种不同的排法;5 3解:共有:A A =120 60 =7200种不同的排法;(分析:分两步完成:第一步,先不排A、B、C三人,把剩下的5个人进行排列,共有A5 ^5 4 3 2 1=120种不同的排法;第二步,将 A、B、C三人放入5个人排好的队伍间隔中,由于 A、B、C 三人不能排头并且互相要隔开,只能从如下图箭头所示的5个位置中任取3个位置进行排列,共有A =5 4 3 =60种不同的5 = 7200种不同排法)排法;共有:A5 AA B C小结:当某几个元素要求不相邻(即有条件限制)时,可以先排没有条件限制的元素,再将不能相邻的元素按要求插入已排好元素的空隙之中,这种方法叫插入法。
概率与统计(1)
概率与统计作者:王进来源:《高考进行时·高三数学》2012年第11期概率统计是研究随机现象的科学。
高中阶段,同学们通过实际问题情境,学习随机抽样、样本估计、概率统计等来体会用样本估计总体及其特征的思想,体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。
一、考纲要求根据《2012年江苏省高考数学学科考试说明》,考纲给出的能级要求如下:从表格中可以看出高考对这一部分内容的考查注重考查基础知识和基本方法。
1. 统计部分了解简单随机抽样、系统抽样和分层抽样的方法及各自的适用范围,能读懂频率分布直方图,了解茎叶图,能根据公式计算样本数据的平均数和方差,了解方差的统计学意义。
2. 概率部分通过学习,要能区分古典概型和几何概型的异同点,能通过枚举法计算简单的古典概型,而对于几何概型,只要掌握一维和二维图形的几何概型即可。
二、难点疑点1. 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征。
2. 古典概型的适用条件:(1)试验结果的有限性,(2)所有结果的等可能性。
三、经典练习回顾--!> 1. 若k1,k2,…,k8的方差为3,则2(k1-3),2(k2-3),…,2(k8-3)的方差为 .2. 将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷2次,至少出现一次6点向上的概率是.3. 两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.4. 甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.四、例题精析【例1】将一颗骰子先后抛掷两次,观察向上的点数,求:(1)两数和是3的倍数的概率;(2)点数之和为质数的概率;(3)点数之和不低于10的概率;(4)概率最大时,点数之和.解(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果,对于每一种结果,第二次抛时又都有6种可能的结果,于是共有6×6=36种不同的结果.记“两次向上点数之和是3的倍数”为事件A,则事件A的结果有12种.两次向上点数之和是3的倍数的概率为: P(A)=1236=13.(2)记“点数之和为质数”为事件B,则事件B的结果有15种.点数之和为质数的概率为:P(B)=1536=512.(3)记“两次向上点数之和不低于10”为事件C,则事件C的结果有6种,因此所求概率为:P(C)=636=16.(4)点数之和为7时,概率最大,且概率为:636=16.点拨事件A概率的计算,关键是准确计算样本空间所含基本事件个数n与事件A中包含的结果数m,因此,必须解决好下面三个方面的问题:(1)本实验是否等可能;(2)本实验的基本事件有多少个;(3)事件A是什么,它包含多少个基本事件。
高考数学“概率与统计”试题的特点及其教学启示
2024年5月上半月㊀评价研究㊀㊀㊀㊀高考数学 概率与统计 试题的特点及其教学启示◉长江大学信息与数学学院㊀罗㊀毅㊀李㊀勇1背景概率与统计 是高中数学四大主要课程之一.而高考中 概率与统计 试题形式多变,考查的侧重点和综合难度都有一定的变化,部分一线教师难以把握高考复习方向[1],因此对全国卷(全国甲卷㊁乙卷,新高考Ⅰ卷㊁Ⅱ卷)中 概率与统计 的相关试题进行统计分析,为教学实践提供有效的建议,提醒教师重视 概率与统计 内容[2].为教师开展有效的教学活动提供方向,充分发挥新高考在数学学科教育中的导向作用,以达到更好的教学效果.2研究方法本文对2021年和2022年全国高考数学卷(理科)中的 概率与统计 试题进行统计分析(8套共计34个题目).考虑到不同题型所考查的内容和重点存在差异,因此将 概率与统计 试题分为选填题和解答题两大类,采用定性和定量相结合的研究方法,先对试题的命题特点进行统计分析,再从不同类型试卷入手,研究试题的综合难度,结合统计图表分析试题特点及试题综合难度.2.1命题特点分析(1)情境领域:数学问题通常是以问题情境有机地展现出来.本文将依据新课标中情境的划分进行统计(现实情境㊁数学情境㊁科学情境三个维度).