第三节导数的基本公式与运算法则
导数公式与运算法则
导数公式与运算法则导数是微积分中的重要概念,它用于描述函数的变化率。
导数公式和运算法则是求导的基本工具,可以帮助我们计算各种函数的导数。
本文将详细介绍导数公式和运算法则,并提供相应的推导和证明。
1.导数的定义在解释导数公式和运算法则之前,我们首先介绍导数的定义。
设函数f(x)在点x0处可导,则f(x)在点x0处的导数定义为:f'(x0) = lim┬(Δx→0)〖(f(x0+Δx)-f(x0))/Δx〗导数的几何意义是函数在其中一点处的切线斜率。
如果函数在其中一点可导,则该函数在该点的切线斜率就是该点的导数值。
2.基本导数公式2.1常数函数对于常数函数f(x)=c,其中c为常数,其导数等于0:f'(x)=0证明:f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗= lim┬(Δx→0)〖(c-c)/Δx〗= lim┬(Δx→0)0/Δx=02.2幂函数对于幂函数f(x)=x^n,其中n为非零实数,其导数为:f'(x) = nx^(n-1)证明:利用导数的定义,我们有f'(x) = lim┬(Δx→0)〖((x+Δx)^n-x^n)/Δx〗= lim┬(Δx→0)〖(nx^(n-1)Δx+...)/Δx〗 (利用二项展开)= nx^(n-1)2.3指数函数对于指数函数f(x)=e^x,其导数为:f'(x)=e^x证明:利用导数的定义,我们有f'(x) = lim┬(Δx→0)〖(e^(x+Δx)-e^x)/Δx〗= lim┬(Δx→0)〖(e^x*e^Δx-e^x)/Δx〗= e^x*lim┬(Δx→0)〖(e^Δx-1)/Δx〗这里需要引入极限的定义,e的定义就是使得e^x的导数等于e^x的常数。
因此,我们可以得到以上结论。
3.导数的基本运算法则3.1基本导数法则(1)常数乘法法则:若 c 为常数,则 (cf(x))' = cf'(x)(2)加法法则:(f(x)+g(x))'=f'(x)+g'(x)(3)减法法则:(f(x)-g(x))'=f'(x)-g'(x)(4)乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(5)除法法则:(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)证明:我们以加法法则为例进行证明。
基本初等函数的导数公式及导数的运算法则
上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
y (x 解:因为2x 3)
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有,切y x 2
线的 方程 为
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
《微积分一》导数的基本公式与运算法则
《微积分一》导数的基本公式与运算法则微积分是数学的一个分支,主要研究函数的导数和积分,其中导数是微积分的基本概念之一、导数是用来描述一个函数在其中一点上的变化率,它可以用来解决很多实际问题,比如求曲线的切线、函数在其中一点的极值等。
本文将详细介绍导数的基本公式与运算法则。
一、导数的定义首先,我们来看导数的定义。
设函数 y=f(x) 是定义在区间 I 上的一个函数,如果对于 I 上的任意一个实数 x0,当自变量 x 的变化量Δx 趋近于0时,对应的函数值的变化量Δy/f(Δy) 也趋近于一个确定的常数 k,那么这个常数 k 称为函数 f(x) 在点 x0 处的导数,记为f'(x0) 或 dy/dx,<sub>x=x0</sub>。
导数的定义给出了导数的几何意义:函数y=f(x)在点(x0,f(x0))的导数f'(x0)等于曲线在该点处的切线的斜率。
也就是说,导数描述了函数在其中一点上的变化趋势和速率。
二、导数的基本公式在实际计算导数时,我们可以利用一些基本公式来简化计算。
下面介绍导数的一些基本公式:1.常数函数的导数如果函数f(x)是一个常数函数,即f(x)=C(C为常数),那么f'(x)=0。
这是因为常数函数的图像是一条水平直线,斜率为0。
2.幂函数的导数如果函数 f(x) 是一个幂函数,即 f(x)=x<sup>n</sup> (n 为常数),那么 f'(x)=n * x^(n-1)。
这个公式可以通过导数的定义及幂函数的性质进行推导。
3.指数函数的导数指数函数是以常数 e 为底的指数幂函数,即 f(x)=e<sup>x</sup>。
根据指数函数的性质,可以得到 f(x) 的导数等于自身,即f'(x)=e<sup>x</sup>。
4.对数函数的导数对数函数是指以一些正实数 a(a>0,且a≠1)为底的对数函数,即f(x)=log<sub>a</sub>x。
导数的基本公式与运算法则(3)
x 2t , 2 y t ,
x t 2
消去参数 t
2 x x y t 2 ( )2 2 4
按幂函数求导公式
按指数函数求导公式
2) 有些显函数用对数求导法求导很方便 .
