Thoracic Ultrasound Overview

合集下载

超声引导下胸椎旁神经阻滞复合全身麻醉在乳腺癌根治术中的应用及对疼痛、血流动力学的影响

超声引导下胸椎旁神经阻滞复合全身麻醉在乳腺癌根治术中的应用及对疼痛、血流动力学的影响

超声引导下胸椎旁神经阻滞复合全身麻醉在乳腺癌根治术中的应用及对疼痛、血流动力学的影响陈鹏① 周密② 张敏② 【摘要】 目的:分析在乳腺癌根治术中应用超声引导下胸椎旁神经阻滞复合全身麻醉的效果。

方法:采用回顾分析法开展研究,根据不同麻醉方案,将2021年6月—2023年7月于武汉大学中南医院兴山医院行乳腺癌根治术的70例患者分为参照组与研究组,将实施全身麻醉加用超声引导下胸椎旁神经阻滞的35例纳入研究组,仅实施全身麻醉的35例纳入参照组。

对比两组围手术期入室时(T0)、麻醉时(T1)、插管时(T2)、切皮时(T3)、腋窝清扫时(T4)、拔管时(T5)、出室时(T6)的麻醉效果、血流动力学变化情况和术后不同时间点的疼痛评分。

结果:在T3、T4时,研究组的脑电双频指数均低于参照组,差异均有统计学意义(P<0.05)。

在T1、T2、T3、T4、T5、T6时,研究组心率、平均动脉压均低于参照组,差异均有统计学意义(P<0.05);研究组各时间点的心率、平均动脉压对比,差异无统计学意义(P>0.05);参照组T0后各时间点的心率、平均动脉压均高于T0时,差异均有统计学意义(P<0.05)。

研究组术后2、6、8、12 h的疼痛评分均低于参照组,差异均有统计学意义(P<0.05)。

结论:超声引导下胸椎旁神经阻滞复合全身麻醉可增强麻醉效果,且减少患者围手术期血流动力学的波动,还可维持长期术后镇痛效果。

【关键词】 乳腺癌 乳腺癌根治术 超声 胸椎旁神经阻滞复合全身麻醉 The Application of Thoracic Paravertebral Nerve Block Combined with General Anesthesia Guided by Ultrasound in Radical Operation of Breast Cancer and Its Effects on Pain and Hemodynamics/CHEN Peng, ZHOU Mi, ZHANG Min. //Medical Innovation of China, 2024, 21(13): 052-056 [Abstract] Objective: To analyze the effect of ultrasound guided thoracic paravertebral nerve block combined with general anesthesia in breast cancer radical surgery. Method: Using retrospective analysis method, according to the different anesthesia scheme, 70 patients from June 2021 to July 2023 in Xingshan Hospital, Zhongnan Hospital of Wuhan University were divided into reference group and study group, 35 cases of general anesthesia with ultrasound guided thoracic nerve block into the study group, 35 cases of only general anesthesia were included in the reference group. The anesthetic effect, hemodynamic changes at the time of entering the operation room (T0), anesthesia (T1), intubation (T2), skin incision (T3), axillary dissection (T4), extubation (T5) and leaving the room (T6) and pain scores at different time points after operation were compared between the two groups. Result: At T3 and T4, the EEG double-frequency index of the study group were lower than those of the reference group, the differences were significant (P<0.05). At T1, T2, T3, T4, T5 and T6, the heart rate and mean arterial depression in the study group were lower than those in the reference group, the differences were statistically significant (P<0.05); there were no statistically significant differences in heart rate and mean arterial pressure at each time point in the study group (P>0.05). In the reference group, the heart rate and mean arterial pressure at each time point after T0 were higher than that at T0, the differences were statistically significant (P<0.05). The pain scores of the study group at 2, 6, 8 and 12 h were lower than those of the reference group, the differences were statistically significant (P<0.05). Conclusion: Ultrasound guided thoracic paravertebral nerve block combined with general anesthesia can enhance the anesthesia effect, reduce the fluctuation of perioperative hemodynamic fluctuations, and maintain long-term postoperative analgesia. [Key words] Breast cancer Radical mastectomy of breast cancer Ultrasound Thoracic paravertebral nerve block combined with general anesthesia①武汉大学中南医院兴山医院麻醉科 湖北 宜昌 443711②宜昌市中心人民医院西陵院区麻醉科 湖北 宜昌 443008通信作者:陈鹏 乳腺癌是全球女性发病率较高的恶性肿瘤之一,每年新发病例数超过200万,死亡病例数超过60万,且发病年龄逐渐年轻化[1-2]。

超声引导下胸椎旁神经阻滞复合全身麻醉在单侧多发

超声引导下胸椎旁神经阻滞复合全身麻醉在单侧多发

超声引导下胸椎旁神经阻滞复合全身麻醉在单侧多发【摘要】目的:探讨超声引导下胸椎旁神经阻滞(TPVB)复合全身麻醉在单侧多发肋骨骨折手术及术后镇痛中的应用效果。

方法:选择收治单侧多发肋骨骨折手术患者60例,所有患者均于2017年1月至2019年5月在我院接受治疗,按照随机数字表法分为实验组(n=30)和常规组(n=30)。

常规组患者实施全身麻醉后手术,实验组患者常规全身麻醉后实施超声引导下TPVB再手术,术后两组病人都静脉滴注氟比洛芬酯镇痛。

观察两组病人术中平均动脉压、心率、术后疼痛评分、不良反应发生率。

结果:切皮前两组心率、平均动脉压对比差异无统计学意义(P>0.05)。

切皮后实验组患者心率(70.0±7.1)次/min、平均动脉压(79.5±4.6)mmHg,均低于常规组的(87.8±11.2)次/min、(102.3±10.4)mmHg(P<0.05)。

术后1小时实验组静息VAS评分(0.2±0.1)分、活动VAS评分(0.3±0.2)分,均显著低于常规组的(0.7±0.5)分、(1.8±0.8)分(P<0.05)。

术后12小时实验组静息VAS评分(1.6±0.5)分、活动VAS评分(1.7±0.6)24小时实验组静息VAS评分(1.2±0.4)分、活动VAS评分(1.4±0.5)分,均显著低于常规组的(2.9±0.8)分、(3.1±0.9)分(P<0.05)。

实验组不良反应发生率和常规组对比差异无统计学意义(P<0.05)。

结论:在单侧多发肋骨骨折手术中实施超声引导下TPVB联合全身麻醉,对血流动力学指标影响较小,能够明显减轻术后疼痛,不增加不良反应发生率。

【关键词】单侧多发肋骨骨折;超声引导下TPVB;疼痛;心率;平均动脉压;不良反应[Abstract] objective:to investigate the application effect of ultrasound-guided thoracic paraspinal nerve block(TPVB)combined with general anesthesia in the operation of unilateral multiple rib fractures and postoperative analgesia. Methods:60 patients with unilateral multiple rib fractures were selected for treatment. All patients received treatment in our hospital from January 2017 to May 2019,and were divided into experimental group(n=30)and conventional group(n=30)according to the random number table method. Patients in the conventional group underwent surgery after general anesthesia,while patients in the experimental group underwent ultrasound-guided TPVB reoperation after general anesthesia. After surgery,patients in both groups received intravenous infusion of flurbiprofen ester for analgesia. The mean intraoperative arterial pressure,heart rate,postoperative pain score and incidence of adverse reactions were observed in the two groups. Results:there was no significant difference in heart rate and mean arterial pressure between the two groups before skin resection(P>0.05). Heart rate(70.0±7.1)times /min and mean arterial pressure(79.5±4.6)mmHg were lower in the experimental group than in the conventional group(87.8±11.2)times /min and(102.3±10.4)mmHg(P<0.05). VAS scores at rest(0.2±0.1)and at activity(0.3±0.2)in the experimental group at 1 hour after surgery were significantly lower than those in the conventional group(0.7±0.5)and(1.8±0.8)(P<0.05). VAS scores at 12 hours after surgery(1.6±0.5)at rest and(1.7±0.6)at 24 hours were significantly lower than those at 2.9±0.8 and 3.1±0.9 in the conventional group(P<0.05). There was no significant difference in the incidence of adverse reactions between the experimental group and the conventional group(P<0.05). Conclusion:ultrasound-guided TPVB combined with general anesthesia in the operation of unilateral multiple rib fractures has little effect on hemodynamic indexes and can significantly reduce postoperative pain without increasing the incidence of adverse reactions.【Key words 】 unilateral multiple rib fractures;TPVB guided by ultrasound;The pain;Heart rate;Mean arterial pressure;Adverse reactions胸椎旁神经阻滞(TPVB)是外周神经阻滞的一种,通过向椎旁间隙处注射局麻药物,形成同侧邻近多个节段躯体及交感神经阻滞,最终发挥区域性镇痛作用[1]。

不同区域阻滞技术在乳腺癌根治术中的应用进展

不同区域阻滞技术在乳腺癌根治术中的应用进展

不同区域阻滞技术在乳腺癌根治术中的应用进展作者:林新强陈育人陈晓何莹茜来源:《中国现代医生》2022年第14期[摘要] 乳腺癌是女性最常见的恶性肿瘤。

由于乳腺区域神经支配复杂,如果术后急性疼痛处理不当,就有发展为慢性疼痛的风险。

区域阻滞技术被认为是减少术后急性疼痛和慢性疼痛发生率的最佳选择。

几种不同区域阻滞技术均被证明可以有效控制乳腺癌患者术后疼痛、降低阿片类药物用量及降低全麻并发症。

超声引导下区域阻滞技术包括胸椎旁神经阻滞、胸神经阻滞、前锯肌平面阻滞、竖脊肌平面阻滞和菱形肋间肌平面阻滞均可用于乳腺癌术后镇痛。

因此,这篇综述的目的是分析不同区域阻滞方法的解剖特点、阻滞技术及临床应用,为研究不同区域阻滞技术在乳腺癌根治术中的应用提供依据。

[关键词] 超声引导;区域阻滞技术;术后镇痛;乳腺癌根治术[中图分类号] R737.9;R614.4 [文献标识码] A [文章编号] 1673-9701(2022)14-0189-05Application progress of different regional block techniques in radical mastectomy of breast cancerLIN Xinqiang CHEN Yuren CHEN Xiao HE YingqianDepartment of Anesthesiology, Affiliated Hospital of Putian University, Putian 351100,China[Abstract] Breast cancer is the most common malignant tumor in women. Due to the complex innervation of the breast area, there is a risk of developing chronic pain if acute pain is not managed properly after surgery. Regional block techniques are considered to be the best option for reducing the incidence of postoperative acute and chronic pain. Several different regional block techniques have been proven to be effective in controlling postoperative pain, reducing opioid dosage and reducing general anesthesia complications in breast cancer patients. Ultrasound-guided regional block including thoracic paraspinal nerve block, thoracic nerve block, serratus anterior plane block, erector spinal plane block and rhomboid intercostal plane block can be used for postoperative analgesia of breast cancer. Therefore, the purpose of this review is to analyze the anatomical characteristics,block techniques and clinical application of different regional block techniques, and to provide a basis for the study of the application of different regional block techniques in radical mastectomy of breast cancer.[Key words] Ultrasonic guidance; Regional block technique; Postoperative analgesia; Radical mastectomy乳腺癌手術是女性最常见的手术之一,在这些患者中,30%~50%的患者术后出现中度至重度急性疼痛[1-2],8%~25%的患者出现持续疼痛[3]。

单纯超声引导下经皮介入封堵室间隔缺损临床体会

单纯超声引导下经皮介入封堵室间隔缺损临床体会

单纯超声引导下经皮介入封堵室间隔缺损临床体会【摘要】目的探讨单纯超声引导下经皮介入封堵室间隔缺损的有效性及安全性。

方法纳入2020年6月至2020年12月在我院行超声引导下经皮室间隔缺损封堵治疗患儿30名,对其临床资料进行回顾性分析。

术中在TEE或TTE引导下经皮置入室间隔缺损封堵器,并即刻通过超声评估封堵治疗效果。

术后定期返院复查随访。

结果本组男性患儿18 例,女性患儿12 例,患儿平均年龄(2.8±1.1)岁,平均体重(14.1±3.1)Kg,平均室间隔缺损直径(3.2±0.8)mm。

30例患儿中,8例患儿在经胸超声引导下完成,22例患儿在食道超声引导下完成,所有患儿经皮介入封堵均成功完成,无中转经胸小切口封堵或开胸体外循环室间隔缺损修补病例,平均手术时间为:(33.7±7.8)min,平均住院时间:(4.0±0.7)天。

所有患儿均接受术后随访,平均随访时间(16.7±5.4)月,随访期间未出现封堵器脱落、残余分流、心律失常、心包积液、瓣膜返流、血栓形成等并发症。

结论超声引导下经皮介入封堵室间隔缺损在疗效相同的前提下,避免了X线对患者及医务人员的损伤,安全有效,有广阔的发展和临床应用前景。

关键词:超声引导室间隔缺损介入封堵【 Abstract 】 Objective To investigate the efficacy and safety of percutaneous interventional closure of ventricular septal defect (VSD) guided by ultrasound alone. Methods 30 children who underwentultrasour-guided percutaneous ventricular septal defect occlusion inour hospital from June 2020 to December 2020 were enrolled, and their clinical data were retrospectively analyzed. Intraoperatively, a percutaneous ventricular septal defect occluder was placed under the guidance of TEE or TTE, and the effect of the occluder was evaluatedby ultrasound immediately. Postoperative regular return to thehospital review follow-up. Results There were 18 male children and 12 female children. The average age of the children was (2.8±1.1) years old, the average weight was (14.1±3.1) Kg, and the average diameterof ventricular septal defect was (3.2±0.8) mm. Among the 30 cases, 8 cases were completed under the guidance of thoracic ultrasound, and 22 cases were completed under the guidance of esophageal ultrasound. Percutaneous intervention was successfully completed in all cases, and no cases were transferred to small thoracic incision closure or thoracotomy extracorporeal circulation repair of ventricular septal defect. The average operation time was (33.7±7.8) min, and theaverage length of hospital stay was: (4.0±0.7) days. All the children were followed up with an average follow-up time of (16.7±5.4) months. No complications occurred during the follow-up, such as occluder shedding, residual shunt, arrhythmia, pericardial effusion, valve regurgitation, thrombosis, etc. Conclusion Ultrasound guided percutaneous interventional closure of ventricular septal defect can avoid the injury of X-ray to patients and medical staff under the premise of the same curative effect. It is safe and effective and has broad development and clinical application prospect.Key words: ultrasound guided ventricular septal defectinterventional closure室间隔缺损是最常见的先天性心脏病之一,目前室间隔缺损的治疗方式包括:体外循环室间隔缺损修补术、X线引导经皮室间隔缺损封堵术、超声引导下经胸小切口室间隔缺损封堵术、超声引导下经皮室间隔缺损封堵术,外科室间隔缺损修补术创伤大,术后遗留疤痕,部分患者甚至出现胸廓畸形,目现主要应用于无介入指征的患者,与传统外科手术相比,介入治疗不仅安全有效,成功率高,而且费用低、创伤小、术后并发症少[1],但X线引导经皮室间隔缺损封堵术有X线损伤及造影剂对肾的影响[2],近年兴起的超声引导下室间隔缺损封堵术避免了X线对身体的损害,同时超声能够清晰显示心腔结构、血流及瓣膜,能够实时监测治疗全过程,尽量避免操作过程损伤腱索、主动脉瓣或三尖瓣,手术安全性增加[3]。

三尖瓣环——精选推荐

三尖瓣环——精选推荐

三尖瓣环有位⽼师后台留⾔说“⼼脏解剖”,笔者想了⼏天,觉得这个题⽬略有些⼤,就擅⾃篡改为了最近⽐较感兴趣的三尖瓣环,希望这位⽼师不要介意。

三尖瓣(Tricuspid valve,TV)是⼼脏中最⼤,且位置最⾼的瓣膜,作为⼀个D型的椭圆复合体,侧⾯观察其具有鞍形⽽不是平⾯的轮廓。

TV位于右房室交界处,由三个瓣叶、瓣环、腱索和乳头肌组成。

⼀般前叶最⼤,隔叶其次,后叶最⼩。

瓣叶的基部附着于瓣环,⾃由缘和体部附着于腱索,腱索⼜附着于相应乳头肌。

图1 通过右房侧观察,⽀撑三尖瓣瓣叶的乳头肌在三尖瓣关闭不全的早期阶段,右⼼室和三尖瓣环发⽣重构,此时可⽆明显的三尖瓣返流。

三尖瓣前叶最多可扩张40%,后叶则为80%,由于与⼼脏纤维环连结更紧密,隔叶相对⽽⾔更为固定,因此三尖瓣环扩张主要将瓣叶拉开,尤其是前叶和后叶,此时瓣叶间的接合明显降低。

当瓣环扩张超过正常的40%时,就会出现返流。

不同患者瓣环扩张的程度可能因前负荷、后负荷以及右⼼室收缩⼒和不同,然⽽⼀旦三尖瓣环出现扩张,⼀般都是⾮可逆的。

三尖瓣腱索⼀般来⾃乳头肌,也可直接来⾃室间隔,通常有⼤约25条腱索,它们都是经⽪介⼊治疗器械潜在的卡点。

三尖瓣腱索通常⽐⼆尖瓣的可扩张性⼩,因此右⼼室扩张瓣叶易被拴住。

图2 右⼼房⾯观察三尖瓣环扩张的情况(右),正常对照(左)图3 2016年的报道,体外测试猪⼼三尖瓣的结果,不同瓣叶段的平均瓣环张⼒(Annulus tension,AT,瓣环周长单位长度的瓣叶张⼒)和平均⼩叶⼒值。

注意Normal代表正常三尖瓣,dialted为扩张,Clover代表修复后的三尖瓣环(注意正常状况下隔叶最⾼,不正常者的张⼒和⼒值则远⾼于正常者~)1982年的报道中,美国Chuwa Tei教授(Greater Los Angeles Affiliate)和Jennifer P. Pilgrim教授(Wadsworth Veterans Administration Medical Center)等,使⽤超声评价了5名正常受试者共12个⼼动周期中的三尖瓣复合体,发现其整体运动模式与⼆尖瓣相似。

超声下肋间神经阻滞联合静脉镇痛及护理在腔镜肺癌根治术中的应用

超声下肋间神经阻滞联合静脉镇痛及护理在腔镜肺癌根治术中的应用

than thr coutroU group (P <5. 06) . TOs incinence of postouerativa aCverse reactions in thr oUservatiou
group wnt sinnificantiy 0ignna than thnt in thr coutroU group (P <6. 65). Conclusion UltrasounC-
Abstraco: Objective To oUsene clinicai efficacy of ultrasouna-ouiCed intercostai aerve bloct
combiaed with intryveroua analuesin fUc lung caacrc patienia with thoncascopic raCicai sanun ant
咪定、