(2)知识点:鉴于高考具有连续性㊁稳定性等特点,本文参考2019年高考考试大纲,对 概率与统计 考点进行分类和编码.(3)数学核心素养:培养学生的数学核心素养,可以使他们在今后的数学学习中有更多独到见解,从而有利于他们的身心发展.本文将参照新课标结合数学核心素养的划分维度(数学抽象㊁逻辑推理㊁数学建模㊁直观想象㊁数学运算㊁数据分析)对2021年和2022年高考数学 概率与统计 试题进行统计分析.2.2综合难度分析综合难度分析可以把握试题的难易程度,并科学调控试题难度,从而提高命题质量.国内学者鲍建生[3]则根据我国数学课程的具体情况提出了五个难度影响因素的难度模型.本文将采用武小鹏等[4]基于A H P 理论构建的研究数学高考试题综合难度模型,该模型含7个要素(背景因素㊁是否含参㊁运算水平㊁推理能力㊁知识含量㊁思维方向㊁认知水平),各要素又依据自身特点划分为不同水平,具体如表1所示.表1㊀难度因素水平划分及内涵难度因素水平赋值背景因素无背景1生活背景2科学背景3是否含参无参数1有参数2运算水平简单数值运算1复杂数值运算2简单符号运算3复杂符号运算4推理能力简单推理1复杂推理2知识含量少量1中等2大量3思维方向顺向思维1逆向思维2认知水平理解1运用2综合分析3㊀㊀记第i个因素(共j个水平)的水平为a i j,各因素的难度系数为:d i=1Nðj n i j d i j(i=1,2, ,7;j=1,2,3,4),n i j表示第i个因素中第j个水平的题目个数, N代表题目的总个数.因此,整套试题的综合难度系55评价研究2024年5月上半月㊀㊀㊀数为D =ð7i =1d i k i (i =1,2, ,7),其中k i 为各因素在整个试题中所占的权重系数,本文参考武小鹏[1]提出的难度模型所得出的权重系数(k i =0.40,1.20,0.83,2.50,0.40,0.83,0.83).3数据统计与分析3.1试题特点分析(1)情境领域分析通过统计(见表2)发现,试题对现实情境的设置最多,如2021年全国乙卷第6题: 将5名北京冬奥会志愿者分配到花样滑冰等4个项目进行培训,,则不同的分配方案共有多少种? 试题情境贴近现实生活,与国家时事紧密相联,培养学生的国家荣誉感和社会责任感,让学生充分体会数学知识的实用性,将理论和实践相结合.表2㊀试题情境统计表现实情境科学情境数学情境总数频数234734百分比/%67.6511.7620.59100㊀㊀(2)知识点分析2021年和2022年选填题在知识点上重点考查了 古典概型 概率 以及 用样本估计总体 部分,其知识点含量的设计往往趋向单个知识点的考查,总体来说考查难度不大.而解答题对于 随机抽样 和 概率 知识点的考查最多,很少涉及 变量的相关性 和 随机数与几何概型 的考查;每道解答题所考查的知识点均在两个及两个以上,体现了知识点的融合性,突显出解答题设置的综合性.(知识点统计见表3.)表3㊀知识点统计表选填题解答题随机抽样210样本估计总体36变量的相关性10事件与概率15古典概型56随机数与几何概型10概率410统计案例07㊀㊀(3)数学核心素养分析选填题着重考查学生的数学运算能力,注重数据分析能力,其命题符合考纲要求,具有实用性.解答题侧重数学运算㊁逻辑推理以及数学建模的考查,重视学生分析问题㊁解决问题能力的培养.以2022年新高考Ⅱ卷第19题为例,学生要从疾病与年龄间的关系情境中抽象出概率的数学问题,通过逻辑推理计算出患病平均年龄,并在此基础上建立模型计算某年龄段的患病率.(数学核心素养统计见表4.)表4㊀数学核心素养统计表选填题解答题数学抽象19逻辑推理115数学建模18直观现象33数学运算1318数据分析543.2试题综合难度分析按照表1中不同因素的界定,对8套试卷中 概率与统计 试题进行分类赋值.具体如下:例1㊀(2022年全国甲卷第2题)某社区通过公益讲座以普及社区居民的垃圾分类知识,为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图1:图1则(㊀㊀).A.讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差分析:该试题难度水平及赋值 生活背景2;简单符号运算3;简单推理1(包含三步:一是通过散点图对数据进行排序;二是根据中位数概念找出中位数;三是根据平均数㊁标准差以及极差的计算公式分别计算出平均数㊁标准差以及极差);无参数1;知识点652024年5月上半月㊀评价研究㊀㊀㊀㊀含量中等2;顺向思维1;运用认知水平2.对2021年和2022年全国高考概率与统计 知识单元涉及的34道试题同上进行分类和赋值,得到原始编码数据后根据综合难度系数公式进行计算,得到表5.