例 解 上式两边取对数,得 a ln y x ln a [ ln b ln x ] b [ ln x ln a ] b 上式两边对 x 求导,得 a a b y ln b x x y
( x 1)3 x 1 例: 设 y , 求y. 2 x ( x 4) e
问题:隐函数不易显化或不能显化如何求导? 隐函数求导法则: 用复合函数求导法则直接对方程两边对x求导.
例: 设 x4 xy y4 1, 求y在点 (0,1)处的值 .
解 方程两边对x求导得
3 4x y xy 4 y y 0 3
代入 x 0, y 1得
y
解 等式两边取对数得
1 ln y ln( x 1) ln( x 1) 2 ln( x 4) x 3 上式两边对x求导得
y 1 1 2 1 y x 1 3( x 1) x 4
( x 1)3 x 1 1 1 2 y [ 1] 2 x x 1 3( x 1) x 4 ( x 4) e
4
因x=0时y=0, 故
例:设曲线C的方程为 x 3 y 并证明曲线C在该点的法 2 2 线通过原点 .
解 方程两边对x求导, 3 x 2 3 y 2 y 3 y 3 xy
y x2 y 3 3 2 1. ( , ) y x 22 3 3 所求切线方程为 y ( x ) 即 x y 3 0. 2 2 3 3 法线方程为 y x 即 y x , 显然通过原点. 2 2
导数基本公式与运算法则
y'
.
设 y 1 2x5x2 3x 1 求 y '
例2
ቤተ መጻሕፍቲ ባይዱ已知
f
x
x 2 x 2 ,求
x3
f ' 1
.
练习 求 y tan x 的导数。
tan x' 1 sec2 x
cos2 x
cot x'
s
1 in 2
x
csc2
x.
2、复合函数的导数
定理 设函数 u x 在点x 数 y f u在点u 处有导数
处有导数 du ' x ,函
dy
f
dx
' u ,则复合函数
du
y f x在该点 x 也有导数,且
dy f ' u ' x
dx
或
y
' x
yu'
u'
或 dy dy du
dx du dx
这个定理说明,复合函数的导数等于复合函数对中 间变量的导数乘以中间变量对自变量的导数。
例题 求下列函数的导数: (1) y sin 3 x (2) y 4 3x2
练习:求 y ln cosx 的导数。
由定理的结论可以推广到多次复合的情况。例如
设 y f u,u v,v x ,则复合函数 y f x
2.2导数基本公式与运算法则
1、导数的四则运算法则
1.1、代数和的导数
设函数ux和vx 在点x处可导,则 y ux vx 在点x
处也可导,且
u v' u ' v '
导数与微分导数的基本公式与运算法则
导数与微分导数的基本公式与运算法则导数和微分导数是微积分中非常重要的概念,它们描述的是函数的变化率。
导数是研究函数变化趋势的工具,而微分则是描述函数变化的量。
一、导数的基本定义给定一个函数f(x),在x点处的导数可以通过以下公式来定义:f'(x) = lim(h->0) [(f(x+h)-f(x))/h]其中,h表示一个趋近于0的数值,称为增量。
导数描述的是函数f(x)在特定点处的变化率。
二、导数的运算法则1.常数规则:如果c是一个常数,那么导数的值为:d(c)/dx = 02.幂函数规则:如果f(x)=x^n,其中n是一个常数,那么导数的计算规则为:d(x^n)/dx = n * x^(n-1)3.求和规则:如果f(x)和g(x)都是可导函数,那么它们的和的导数可以通过每个函数的导数求和来计算:d(f(x) + g(x))/dx = d(f(x))/dx + d(g(x))/dx4.差的规则:如果f(x)和g(x)都是可导函数,那么它们的差的导数可以通过每个函数的导数求差来计算:d(f(x) - g(x))/dx = d(f(x))/dx - d(g(x))/dx5.乘法规则:如果f(x)和g(x)都是可导函数,那么它们的乘积的导数可以通过以下公式来计算:d(f(x) * g(x))/dx = f(x) * d(g(x))/dx + g(x) * d(f(x))/dx 6.除法规则:如果f(x)和g(x)都是可导函数,那么它们的商的导数可以通过以下公式来计算:d(f(x) / g(x))/dx = (g(x) * d(f(x))/dx - f(x) * d(g(x))/dx) / (g(x))^27.链式法则:如果f(u)是关于u的可导函数,而u=g(x)是关于x的可导函数,那么复合函数f(g(x))的导数可以通过以下公式来计算:d(f(g(x)))/dx = d(f(u))/du * d(g(x))/dx即导数等于外函数的导数乘以内函数的导数。