镇静
平, 镇痛 ,
体 定。观察组联
合应用静脉镇痛泵,舒芬太尼2. 5 ig/kg和氟比
洛芬酯3 mg/kg加生理盐水稀释至125 mL,经静
脉持续输注2 V,输注速度为2 mL/k,单次追加
剂量2 mL,锁定12 min;对照组连接硬膜外镇痛
泵,罗哌卡因225 mg和舒芬太尼55 ig加生理盐
trva bloct ; eeipprat analgesic; systematta holistta
随着微创化手术、舒适化麻醉和系统化整体护 理理念的普及,手术创伤更小的胸腔镜肺癌根治术 在临床中大量开展⑴o但胸腔镜肺癌根治术可导 致肋间肌和神经的机械性损伤,术后胸腔闭式引流 管也会刺激胸膜和膈肌,加之术后炎症反应以及 异位神经活动等,均可使患者出现不同程度的异 常疼痛[2],严重影响术后早期康复及预后。随着 可视化技术的飞速发展,超声引导神经阻滞已逐 渐成为术后镇痛的利器[3]o系统化整体护理是 以整体护理为主体,融合系统科学理论和系统论 方法,以现代护理观为指导,以护理程序为核丿卜, 围绕患者解决问题的一种科学方法W" ] o本研究 观察了术前超声引导下肋间神经阻滞联合静脉镇 痛对胸腔镜肺癌根治术后患者的临床效果以及系 统性整体护理干预效果,现将结果报告如下。

超声及影像学专业常用术语中英文对照

超声及影像学专业常用术语中英文对照

临床超声医学杂志2019年5月第21卷第5期J Clin Ultrasound in Med,May2019,Vol.21,No.5水平控制差的胆道炎症患者容易发生心包、肾脏、脑部、肺部感染。

因此在诊治过程中配合使用降糖药物,对预防SA发生有重要临床意义。

当患者发生SA 时,可再次于超声引导下脓肿穿刺引流,本研究中SA 患者穿刺成功率100%。

作为单中心的回顾性队列研究,本研究存在一定的局限性:①未考虑手术方式对SA的影响。

PTGD穿刺方式是造成并发症的重要因素,如操作不熟练、穿刺角度不佳、在同一部位反复穿刺引起肝内胆管和胆囊壁的反复损伤,以及使用的扩展管粗于内置引流管等[15],②影响SA发生的因素复杂,尤其针对老年人而言,基础疾病多,一般情况差,多种综合因素可能会影响分析的精准性。

综上所述,SA是超声引导下PTGD术后并发症,再次穿刺引流是治疗SA安全有效的方法。

临床可通过加强对穿刺引流管的保护和应用降血糖药物,降低PTGD术后SA的发生。

参考文献[1]李驰,吴刚.超声引导下经皮经肝胆囊穿刺置管引流术治疗老年急性结石性胆囊炎的疗效[J].中国老年学杂志,2016,36(4):891-892.[2]马建伟,杨晓军,付兆亮.经皮经肝胆囊穿刺置管引流术在高龄急性化脓性胆囊炎治疗中的价值[J].中国普外基础与临床杂志,2016,23(2):237-239.[3]Ceylan H,Sirikci A,Ozokutan BH,et al.Conservative management of intrahepatic perforation of the gallbladder secondary to acalculouscholecystitis[J].Eur J Pediatr Surg,2003,13(5):337-340.[4]白明东,王建,徐海,等.《东京指南》指导下的急性胆囊炎腹腔镜胆囊切除术[J].中华普通外科杂志,2013,28(1):68-69.[5]陈琦,钮宏文.高龄急性胆囊炎胆囊造瘘术及PTGD术的对比分析[J].肝胆胰外科杂志,2015,27(3):224-226.[6]姜兆鹏,周显礼,纪巧,等.超声引导下经皮经肝穿刺胆囊置管引流术治疗急性胆源性胰腺炎[J].中国介入影像与治疗学,2015,12(10):588-591.[7]潘毅诚,王金鹏,刘双.经皮经肝胆囊穿刺在急性化脓性胆囊炎治疗中的价值[J].当代医学,2017,23(16):125-127.[8]赵红光,刘凯,刘亚辉.经皮经肝胆囊穿刺引流术后择期行腹腔镜胆囊切除术治疗60岁以上急性重症胆囊炎患者的最佳时机探讨[J].临床肝胆病杂志,2017,33(4):705-710.[9]魏勇,王海涛,宫焕松.超声引导下经皮经肝胆囊穿刺引流在高龄高危患者急性胆囊炎应用探讨[J].肝胆外科杂志,2016,24(3):193-196.[10]Itoi T,Takada T,Hwang TL,et al.Percutaneous and endoscopic gallbladder drainage for acute cholecystitis:international multicentercomparative study using propensity score-matched analysis[J].J Hepatobiliary Pancreat Sci,2017,24(6):362-368.[11]Hu YR,Pan JH,Tong XC,et al.Efficacy and safety of B-mode ultrasound-guided percutaneous transhepatic gallbladder drainagecombined with laparoscopic cholecystectomy for acute cholecystitisin elderly and high-risk patients[J].BMC Gastroenterol,2015,15(9):81.[12]Yukumi S,Suzuki H,Morimoto M,et al.Thoracic empyema caused by percutaneous transhepatic gallbladder drainage[J].Intern Med,2015,54(24):3189-3191.[13]姚杰,程娟,陈治东,等.老年2型糖尿病患者及其并发症与糖化血红蛋白的相关性分析[J].安徽医药,2016,20(3):516-517.[14]Maybury B,Powell-Chandler A,Kumar N.Two cases of Klebsiella pneumoniae liver abscess necessitating liver resection for effectivetreatment[J].Ann R Coll Surg Engl,2015,97(3):37-38.[15]经翔,杜智,王毅军,等.超声引导经皮经肝胆管引流术并发症分析[J].中华肝胆外科杂志,2010,22(8):600-603.(收稿日期:2019-03-25)超声及影像学专业常用术语中英文对照CDFI(color Doppler flow imaging)——彩色多普勒血流成像CT(computed tomography)——计算机断层成像CTA——CT血管造影PET(positron emission tomography)——正电子发射计算机断层显像DSA(digital subtraction angiography)——数字减影血管造影技术MRI(magnetic resonance imaging)——磁共振成像MRA(magnetic resonance angiography)——磁共振血管造影今后本刊将在文中直接使用以上专业术语的英文缩写,不再注明英文全称。

椎旁神经阻滞在肺癌手术中的应用进展

椎旁神经阻滞在肺癌手术中的应用进展

椎旁神经阻滞在肺癌手术中的应用进展发布时间:2022-07-24T07:22:50.166Z 来源:《医师在线》2022年3月5期作者:陈勇远秦云植[导读]陈勇远秦云植*(延边大学附属医院麻醉科;吉林延边136200)【摘要】肺癌手术因创伤大,对患者循环和呼吸系统功能干扰明显,潜在问题有术后剧烈疼痛、恶心呕吐、低氧血症、体温异常、意识障碍和血流动力学不稳定等。

胸椎旁神经阻滞( thoracic paravertebral block,TPVB)是在胸椎椎旁间隙注入麻醉药物进而产生同侧节段性躯体和交感神经阻滞的技术。

近年来,随着超声可视化技术的不断发展,胸椎旁神经阻滞得到快速发展。

TPVB镇痛效果明确,是围术期多模式镇痛可选方法之一。

此外,局麻药可降低应激反应对免疫系统的抑制作用,对肺癌患者的预后可起到一定的促进作用。

【关键词】肺癌手术;椎旁神经阻滞肺癌是我国最常见恶性肿瘤,也是我国首位恶性肿瘤死亡原因[1],现肺癌手术多在胸腔镜下进行,与传统开胸手术相比,具有创伤小、术中出血少与恢复快等优点,但仍会引起患者剧烈的疼痛与一定的应激反应,引起患者血流动力学波动、苏醒期躁动,并可能导致术后肺不张及肺部感染等并发症。

Ryungsa Kim等研究指出,手术引起的应激反应通过释放血管生成因子、抑制自然杀伤细胞和细胞介导的免疫来增强肿瘤转移,某些药物,如氯胺酮、硫喷托纳和阿片类药物等也可抑制NK细胞活性,而丙泊酚则没有[2]。

局麻药如利多卡因可增加NK细胞活性。

绝大部分研究认为以吗啡为主的阿片类药物促进了肿瘤的生长和转移。

如何减轻肺癌患者免疫功能抑制,对于预防肿瘤复发尤为重要。

巩红岩等研究发现超声引导连续胸椎旁神经阻滞能更好地抑制应激反应,并且可以减少术中全身麻醉药物的使用[3]。

1 胸椎旁间隙 thoracic pavertebral space (TPVS) 的解剖概述TPVS是临近椎体的三角形解剖结构,其内侧界由椎体和椎间盘构成,前外侧壁是壁层胸膜,后壁为肋横突韧带,不同节段的上下边界由肋骨头、肋骨颈、横突以及肋横突韧带等分隔。

犬的乳腺肿瘤

犬的乳腺肿瘤
Pain/ inflammatory skin 疼痛,皮肤发炎 Signs of metastatic disease 肿瘤转移的症状 Paraneoplastic signs- 副肿瘤性症状
– Cachexia 恶病质 – Hypercalcemia 高钙血症 – Anemia 贫血 – Inflammation 炎症
Inflammatory Carcinoma 炎性癌
Inflammatory
carcinoma
is
characterized by a poorly
differentiated carcinoma with heavy
inflammatory cell infiltrates.
炎性癌的特征是有大量炎性细胞浸润
Risk Factors- Breeds 危险因素—品种
Suggests a genetic component- not yet identified 建议遗传分组—尚不能识别
– toy and miniature poodles 玩具和迷你贵宾犬 – english springer spaniels 英国史宾格犬 – britanny spaniels – cocker spaniels 可卡犬 – english setters 英国雪达犬 – Pointers 波音达犬 – german shepherds 德国牧羊犬 – Maltese 马尔他犬 – yorkshire terriers 约克夏梗 – Dachshunds 腊肠犬
Tumour Pathology 肿瘤病理学
Benign or Malignant (50:50) 良性或恶性 Carcinomas (60%) 癌 Complex (30%)

美国经颅多普勒超声操作标准-第二部分:临床适应症及预期结果(英文版)

美国经颅多普勒超声操作标准-第二部分:临床适应症及预期结果(英文版)