表5㊀综合难度系数难度因素各因素综合难度系数甲卷乙卷Ⅰ卷Ⅱ卷背景因素2.001.781.712.10参数因素1.381.441.431.40运算水平2.632.633.142.60推理能力1.501.331.571.40知识含量2.001.782.142.10思考方向1.251.341.711.50认知水平2.252.332.432.00综合难度系数12.0911.7113.2211.92平均难度系数1.861.802.021.87㊀㊀从整体来看,2021年和2022年高考数学全国卷中 概率与统计 试题的综合难度系数差距不大,其中新高考Ⅰ卷 概率与统计 试题的综合难度系数最高,达到13.22,甲卷㊁乙卷和新高考Ⅱ卷的综合难度相差不大,难度系数在12左右.为直观了解2021年和2022年概率与统计 试题在这7个维度上的侧重程度,绘出雷达图,如图2.图2㊀综合难度系数雷达图可见,2021年和2022年甲㊁乙卷以及新高考Ⅰ㊁Ⅱ卷在推理能力㊁参数因素㊁背景因素三个维度上的考查难度差异不大,难度水平基本相当.在运算水平㊁知识的认知水平和思考方向三个方面,新高考Ⅰ卷概率与统计 试题的难度明显高于其他三卷,而在背景因素上又明显低于其他三卷;在知识含量方面,乙卷 概率与统计 试题的难度低于其他三卷;同时四种类型的试卷都重视对运算能力的考查,对此维度的考查力度远大于其他维度.4启示与建议通过综合统计和分析,发现这一部分的试题具有以下特征:一是问题情境多以现实情境为主,具有现实性;二是试题涵盖的知识点广泛,内容丰富;三是各类型试题对学生数学核心素养考查的侧重点不同,具有针对性;四是不同试卷的试题综合难度相差不大,具有一致性.本文认为,随着信息时代的到来, 概率与统计 的概念逐渐被人们所关注,这不仅有利于转变学生的思维方式,也有利于培养学生的良好素质,也为培养大量的信息技术人才打下了坚实的基础.因此给出如下几点建议.(1)问题情境方面适当的问题情境是检验数学学科核心素养的一个重要载体.因此在命制试题时要充分考虑学生和社会的需求以及时代背景,创设更加合理的问题情境,充分体现试题的应用性,使学生了解到,数学是从生活中产生的,也是在生活中得到运用的.(2)知识点方面单一的知识点不能够体现高考试题综合性的特点,命题可以适当增加知识点的容量或渗透其他学科知识点,从而增加试题的综合性,帮助学生建立完整的知识框架.(3)解题思维方面命题时可以适当增加逆向思维的试题,如增加一些需用反证法㊁举反例㊁逆用定理等求解的题目,这样才能有效地提高学生的思维能力,培养他们的逆向思维,提高他们的解题能力.(4)综合难度方面为了保证试题的价值,并发挥试题的选拔功能和导向作用,命题人要考虑各难度因素的平衡性,研究课标㊁回归教材,秉持促进学生均衡且全面发展的理念,并根据不同地区对高考试题的要求,科学地去均衡各难度因素,提高试题的价值.参考文献:[1]廖艺捷,朱展霖,胡典顺.近五年高考概率与统计试题的统计与分析 以全国Ⅰ卷(理科)为例[J ].数学通报,2021,60(2):56G62.[2]李亚琼,徐文彬.高考课标卷概率统计试题的特点及其教学启示 基于2011-2020年全国课标卷的分析[J ].数学教育学报,2021,30(6):13G19.[3]鲍建生.中英两国初中数学期望课程综合难度的比较[J ].全球教育展望,2002,31(9):48G52.[4]武小鹏,孔企平.基于A H P 理论的数学高考试题综合难度模型构建与应用[J ].数学教育学报,2020,29(2):29G34.Z75。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七讲 概率与统计★★★高考在考什么 【考题回放】 1.(重庆卷)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张, 则所取3张中至少有2张价格相同的概率为( )A .41B .12079C . 43D .2423解:可从对立面考虑,即三张价格均不相同,11153231031.4C C C P C ⇒=-= 选C 2.(辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码 是偶数的概率是( )A .122B .111C .322D .211解: 从中任取两个球共有66212=C 种取法,其中取到的都是红球,且至少有1个球的号码是偶数的取法有122326=-C C 种取法,概率为1126612=,选D. 3.(广东卷) 甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取一个球,则取出的两球是红球的概率为______(答案用分数表示)解:P=64⨯61=914.(上海卷) 在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的 概率是 (结果用数值表示).解:212335310C C C ==3.05. 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为.(用数值作答)解:由题意知所求概率37310111522128p C ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭ 6.(全国II) 在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 . 解:在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),正态分布图象的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在 (1,2)内取值的概率于ξ在(0,1)内取值的概率相同,也为0.4,这样随机 变量ξ在(0,2)内取值的概率为0.8。