导数公式导数运算法则
导数公式导数运算法则导数是微积分中的一个重要概念,用于描述函数在其中一点的变化速率。
导数的计算涉及到一系列的运算法则,这些法则可以帮助我们更快、更方便地求取函数的导数。
在以下讨论中,假设函数f(x)和g(x)是可导函数,c是常数。
一、四则运算法则1.加法法则:(f+g)'(x)=f'(x)+g'(x)这个法则表示如果一个函数是两个可导函数的和,那么它的导数等于这两个函数的导数之和。
2.减法法则:(f-g)'(x)=f'(x)-g'(x)同样地,如果一个函数是两个可导函数的差,那么它的导数等于这两个函数的导数之差。
3.乘法法则:(fg)'(x) = f'(x)g(x) + f(x)g'(x)这个法则说明了如果一个函数是两个可导函数的乘积,那么它的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数。
4.除法法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^2这个法则表示,如果一个函数是一个可导函数除以另一个可导函数,那么它的导数等于分子函数的导数乘以分母函数,减去分子函数乘以分母函数的导数,再除以分母函数的平方。
二、连锁法则1.复合函数的导数:如果y=f(u)和u=g(x)是可导函数,那么复合函数y=f(g(x))的导数可以通过以下公式计算:dy/dx = dy/du * du/dx这个公式称为连锁法则,它表示了复合函数的导数与内部函数和外部函数的导数之间的关系。
三、常用函数的导数1.幂函数:d(x^n)/dx = nx^(n-1)这个法则表示了幂函数的导数,其中n是任意实数。
2.指数函数:d(e^x)/dx = e^x这个法则说明指数函数e^x的导数是它本身。
3.对数函数:d(ln(x))/dx = 1/x这个法则说明自然对数函数ln(x)的导数是1除以x。
第三章第三节 导数的基本公式与运算法则(一)
二、反函数的导数
如果函数x=ϕ(y)在某区间Iy内单调、可导且ϕ ′(y)≠0, 那么它的反函数y=f(x)在对应区间Ix内也可导,并且 1 f ′( x) = 。 ϕ ′( y ) 简要证明: 简要证明: 因为y=f(x)连续,所发当∆x→0时,∆y→0。
∆y 1 1 , f ′( x) = lim = lim = ∆x → 0 ∆x ∆y → 0 ∆x ϕ ′( y ) ∆y 1 f ′( x) = 。 ϕ ′( y)
第三章
导数与微分
3.3导数的基本公式与运算法则 3.3导数的基本公式与运算法则
复习
(C )′ = 0; ′ = α ⋅ xα −1; (x )
(
3
α
(a x )′ = a x ln a; 1 (loga x )′ = ; x ln a
1 6
(e x )′ = e x ; 1 (ln x)′ = . x
u
x3
复合函数的求导法则: 复合函数的求导法则: dy = dy ⋅ du ,或 y′=y′u⋅u′x 。 dx du dx 2x dy 例 5. y = sin . ,求 。 2 dx 1+ x 2x 2x 是由 y=sin u, u = 复合而成, 解: y = sin 2 2 1+ x 1+ x 2(1 + x 2 ) − (2 x) 2 dy dy du = cos u ⋅ = ⋅ dx du dx (1 + x 2 ) 2
u( x ) 的可导函数, 则 也是 x 的可导函数,且 v( x ) ′ u( x ) u ′( x ) v ( x ) − u ( x ) v ′( x ) v( x) = v 2(x)
1− x , 求 例3 设 y = 1+ x
导数基本公式和运算法则
导数基本公式和运算法则导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。
导数的基本公式和运算法则是学习微积分的基础,下面我们来详细介绍一下。