Views and ReviewsPractice Standards for Transcranial Doppler (TCD)Ultrasound.Part II.Clinical Indications and Expected OutcomesAndrei V.Alexandrov,MD,Michael A.Sloan,MD,Charles H.Tegeler,MD,David N.Newell,MD,Alan Lumsden,MD,Zsolt Garami,MD,Christopher R.Levy,MD,Lawrence K.S.Wong,MD,Colleen Douville,RVT,Manfred Kaps,MD,Georgios Tsivgoulis,MD,PhD;for the American Society of Neuroimaging Practice Guidelines CommitteeFrom the Comprehensive Stroke Center,University of Alabama at Birmingham,Birmingham,AL (AVA,GT);Comprehensive Stroke Center,University of South Florida,Tampa,FL (MAS);Stroke Program,Wake Forest University Medical Center,Winston-Salem,NC (CHT);Department of Neurosurgery,Swedish Hospital,Seattle,WA (DNN,CD);Department of Cardio-Thoracic Surgery,Cornell University and The Methodist Hospital Houston,TX (AL,ZG);Hunter Stroke Service,Hunter New England Area Health Service,New South Wales,Australia (CRL);Division of Neurology,Chinese University of Hong Kong,Hong Kong,China (LKSW);Department of Neurology,University of Giessen,Giessen,Germany (MK);Department of Neurology,Democritus University of Thrace,Alexandroupolis,Greece (GT).Keywords:TCD,indications,applica-tions and outcomes.Acceptance:Received May 23,2010,and in revised form July 06,2010.Ac-cepted for publication July 15,2010.Correspondence:Address correspon-dence to Dr.Andrei V .Alexandrov,Com-prehensive Stroke Center/Neurology,The University of Alabama at Birming-ham,RWUH M226,61919th St South,Birmingham,AL 35249-3280.E-mail:avalexandrov@.J Neuroimaging 2010;XX:1-10.DOI:10.1111/j.1552-6569.2010.00523.xA B S T R A C TINTRODUCTIONTranscranial Doppler (TCD)is a physiological ultrasound test with established safety and efficacy.Although imaging devices may be used to depict intracranial flow superimposed on structural visualization,the end-result provided by imaging duplex or nonimaging TCD is sampling physiological flow variables through the spectral waveform assessment.SUMMARY OF RESULTSClinical indications considered by this multidisciplinary panel of experts as established are:sickle cell disease,cerebral ischemia,detection of right-to-left shunts (RLS),sub-arachnoid hemorrhage,brain death,and periprocedural or surgical monitoring.The follow-ing TCD-procedures are performed in routine in-and outpatient clinical practice:complete or partial TCD-examination to detect normal,stenosed,or occluded intracranial vessels,collaterals to locate an arterial obstruction and refine carotid-duplex or noninvasive angio-graphic findings;vasomotor reactivity testing to identify high-risk patients for first-ever or recurrent stroke;emboli detection to detect,localize,and quantify cerebral emboliza-tion in real time;RLS-detection in patients with suspected paradoxical embolism or those considered for shunt closure;monitoring of thrombolysis to facilitate recanalization and detect reocclusion;monitoring of endovascular stenting,carotid endarterectomy,and car-diac surgery to detect perioperative embolism,thrombosis,hypo-and hyperperfusion.CONCLUSIONBy defining the scope of practice,these standards will assist referring and reporting physicians and third parties involved in the process of requesting,evaluating,and acting upon TCD results.IntroductionFrom the stand-point of ultrasound physics,transcranial Doppler (TCD)was invented 1as one of the simplest tests based on a single-element transducer technology.Clinically,however,TCD is perhaps the most complex physiological test in vascu-lar medicine requiring in-depth skill training and understanding of cerebrovascular anatomy,physiology,and a variety of clin-ically diverse pathological conditions.Regardless of whether imaging duplex ultrasound or nonimaging TCD system is used for intracranial flow assessment,the end-product is the spec-tral waveform analysis and determination of physiological flow variables.Hemodynamic changes within normal and abnormal states present a complex task of correct sampling,monitoring,and interpretation even for experienced users across multiple clinical conditions.These are some of the reasons why so few people mastered this technique over the past quarter of a cen-tury and so many still remain skeptical.Nevertheless,tremen-dous progress has been made to establish certain areas where TCD is beyond doubt a valid and reliable diagnostic test that provides unique information,complimentary and often unob-tainable from other modalities,with its own prognostic and therapeutic significance.This multispecialty panel of experts convened by the Clinical Practice Committee of the American Society of Neuroimaging set the goal to define clinical indi-cations for and expected outcomes of TCD testing in routine clinical practice.With advances in stroke diagnosis,treatment,and pre-vention,TCD became the standard of care at comprehen-sive stroke centers being one of the essential diagnostic tests and services that a modern stroke team should have at theirCopyright◦C2010by the American Society of Neuroimaging1Table1.Diagnostic Test Performance Parameters Documented for TCDParameter Areas covered by published studiesApplicability Feasibility,tolerability,and success in consecutive patients:TCD is successfully applied to90%of patients withcerebrovascular diseases with no reports of adverse outcomes in26years of research and practice worldwide. Accuracy Comparison with DSA/MRA/CTA as well as other clinically relevant studies or outcomes:TCD has good-to-excellent agreement with angiography for the detection of stenoses and occlusions;equal to superior accuracy in the detection ofRLS versus TEE;and excellent agreement with nuclear flow studies in determining cerebral circulatory arrest.Yield Disease states which diagnosis with TCD was documented in research studies involving the gold standard imaging or clinical assessment range from intracranial stenoocclusive disease,collaterals to cerebral embolization,shunting,vasomotor reactivity,vasospasm after SAH,periprocedural and surgical monitoring,and cerebral circulatory arrest. Prognosis TCD has the ability to select children with sickle cell disease in need of blood transfusion and who should stay on blood transfusion to sustain the benefit for primary stroke prevention;to predict outcomes of thrombolytic therapy for acutestroke;to identify high-risk patients that will require interventions to reverse or prevent stroke and to provide lessexpensive follow-up assessments.TCD=Transcranial Doppler,DSA=digital subtraction angiography;CTA=CT angiography;MRA=MR angiography;TEE=transesophageal echocardiography; RLS=right-to-left shunt;SAH=subarachnoid hemorrhage.disposal.2Whether one’s practice is hospital or office-based, TCD offers a low-cost diagnostic method to find high-risk patients for first-ever,recurrent stroke or stroke progression caused by intracranial steal phenomenon(reversed Robin Hood syndrome),identify stroke pathogenic mechanism,re-fine results of widely used imaging tests such as carotid du-plex or noninvasive angiography,detect right-to-left shunts (RLS),and perform limited follow-up studies to avoid rep-etition of more expensive or invasive tests.3-5Furthermore, with advances in vascular interventions and cardiac surgery, TCD monitoring is now recognized as a practical tool to de-tect intra-and periprocedural events and prevent untoward outcomes.3-5Specific Clinical IndicationsOur multidisciplinary panel of experts reviewed the published literature on TCD from1982through December2009in their respective fields,including previous updates6-9and considered reported clinical indications as established if TCD performance has been tested in terms of applicability,yield,accuracy,and prognosis including outcomes(broadly defined as proven diag-nostic value in a specific clinical situation,therapeutic implica-tions of test results,identification of high-risk patients,detection of periprocedural complication mechanism,ie,when informa-tion derived from TCD impacted clinical decision making and the choice of management options).These criteria and review of areas that were evaluated in research studies are presented in Table1.Specific established clinical indications for TCD in routine clinical practice that met our criteria include:sickle cell dis-ease,cerebral ischemia(stroke,transient ischemic attack;TIA), carotid artery stenosis and occlusions,vasospasm after sub-arachnoid hemorrhage(SAH),brain death,and periprocedural or surgical monitoring.For evaluating the quality of evidence and strength of recommendations for these specific clinical in-dications we used the“Format for an Assessment”(Table2)de-veloped by the American Academy of Neurology(for example, the assessment of clinical indications of single-photon emission computed tomography)10and used in a previous update of the American Society of Neuroimaging on TCD indications.8De-tails of these clinical indications and expected outcomes derived from published studies are presented in Table3.Sickle Cell DiseaseTCD can identify children with the highest risk of first-ever stroke10and those in need of blood transfusion[Quality of evidence:class I;Strength of recommendation:type A].11In a pivotal trial,11TCD detection of time averaged maximum mean flow velocity of200cm/s on2separate examinations was used to determine the need for blood transfusion that re-sulted in90%relative risk reduction of first-ever stroke.ThisTable2.Quality of Evidence and Strength of Recommendation Ratings According to the“Format for an Assessment”Developed by the American Academy of Neurology4and Adopted by the American Society of Neuroimaging10RatingsQuality of EvidenceClass I Evidence provided by one or more well-designed,randomized controlled clinical trialClass II Evidence provided by one or more well-designed,clinical studies(eg,case control,cohort studies)Class III Evidence provided by one or more expert opinions,nonrandomized historic controls,or case reportsStrength of RecommendationType A Strong positive recommendation,based on class I evidence or overwhelming class II evidence when circumstances preclude randomized clinical trialsType B Positive recommendation,based on class II evidenceType C Positive recommendation,based on strong consensus of class III evidenceType D Negative recommendation,based on inconclusive or conflicting class II evidenceType E Negative recommendation,based on evidence of ineffectiveness or lack of efficacy,based on class II or class I evidence2Journal of Neuroimaging Vol XX No XX2010Table3.Established Clinical Indications for and Expected Outcomes of TCD TestingBroad Indication Specific Indications Expected OutcomesSickle cell anemia Children Robust first-ever stroke risk reduction based on TCD criteria for the need ofblood transfusion and continuing use of blood transfusions.Ischemic Stroke or TIA Patients with acute ischemicsymptoms in anterior orposterior circulation whohad cranial CT or MRI TCD can identify patients with proximal arterial occlusions both in anterior and posterior circulation who have the worst prognosis and can benefit the most from intravenous thrombolysis or rescue intraarterial therapies.Ischemic stroke or TIA Patients with subacuteischemic symptoms inanterior or posteriorcirculation who hadcranial CT or MRI TCD helps determine stroke pathogenic mechanism that in turn determines secondary stroke prevention treatment,ie,antiplatelets versus anticoagulation versus stenting versus carotid endarterectomy or systemic hemodynamics manipulation in cases of stenoocclusive disease with hemodynamic compromise.TCD also helps to localize and grade intracranial atheromatous disease process,(anterior vs.posterior vessels,diffuse vs.local disease,≥70% stenoses that indicate high risk of stroke recurrence).Ischemic stroke or TIA Symptomatic patient at anytime window whounderwent carotidduplex scanning Carotid duplex ultrasound may explain only15-25%of all ischemic events since the prevalence of≥50%proximal ICA stenosis is low.TCD has the ability to further refine stroke mechanism detection by determining the presence of intracranial stenoocclusive disease,embolization,shunting,and impaired vasomotor reactivity(VMR).Ischemic stroke or TIA Patients with undeterminedstroke mechanism,recurrent TIAs,artery-to-artery versuscardiac source ofembolism,suspectedarterial dissections TCD is the gold standard test to detect,localize,and quantify cerebral embolism in real time.No other modality offers spatial and time resolution to detect microembolic activity,localize its source(artery vs.heart),and confirm vascular etiology of patient symptoms.Ischemic stroke or TIA Patients with suspectedparadoxical embolismwith negativeechocardiography TCD is equal or superior in its sensitivity to the presence of any right-to-left shunt compared to echocardiography(Valsavla maneuver is best accomplished during TCD,extracardiac shunting can be indirectly detected with TCD).Ischemic stroke or TIA Follow-up TCD is an inexpensive noninvasive follow-up tool that can detect progression orregression in the severity of extra-and intracranial stenoses through directvelocity measurements,collaterals,and VMR assessment.Asymptomatic or symptomatic carotid artery stenosis or occlusion Patients who have theinternal carotid artery(ICA)stenosis orocclusion on carotidduplex or angiographyTCD can help identify patients at highest risk of first-ever or recurrent stroke inthe setting of an ICA stenosis of variable degree or complete occlusion.TCDfindings of artery-to-artery embolization and impaired vasomotor reactivityindicate3-4-fold higher risk of stroke compared to patients with similar degreeof ICA stenosis and normal TCD findings.Subarachnoid hemorrhage Days2-5TCD can detect the development of vasospasm days before it can becomeclinically apparent,and this information can be used by intensivists to step upwith hemodynamic management of these patients.Days5-12TCD can detect progression to the severe phase of spasm when development ofthe delayed ischemic deficit due to perfusion failure through the residuallumen is the greatest.This information can help planning interventions(angioplasty,nicardipine infusions).Days12-end of ICU stay TCD can document spasm resolution after treatment or intervention,sustainability of vessel patency,and infrequent cases of late or reboundvasospasm development at the end of the second or into the third week aftersubarachnoid hemorrhage.Suspected brain death Increased intracranialpressure,mass effect,herniation TCD can rule out cerebral circulatory arrest if positive diastolic flow is detected at any ICP values.TCD can confirm clinical diagnosis of brain death by demonstrating complete cerebral circulatory arrest in anterior and posterior circulation.TCD offers serial noninvasive assessments and can minimize the number of nuclear flow studies needed to confirm the arrest of cerebral circulation.Periprocedural or surgical monitoring Carotid endarterectomy orstentingTCD can detect all major causes of perioperative complications,ie,embolism,thrombosis,hypoperfusion,and hyperperfusion.TCD detects real-time flowchanges that precede the development of neurological deficits or changes onelectroencephalography.Cardiovascular surgical monitoring CABG,repairs of ascendingaortaTCD can detect cerebral embolization and hypoperfusion.TCD can help guideperfusion pump settings as well as cannulation and body positioning TCD canidentify unsuspected causes of massive air embolization and guide surgeons toexplore sites of possible arterial puncture.Alexandrov et al:TCD Indications and Expected Outcomes3trial demonstrated that TCD can select patients for the most ef-fective primary stroke prevention intervention to date that had profound implications on management of children with sickle cell disease.Further observations confirmed that children ini-tially selected by TCD for blood transfusion should stay on transfusion schedule to sustain the benefit in stroke risk reduc-tion.12Moreover,recent data including long-term follow-up and final results from the Stroke Prevention Trial in Sickle Cell Anemia(STOP)indicated that persistent elevation in TCD ve-locities indicates ongoing stroke risk.13The skill of TCD testing in children with sickle cell anemia is taught through standard tutorials with sonographers receiving specialized certificates, and diagnostic criteria for interpreting physicians are well de-fined.14,15Subarachnoid HemorrhageNumerous studies have shown the effectiveness of TCD in di-agnosing cerebral vasospam both in anterior and posterior cir-culation following SAH[Quality of evidence:class II;Strength of recommendation:type B].16-24More specifically,TCD can detect the development of vasospasm days before it can be-come clinically apparent(days2–5following SAH onset),and this information can be used by intensivists to step up with hemodynamic management of these patients.8,25In addition, TCD can detect progression to the severe phase of spasm when development of the delayed ischemic deficit due to perfusion failure through the residual lumen is the greatest.The maximal sensitivity of TCD for detecting cerebral vasospasm is at8days after SAH onset,while its sensitivity for diagnosing delayed cerebral ischemia is lower(63%).25Also,a recent study has demonstrated the predictive superiority of TCD over single-photon emission computer tomography for the diagnosis of an-giographically demonstrated cerebral vasospasm.23Moreover, Sloan and colleagues showed that TCD is highly specific(100%) for vertebral and basilar artery vasospasm when mean flow ve-locities are≥80and≥95cm/s,respectively.24Another inde-pendent study showed that patients with very high basilar artery mean flow velocities(>115cm/s)had a50%chance of develop-ing delayed brainstem ischemia,which in turn was associated with adverse functional outcome.21Therefore,TCD informa-tion can help planning interventions including angioplasty and nicardipine infusions.Based upon the available evidence,the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology has recently stated that TCD is useful for the detection of vasospasm following spontaneous SAH.25Cerebral IschemiaAcute Cerebral IschemiaWith over1,700papers published as of December2009,this subject is one of the most studied among TCD applications. An indication“ischemic stroke”or“transient ischemic attack”may necessitate not only a complete diagnostic examination in order to detect the presence of stenoocclusive disease[Quality of evidence:class II;Strength of recommendation:type B],as outlined in our previous standards,8,26but also include vaso-motor reactivity assessment,emboli detection,RLS testing as well as continuous real-time intracranial vessel monitoring.We in turn examine specific indications for these TCD tests.The reasons to perform TCD in patients with suspected or confirmed cerebral ischemia are plete or partial TCD examination evaluates up to16proximal intracranial ar-terial segments26,27with the goal of detecting normal,stenosed, or occluded intracranial vessels.Vessel patency has prognostic significance as patients with persisting occlusions have worse outcomes if reperfusion therapy is not instituted timely or is ineffective.26-28This information is also helpful to select pa-tients for catheter angiography,intraarterial rescue(interven-tional devices for clot removal),29and potentially hemicraniec-tomy(surgical decompression to save lives after severe ischemic stroke).TCD evaluation also has diagnostic significance to identify stroke pathogenic mechanism,ie,large-vessel stenosis of≥50%, or artery-to-artery embolism as opposed to a cardiac or para-doxical embolism source.Patients with intracranial disease are at high(10–15%annually)risk of stroke recurrence if only as-pirin for secondary prevention is considered.30New treatment strategies including statins,selective anticoagulation,and stent-ing are being used in patients with high-grade stenoses refrac-tory to standard antiplatelet therapy.31,32The same TCD examination can detect collateral flow and the hemodynamic significance of extracranial or intracranial stenoocclusive lesions[Quality of evidence:class II;Strength of recommendation:type B].33-41This information is helpful to identify a proximal arterial obstruction and to clarify carotid duplex or noninvasive angiographic findings including MR-angiography(MRA)and CT-angiography(CTA).Carotid du-plex and MRA are known to produce falsely elevated esti-mates of the degree of carotid stenosis and TCD,via collateral and downstream hemodynamic effects,can help clarify false-negative and false-positive diagnosis of severe ICA stenosis.A severe ICA stenosis should produce downstream flow changes directly detectable by TCD,and if no delay in systolic flow ac-celeration is seen or no collaterals are detected,these TCD find-ings likely indicate moderate proximal ICA stenosis.27,33,38On the other hand,if extracranial duplex scanning could not reveal a severe ICA lesion(eg,high carotid bifurcation),the presence of unilaterally delayed systolic flow acceleration or intracranial collaterals would suggest the presence of a severe proximal ICA lesion.27,33,38For intracranial stenoocclusive lesions,intracra-nial MRA often shows flow gaps due to turbulence or reversal of flow direction,thus overestimating the degree of stenosis.TCD findings of focal elevated velocities confirm the presence of an intracranial stenosis or collaterals when applicable,and vali-dated diagnostic criteria are available.27,42More specifically,2 recent studies have validated the diagnostic accuracy of TCD against CTA for evaluating arterial stenoocclusive disease in the setting of acute(24hours)cerebral ischemia.38,39In both stud-ies,bedside TCD examination yielded satisfactory agreement (sensitivity>75%,specificity>90%)with urgent brain CTA, while it should be noted that in both studies sonographers were blinded to the results of CTA,which in the majority of cases was performed following TCD evaluation.The yield of standard TCD vessel surveillance(stenoses,oc-clusions,collaterals,and lesions amenable to intervention)is4Journal of Neuroimaging Vol XX No XX2010substantial if performed alone40or in combination with carotid duplex ultrasound41particularly in patients with acute cerebral ischemia or TIAs.Identification of patients with proximal ar-terial occlusions has prognostic information,helps determine stroke pathogenic mechanism,and individualize early manage-ment of a stroke or TIA patient in addition to information pro-vided by brain CT or MRI.40,41It is therefore recommended to perform TCD studies always in conjunction with ultrasound examination of the extracranial brain supplying arteries.Fur-thermore,residual flow at the site of acute intracranial occlu-sion predicts response to intravenous thrombolysis according to findings of2independent multicenter studies.43,44More specif-ically,the finding of no detectable residual flow indicates the least chance to achieve recanalization and recovery with sys-temic thrombolysis and may support an early decision for com-bined endovascular rescue.43The yield of TCD is greatest the closer in time it is performed to stroke symptom onset40and is higher in anterior than in posterior circulation.26,27,42More specifically,the recently pub-lished recommendations of the American Heart Association for imaging of acute stroke underline that the sensitivity and speci-ficity of TCD for the anterior circulation range from70%to90% and90-95%compared to DSA,while the same accuracy pa-rameters for the posterior circulation are lower(sensitivity:50-80%,specificity:80-96%).42Notably,the use of power-motion mode TCD(PMD-TCD)or transcranial color-coded duplex (TCCD)increases the diagnostic accuracy of neurosonology for the assessment of vertebrobasilar circulation.35,45PMD, B-Mode or color-flow display can depict Doppler signatures that are complimentary to and can increase confidence in stan-dard single-gate spectral findings.More specifically,in a recent study evaluating the diagnostic yield of TCD against CTA in the acute setting of cerebral ischemia(<48hours)the investi-gators reported that PMD-TCD contributed information com-plementary to CTA(real-time embolization,collateralization of flow with extracranial internal carotid artery disease,alter-nating flow signals indicative of steal phenomenon)in7%of the studied patients.38Similar findings have been reproduced during the separate evaluation of the posterior circulation with PMD-TCD.35Recommendations regarding the potential appli-cability of TCCD in the setting of acute arterial ischemia have recently been introduced by an international consensus panel of35experts.46Intracranial Arterial Disease(IAD)TCD can reliably rule out intracranial stenosis according to the findings of the recently published Stroke Outcomes and Neu-roimaging of Intracranial Atherosclerosis(SONIA)trial,which aimed to define the positive and negative predictive value(PPV and NPV)of TCD/MRA for the identification of50%to99% intracranial stenosis in the intracranial ICA,MCA(middle cere-bral artery),VA(vertebral artery),and BA(basilar artery).47 SONIA standardized the performance and interpretation of TCD,MRA,CTA(when available)and catheter-based angiog-raphy using study-wide cutpoints defining positive findings. Hard copy TCD/MRA studies were centrally read,blinded to the results of catheter-based angiography(gold standard). The trial showed that TCD and MRA can reliably exclude the presence of intracranial stenosis(NPV=86%,95%CI81-89%). However,abnormal findings on TCD or MRA require a con-firmatory test such as angiography to reliably identify stenosis (PPV=36%,95%CI27-46%).However,it should be noted that SONIA findings were based on a limited number of ves-sels evaluated by TCD(n=451)compared to MRA(n=1310), while TCD abnormalities associated with occlusion on angiog-raphy(despite the fact that they represented severe intracranial disease)were considered false positives because an occlusion was not treated with a stent.This approach resulted in SONIA increasing NPV but decreasing PPV.A multicenter prospective study48was recently performed to determine if SONIA criteria,and TCD can be reliably used between different laboratories that have standardized scanning protocols according to our criteria.26Consecutive patients with symptoms of cerebral ischemia evaluated by TCD and catheter angiography at3tertiary care centers were prospectively stud-ied.Baseline stroke severity(NIHSS)was documented.TCD measurements of peak systolic(PSV),end-diastolic(EDV),and mean flow(MFV)velocities were performed.The following MFV cut-offs were used for the identification of≥50%steno-sis using published SONIA criteria:MFV MCA>100cm/s, TICA/ACA>90cm/s,VA/BA/PCA>80cm/s,and deter-mined velocity cut-offs for the≥70%stenosis on angiography. The study also evaluated whether the addition of stenotic to prestenotic ratio(SPR)would increase the accuracy of velocity prediction of IAD with≥70%stenosis.Among a total of172patients with DSA/TCD data,33 had confirmed IAD(age54±13yrs;70%men;50%Cau-casian,18%African-American,32%Asian;median NIHSS3, interquartile range6)providing375TCD/DSA measurement pairs for comparison.On DSA,≥50%stenoses were located in56vessels:M1MCA(48%),M2(4%),TICA(16%),ACA (7%),VA(14%),BA(9%),PCA(2%).IAD>70%on DSA was found in21arteries(anterior circulation18,posterior circula-tion3).The accuracy parameters of TCD(SONIA MFV cut-offs)against DSA for≥50%stenosis were as follows:sensitivity (89%),specificity(99%),PPV(93%),NPV(98%),overall accu-racy(97%)[54true positive,310true negative,4false positive, and7false negatives].The predictive ability of PSV and MFV for the detection of IAD on DSA did not differ(P>.9)both in anterior(middle cerebral artery,anterior cerebral artery,and terminal internal carotid artery)and posterior circulation(ver-tebral artery,basilar artery,and posterior circulation artery). The optimal PSV cut-off for the detection of≥70%IAD was >196cm/s(sensitivity78%,specificity95%)and>166cm/s (sensitivity100%and specificity97%)in anterior and posterior circulation,respectively.The optimal MFV cut-off for the detec-tion of≥70%IAD was>128cm/s(sensitivity78%,specificity 96%)and>119cm/s(sensitivity100%and specificity99%)in anterior and posterior circulation,respectively.The addition of an MFV SPR>3in the MFV criteria(>128cm/s in ante-rior and>119cm/s in posterior circulation increased the TCD accuracy for detecting>70%IAD(sensitivity90%,specificity 95%).48Investigators concluded that at laboratories with a standard-ized scanning protocol,SONIA MFV criteria remain reliably predictive of≥50%stenosis.The new velocity/ratio criteria forAlexandrov et al:TCD Indications and Expected Outcomes5。

超声引导下上臂输液港与胸式输液港在肿瘤化疗患者中的应用效果比较

超声引导下上臂输液港与胸式输液港在肿瘤化疗患者中的应用效果比较

中国当代医药2021年2月第28卷第4期·临床研究·超声引导下上臂输液港与胸式输液港在肿瘤化疗患者中的应用效果比较蒋文川1蒋雅兰2梁素芳31.广东省江门市中心医院胃肠外科,广东江门529000;2.广东省江门市中心医院神经外科,广东江门529000;3.广东省江门市中心医院神经内科,广东江门529000[摘要]目的探讨超声引导下上臂输液港与胸式输液港在肿瘤化疗患者中的应用效果比较。

方法选取2018年10月~ 2019年10月江门市中心医院收治的100例需植入输液港治疗的肿瘤化疗患者作为研究对象,按照随机抽签法将其分为对照组(50例)与观察组(50例)。

对照组采用胸式输液港植入治疗方法,观察组采用上臂输液港植入治疗方法。

比较两组的并发症总发生率、植入方式术后舒适度以及置管1针成功率、血管损伤发生率、术中血肿形成率情况。

结果观察组的并发症总发生率低于对照组,差异有统计学意义(P<0.05);观察组术后1d、1周、1个月的舒适度评分均低于对照组,两组术后1周、1个月的舒适度评分均低于术后1d,差异有统计学意义(P<0.05);观察组的置管1针成功率高于对照组,血管损伤发生率、术中血肿形成率低于对照组,差异有统计学意义(P<0.05)。