★★★高考要考什么1.(1)直接利用四种基本事件的概率基本原理,求事件发生的概率 (2)把方程思想融入概率问题,解决实际问题(3)把概率问题与数列结合起来,运用数列方法解决概率问题 2.离散型随机变量的分布列。
(1)分布列:设离散型随机变量ξ可能取的值为x1, x2, …, xi, …, ξ取每一个值xi (i=1,2,……)的概率P (ξ=xi )=Pi , 则称下表为随机变量ξ的概率分布,简称为ξ的分布列.(2)分布列的性质:由概率的性质可知,任一离散型随机变量的分布列都具有下面两个性质: <1> Pi ≥0,i =1,2,......;<2> P1+P2+ (1)(3)二项分布:如果在一次试验中某事件发生的概率是p ,那么在 n 次独立重复试验中这个事件恰好发生 k 次的概率是()k k n kn P k C p q ξ-==,其中k=0,1,…,n .q=1-p ,于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p )其中n ,p 为参数,记k k n kn C p q -=b(k ;n ,p).(4)离散型随机变量ξ的期望:E ξ=x1p1+x2p2+……+xipi+… (5)离散型随机变量ξ的方差:2221122()()()i i D x E p x E p x E p ξξξξ=-+-++-+2(6),(,0),a b a b a E aE b D a D ξηξηξηξ=+≠=+=若为随机变量则为常数,也为随机变量,且。
(7)B(n,p),E =np,D =np(1-p).ξξξ 若则3. 若标准正态分布2(,)N μσ总体取值小于0x 的概率用0()x φ表示,即:00()()x P x x φ=<x-x F(x)=().μμσφσ2对于一般正态总体N(,)来说,取值小于的概率★★★ 突 破 重 难 点【范例1】某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率. 解(1)0,1,2,3ξ=22342255189P( 0)=10050C C C C ξ=∙==, 211123324422225555C 24P( 1 )=C 50C C C C C C C ξ=∙+∙=, 11122324422222555515(2)50C C C C C P C C C C ξ==∙+∙= , 124222552(3)50C C P C C ξ==∙=所以ξ的分布列为ξ的数学期望E(ξ)=9241520123 1.250505050⨯+⨯+⨯+⨯=(2) P(2ξ≥)=15217(2)(3)505050P P ξξ=+==+=分析提示:本题以古典概率为背景,其关键是利用排列组合的方法求出m ,n ,主要考察分布列的求法以及利用分布列求期望和概率。
变式:袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ε表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量ε的概率分布和数学期望; (3)计分介于20分到40分之间的概率.解:(I )解法一:“一次取出的3个小球上的数字互不相同”的事件记为A ,则311152223102()3C C C C P A C ⋅⋅⋅==解法二:“一次取出的3个小球上的数字互不相同的事件记为A”,“一次取出的3个小球上有两个数字相同”的事件记为B ,则事件A 和事件B 是互斥事件,因为1215283101()3C C C P B C ⋅⋅==,所以12()1()133P A P B =-=-=.(II )由题意ξ有可能的取值为:2,3,4,5.211222223101(2);30C C C C P C ξ⋅+⋅===211242423102(3);15C C C C P C ξ⋅+⋅=== 211262623103(4);10C C C C P C ξ⋅+⋅===211282823108(5);15C C C C P C ξ⋅+⋅===ε因此ε的数学期望为1238132345301510153E ε=⨯+⨯+⨯+⨯=(Ⅲ)“一次取球所得计分介于20分到40分之间”的事件记为C ,则2313()("3""4")("3")("4")151030P C P P P εεεε=====+==+=或【范例2】甲、乙、丙3人投篮,投进的概率分别是13, 25 , 12.