结论超声引导下上臂输液港在肿瘤化疗患者中具有较高的安全性,且术后舒适度高,置管1针成功率高,同时血管损伤发生率、术中血肿形成率较低,临床应用价值较高。

[关键词]肿瘤化疗;胸式输液港;上臂输液港;安全性[中图分类号]R734[文献标识码]A[文章编号]1674-4721(2021)2(a)-0041-04Effect comparison of ultrasound-guided upper arm infusion port and tho⁃racic infusion port in tumor chemotherapy patientsJIANG Wen-chuan1JIANG Ya-lan2LIANG Su-fang31.Department of Gastrointestinal Surgery,Jiangmen Central Hospital,Guangdong Province,Jiangmen529000,China;2.Department of Neurosurgery,Jiangmen Central Hospital,Guangdong Province,Jiangmen529000,China;3.Depart⁃ment of Neurology,Jiangmen Central Hospital,Guangdong Province,Jiangmen529000,China[Abstract]Objective To explore the effect comparison of ultrasound-guided upper arm infusion port and thoracic infu⁃sion port in tumor chemotherapy patients.Methods A total of100tumor chemotherapy patients who needed to be im⁃planted into the infusion port in Jiangmen Central Hospital from October2018to October2019were selected as the re⁃search subjects.They were divided into the control group(50cases)and the observation group(50cases)according to a random lottery method.The control group adopted a chest-type infusion port implantation treatment method,the obser⁃vation group adopted an upper arm infusion port implantation treatment method.The total incidence of complications, postoperative comfort,the success rate of one needle placement,the incidence of vascular injury,and the rate of intra⁃operative hematoma formation of the two groups were compared.Results The total incidence of complications in the ob⁃servation group was lower than that in the control group,the difference was statistically significant(P<0.05).The com⁃fort scores of the observation group at1day,1week,and1month after surgery were lower than those of the control group,and the comfort scores of the two groups at1week and1month after operation were lower than those of the control group1day after operation,the differences were statistically significant(P<0.05).The success rate of one-nee⁃dle placement in the observation group was higher than that in the control group,and the incidence of vascular injury and intraoperative hematoma formation were lower than those in the control group,the differences were statistically sig⁃nificant(P<0.05).Conclusion Ultrasound-guided upper arm infusion port has high safety in cancer chemotherapy pa⁃tients,and has high postoperative comfort,high success rate of one-needle placement,while has low incidence of vas⁃cular injury and intraoperative hematoma formation,clinical application value is high.[Key words]Tumor chemotherapy;Thoracic infusion port;Upper arm infusion port;Safety[基金项目]广东省江门市科技计划项目(2018A040)·临床研究·中国当代医药2021年2月第28卷第4期静脉化学药品给药是治疗肿瘤患者的最主要给药途径,可明显提升恶性肿瘤患者的生存率,但对于肿瘤患者其治疗周期长、给药量大,使得大部分化疗药物对外周静脉造成程度不一的损伤。

超声辅助定位胸椎水平的准确性及影响因素分析

超声辅助定位胸椎水平的准确性及影响因素分析

硬膜外镇痛及各种外周神经阻滞是多模式镇痛的重要组成部分。

在不同的椎体节段进行麻醉或镇痛,其阻滞平面不同。

准确识别目标椎体水平是确保最佳麻醉和镇痛效果的重要前提,且能够最大程度减少副作用。

临床工作中,麻醉医师常通过体表标志进行触诊定位,准确性有限。

一项对比触诊与超声辅助定位腰椎准确率的研究发现,应用触诊定位腰椎的准确率仅30%[1],而超声辅助定位准确率可达71%~超声辅助定位胸椎水平的准确性及影响因素分析章晓丹王宏宇高玉洁韩流摘要目的探讨超声辅助定位法定位胸椎水平的准确性,并与体表标志触诊法进行比较。

方法选择我院择期行脊柱手术的患者48例,术前由一名熟练掌握触诊定位的麻醉医师通过体表标志触诊法定位第7颈椎(C7)棘突后,向尾侧依次触诊直至确定第7胸椎(T7)棘突位置并标记为T7a。

然后由另一名熟练掌握脊柱超声的麻醉医师使用低频凸阵探头放置于颈椎水平横切面上下扫查,确定C7棘突后继续向尾侧扫查确定T1棘突和横突位置并标记,再依次扫查确定T7横突位置并标记为T7b。

最后由同一脊柱外科医师通过C臂机拍摄图像确定T7的准确位置,以判定T7a和T7b的定位是否正确。

探讨体质量指数(BMI)和年龄对两种定位方法准确性的影响。

结果超声辅助定位法准确率为85.4%,显著高于体表标志触诊法(52.1%),差异有统计学意义(P<0.05);超声辅助定位法相较于体表标志触诊法降低了个体差异对定位的影响;BMI和年龄对两种定位方法准确率的影响比较差异均无统计学意义。

结论超声辅助定位法优于体表标志触诊法,有重要的临床应用价值。

关键词超声检查;定位;体表标志;触诊;胸椎水平[中图法分类号]R445.1[文献标识码]AAnalysis of the accuracy and influencing factors of ultrasound-assistedlocalization of thoracic vertebral levelZHANG Xiaodan,WANG Hongyu,GAO Yujie,HAN LiuDepartment of Anesthesiology,Nanjing Hospital Affiliated to Nanjing Medical University,Nanjing210000,ChinaABSTRACT Objective To compare and explore the accuracy of ultrasound-assisted positioning of the thoracic vertebral body level with palpation positioning method.Methods A total of48patients underwent elective spinal surgery were selected,including19males and29females.The ASA classification wasⅠ~Ⅲ.After spinous process of C7was identified with palpation by a skilled anesthesiologist,palpation was performed to the tail side until spinous process of T7was identified and marked with T7a.Then,a low-frequency convex array probe was used to determine the T7transverse process position performed by an anesthesiologist skilled in spinal ultrasound,and marked with T7b.Finally,a C-arm X ray machine was used to confirm the exact position of T7and to determine whether the positioning of T7a or T7b was accurate.The influence of BMI and age to the accuracy of the two positioning methods was analyzed.Results The accuracy rate of ultrasound-assisted positioning method was 85.4%,which was significantly higher than that of body surface mark palpation method(52.1%),and the difference was statistically significant(P<0.05).Compared with the palpation method,the ultrasound-assisted positioning method reduced the influence of individual differences on the positioning.The influence of BMI and age to the accuracy of the two positioning methods was not statistically significant.Conclusion Ultrasound-assisted positioning method is better than body surface mark palpation method,which has important clinical value.KEY WORDS Ultrasonography;Localization;Body surface markers;Palpation;Thoracic spine level·临床研究·作者单位:210000南京市,南京医科大学附属南京医院南京市第一医院麻醉科通讯作者:韩流,Email:*************************77%[2-3],显然超声对腰椎定位的准确率明显优于触诊。

保护动机理论在预防全麻介入手术患者压力性损伤中的应用

保护动机理论在预防全麻介入手术患者压力性损伤中的应用

- 93 -[17] KLASSEN T,DALZIEL S R,BABL F E,et al.Impact ofperipheral venous catheter placement with vein visualization device support on success rate and pain levels in pediatric patients aged 0 to 3 years[J].Pediatr Emerg Care,2021,37(3):138-144.[18] PORCHE K,MACIEL C B,LUCKE-WOLD B,et al.Ultrasonicspine surgery for every thoracic disc herniation: a 43-patient case series and technical note demonstrating safety and efficacy using a partial transpedicular thoracic discectomy with ultrasonic aspiration and ultrasound guidance[J].J Neurosurg Spine,2022,36(5):800-808.[19] SAKUTA K,NAKADA R,MIYAGAWA S,et al.Thrombolysisfollowing central venous catheter placement[J].J Stroke Cerebrovasc Dis,2020,29(11):105267.[20] PUROHIT G,MEHKARKAR P,ATHALYE-JAPE G,et al.Effectiveness of intracavitary electrocardiogram-guided peripherally inserted central catheter tip placement in premature infants:a multicentre pre-post intervention study[J].Eur J Pediatr,2020,179(3):439-446.[21] SIREGAR T A P,PROMBUTARA P,KANJANASIRIRAT P,et al.Diagnostic accuracy among trainees to safely confirm peripherally inserted central catheter(PICC)placement using bedside ultrasound[J].British Journal of Nursing:Pathog Dis,2020,29(19):S20-S28.[22] DASGUPTA D,MISEROCCHI A,MCEVOY A W,et al.Overview of the safety and efficacy of the surfacer(R)inside-out(R)access catheter system for obtaining central venous access in patients with thoracic central venous obstructions[J].Expert Rev Med Devices,2020,17(7/12):937-944.(收稿日期:2023-06-02) (本文编辑:白雅茹)①东莞市滨海湾中心医院介入科 广东 东莞 523900通信作者:潘君玲保护动机理论在预防全麻介入手术患者压力性损伤中的应用潘君玲①【摘要】 目的:探讨基于保护动机理论(PMT)的预防对全麻介入手术患者压力性损伤发生率的影响。

METS二级词汇

METS二级词汇

METS二级词汇Aabdomen n. 腹;腹部abortion n.流产;早产abscess n.脓肿abuse n. & v.滥用accelerate v.加速;加快accompany v.伴随;陪同accummulate v.积累;聚集acid-base balance n.酸碱平衡acquired immunity n.获得性免疫acupuncture n.针灸adapt to v.适应addict v.使上瘾addiction n.沉溺;上瘾adhesive tape n.胶布;胶带adjacent adj.相邻的administer v.执行;给予(药)administration n.行政管理;施行adolescence n.青春期adulthood n.成年期adverse adj.不利的;逆向的agitate v.摇动(液体)ailment n.疾病(尤指微恙)alkali n.碱allergy n.过敏alternate v. & adj.轮流;交替的alter v.改变amino acid n.氨基酸amputate v.截肢analgesia n.无痛法;止痛法analyze v.分析;分解anatomy n.解剖学anemic n. & adj.贫血的;ankle n.踝anorexia n.食欲减退anoxia n.缺氧antibacterial adj.抗菌的antibody n.抗体antigen n.抗原antiseptic adj.防腐的;杀菌的anti-inflammation n.消炎anus n.肛门aorta n.主动脉apnea n.无呼吸;呼吸暂停appendicitis n.阑尾炎as ordered 医嘱aseptic adj.无菌的;防感染的aspirin n.阿司匹林assessment n.估计assistance n.帮助;协助atrium n.心房atropin n.阿托品attach v.系;连接auditory adj.耳的;听觉的axillary adj.腋下的Bbacillus n.杆菌backflow n.回流baldness n.脱发beat n.心跳;搏动bed wetting n.尿床behavior n.行为binder n.腹带;绷带biopsy n.活组织检查bland adj.温和的;刺激小的blurred adj.(视觉)模糊的breast feeding n.母乳喂养Ccalf n.小腿cane n.手杖carbon dioxide n.二氧化碳carbon monoxide n.一氧化碳carcinoma n.腺癌cardiac adj.心脏的cardiac arrest n.心脏骤停cardiac catheter n.心导管carditis n.心肌炎carrier n.携带者;带菌者cartilage n.软骨组织cartilageinous adj.软骨的cataract n.白内障caution n. & v.小心;谨慎cerebellum n.小脑cerebarl palsy n.脑瘫cervix n.子宫颈Cesarean adj. & n. 剖宫产chamber n.腔;室charting cart n.病历车chemotherapy n.化学疗法chill n.寒战cholestrol n.胆固醇circulatory system循环系统classification n.分类;clench v.捏紧;咬紧clubfoot n.畸形足cluster v. & n.群集;丛生;一簇colicky adj.绞痛的collapse v. & n.倒下;晕倒;萎缩colon n.结肠communicate v. 感染;交流component n成分compound n. & adj.化合物;复合的concentrate v.集中;浓缩concentration n.集中;浓度conduct v.传导congenital adj.天生的;先天的congested adj.充血的;有粘膜的consent n.同意书constipation n.便秘constrict v.收缩;收紧consultant n.会诊医生consultation n.咨询;会诊contagious adj.传染性的contaminate v.污染;弄脏contamination n.污染;污染物contraction n.收缩;收紧coordinate v.协调cornea n.角膜coronary adj.冠状的coronary heart disease冠状动脉心脏病cosmetic adj.化妆用的;整容的counsel v.劝告cramp v. & n.痉挛;绞痛cubic milliliter n. 立方毫米culture n. & v.培养curative adj.治愈性的curette n.刮器cyanosis n.紫绀cycle n.周期cyst n.包囊;膀胱cystitis n.膀胱炎Ddazed adj.恍惚的;头晕目眩defective adj.有缺损的deficiency disease营养缺乏deficit n.短缺;亏损deformed adj.变形的;畸形dedegenerative adj.退化性的dehydration n.脱水delicate adj.易碎的;易生病的dementia n.痴呆demerol n.杜冷丁demonstrate v.示范;证明depression n.抑郁症depressive disorder抑郁性情感疾患dermatology n.皮肤病学detach v.分开;分离deteriorate v.恶化;变坏diagnostic adj.诊断的dietary adj.饮食的diffuse adj.弥漫的;四散的diminish v.减少;降低disability n.无能力;伤残disinfection n.无菌;消毒distend v.使扩大distinct v.清楚的;明显的disturbance n.影响;干扰diuretic adj. & n. 利尿的;利尿剂dosage n.剂量drainage n.引流dribble v. (小便)一滴滴流出Eease v. 使容易eczema n. 湿疹egg n. 卵子electrocardiogram (ECG) 心电图electrodiograph 心电图机embolism n. 栓赛encephalitis n. 脑炎enlarge v. 使增大epidemic n. & adj. 流行病;流行性的erruption n. 爆发;出疹etiology n. 病因学;病原学excessive adj. 过度的;过多的expectorant adj. & n. 化痰的;除痰剂extension n. 伸展;延伸extremity n. 末端;肢体Uultrasonic exam 超声检查ultrasound n. 超声undernourished adj. 营养不良的undress v. 脱去衣服upperresiratory infection 上呼吸道感染uremia n. 尿毒症ureter n. 输尿管urethra n. 尿道urinalysis n. 尿分析;尿检验urinary adj. 泌尿的urination n. 排尿urology n. 泌尿学uterus n. 子宫F facilities n. 设施fasting n. & adj. 禁食;空腹的feature n. 特征fecal adj. 粪便的feminine adj. 雌性的;女性的femur n. 股骨fetid adj. 恶臭的fetus n. 胎儿flabby adj. 松弛的;不结实的fleeting adj. 短暂的;瞬间fluid diet 流质食物fore-arm n. 前臂fracture n. 骨折;挫伤frighten v. 使害怕Ggangrene n. 坏疽gasp v. 喘气;喘息gastrectomy n. 胃切除术gastric lavage 洗胃gastroenteritis n. 胃肠炎gastrointestinal adj. 胃肠的gavage n. 管饲法gene n. 基因;因子generalized adj. 涉及全身的genitalia n. 生殖器gerontology n. 老年医学glandular 腺体的glucose tolerance test 糖耐量试验glycogen n. 糖尿goiter n. 甲状腺肿大groin n. 腹股沟grunt v. 打呼噜Hharelip n. 兔唇heart failure n. 心力衰竭hematuria n. 血尿病hemoglobin n. 血红素;血红蛋白hepatic adj. 肝的herbal adj. 草药的hoarse adj. 嘶哑的hormone n. 荷尔蒙;激素host n. 主人;宿主hygienic adj. 卫生保健的hyperthyroidism n. 甲状腺功能亢进Iimbalance n. 不平衡;不均衡implement v. 实施;执行incidence n. 发病率incision n. 切口;切开incubation n. 潜伏;潜伏期indigestion n. 消化不良induce v. 导致;引起indwelling adj. 留置的indwelling urinary catheter 留置导尿管infect v. 感染inhalation n. 吸入inspection n. 检查;审视instill v. 滴注instruction n. 说明书instrument n. 器械insulin n. 胰岛素intellectual adj. 智力的interact v. 互相作用interfere v. 干扰;妨碍intestinal lavage 洗肠intramuscular adj. 肌肉内的irregular adj. 不规则的isolation n. 隔绝;隔离K knee-jerk n. 膝跳反射Llaryngitis n. 喉炎lavage v. 灌洗laxative adj.& n. 放松的;泻剂lead n. 铅lethal adj. 致死的life expectancy n. 预期寿命linen n. 织物;衣物lipid n. 油脂localize v. 使局部化lymph node n. 淋巴结Mmagnesium n. 镁malaria n. 疟疾malfunction n. 机能障碍;机能不良malnutrition n. 营养不良malpractice n. 治疗不当;医疗差错mammary gland n. 乳腺masculine adj. 雄性的maternal adj. 母亲的;母性的measles n. 麻疹;风疹mechanical adj. 机械性的medication n. 药物;药物治疗membrane n. 粘膜menopause n. 绝经期;更年期metabolic adj. 新陈代谢的midwife n. 助产士minimal adj. 最小的;最低限量的moderate adj. 适度的;温和的mold n. 霉菌mole n. 痣;色素mortality n. 死亡率motion sickness n. 晕车;晕船;晕机mucosa n. 粘膜mocous adj. 粘液的murmur n. & v. 低声说myopia n. 近视Nnarcotic n. & adj. 尼古丁nasogastric tube 鼻胃管necrosis n. 坏死negligible adj. 可忽略不计的nephritis n. 肾炎neurological adj. 神经的newborn n. 新生儿nostril n. 鼻孔nourishent n. 营养品;食物Oobstetrician n. 产科医生obstetrics n. 产科obstruct v. 阻隔;阻塞oculist n. 眼科医生oncology n. 肿瘤学operation room n. 手术室optical adj. 眼的;视力的;光学的oral hygiene n. 口腔清洁original adj. 原始的;初始的OTC (over the counter) 非处方药output n. 排泄量;排泄物ovary n. 卵巢overactive adj. 过分活跃的overdose n. 超剂量overexertion n. 过分用力Ppacemaker n. 起搏器palate n. 腭palpation n. 触摸pancreatitis n. 胰腺炎paralysis n. 瘫痪;麻痹paramedics n. 医务辅助人员past history n. 既往史pathogen n. 病原体pathogenic adj. 病原的;致病的pediatrician n. 儿科医生pediatrics n. 小儿科peptic adj. 助消化的;胃蛋白酶的peptic ulcer n. 消化性溃疡percentage n. 百分比percussion n. 叩诊perineal care n. 会阴清洁perinuem n. 会阴persistent adj. 持久性的pharyngitis n. 咽炎pharynx n. 咽physiatrist n. 理疗医师physiological adj. 生理的physiology n. 生理学pigment n. 色素pimple n. 丘疹;脓包placenta n. 胎盘plasma n. 血浆portable adj. 便携式的;手提式的postoperative adj. 手术后的precaution n. 注意事项;预防predict v. 预言preliminary adj. 初步的;预备的preoperative adj. 手术前的prevalent adj. 盛行的;流行的prick v. 刺;扎principal adj. 主要的prognosis n. 预后progressive adj. 进行性的prohibit v. 禁止prone position n. 俯卧位prop up v. 支撑起property n. 特点;性质prostate n. 前列腺的;前列腺proteinuria n. 蛋白尿protrude v. 伸出;突出puberty n. 青春期pulmonary adj. 肺部的pulsation n. 有节奏的跳动pupil n. 瞳孔Qquality n. 质量quarantine n. & v. 检疫;隔离Rradiation n. 放射;辐射radical adj. 根本的;根治的radiography n. X光照相术rebound tenderness 反跳痛recipient n. 接受者;手体rectal adj. 直肠的rectum n. 直肠recurrent adj. 复发的;周期性发作的reduction n. 减少;缩小;复位regulate v. 调节remedy n. 纠治;治疗法renal adj. 肾脏的;肾的renal colic n. 肾绞痛replacement n. 置换;替换replenish v. 补充reproduction n. 生殖rescue v. & n. 抢救resistance n. 抵抗力respiration n. 呼吸retina n. 视网膜Ssaline solution n. 盐水sanitarian n. 公共卫生sanitation n. 公共卫生scalp n. 头皮scalpel n. 手术刀;解剖刀scanner n. 扫描仪scattered adj. 分散的;零星的scour v. (用力)刷,擦亮scrape v. 擦伤;擦scratch n. 划破;抓伤scrotum n. 阴囊secretion n. 分泌物section n. 切开;切面semen n. 精液;精子sensory adj. 感觉的;感觉器官的sever v. 切断;割断severity n. 严重性;严重程度sew up v. 缝接上sexual adj. 性别的;性的shallow adj. (呼吸)浅的;弱的shampoo n. & adj. 洗发剂;用洗发剂洗shatter v. 使粉碎;使破碎shed b. (毛发)脱落shift n. 班次shiver v。

射频消融对心室预激患者左心房压力负荷及左心室舒张功能的影响

射频消融对心室预激患者左心房压力负荷及左心室舒张功能的影响

520203962021403人群心室预激的心电图检出率为0.1%~0.3%[1-3],其中11%的患者以房室折返性心动过速为首发表现;65%的患者表现为无症状心室预激[4],部分以心房颤动为首发表现。

相关数据显示,约1/5的预激综合征患者并发心房颤动[5],但其发病机制尚不清楚。

除心房颤动可能增加心室预激患者发生栓塞的风险外,当心房颤动极快的激动经过旁路顺行传导时,心室反应可能退化为心室颤动,危及患者生命。

目前关于心室预激引发心房颤动的机制研究较少,个别研[摘要]目的探讨射频消融对心室预激患者左心房压力(LAP )负荷及左心室舒张功能的影响。

方法选取2015年1月至2020年1月在宁波市医疗中心李惠利医院成功完成左侧显性旁路射频消融的左侧心室预激患者71例,其中有心房颤动史9例,有心动过速病史63例。

经胸超声测定射频消融前后舒张早期二尖瓣口血流速度峰值(EMIV peak ),经导管穿刺房间隔测定LAP 的峰值(LAP peak )、谷值(LAP nadir )及平均值(LAP mean ),比较消融前后上述指标的变化;分析消融后LAP mean 下降的预测因素。

结果与消融前比较,射频消融后LAP peak 、LAP nadir 、LAP mean 均明显降低(均P <0.05),二尖瓣舒张早期血流速度与舒张晚期血流速度的比值(E/A )、EMIV peak 均明显升高(均P <0.05)。

经线性回归模型分析,有心房颤动史、消融前射血分数(EF )是射频消融后LAP mean 下降的独立预测因子(均P <0.05)。

结论射频消融心室预激患者左侧旁道有助于降低LAP 负荷,改善左心室舒张功能。

[关键词]心室预激左心房压力心房颤动射频消融Effects of radiofrequency ablation of left-side accessory pathway on left atrial pressure and left ventricular diastolic function in patients with ventricular preexcitationXU Guangze,CHEN Zhikui,LIN Haiyan,SHEN Wenjun,GE Shijun.Department ofCardiology,Li Huili Hospital of Ningbo Medical Center,Ningbo 315043,China Corresponding author:XU Guangze,E-mail:[Abstract]ObjectiveTo assess the effects of radiofrequency ablation(RA)of left-side accessory pathway on leftatrial pressure(LAP)and left ventricular diastolic function in patients with ventricular preexcitation.MethodsA total of 71patients with left-side accessory pathway ablated successfully via atrial septal approach from January 2015to January 2020in Li Huili Hospital of Ningbo Medical Center were enrolled.Of them,9patients had a history of atrial fibrillation(AF)and 63patients had a history of tachycardia.The peak early diastolic mitral inflow velocity(EMIV peak )was measured by thoracic ultrasound before and after RA.The peak LAP(LAP peak ),nadir LAP(LAP nadir )and mean LAP(LAP mean )were measured by transseptal puncture approach.The changes of above measurements before and after RA were compared.The predictors of LAP mean decrease after ablation were analyzed.ResultsLAP peak ,LAP nadir and LAP mean decreased and the ratioof early diastolic mitral velocity to late diastolic mitral velocity (E/A)and EMIV peak increased significantly post ablation compared with the pre ablation values(all P <0.05).A multivariate linear regression analysis revealed that pre ablation left ventricular ejection fraction and a history of AF were independent predictors of LAP decrease after RA (P <0.05).ConclusionRA of left-side accessory pathway in patients with ventricular preexcitation may reduce LAP andimprove left ventricular diastolic function.[Key words]Ventricular preexcitation Left atrial pressure Atrial fibrillation Radiofrequency ablation射频消融对心室预激患者左心房压力负荷及左心室舒张功能的影响徐光泽陈治奎林海燕沈文均葛世俊DOI :10.12124/j.issn.2095-3933.2021.3.2021-4233基金项目:浙江省医药卫生科技计划项目(2019KY186);宁波市自然科学基金立项项目(202003N447)作者单位:315043宁波市医疗中心李惠利医院心血管内科通信作者:徐光泽,E-mail :238··520203962021403组别有心房颤动史组无心房颤动史组P 值注:LVDD 为左心室舒张功能障碍;EF 为射血分数;LAD 为左心房直径;IVST 为室间隔厚度表1有、无心房颤动史患者基线资料比较n 962年龄(岁)38(24,48)45(29,56)>0.05性别(男/女,n )5/435/27>0.05体重指数(kg/m 2)24.84±2.5924.38±2.74>0.05LVDD[n (%)]1(11.1)1(1.6)>0.05手术时间(min )46.11±12.3346.05±13.19>0.05组别有心房颤动史组无心房颤动史组P 值n 962冠心病0(0.0)1(1.6)2型糖尿病0(0.0)1(1.6)肾功能不全0(0.0)3(4.8)高血压1(11.1)3(4.8)EF (%)62.56±3.4361.85±4.36>0.05LAD (mm )32.67±3.9731.56±3.28>0.05IVST (mm )9.22±1.858.75±1.16>0.05放电次数3(2,3)3(2,3)>0.05>0.05合并疾病[n (%)]究从心房肌易损性、电传导不均一性等心肌电生理特质进行相关性分析,但这些电生理特质无法说明与旁路前传的直接关联性[6-7]。