(Ⅰ)现3人各投篮1次,求3人都没有投进的概率; (Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ. 解: (Ⅰ)记"甲投篮1次投进"为事件A1 , "乙投篮1次投进"为事件A2 , "丙投篮1次投进"为事件A3,"3人都没有投进"为事件A .则P(A1)= 13,P(A2)= 25,P(A3)= 12,∴ P(A) = P(1A .2A .3A )=P(1A )·P(2A )·P(3A )= [1-P(A1)] ·[1-P (A2)] ·[1-P (A3)]=(1-13)(1-25)(1-12)=15∴3人都没有投进的概率为15.(Ⅱ)解法一: 随机变量ξ的可能值有0,1,2,3, ξ~ B(3, 25),P(ξ=k)=C3k(25)k(35)3-k (k=0,1,2,3) , Eξ=np = 3×25 = 65 .解法二: ξ的概率分布为:Eξ=0×27125 +1×54125 +2×36125 +3×8125 = 65.分析提示:已知概率求概率,主要运用加法公式(互斥)和乘法公式(独立)以及n 次独立重复试验(二项分布),注意条件和适用的范围,另外利用二项分布期望和方差结论使问题简洁明了。
变式:假设每一架飞机引擎飞机中故障率为P ,且个引擎是否发生故障是独立的,如果有至少50%的引擎能正常运行,问对于多大的P 而言,4引擎飞机比2引擎飞机更安全? 解 飞机成功飞行的概率:4引擎飞机为:23224443342224)1(4)1(6)1()1(P P P P P PC P P C P P C +-+-=+-+-2引擎飞机为:222212)1(2)1(P P P P C P P C +-=+-要使4引擎飞机比2引擎飞机更安全,只要02783)1(2)1(4)1(62324322≥-+-+-≥+-+-p P P P P P P P P P P所以32,023≥≥-P P【范例3】某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元 的赔偿(假设每辆车最多只赔偿一次)。
设这三辆车在一年内发生此种事故的概率分别为111,,,91011且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(4分)(2)获赔金额ξ的分布列与期望。
(9分) 解:设k A 表示第k 辆车在一年内发生此种事故,123k =,,.由题意知1A ,2A ,3A 独立,且11()9P A =,21()10P A =,31()11P A =.(Ⅰ)该单位一年内获赔的概率为123123891031()1()()()19101111P A A A P A P A P A -=-=-⨯⨯=.(Ⅱ)ξ的所有可能值为0,9000,18000,27000.12312389108(0)()()()()9101111P P A A A P A P A P A ξ====⨯⨯=,123123123(9000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++19108110891910119101191011=⨯⨯+⨯⨯+⨯⨯2421199045==,123123123(18000)()()()P P A A A P A A A P A A A ξ==++ 123123123()()()()()()()()()P A P A P A P A P A P A P A P A P A =++1110191811910119101191011=⨯⨯+⨯⨯+⨯⨯273990110==,123123(27000)()()()()P P A A A P A P A P A ξ===111191011990=⨯⨯=.综上知,ξ的分布列为求ξ的期望有两种解法: 解法一:由ξ的分布列得811310900018000270001145110990E ξ=⨯+⨯+⨯+⨯299002718.1811=≈(元).解法二:设k ξ表示第k 辆车一年内的获赔金额,123k =,,,则1ξ有分布列故11900010009E ξ=⨯=.同理得21900090010E ξ=⨯=,319000818.1811E ξ=⨯≈.综上有1231000900818.182718.18E E E E ξξξξ=++≈++=(元).变式:猎人在距离100米处射击一野兔,其命中率为0.5,如果第一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.解 记三次射击依次为事件A ,B ,C ,其中21)(=A P ,由2100)(21kA P ==,求得k=5000。