以双下肢无力麻木为首发表现的主动脉夹层1例并文献复习

以双下肢无力麻木为首发表现的主动脉夹层1例并文献复习

㊃论著㊃基金项目:河北省卫生健康委员会科研基金资助项目帕金森病患者血清炎性因子水平的变化与伴发自主神经功能障碍的关系(20210310);河北省科技厅民生科技专项河北省重点研发计划资助项目八段锦锻炼对帕金森病患者机体功能影响的临床研究(20377721D )通信作者:顾平,E m a i l :g p w h 2000@126.c o m 以双下肢无力麻木为首发表现的主动脉夹层1例并文献复习张永志a ,李艳敏a ,马晓雯b ,顾 平a(河北医科大学第一医院首都医科大学宣武医院河北医院a .神经内科,河北省脑老化与认知神经科学实验室,河北省神经医学技术创新中心;b .超声科,河北石家庄050051) 摘 要:目的 探讨以神经系统症状为首发症状的主动脉夹层(a o r t i cd i s s e c t i o n ,A D )的发生情况及转归预后㊂方法 回顾性分析1例以双下肢无力麻木为首发表现的A D 患者的病例资料,并复习相关文献㊂结果 患者男性,32岁,以 双下肢麻木无力1小时 为主诉就诊㊂既往高血压病史㊂入院前1小时于骑自行车时突然出现双下肢麻木无力,症状进展迅速,于10分钟内双下肢力量完全消失㊂神经系统查体,双下肢肌力0级㊁肌张力降低;双侧膝反射和踝反射未引出,T 12平面以下深浅感觉消失㊂结合凝血常规㊁心脏彩色超声及主动脉C T 血管成像,诊断为A D (S t a r n f o rA 型)㊂患者及家属拒绝手术治疗,后内科保守治疗无效死亡㊂结论 以神经系统症状为首发表现的A D 较罕见,本文报告1例以无疼痛症状的孤立性脊髓损伤为首发表现的A D 患者,同时结合相关文献进行分析,为临床提高诊疗效果,减少病死率提供参考㊂关键词:动脉瘤,夹层;下肢无力;病例报告中图分类号:R 543.12 文献标志码:A 文章编号:1004-583X (2023)10-0912-05d o i :10.3969/j.i s s n .1004-583X.2023.10.009A o r t i c d i s s e c t i o nw i t hw e a k n e s s a n dn u m b n e s s o f b o t h l o w e r l i m b s a s t h e f i r s tm a n i f e s t a t i o n:Ac a s e r e po r t a n d l i t e r a t u r e r e v i e w Z h a n g Y o n g z h i a ,L iY a n m i n a ,M aX i a o w e n b ,G uP i n gaa .D e p a r t m e n t o f N e u r o l o g y ,t h eF i r s tH o s p i t a l o f H eb e iM e d ic a lU n i v e r s i t y ,H e b e iH o s p i t a l o f X u a n w u H o s p i t a lC a p i t a lM ed i c a lU n i ve r s i t y ,S h i j i a z h u a n g 050031,C h i n a ;b .D e p a r t m e n t of U l t r a s o u n d ,B r a i nAg i n g a n dC o g n i t i v eN e u r o s c i e n c eL a b o r a t o r y o f H e b e iP r o v i n c e ,N e u r o m e d i c a lT e ch n o l o g y In n o v a t i o n C e n t e r o f H e b e iP r o v i n c e ;S h i j i a z h u a n g 050051,C h i n a C o r r e s p o n d i n g a u t h o r :G uP i n g ,E m a i l :g pw h 2000@126.c o m A B S T R A C T :O b j e c t i v e T o i n v e s t i g a t e t h eo c c u r r e n c ea n d p r o g n o s i so f a o r t i cd i s s e c t i o n (A D )w i t hn e u r o l o g i c a l s y m p t o m s a s t h e f i r s t s y m p t o m.M e t h o d s C l i n i c a l d a t ao f ac a s eo fA D w i t hw e a k n e s sa n dn u m b n e s so fb o t h l o w e r l i m b s a s t h e i n i t i a lm a n i f e s t a t i o nw e r e r e t r o s p e c t i v e l y a n a l yz e d .R e l e v a n t l i t e r a t u r e sw e r e r e v i e w e d a sw e l l .R e s u l t s A 32-y e a r -o l d m a l e p a t i e n t p r e s e n t e d w i t hn u m b n e s sa n d w e a k n e s so fb o t hl o w e r l i m b sf o r1h o u r .H eh a d p r e v i o u s h i s t o r y o f h y p e r t e n s i o n .O n e h o u r b e f o r e a d m i s s i o n ,h e s u d d e n l y a p p e a r e d n u m b n e s s a n dw e a k n e s s o f b o t h l o w e r l i m b s w h e n r i d i n g ab i c y c l e ,a n dt h es y m p t o m s p r o g r e s s e dr a p i d l y .W i t h i n10m i n u t e s ,t h es t r e n gt ho fb o t hl o w e r l i m b s c o m p l e t e l y d i s a p p e a r e d .N e u r o l o g i c a l e x a m i n a t i o ns h o w e d g r a d e0o f l i m b m u s c l es t r e n g t ho nb o t h l o w e r l i m b s ,a n d d e c r e a s e dm u s c l e t e n s i o n .B i l a t e r a l k n e e a n d a n k l e r e f l e x e sw e r e n o t e l i c i t e d .D e p t h a n d s u pe rf i c i a l s e n s a t i o nb e l o wt h e p l a n e o f t h e 12t h t h o r a c i c v e r t e b r a (T 12)w e r e l o s t .B a b i n s k i s ig no fb o th l o w e r li m b sw a sn e ga t i v e .C o mb i n e dw i t hc o a g u l a t i o nr o u t i n e t e s t ,c a rd i a c u l t r a s o u n d a n d a o r t i cC Ta n g i o g r a p h y ,t he p a t i e n tw a s d i a g n o s e d a sA D (S t a r nf o r t y pe A ).H o w e v e r ,t h e p a t i e n t a n dh i sf a m i l y r e f u s e ds u rg i c a l t r e a t m e n t ,a n dl a t e rd i e da f t e r th e f ai l u r eo f c o n s e r v a t i v e t r e a t m e n t .C o n c l u s i o n A Dn e u r o l o g i c a l s y m p t o m s a s t h e f i r s t s y m p t o mi s r a r e .T h i s p a p e r r e po r t e d a c a s e o fA Dw i t h i s o l a t e d s p i n a l c o r d i n j u r y a n da b s e n c eo f p a i n f u l s y m p t o m sa s t h e f i r s t p r e s e n t a t i o n .T h r o u gh l i t e r a t u r e r e v i e w ,o u r c a s e r e p o r t p r o v i d e d r e f e r e n c e s f o r c l i n i c a l i m p r o v e m e n t o f d i a g n o s i s a n d t r e a t m e n t a n d r e d u c t i o no fm o r t a l i t y ra t e .K E Y W O R D S :a n e u r y s md i s s e c t i o n ;w e a k n e s s o f l o w e r l i mb ;c a s e r e po r t 主动脉夹层(a o r t i cd i s s e c t i o n ,A D )为主动脉壁内膜损伤后,血液通过内膜的破口进入主动脉壁中膜,而形成夹层血肿,也称为主动脉内膜分离[1]㊂A D 是一种严重危害人类健康的危急病症之一,其发病率及死亡率均很高㊂最新研究发现,急性夹层发病率为4.4例/年/10万人[2],在中国,其发病率可达㊃219㊃‘临床荟萃“ 2023年10月20日第38卷第10期 C l i n i c a l F o c u s ,O c t o b e r 20,2023,V o l 38,N o .10到5例/年/10万人[3],对于急性A D ,如果未经治疗,患者死亡率估计最初为每小时1%,第3天为50%,第2周结束时为80%[3]㊂由于病情严重,预后差,迫切需要紧急有效的治疗㊂现报道1例以双下肢无力麻木为首发表现的A D 诊治经过,为临床诊治提供参考㊂1 临床资料1.1 病史 患者男,32岁,身高183c m ,体重130k g,B M I 38.8,因双下肢麻木无力1h 于2022年5月29日就诊于本院急诊㊂患者入院前1h 于骑自行车时突然出现双下肢麻木无力,症状先出现于左下肢,后迅速进展至右下肢,呈进行性加重,于10分钟内双下肢力量完全消失,伴大汗,无大小便失禁,无发热㊁头痛㊁头晕㊁失语,无胸闷㊁胸痛㊁腰背部疼痛㊁心悸等其他伴随症状㊂既往高血压病史,血压最高达180/110mmH g (1mmH g =0.133k P a ),平素口服药物治疗(具体不详),未规律监测血压;否认糖尿病㊁心脏病病史;长期从事体力劳动,吸烟12年(20支/d),否认酗酒史㊂高血压家族史;个人史无特殊㊂1.2 体格检查 体温36.3ħ,脉搏90次/m i n ,呼吸20次/m i n ,卧位血压225/110mmH g ;内科心肺查体未见明显异常,腹软,脐周部位有压痛,无反跳痛及肌紧张,神经系统查体:意识清楚,言语流利,高级神经活动正常,颅神经查体未见异常;双上肢肌力Ⅴ级㊁肌张力正常,双下肢肌力0级㊁肌张力降低;双上肢共济运动和感觉系统正常,双侧膝反射和踝反射未引出,T 12平面以下深浅感觉消失,双侧病理征阴性㊂1.3 实验室检查 血常规:白细胞计数15.5ˑ109/L[(3.50~9.50)ˑ109/L ],中性粒细胞绝对值8.3ˑ109/L [(1.80~6.30)ˑ109/L ],中性粒细胞百分数53.7%(40%~75%);血清尿酸471.8μm o l /L (208~428μm o l /L ),肌酐92.2μm o l /L (57.0~97.0μm o l /L );凝血功能试验:凝血酶原时间10.4s (9.4~12.5s),国际标准化比值0.94,纤维蛋白原3.61g /L (2.38~4.98g /L ),血浆D -二聚体4.32m g /L (0~0.55m g /L )㊂心脏彩色超声:A D ;主动脉瓣轻度返流;二尖瓣轻度返流;左室舒张功能轻度减低,见图1㊂主动脉C T血管成像:A D (S t a r n f o rA 型),左肾动脉㊁肠系膜下动脉㊁腹主动脉远端㊁两侧髂内动脉及两侧髂外动脉近端未见造影剂充盈;左肾灌注减低;心包积液/血;右肾囊肿;双侧肾上腺增粗,见图2㊂诊断为A D (S t a r n f o rA 型),遂予以持续泵入乌拉地尔㊁艾司洛尔降压治疗,并建议患者进一步行手术治疗,患者及患者家属拒绝㊂后保守治疗入住心脏外科重症监护室,于2022年5月30日复查肝肾功能:尿酸1466.7μm o l /L ,肌酐354.4μm o l /L ,丙氨酸氨基转移酶622.6U /L (9.0~50.0U /L ),天门冬氨酸氨基转移酶819.5U /L (15.0~40.0U /L ),肌酸激酶44164.0U /L (50.0~310.0U /L ),乳酸脱氢酶2980.0U /L(120.0~250.0U /L )㊂患者当天因多器官功能衰竭死亡㊂图1 心脏彩色超声示主动脉窦部内径约41mm ,升主动脉内径约48mm ,升主动脉管腔内可见剥脱的带状回声内膜(红色尖头所指为夹层回声信号)F i g.1 T h e r e s u l t o f e c h o c a r d i o g r a p h y :T h e i n n e r d i a m e t e r o f t h e a o r t i c s i n u s i s a b o u t 41mm ,a n d t h e i n n e r d i a m e t e r o f t h e a s c e n d i n g a o r t a i s a b o u t 48mm.T h e s t r i p e d e c h o i n t i m a c a nb e s e e n i n t h e a s c e n d i n g a o r t a (T h e r e d t i p r e f e r s t o t h e i n t e r l a y e r e c h o s i gn a l )㊃319㊃‘临床荟萃“ 2023年10月20日第38卷第10期 C l i n i c a l F o c u s ,O c t o b e r 20,2023,V o l 38,N o .10图2主动脉(胸主动脉+上腹动脉+下腹动脉+髂动脉)C T血管造影成像示A DS t a n d f o r dA型(红色尖头所指为夹层)a.主动脉C T血管重建成像;b~d.矢状位㊂其中主动脉弓部(b)㊁升主动脉及降主动脉(c)㊁升主动脉(d)可见 双腔改变F i g.2S t a n d f o r d t y p eAa o r t i cd i s s e c t i o nw a s s h o w nb y a o r t i c(t h o r a c i ca o r t a,s u p e r i o ra b d o m i n a l a r t e r y,i n f e r i o ra b d o m i n a l a r t e r y a n d i l i a c a r t e r y)C Ta n g i o g r a p h y(T h e r e d t i p r e f e r s t o t h e i n t e r l a y e r)a.A r t e r y C Ta n g i o g r a p h y r e c o n s t r u c t i o n i m a g i n g;b-d.s a g i t t a l p o s i t i o n.A m o n g t h e m,t h e a o r t i c a r c h(f i g u r e b),a s c e n d i n g a o r t a a n dd e s c e n d i n g a o r t a(f i g u r e c),a s c e n d i n g a o r t a(f i g u r e d)s h o w e d d o u b l e l u m e nc h a n g e s2讨论对于A D,目前最常用的为斯坦福分类体系,如果夹层累及升主动脉,则为S t a n f o r dA型;如果近无名动脉的升主动脉不参与此过程,则称之为S t a n f o r d B型[4]㊂根据出现症状的时间,夹层分为急性(<14d)㊁亚急性(15~92d)或慢性(>90d)[5]㊂其中急性A型A D占所有A D的58%~62%,其病死率为73%,院前死亡率高达49%[6]㊂A D最常见危险因素包括男性㊁年龄㊁高血压㊁吸烟㊁动脉瘤㊁先天性疾病㊁炎症性疾病等[7],其中高血压为A D发病的最主要的危险因素[1,3]㊂本文患者为男性,B M I值高,既往有高血压病史和吸烟史等明确危险因素,实验室检查显示血清尿酸水平升高,而高尿酸可能同时参与了A D的发病机制[8]㊂既往研究认为,对于女性患者,B M I与A D死亡率呈线性负相关[9],而最新研究发现,男性B M I和主动脉疾病存在正性相关,且在吸烟患者中,无论男女,B M I均与主动脉疾病死亡率呈正相关或倾向于正相关[10]㊂其机制可能为高B M I相关炎症可引起主动脉壁变性,即可导致主动脉中膜和外膜弹性蛋白断裂或胶原蛋白降解,导致主动脉内壁退化,进而内膜撕裂,形成主动脉扩张㊁夹层[8]㊂急性A D的临床表现因缺血部位和是否存在血流动力学不稳定而存在差异,其典型表现为急性㊁严重㊁撕裂性胸痛或背痛,也可表现为剧烈性或尖锐性刺痛[2]㊂除胸背痛外,急性A D的主要神经系统症状是大脑或脊髓缺血㊁晕厥和下肢疼痛导致的局灶性神经功能缺损㊂研究结果显示,18.6%的A型急性A D患者以中枢神经系统症状为首发症状[11],其中大约1%的急性A型A D以脊髓缺血症状发病[12]㊂S a n d h u等[13]回顾了1999-2014年间诊治的978例急性A D,其中仅28例(2.9%)急性A D患者表现为孤立性脊髓损伤(截瘫/瘫痪,无其他灌注不良症状)㊂因患者家属拒绝行腰髓影像学检查及手术治疗,考虑本例患者其截瘫原因为腹主动脉内膜撕裂至胸12水平影响腰动脉,从而波及脊髓前动脉,导致脊髓横断性缺血损伤[14]㊂本例患者发病时未诉疼痛,荟萃分析发现,伴有神经症状的患者在夹层开始时出现疼痛的比率为47.8%,远低于在普通A D病例中出现疼痛的比率(95%)[12],因此影像学对于明确诊断是必要的㊂但对于没有典型症状的患者,有时很难判断是否应该进行增强C T㊂㊃419㊃‘临床荟萃“2023年10月20日第38卷第10期 C l i n i c a l F o c u s,O c t o b e r20,2023,V o l38,N o.10本例患者诊断明确,病情危重,在临床中更应重视诊断与鉴别诊断㊂为了早期㊁快速地发现A D,美国心脏病学会和美国心脏协会胸主动脉疾病患者诊断和管理指南提出了基于诱发条件㊁疼痛特征和临床检查的A D检测风险评分系统[15]㊂虽然该系统对急性A D的检测具有95.7%的高灵敏度[16],但其特异度较低(39.8%)[17]㊂在这种临床需求的背景下, D-二聚体作为急性A D的生物标志物的有效性得到了广泛的研究,且对A D有鉴别诊断意义[18]㊂欧洲心脏病学会指南推荐D-二聚体升高作为急性主动脉综合征诊断的Ⅱa指标[19]㊂研究显示D-二聚体升高对A D的诊断有较高的特异度[20],将0.5μg/m l 作为临界值,D-二聚体的敏感度在95%~98%,特异度为40%~60%[21]㊂而经胸超声心动图对于S t a n f o r dA型A D诊断的敏感度和特异度分别为77%~80%和93%~96%,而C T A对于A D诊断总体敏感度和特异度为96%[18]㊂因此,对急性A D的诊断需要综合的方法㊂本文患者血浆D-二聚体水平明显升高(4.32m g/L),结合心脏彩色超声及主动脉C T血管成像,虽诊断及时且明确,但患者及家属拒绝手术治疗㊂后A D进一步加重,考虑其并发脏器灌注不良综合征[22],分析原因为A D分支血管累及腹腔干动脉或双肾动脉,导致急性肝肾功能衰竭,代谢紊乱;A D分支血管累及主动脉根部,使主动脉瓣关闭不全导致急性心功能衰竭,最终因患者及其家属放弃手术治疗导致多器官功能衰竭而死亡㊂随着医疗条件的提高,目前对A D的临床诊断相对容易㊂对于急性A D的治疗,无论是A型还是B型,确诊后的首要治疗是通过药物控制患者心率和血压㊂药物治疗的原则是减轻主动脉剪应力,从而减少假腔的传播[23]㊂目前,指南推荐首选β受体阻滞剂以控制心率达到目标值(60~80次/m i n),并将患者收缩压降至100~120mmH g[24],从而减少主动脉壁的压力[6]㊂尽管将血压和心率控制在阈值范围内,仅药物治疗的患者死亡率在发病后仍以1%~ 2%每小时的速度增加,在两天内可达30~68%,在发病两周内达到49~73%[25],考虑其靶器官并发症的几率随时间变化而明显增加,且其中远期疗效存在不确定性,因此学术界对夹层药物治疗的心率和血压控制目标存在较大争议[26]㊂虽然严格心率控制策略对于B型夹层似乎能从中获益[26],但在选择治疗时应根据临床情况个体化,以尽量减少并发症的发生㊂且药物治疗不能代替手术,因此,手术是A D 患者的推荐治疗方案[6]㊂目前对于S t a n f o r d A型A D,国内外指南推荐首选外科手术治疗[19,26]㊂虽然术后早期死亡率仍高达9%~25%,但如果不进行手术,前48小时内病死率为50%[27]㊂目前国内S t a n f o r dA型A D的手术死亡占3.1%~15.5%,急性期手术死亡和并发症发生率更高[24],且术后早期可合并感染㊁出血㊁脏器功能不全㊁神经系统疾病等并发症㊂但与内科治疗相比,术后远期疗效明显更好㊂但无论是采取药物保守治疗或外科手术治疗, A D患者均需要长期乃至终身进行规律的随访㊂并建议所有患有S t a n f o r dA型A D患者的一级亲属都应接受经胸超声心动图检查,以排除主动脉根部或升主动脉瘤的存在;以及对于怀疑有遗传性胸主动脉疾病的患者,建议行遗传评估,如果在患者身上发现了致病变体,那么应该对家庭成员进行级联检测[23]㊂基因测试和家庭咨询可能会帮助患者及时采取预防性干预措施,防止疾病的发生㊂参考文献:[1]石烽,王志维.主动脉夹层发病相关危险因素分析[J].中华老年心脑血管病杂志,2020,22(1):28-31.[2]S e nI,E r b e n YM,F r a n c o-M e s a C,e ta l.E p i d e m i o l o g y o fa o r t i c d i s s e c t i o n[J].S e m i nV a s c S u r g,2021,34(1):10-17.[3] Z h uS,Z h e n g T,Q i a oZ Y,e ta l.A c u t ea o r t i cd i s s e c t i o ni ny o u n g a d u l t p a t i e n t s:C l i n i c a lc h a r a c t e r i s t i c s,m a n a g e m e n t,a n d p e r i o p e r a t i v eo u t c o m e s[J].J I n v e s tS u r g,2020,33(3):211-217.[4] E l s a y e dR S,C o h e n R G,F l e i s c h m a nF,e ta l.A c u t et y p eaa o r t i c d i s s e c t i o n[J].C a r d i o l C l i n,2017,35(3):331-345.[5] L o m b a r d iJ V,H u g h e s G C,A p p o o J J,e ta l.S o c i e t y f o rv a s c u l a r s u r g e r y(S V S)a n d s o c i e t y o f t h o r a c i c s u r g e o n s(S T S)r e p o r t i n g s t a n d a r d s f o rt y p eBa o r t i cd i s s e c t i o n s[J].J V a s cS u r g,2020,71(3):723-747.[6] G u d b j a r t s s o nT,A h l s s o nA,G e i r s s o nA,e t a l.A c u t e t y p eAa o r t i c d i s s e c t i o n-a r e v i e w[J].S c a n dC a r d i o v a s c J,2020,54(1):1-13.[7] G a w i n e c k a J,S c hön r a t hF,v o nE c k a r d s t e i n A.A c u t ea o r t i cd i s se c t i o n:P a t h o g e n e s i s,r i s kf a c t o r s a n dd i ag n o s i s[J].S w i s sM e d W k l y,2017,147:w14489.[8] L iX,J i a n g S,H eJ,e t a l.U r i ca c i d i na o r t i cd i s s e c t i o n:Am e t a-a n a l y s i s[J].C l i nC h i m A c t a,2018,484:253-257.[9]S i d l o f fD,C h o k eE,S t a t h e rP,e t a l.M o r t a l i t y f r o mt h o r a c i ca o r t i c d i s e a s e s a n d a s s o c i a t i o n sw i t h c a r d i o v a s c u l a r r i s k f a c t o r s[J].C i r c u l a t i o n,2014,130(25):2287-2294.[10] T a k a d a M,Y a m a g i s h iK,T a m a k o s h iA,e ta l.B o d y m a s si n d e xa n dm o r t a l i t y f r o ma o r t i c a n e u r y s ma n dd i s s e c t i o n[J].JA t h e r o s c l e rT h r o m b,2021,28(4):338-348.[11]S h o n o Y,A k a h o s h i T,M e z u k i S,e t a l.C l i n i c a lc h a r a c t e r i s t i c so ft y p e A a c u t e a o r t i cd i s se c t i o n w i t h C N Ss y m p t o m[J].A mJE m e r g M e d,2017,35(12):1836-1838.[12] E l s h o n y H,I d r i sA,A h m e d A,e ta l.S p i n a lc o r di s c h e m i as e c o n d a r y t o a o r t i c d i s s e c t i o n:C a s e r e p o r t w i t h l i t e r a t u r er e v i e w f o r d i f f e r e n t c l i n i c a l p r e s e n t a t i o n s,r i s k f a c t o r s,㊃519㊃‘临床荟萃“2023年10月20日第38卷第10期 C l i n i c a l F o c u s,O c t o b e r20,2023,V o l38,N o.10r a d i o l o g i c a l f i n d i n g s,t h e r a p e u t i cm o d a l i t i e s,a n do u t c o m e[J].C a s eR e p N e u r o l,2021,13(3):634-655.[13]S a n d h uH K,C h a r l t o n-O u w KM,J e f f r e s s K,e ta l.R i s ko fm o r t a l i t y a f t e r r e s o l u t i o n o f s p i n a l m a l p e r f u s i o n i n a c u t ed i s se c t i o n[J].A n nT h o r a c S u r g,2018,106(2):473-481.[14] Z h a n g D,L i n Y,L i u Y,e ta l.C l i n i c a la n a l y s i so fa o r t i cd i s se c t i o n w i t h s u d d e n c o m a a n d p a r a p l e g i a a s t h e m a i ns y m p t o m s[J].J I n t M e d R e s,2020,48(3): 300060519895843.[15] H i r a t z k aL F,B a k r i sG L,B e c k m a nJ A,e ta l.2010A C C F/A H A/A A T S/A C R/A S A/S C A/S C A I/S I R/S T S/S VMg u i d e l i n e s f o r t h ed i a g n o s i sa n d m a n a g e m e n to f p a t i e n t sw i t ht h o r a c i c a o r t i cd i s e a s e:A r e p o r to ft h e A m e r i c a nc o l l e g eo fc a rd i o l o g y f o u n d a t i o n/A me r i c a nh e a r t a s s o c i a t i o n t a s kf o r c e o np r a c t i c e g u i d e l i n e s,A m e r i c a n a s s o c i a t i o n f o r t h o r a c i c s u r g e r y,A m e r i c a nc o l l e g eo fr a d i o l o g y,A m e r i c a ns t r o k ea s s o c i a t i o n,s o c i e t y o f c a r d i o v a s c u l a r a n e s t h e s i o l o g i s t s,s o c i e t y f o rc a rd i o v a s c u l a r a n g i o g r a p h y a n d i n te r v e n t i o n s,s o c i e t y o fi n t e r v e n t i o n a lr a d i o l o g y,s o c i e t y o ft h o r a c i c s u r g e o n s,a n ds o c i e t y f o r v a s c u l a rm e d i c i n e[J].C i r c u l a t i o n,2010,121(13): e266-369.[16] R o g e r sAM,H e r m a n nL K,B o o h e rAM,e t a l.S e n s i t i v i t y o ft h ea o r t i cd i s s e c t i o nd e t e c t i o nr i s ks c o r e,an o v e l g u i d e l i n e-b a s e d t o o l f o r i d e n t i f ic a t i o no f a c u t ea o r t i cd i s se c t i o na t i n i t i a lp r e s e n t a t i o n:R e s u l t sf r o m t h e i n t e r n a t i o n a l r e g i s t r y o fa c u t ea o r t i c d i s s e c t i o n[J].C i r c u l a t i o n,2011,123(20):2213-2218.[17] N a z e r i a n P,G i a c h i n o F,V a n n i S,e t a l.D i a g n o s t i cp e r f o r m a n c eo ft h ea o r t i cd i s s e c t i o n d e t e c t i o n r i s k s c o r ei np a t i e n t sw i t h s u s p e c t e d a c u t e a o r t i c d i s s e c t i o n[J].E u rH e a r t JA c u t eC a r d i o v a s cC a r e,2014,3(4):373-381.[18]宁世锋,易东,鄢华.急性S t a n f o r dA型主动脉夹层累及冠状动脉诊疗进展[J].中国循证心血管医学杂志,2022,14(1):124-126.[19] E r b e lR,A b o y a n sV,B o i l e a uC,e t a l.2014E S C g u i d e l i n e so n t h ed i a g n o s i sa n dt r e a t m e n to fa o r t i cd i s e a s e s:D o c u m e n tc o v e r i n g a c u t ea n dc h r o n i ca o r t i cd i se a s e sof t h et h o r a c i ca n da b d o m i n a l a o r t ao f t h e a d u l t.T h e t a s k f o r c e f o r t h ed i a g n o s i sa n dt r e a t m e n to fa o r t i cd i s e a s e so ft h ee u r o p e a ns o c i e t y o fc a rd i o l o g y(E S C)[J].E u rHe a r t J,2014,35(41):2873-2926.[20] Z h a n g Y,C h e nT,C h e nQ,e t a l.D e v e l o p m e n t a n d e v a l u a t i o no f a n e a r l y d e a t h r i s k p r e d i c t i o nm o d e l a f t e r a c u t e t y p eAa o r t i cd i s se c t i o n[J].A n nT r a n s lM e d,2021,9(18):1442.[21]I t a g a k iR,K i m u r a N,M i e n o M,e ta l.C h a r a c t e r i s t i c sa n dt r e a t m e n t o u t c o m e s o fa c u t et y p e a a o r t i c d i s s e c t i o n w i t he l e v a t e dd-d i m e r c o n c e n t r a t i o n[J].JA m H e a r tA s s o c,2018,7(14):e009144.[22]宋雨,吴龙,董念国.急性A型主动脉夹层合并脏器灌注不良综合征的治疗现状与进展[J].中华胸心血管外科杂志,2022, 38(2):117-122.[23] M a l a i s r i eS C,S z e t o WY,H a l a s M,e t a l.2021t h ea m e r i c a na s s o c i a t i o nf o rt h o r a c i cs u r g e r y e x p e r tc o n s e n s u sd o c u m e n t:S u r g i c a l t r e a t m e n to fa c u t et y p e A a o r t i cd i s s e c t i o n[J].JT h o r a cC a r d i o v a s cS u r g,2021,162(3):735-758. [24]中国医师协会心血管外科分会大血管外科专业委员会.主动脉夹层诊断与治疗规范中国专家共识[J].中华胸心血管外科杂志,2017,33(11):641-654.[25]J a s s a rA S,S u n d tT M3r d.H o w s h o u l d w e m a n a g et y p e Aa o r t i c d i s s e c t i o n?[J].G e nT h o r a cC a r d i o v a s c S u r g,2019,67(1):137-145.[26]吴昭瑜,仇鹏,黄群,等.主动脉夹层药物治疗目标的研究进展[J].中国血管外科杂志(电子版),2021,13(1):84-87.[27] F u k u iT.M a n a g e m e n to f a c u t ea o r t i cd i s s e c t i o na n dt h o r a c i ca o r t i c r u p t u r e[J].J I n t e n s i v eC a r e,2018,6:15.收稿日期:2022-09-18编辑:张卫国㊃619㊃‘临床荟萃“2023年10月20日第38卷第10期 C l i n i c a l F o c u s,O c t o b e r20,2023,V o l38,N o.10。

常用超声术语英文缩略词

常用超声术语英文缩略词

常用超声术语英文缩略词超声科医生在日常工作及科研工作中经常接触到一些英文术语及缩略词,有必要对常见的超声术语予以一定的了解及掌握,下面对在英文文献及教科书中经常出现的术语总结如下。

取术语中每个单词的首位字母即组成缩略词(如胆总管common bile duct缩略词为CBD)。

当然,不是所有的所谓术语都具有缩略词,除了一部分被普遍承认的缩略词外,在使用英文术语时应尽量用全称。

【超声基础方面】超声成像ultrasonic imaging实时成像real-time imaging灰阶显示gray scale display彩阶显示color scale display经颅多普勒transcranial doppler彩色多普勒血流显像color doppler flow imaging彩色血流造影color flow angiography彩色多普勒能量图color doppler energy彩色能量图color power angio超声内镜ultrasound endoscope超声导管ultrasound catheter血管内超声intravascular ultrasound血管内超声显像intravascular ultrasonic imaging管腔内超声显像intraluminal ultrasonic imaging腔内超声显像endoluminal sonography心内超声显像intracardiac ultrasonic imaging内镜超声扫描endoscopic ultrasonography内镜超声技术endosonography膀胱镜超声技术cystosonography阴道镜超声技术vaginosonography经阴道彩色多普勒显像transvaginal color doppler imaging经直肠超声扫描transrectal ultrasonography直肠镜超声(技术)rectosonography经尿道扫查transurethral scanning介入性超声interventional ultrasound术中超声监视intraoperative ultrasonic monitoring超声引导经皮肝穿刺胆管造影ultrasound guided percutaneous transhepatic cholangiography超声引导经皮穿刺注射乙醇US guided percutaneous alcohol injection超声引导经皮胆囊胆汁引流US guided percutaneous gallbladder bile drainage超声引导经皮抽吸US guided percutaneous aspiration超声引导胎儿组织活检US guided fetal tissue biopsy超声引导经皮肝穿刺门静脉造影US guided percutaneous transhepatic portography三维显示three dimensional display三维图像重建3D image reconstruction组织特性成像tissue specific imaging动态成像dynamic imaging数字成像digital image血管显像angiography声像图法echography sonography声像图sonogram echogram多用途探头multipurpose scanner宽频带探头wide-band probe环阵相控探头phased annular array probe术中探头intraoperative porbe穿刺探头ultrasound guided probe食管探头transesophagel probe经食管超声心动图探头transesophagel echocardiography probe 阴道探头transvaginal probe直肠探头transrectal probe尿道探头transurethral probe膀胱探头intervesical probe腔内探头intracavitary probe内腔探头endo-probe导管超声探头catheter-based US probe扫描方式scan mode线阵linear array凸阵convex array扇扫sector scanning传感器sensor换能器transducer放大器amplifier阻尼器buffer解调器、检波器demodulator触发器trigger零位调整zero adjustment定标、校正calibration快速时间常数电路fast time constant自动增益控制automatic gain control深度增益补偿depth gain compensation时间增益补偿time gain compensation对数压缩logarithmic compression灵敏度时间控制sensitivity time control动态范围dynamic range消除erase, eliminate变换shift倒置、反转invert消除clear注释annotation放大magnification , magnify , zoom写入write记录record聚焦focus帧率frame rate冻结freeze字符character抑制rejection, reject , suppression增益gain帧相关frame correlation回放rendering , play back彩色极性color polarity彩色边界color edge彩色增强color enhance菜单选择menu selection彩色余辉color persistence彩色捕获color capture彩色壁滤波color wall filter彩色速度显像color velocity imaging彩色转向color steering彩色消除color cut彩色锁定color lock成像数据imaging data预设置preset前处理pre process后处理post process重调、复原reset动态频率扫描dynamic frequency scanning 焦距focal distance动态聚焦dynamic focusing滑动聚焦sliging focusing区域聚焦zone focusing连续聚焦sequential focusing电子聚焦electric focusing分段聚焦segment focusing多段聚焦multistage focusing全场连续聚焦confocusing图像均匀性image uniformity运动辨别力motion discrimination穿透深度penetration depth空间分辨力spatial resolution瞬时分辨力temporal resolution帧分辨力frame resolution图像线分辨力image-line resolution对比分辨力contrast resolution细节分辨力detail resolution多普勒取样容积doppler sample volume多普勒流速分布分辨力doppler flow-velocity distributive resolution 多普勒流向分辨力doppler flow-direction resolution多普勒最低流速分辨力doppler minimum flow-velocity resolution彩色多普勒空间分辨力spatial resolution of color doppler彩色多普勒时间分辨力time resolution of color doppler彩色多普勒最低流速分辨力minimum flow-velocity of color doppler 彩色多普勒强度color doppler level彩色多普勒处理功能板CFM processing board彩色视频监视器color video monitor--------------------------------------------------------------------------------【解剖学方面】1、颅脑大脑cerebrum大脑纵裂longitudinal cerebral fissure大脑皮质cerebral大脑镰falx cerebri大脑导水管,中脑水管cerebral aqueduct中脑midbrain, mesencephalon小脑cerebellum小脑幕tentorium cerebelli丘脑,视丘thalmus延髓medulla oblongata侧脑室lateral ventricle第三脑室third ventricle第四脑室fourth ventricle第五脑室fifth ventricle脑桥,桥脑pons脑干brain stem间脑diencephalon中间块intermidiate mass尾状核caudate nucleus脉络丛choroid plexus胼胝体corpus callosum脑岛,岛叶insula大脑脚cerebral peduncles大脑外侧沟(窝、裂)lateral sulcus , sylvius fissure穹窿fornix透明隔septum pellucidum透明隔腔cavity of septum pellucidum额叶frontal lobe顶叶parietal lobe枕叶occipital lobe颞叶temporale lobe缘叶limbic lobe大脑动脉环Willi\'s artery circle大脑前动脉anterior cerebral artery大脑中动脉middle cerebral artery大脑后动脉posterior cerebral artery基底动脉basilar artery前交通支(动脉)anterior communicating branch后交通支(动脉)posterior communicating branch颅前窝,凹anterior cranial fossa颅中窝,凹middle cranial fossa颅后窝,凹posterior cranial fossa2、眼、面颈、涎腺、乳腺、胸肺眼球optic bulb ,eyeball角膜cornea前房anterior chamber虹膜iris睫状体ciliary body视网膜retina脉络膜choroid巩膜sclera房水aqueous humour玻璃体vitreous玻璃体膜hyaloid membrae晶状体lens(眼)直肌recti muscles视神经optic nerve眶上动脉supraorbital artery眼动脉ophthalmic artery视网膜中央动脉central retinal artery睫状后长(短)动脉posterior long (short) ciliary artery 泪腺动脉lacrimal gland artery滑车上动脉supratrochlear artery眼静脉ophthalmic vein眶上静脉suprorbital vein滑车上静脉supratrochlear vein视网膜中央静脉central retinal vein涡状静脉vorticose veins眼眶orbit结膜conjunctiva唾液腺、涎腺salivary gland腮腺parotid (gland)颌下腺submaxillary gland舌下腺sublingual gland甲状腺thyroid (gland )甲状旁腺parathyroid (gland )上颌窦maxillary sinus气管trachea食管esophagus乳腺breast, mammary gland额front枕occiput颞temples颊cheek胸廓、胸腔thorax, thorax cavity肋骨ribs, costae肋软骨costal cartilages胸骨sternum乳腺组织breast tissue悬韧带suspensory ligament, Copper\'s ligament 乳腺后组织retromammary tissue横膈diaphragm颈总动脉common carotid artery颈外动脉external carotid artery颈内动脉internal carotid artery椎动脉vertebral artery无名动脉innominate artery颈内静脉internal jugular vein甲状腺上动脉superior thyroid artery乳房内动脉internal mammary artery3、腹部血管、周围血管腹主动脉abdominal aorta腹腔动脉celiac artery肠系膜上动脉superior mesenteric artery肠系膜下动脉inferior mesenteric artery肝总动脉common hepatic artery肝动脉hepatic artery胃左动脉left gastric artery胃十二指肠动脉gastroduodenal artery脾动脉splenic artery肾动脉renal artery卵巢动脉ovarian artery髂总动脉common iliac artery髂内动脉internal iliac artery髂外动脉external iliac artery锁骨下动脉subclavian artery椎动脉vertebral artery乳房内动脉internal mammary artery颈内静脉internal jugular vein颈外静脉external jugular vein腋静脉axillary vein奇静脉azygos vein大隐静脉great saphenous vein下腔静脉inferior vena cava门静脉portal vein肠系膜上静脉superior mesenteric vein肝静脉hepatic vein肾静脉renal vein腰静脉lumbar vein精索静脉spermatic vein肾弓形动脉renal arcuate arteries股动脉femoral artery肱动脉humeral artery桡动脉radial artery尺动脉ulnar artery面动脉facial artery锁骨下动脉subclavian artery颈浅动脉superficial cervical artery颞浅动脉superficial temporal artery4、肝、胆、胰、脾、泌尿男生殖肝左叶left liver lobe(LL)肝右叶right liver lobe(RL)尾状叶caudate lobe(CL)方叶quadrate lobe(QL)附垂叶Riedel\'s lobe胆囊gallbladder(GB)胆囊管cystic duct(CD)肝管hepatic duct(HD)胆总管common bile duct (CBD)肝门porta hepatis胆囊窝gallbladder forssa肝圆韧带hepatoumbilical ligament, round ligament 肝镰状韧带falciform ligament肝静脉韧带venose ligament胆管、胆道bile duct(BD)螺旋状瓣spiral valve肝总管common hepatic duct肝外胆管extrahepatic duct乏特壶腹V ater\'s ampulla胰腺pancreas胰管pancreatic duct , Wirsung\'s duct副胰管Santorini duct胰头head of pancreas胰颈neck of pancreas胰体body of pancreas胰尾tail of pancreas钩突uncinate process脾spleen脾门splenic hilum肾周脂肪perinephrit fat集合系统collective system肾kedney肾盂renal calyes锥体pyramids肾柱renal colums肾上腺adrenal gland输尿管ureters, ureteral , uretero膀胱urinary bladder , bladder尿道urethra睾丸testis附睾epididymis鞘膜tunica vagialis, vagina tunic白膜tunica albuginea , albuginea输精管ductus deferens, deferent duct精囊vesiculae seminals, seminal vesicle射精管ejaculatory ducts阴囊scrotum, scrotal sac精索spermatic cord腹股沟inguen前列腺prostate5、妇产科子宫uterus输卵管uterine tube, oviduct卵巢ovary, ovaries子宫颈cervix子宫腔uterine canal子宫内膜endometriosis子宫直肠陷凹rectouterine fossa子宫内口internal ostium of the uterus子宫口orifice of the uterus阴道vagina胚胎embryo卵黄囊yolk sac羊膜amnion羊膜腔amniotic cavity蜕膜decidua绒毛villus绒毛膜chorion胎盘placenta胎儿fetus胎心fetal heart胎动fetal movement, feta motion胎儿脊柱fetal spine胎儿胃泡fetal stomach bubble胎儿胸部fetal thorax胎儿肾fetal kidney胎儿肢体fetal limb脐带umbilical cord卵泡,滤泡follic le附件adnexa羊水amniotic fluid宫内节育器intrauterine device妊娠囊gestational sac顶臀长度crown-rump length双顶径biparietal diameter胎头指数cephalic index枕额径occipito-frontal diameter头围head circumference胸围thoracic circumference腹围abdominal circumference小脑径cerebellum diameter头(径)指数cephalic index双眼间距ocular distance腹部横径transverse trunk diameter腹部前后径anteroposterior trunk diameter 椎骨长度(胸6~腰3)length of vertebrae 脊柱spine, vertebral colum股骨长度femur length肱骨长度humerus length胎儿体重fetal weight脐动脉umbilical artery脐静脉umbilical vein 胎盘placenta孕周gestational week 孕龄gestational age。

超声科英文缩写

超声科英文缩写

超声科英文缩写Ultrasound Department English AbbreviationIntroduction:In the medical field, various abbreviations are used to simplify and streamline communication, documentation, and record-keeping. This article aims to explore the English abbreviation commonly used in the Ultrasound Department, also known as the Sonography Department. Understanding these abbreviations is essential for healthcare professionals working in the field of ultrasound.I. Definition and Importance:Ultrasound is a non-invasive imaging technique that uses high-frequency sound waves to produce detailed images of the organs, tissues, and structures within the body. It is widely used for diagnostic purposes in various medical specialties, including radiology, obstetrics and gynecology, cardiology, and more. The Ultrasound Department plays a crucial role in providing accurate and timely diagnoses, guiding interventional procedures, and monitoring treatment progress.II. Commonly Used English Abbreviations:1. US - Ultrasound:US is the most commonly used abbreviation for ultrasound. It is used to refer to both the imaging technique itself and the Ultrasound Department.2. Sono - Sonography:Sono is an abbreviation for sonography, which is the medical specialty that utilizes ultrasound imaging. This abbreviation is often used in the context of describing ultrasound examinations or referring to sonographers who perform the tests.3. USG - Ultrasound Guidance:USG is an abbreviation for ultrasound guidance. It indicates the use of real-time ultrasound imaging to assist in performing interventional procedures, such as biopsies, aspirations, or injections.4. Doppler:Doppler ultrasound is a specific technique used to assess blood flow within the body. It measures the change in frequency of sound waves reflected by moving objects, such as blood cells. The term "Doppler" is widely used and understood, and therefore doesn't require an abbreviation.5. EBUS - Endobronchial Ultrasound:EBUS refers to the specialized application of ultrasound within the bronchial tree, assisting in the diagnosis and staging of lung cancer. It is commonly used by pulmonologists and thoracic surgeons.6. TTE - Transthoracic Echocardiography:TTE is a non-invasive cardiac ultrasound examination that provides detailed images of the heart by utilizing an ultrasound transducer placed on the chest. It is primarily used to assess heart function and diagnose various cardiac conditions.7. TVS - Transvaginal Ultrasound:TVS is a type of pelvic ultrasound examination performed using a transvaginal probe. It is commonly used in gynecology to evaluate the female reproductive system, including the ovaries, uterus, and surrounding structures.8. USS - Ultrasound Scan:USS is an abbreviation for ultrasound scan, which is a general term used to describe any ultrasound examination or imaging study.III. Conclusion:The use of abbreviations is imperative in any medical field to ensure effective and efficient communication among healthcare professionals. This article has highlighted the commonly used English abbreviations within the Ultrasound Department, providing insight into their meanings and applications. Familiarity with these abbreviations is crucial for all healthcare professionals involved in ultrasound imaging to enhance their communication and documentation skills, ultimately leading to improved patient care.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Section Title Chapter 2AbstractUltrasound examination is a valuable method in diagnosis of various thoracic conditions including pleural or pericardial effusion, empyema, pneumothorax, pulmonary embolism, pneumonia, and primary or metastatic lung cancer. Ultrasound guidance during tho-racentesis or tube thoracostomy assures minimal complications. It can also assist with staging of lung cancer by defining the extension of thoracic wall invasion or by real-time ultrasound-guided biopsy of a supraclavicular lymph node. Invasive procedures such as medi-astinoscopy can be spared with effective use of endoscopic or endo-bronchial ultrasound in cancer diagnosis. Intensivists are able to provide better bedside care efficiently with a focused examination in critically ill patients. Thoracic ultrasound is mostly used to locate a target organ or a disease-specific condition and is often used as a complement to other imaging such as chest radiograph, computed tomogram or magnetic resonance imaging. Advantages include portability permitting bedside examination even in the intensive care units. Specific focused skills can be easily learned with formal didactic lessons and supervised training.Copyright © 2009 S. Karger AG, Basel Air is a poor medium for sound transmission. As lung con-tains air, ultrasound of the lung may seem counterintuitive. The interface between chest wall and normal lung with dif-ferent acoustic densities reflects most of the ultrasound waves, preventing a direct examination of an otherwise healthy lung. In pathological conditions such as tumor inva-sion, consolidation or atelectasis, the alveoli are replaced with more dense tissue allowing better sound conduction. When the pleural space is occupied with fluid or the consol-idated lung reaches the chest wall, it opens an acoustic win-dow permitting ultrasound examination of the lung.Although ultrasound is now being used in most intensive care units (ICU) for vascular access, the potential of ultra-sound use by pulmonologists for other thoracic applications is still underestimated. The role of ultrasound examination in lung cancer staging is not mentioned in the current guide-lines. Ultrasound is practiced in the emergency rooms throughout the world for focused assessment with sonogra-phy for trauma to determine rapid intervention for cardiac tamponade, severe intrathoracic or intra-abdominal bleed-ing or organ injury. Ultrasound is helpful to locate the best site for chest tube placement or the insertion of a trocar prior to thoracoscopy or to drain a complicated pleural effu-sion. It can be used to localize parenchymal consolidation, tumor, chest wall, pleural masses or lymph nodes. Intrathoracic invasion of tumor masses in addition to car-diac function may also be detected easily. At the Oststadt-Heidehaus Hospital in Germany, ultrasound is routinely used in cancer surveillance to scan pleura, chest wall, liver, adrenal glands, lymph nodes or bones. An enlarged supra-clavicular lymph node detected during examination is aspi-rated at the same time with minimal additional preparation allowing diagnosis and cancer staging. Fine needle aspirate or histological specimen may be obtained under real-time guidance with minimal risk of pneumothorax from the chest wall or subpleural peripheral lung masses.Ultrasound involves no ionizing radiation or nephro-toxic contrast dye exposure. As opposed to other imaging techniques such as computed tomogram (CT), magnetic resonance imaging (MRI) or even simple radiographs, ultrasound examination may be performed anywhere and on any critically ill patient as a preliminary examination or to further investigate an existing finding noted on other radiographic imaging.In this chapter we will briefly describe the clinical appli-cations of ultrasound in thoracic diseases involving chest wall, mediastinum, lung parenchyma, pleural fluid, lymph nodes, and diaphragm. We hope this discussion willBolliger CT, Herth FJF, Mayo PH, Miyazawa T, Beamis JF (eds): Clinical Chest Ultrasound: From the ICU to the Bronchoscopy Suite. Prog Respir Res. Basel, Karger, 2009, vol 37, pp 11–20Thoracic Ultrasound OverviewShaheen Islam aиHermann Tonn ba Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Ohio State University Medical Center, Columbus, Ohio, USA;b Department of Pneumology and Internal Intensive Care Medicine, Oststadt-Heidehaus Hospital, Hannover, Germanyencourage nonradiologists to consider ultrasound as an attractive tool to aid with physical examination and inter-ventional procedures.Principles of Thoracic UltrasoundDepending on the available transducers, a good examiner may be able to achieve best results even when the circum-stances are not optimal. Frequently, the sonomorphological image may not be decisive because of limitations or arti-facts. Lung patterns during examination are mostly dynamic and the thoracic ultrasound examination is largely based on the analysis of artifacts [1]. Familiarity with vari-ous common artifacts and adequate technical skills are the basic requirements for thoracic ultrasound.Chest CTs are mostly done in supine position. Unlike CT or MRI, there is no standardized operator interface for image acquisition in ultrasound except for the marker on the screen that corresponds to the transducer orientation. The examination is dependent on the skills of the individual operator and the orientation of the probe. So, reproducibility of images is not as precise as with other imaging such as CT. An optimal image acquisition depends on the choice and placement of the appropriate probe with an adequate preset at the right spot at an optimal angle with the patient in the best possible position. Good thoracic ultrasound examina-tion consists of not just the acquisition of static images but analysis of the dynamic sonomorphological changes associ-ated with probe positioning or respiratory movement. EchogenicityUltrasound images are displayed on a gray scale. The strongest echo appears white while it is black when no sound wave is reflected from the organs. Depending on the reflected wave amplitude, the following terms are used to define echogenicity. When no sound wave is reflected and the image appears black it is anechoic as in pleural effusion. It is isoechoic when the echoes are of comparable amplitude with the surrounding tissue as with kidneys or spleen. It is hyperechoic when echoes are stronger than the surrounding tissue as in diaphragm, and hypoechoic when it is weaker than that from the surrounding tissue.Description of ProbesTissue penetration of ultrasound decreases as frequency increases. Superficial organs are better visualized with higher frequency and deeper structures with lower frequency trans-ducers. The gain and the power of the ultrasound need to be adjusted to obtain an adequate image. Most ultrasound equipments have preset modes for better imaging of specific organs of the body. For superficial imaging, a preset for the thyroid gland is useful. Otherwise most of the thoracic struc-tures may be examined with abdominal preset.The size of the probe is vital in real-time interventional procedures. A smaller probe will leave more room for nee-dle insertion during real-time vascular access, thoracente-sis, tube thoracostomy or percutaneous biopsy. There are primarily three types of transducers used in thoracic imag-ing, e.g. linear array, curvilinear array and a phased array.Linear array transducers have piezoelectric crystals arranged in a linear sequence on the transducer head (fig. 1a). Parallel pulses are generated forming a line of sight per-pendicular to the transducer face with a large footprint (part of transducer in contact with body surface). It pro-duces a rectangular display. A linear array 7.5- to 10-MHz transducer with a thyroid preset is best to visualize superfi-cial structures of the neck. This is also useful for vascular access or to determine pleural thickening, pleural masses or subpleural parenchymal lesions of lung. These high-fre-quency transducers provide an excellent high-resolution image of superficial structures but are not ideal for deeper tissue examination.The curved array transducers consist of linear arrays shaped into convex curves that produce a large field of view with a large footprint (fig.1b). These provide a pie-shaped image and are helpful to examine large pleural effusion, lung or abdominal structures or to view the lung from an abdominal approach.In the phased array transducers, crystals located on the transducer head are pulsed as a group and the direction of the beam is continually changed in phases producing a pie-shaped image with a smaller footprint (fig.1c). The benefit is a relatively smaller transducer with a large field of view at depth. A 2- to 5-MHz-phased array or a sector probe is good to visualize deeper structures such as atelectatic lung, complicated pleural effusion or heart through the inter-costal space. They are also useful to visualize the pleural space from an abdominal approach through the liver. Position of the Patient and Relationship with Other Organs In the ultrasound nomenclature, a popular term used is the earth-sky axis. The thoracic organs are composed of water and air. Air rises and the water descends following the rules of gravity. Intrathoracic organs and pleural fluid shift with different patient positions. Successful examination depends on appropriate understanding of the anatomy in relation to patient position during image acquisition.12IslamиTonnThe lymph nodes or tumors of the anterior mediastinum that are not in contact with the chest wall in supine position may come against the chest wall when the patient is turned to a slightly prone left or right lateral decubitus position. A sitting position is ideal to localize very small pleural effu-sion, as most of the fluid is then collected in the costodi-aphragmatic recess. The probe may need to be held close to the surface of the bed to locate pleural fluid in a supine patient in the ICU. Masses or lymph nodes in supraclavicu-lar or the anterior mediastinum may be best visualized by turning the patient’s head to the extreme right or left or in flexion or extension. Pleural space can be visualized better from a posterior approach in a sitting patient with the hand placed on the opposite shoulder or above the head. Orientation of TransducersThe secret of the acquisition and interpretation of thoracic ultrasound images lies in the ability of the examiner to corre-late the obtained images virtually with the patient anatomy. Although ultrasound provides a 2-dimensional image, by sliding or tilting the transducer or by observing respiratory movement, a 3-dimensional dynamic image may be recon-structed in the mind. Being able to see the 3-dimensional image of the pathological changes is a key factor in image interpretation. Depending on the location of the target organ, patient position, clinical complaints, chest radiograph or CT images, the examiner tries to orient the transducer to the best possible site. However, this requires experience.Each transducer is marked with a probe indicator, signi-fying the direction of examination that corresponds to a marker on the display screen. Usually this marker is placed on the left upper corner of the display screen; however, most current ultrasound units allow customization of the screen. The probe indicator of the transducer is placed in the cepha-lad direction during sagittal scanning of the chest. The probe indicator should be placed as much cephalad as possi-ble when scanning through the intercostal window along the rib axis. During transverse scanning, the probe indicator is directed toward the patient’s right side. Transducer place-ment with operator and patient position to examine pleural cavity and mediastinal window are described in fig. 2.Intrathoracic structures may be visualized better by holding the probe along the longitudinal or transverse axis over the rib spaces. It may take several attempts to find the best position and the correct angle to inspect a target struc-ture. Anatomic landmarks are of assistance especially before any invasive procedure. Pleural surface on the right side is limited by the liver and the diaphragm, and on the left by the spleen with the diaphragm. The demonstration of kidneys on either side indicates structures below the diaphragm. The sonomorphological image of an empyema is very similar to a full stomach. Identification of these organs will assure a safe procedure and prevent needle puncture of liver, spleen or a full stomach.Technical SkillsGood hand control is essential for successful scanning. By holding the probe comfortably, visualization can be maxi-mized with a gentle rotating and rocking movement of the transducer. By sliding the transducer slowly over different rib spaces, a better window for visualization may be found. Using the thenar eminence to stabilize the hand against thea cbFig. 1.a Linear array transducer. Parallel pulses are generated perpendicular to the transducer head. Itprovides a rectangular field of view. b Curvilinear transducer. Diverging pulses radiating from the convextransducer head. It generates a pie-shaped image with a larger footprint. c Phased array transducer.Alternating pulses radiating from the transducer head. It also generates a pie-shaped image but with asmaller footprint.Thoracic Ultrasound Overview 13chest wall during examination will prevent any uninten-tional sliding of the probe.Examiner PositionIn addition to appropriate positioning of patients and the transducers, the examiner needs to be flexible to complete an examination or ultrasound-guided procedure comfort-ably. A second monitor placed across the patient may be helpful in prolonged examination. An assistant available during interventional procedures to adjust the settings or to store images will assure a complete sterile technique. Some ultrasound units now have a foot paddle to allow image acquisition without compromising sterility.Doppler Use in Thoracic UltrasoundDoppler function has limited utility in the pleural examina-tion but can be useful to detect vascularity of a chest wall, pleural or subpleural parenchymal mass. It can be usefulbdfhFig. 2.Transducer orientation during tho-racic ultrasound examination. a Examinationof the posterior chest wall or pleural space ina supine patient in lateral decubitus posi-tion. Transducer placed longitudinally overrib spaces with the probe indicator in acephalad direction. b Transducer placedtransversely along rib spaces with the probeindicator directed towards the right side ofthe patient. c Examination of the posterolat-eral chest wall and pleural space in a sittingpatient, transducer placed longitudinallywith the probe indicator in the cephaladdirection. d Transducer placed transverselywith the probe indicator directed towardsthe right side of the patient. e Examinationof the heart through the xiphisternalapproach. Probe indicator directed towardsthe right side. f Transhepatic approach tovisualize pleura, diaphragm or liver in asupine patient. g Examination of the medi-astinum in a patient in left lateral decubitusposition with the patient slightly pronated,so that the mediastinal structures are closerto the anterior chest wall. h Examination ofthe lateral chest wall, pleura in left lateraldecubitus position.14IslamиTonnThoracic Ultrasound Overview 15during vascular access, especially in hypotensive critically ill patients. Color flow Doppler needs to be used cautiously as it produces artifacts with respiratory movement and experience is needed to interpret it.Normal Ultrasound Anatomy of the ChestNormal chest wall consists of echogenic soft tissue layers representing layers of muscle and fascia. Ribs appear as smooth echogenic line below the soft tissue. Visceral and parietal pleura can be identified as two echogenic lines below the ribs with a 7.5- to 10-MHz high-resolution linear array probe. With real-time imaging, the sliding of the two pleural surfaces known as the ‘gliding sign’ can be seen. At the pleura-lung interface, air-filled lung prevents parenchy-mal examination.Clinical Applications of UltrasoundUltrasound technology ranging from bulky machines to ultraportable pocket size equipments are now available (fig.3–6). For critical care echocardiography or transthoracic ultrasound examination, we prefer a laptop-size instrument mounted on a cart with different probes (linear, curvilinear,phased array) available. A brief description of the clinical application in thoracic ultrasound follows. It is described in detail in other chapters of this book.Pleural PathologyPleural effusion appears as an anechoic layer between the pari-etal and the visceral pleura. Movement of the atelectatic lung with respiratory cycle may be noticed through the pleural fluid. In supine position, pleural effusion is best witnessed from the lateral chest wall posterior to the midaxillary line with the probe pointed upwards. In the upright or sitting patient, itcan be located easily from the posterior or lateral chest wall.Fig. 3.aptop-sized portable ultrasound (GE L OGIQ Book XPEnhanced; GE Healthcare, Wauwatosa, Wisc., USA).Fig. 4.Portable laptop-sized unit mounted on a pedestal (M-Turbo,SonoSite, Bothell, Wash., USA).16Islam иTonnTransudates as a rule are anechoic, whereas exudates may appear anechoic or hyperechoic. Diffusely echogenic pleural effusion appearing as a ‘snowstorm’ usually repre-sents empyema containing protein or tissue debris.Echogenic s eptations or loculations confirm a complex empyema and are much better identified with ultrasound than with the CT. The differentiation between lung abscess and empyema is sometimes difficult because a hypoechoic center may be found in both [2]. Hydropneumothorax can also be identified. A hemothorax may have hypoechoic or echogenic regions, occasionally with dependent layering of blood. Pleural thickening seen in fibrosis or empyema appears as a hypoechoic broadening of the pleura.Malignant effusions are usually anechoic but may become septated with repeated thoracentesis. Malignant pleural masses such as metastatic lesions or mesothelioma present as nodular pleural thickening and may accompany a pleural effusion.PneumothoraxAir localized within the pleural cavity collects in the nonde-pendent part and is best identified in the supine position with the probe held perpendicularly on the anterior chest wall. The depth of the pneumothorax cannot be deter-mined. A pneumothorax is usually diagnosed by the absence of normal pleural gliding sign (movement of pari-etal pleura on the visceral pleura) and comet tail appear-ance, and the presence of exaggerated reverberation artifact (an artifact produced by reflection of sound at the chest wall-air interface). M-mode is of additional help. Operator experience is crucial to analyze these artifacts.PneumoniaConsolidated lung in contact with chest wall or contained in pleural effusion may appear as echogenic. Similar find-ings may be seen with pulmonary hemorrhage, bron-choalveolar carcinoma or a lung infarct. Branching hyperechoic structures representing air bronchogram may be seen. Atelectatic lung is usually echogenic without any air bronchogram.Primary or Metastatic Lung CancerPeripheral lung masses close to the pleura appear hypoe-choic; however, it may become echogenic with bleeding.Diaphragmatic involvement can be detected through liver with an abdominal approach or with a transthoracic approach when pleural effusion is present.Chest WallSoft tissue invasion of the chest wall by a primary lung can-cer or chest wall tumor is easily detected. Ultrasound pro-vides a better image of the Pancoast tumor than CT [2].Only MRI offers a good image of this complex anatomical location. Comparison of findings with the healthy normal side may be a clue to diagnosis. Bony invasion of tumors like plasmocytoma appear as hypoechoic lesions. The frac-ture of ribs or clavicle can be identified.Lymph NodesSupraclavicular, cervical and axillary lymph nodes can be examined better with ultrasound. Reactive or malignant lymph nodes can be differentiated based on the consistencyor vascularity.Fig. 5.A comprehensive full-size ultrasound system (SONOL INE Antares, Siemens Medical Systems, Issaquah, Wash., USA).Intrathoracic Tumor ExtensionMalignant invasion of the aorta or pericardium from lung can be detected better with transesophageal echocardio-gram compared to CT or MRI with up to 90% accuracy [3, 4].Pulmonary EmbolismPulmonary embolism can be diagnosed with ultrasound. It is described in detail in chapter 5, see pp. 43–50.Cardiac FunctionA focused cardiac examination can be done effectively by intensivists with the phased array probe to document peri-cardial tamponade, ventricular function, ejection fraction or contractility in critically ill patients. This is discussed in chapter 7, see pp. 60–68.Functional TestsDiaphragm Function (Sniff Test)Diaphragm paralysis or paresis can be diagnosed effectivelywith ultrasound. Pleural fluid-diaphragm interface makes the diaphragm hyperechoic. Without pleural effusion the diaphragm can be visualized only partially. However, by placing the probe in the subcostal location, the movement of both domes of the diaphragm may be compared to deter-mine unilateral weakness. Bilateral weakness may be diffi-cult to interpret. Ascites, when present, will push the diaphragm into the thoracic cage whereas in CO PD, the diaphragm is flattened. With rupture of the diaphragm intra-abdominal organs may be seen within the thoracic cage. Thoracic Tumor LocalizationThe gliding sign identifies structures at the interface of the parietal and visceral pleurae. A subpleural mass or lung mass will move with respiration against the parietal pleura; while pleural sliding seen deeper to a tumor or mass will confirm its location within the chest wall. Absence of any movement at a particular location will provide evidence that both lung and chest wall are involved.Ultrasound-Guided Interventional Procedures Vascular AccessUltrasound-guided bedside central venous catheter place-ment is safer [5]. It is now a standard of care in most ICUs.A quick survey prior to placement may reveal a thrombo-sis of the central vein and help guide with the appropriate location. Use of ultrasound reduces failure rate and com-plications [6]. This is crucial in coagulopathic patients where successful cannulation can be obtained in a single attempt. Peripherally inserted central catheters (PICC) are nowadays placed in most hospitals in the US with ultra-sound guidance.Pleural AccessUltrasound is an invaluable tool during thoracentesis to localize the deepest collection of pleural fluid. Although not completely eliminated, the incidence of pneumothorax is minimal with ultrasound-guided thoracentesis [7]. In very small pleural effusions sometimes the effusion is only visi-ble when the patient is in sitting position. It can be used to guide chest tube in the pleural effusion and thereby prevent any subcutaneous placement, especially in obese patients. A chest tube cannot be guided in pneumothorax, as it will not be visible in the air within the pleural cavity.We routinely use ultrasound prior to medical thora-coscopy or indwelling pleural catheter placement to locate the ideal site and to determine septations or loculations. The catheter is usually placed in the area of the largest c ollection.Details on ultrasound use during thoracentesis and tho-racoscopy are described in chapters 21 and 24, see pp.182–188, 208–214.Fig. 6.The first smallest pocket-size ultrasound ACUSON P10 mea-suring 2.2 inchesϫ3.8 inchesϫ5.7 inches and weighing 1.6 lb (©2008 Siemens Medical Solutions USA, all rights reserved; product photo provided courtesy of Siemens Medical Solutions USA).Thoracic Ultrasound Overview 17Endoscopic and Endobronchial Ultrasound Endobronchial ultrasound has proved to be a very effective tool to sample mediastinal lymph nodes. Combined endo-scopic ultrasound and endobronchial ultrasound makes it possible to avoid mediastinoscopy completely. Details are described later.PericardiocentesisMalignant pericardial effusion or traumatic effusion caus-ing a tamponade can be drained safely with ultrasound guidance. An easier access under real-time ultrasound guidance is the parasternal approach rather than the tradi-tional xiphosternal approach.ParacentesisA therapeutic or diagnostic paracentesis can be done safely in the ICU. A sector or curvilinear 3.5- or 5-MHz probe can be used to localize maximum fluid collection. A 7.5-MHz probe can then be used to localize vascular (inferior epigas-tric vein about 4–6 cm lateral to the midline) structures in the abdominal wall. The best area for paracentesis is about 2 cm below the umbilicus in the white line or 5 cm superome-dial to the anterior superior iliac spine [8]. Percutaneous TracheotomyBecause trachea contains air, only the anterior tracheal wall can be visualized with the transcervical approach. In obese patients or patients with difficult anatomy, laryngeal, cricoid and other tracheal cartilages can be identified with additional information on the depth of the trachea from the skin and the thickness of pretracheal fascia or tracheal devi-ation. An ultrasound examination is helpful to determine the size of the thyroid gland and the location of the isthmus. With Doppler flow imaging, nearby vascular structures can also be identified [9].Ultrasound-Guided BiopsySubpleural peripheral lung, pleural-based or chest wall masses can be safely biopsied with ultrasound guidance. In Germany and some centers in the United States [10], pulmonologists perform needle aspiration or core biopsies. This technique largely depends on obtaining an image through an adequate acoustic window. A lung abscess reaching the chest wall may be percutaneously drained with ultrasound guidance. Mediastinal masses and lymph nodes in the anterior and superior mediastinum can also be accessed [2]. The best way to access these nodes is with the patient in the lateral decubi-tus position with a suprasternal or parasternal approach. Color flow Doppler may identify nearby vascular structures.Supraclavicular and Cervical Lymph Node Biopsy Supraclavicular lymph nodes that are not palpable can be detected easily by ultrasound and biopsied in real time. In malignant conditions, cytological diagnosis can assist with cancer staging [11]. Nonmalignant conditions such as sar-coidosis can also be diagnosed. It is superior to CT [12] and the sensitivity of detecting metastases is increased 3-fold [12, 13]. Even bronchoscopy or other invasive procedures may be avoided in about 15% of lung cancer patients if cer-vical ultrasound and biopsy are included early in the diag-nostic workup [12].TrainingRadiologists, cardiologists and sonographers go through an intense training before they are credentialed to obtain or interpret ultrasound images. The use of ultrasound by non-radiologists is very focused and is usually limited to com-mon examinations and procedures within their specialty. Therefore, limited training in focused areas may be ade-quate. Surgical residents are able to learn basic focused assessment with sonography for trauma examination after 8 h of formal training [14]. In emergency medicine, a 1- to 3-day training course is offered with follow-up mentoring [15]. Videotaped cases are also valuable in developing inter-pretation skills [16]. As with any other procedure, there is a learning curve for acquiring the technical skills.At present, there are no guidelines on thoracic ultra-sound examination. In Germany, a documentation of 100 cases of ultrasound examination is required to become an internist. Skills in focused thoracic ultrasound examination may be easily learned but being able to differentiate normal from abnormal structures and then to identify specific abnormal findings requires additional experience. When in question, available resources for comparison or referral for formal radiology evaluation may be necessary.A successful thoracic ultrasound training program for nonsurgeons such as pulmonologists or medical and surgi-cal intensivists should include a 1- to 2-day didactic session on basic ultrasound, practice on phantom and live models followed by supervised examinations where the images are recorded and reviewed with the mentors. Proficiency can be determined by a formal evaluation after about 5–15 cases depending on the scope of the examination. Although a required number of procedures is suggested by most authorities before an individual can practice independently, we are all aware that not everyone has the aptitude to learn or practice accurately even after completion of the required18IslamиTonn。

相关文档
最新文档