一、导数的定义设函数y=f(x),在点x0处有极限lim (x→x0) [f(x)-f(x0)]/(x-x0)如果该极限存在,则称函数f(x)在点x0处可导,其导数为f'(x0)=lim (x→x0) [f(x)-f(x0)]/(x-x0)二、导数的基本公式1. 常数函数的导数为0(d/dx) c = 02. 幂函数的导数(d/dx) x^n = nx^(n-1)3. 指数函数的导数(d/dx) e^x = e^x4. 对数函数的导数(d/dx) ln x = 1/x5. 三角函数的导数(d/dx) sin x = cos x(d/dx) cos x = -sin x(d/dx) tan x = sec^2 x(d/dx) cot x = -csc^2 x三、导数的运算法则1. 常数倍法则如果f(x)在点x0处可导,则kf(x)在点x0处也可导,且有[d/dx (kf(x))]x=x0 = k[d/dx f(x)]x=x02. 和差法则如果f(x)和g(x)在点x0处可导,则f(x)+g(x)和f(x)-g(x)在点x0处也可导,且有[d/dx (f(x)+g(x))]x=x0 = [d/dx f(x)]x=x0 + [d/dx g(x)]x=x0[d/dx (f(x)-g(x))]x=x0 = [d/dx f(x)]x=x0 - [d/dx g(x)]x=x03. 乘积法则如果f(x)和g(x)在点x0处可导,则f(x)g(x)在点x0处也可导,且有[d/dx (f(x)g(x))]x=x0 = f(x0)[d/dx g(x)]x=x0 + g(x0)[d/dx f(x)]x=x04. 商法则如果f(x)和g(x)在点x0处可导,且g(x0)≠0,则f(x)/g(x)在点x0处也可导,且有[d/dx (f(x)/g(x))]x=x0 = [g(x0)[d/dx f(x)]x=x0 - f(x0)[d/dx g(x)]x=x0]/[g(x0)]^2以上就是导数的基本公式和运算法则,它们是微积分学习的基础,掌握好这些公式和法则,可以帮助我们更好地理解和应用微积分知识。
导数的运算公式和运算法则
导数的运算公式和运算法则导数可是高中数学中的一个重要概念,它的运算公式和运算法则就像是打开数学世界奇妙之门的钥匙。
咱们先来说说常见的导数运算公式。
比如说,对于函数 $f(x) =x^n$ ($n$ 为常数),它的导数就是 $f'(x) = nx^{n-1}$ 。
这就好比是给一个数穿上了速度的外衣,能让我们更清楚地看到它变化的快慢。
再比如,对于函数 $f(x) = \sin x$ ,它的导数是 $f'(x) = \cos x$ ;对于函数 $f(x) = \cos x$ ,导数则是 $f'(x) = -\sin x$ 。
这是不是有点像变魔术,一下子就变出了新的东西。
还有,常数的导数为 0 ,这就好像是一个静止不动的家伙,压根没有变化的趋势。
接下来说说导数的运算法则。
加减法则,就像是把两个小伙伴的速度合起来或者分开算。
如果有两个函数 $f(x)$ 和 $g(x)$ ,那么 $(f(x) ±g(x))' = f'(x) ± g'(x)$ 。
乘法则有点复杂,就像两个小伙伴手拉手一起跑,速度的关系就变得微妙起来。
如果是两个函数 $f(x)$ 和 $g(x)$ 相乘,那么 $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$ 。
除法则更是需要我们多费点心思,就好比是要算出两个小伙伴一起跑,但其中一个跑快了或者跑慢了对整体速度的影响。
如果是$f(x)÷g(x)$ ,那么它的导数就是$\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ 。
给大家讲讲我之前教学生导数的一个小经历。
有个学生叫小李,这孩子特别聪明,但就是对导数的运算法则总是弄混。
有一次做练习题,遇到一个函数是两个式子相除的形式,小李想都没想就直接把分子分母分别求导,然后就得出了答案。
我一看,哭笑不得,这孩子明显是把法则给记错了。
第三节 导数的基本公式与运算法则
3
3
10/12/2018 1:25 PM
第三章
导数与微分
4、乘积的导数 则 y( x ) u( x ) v ( x ) 设 u u( x ) , v v ( x ) 可导, 且 y( x ) u( x )v( x ) u( x )v( x ) 也可导, 证明
y ( x h) y ( x ) y( x ) lim h 0 h
(sec x ) sec x tan x
(csc x ) csc x cot x
10/12/2 2 x sin x cos x ln x 的导数 解
y (2 x sin x ) (cos x ln x )
( x n ) nx n1
设 y x n ( n 为正整数), 由二项式定理知
n( n 1) n 2 2 x nx x x x x n x n 2 y n( n 1) n 2 n 1 y lim lim ( nx x x x n 1 ) x 0 x x 0 2
2( x ) sin x 2 x (sin x )(cos x ) ln x cos x(ln x )
1 2 sin x 2 x cos x sin x ln x cos x x 2 x 1 1 ( ln x )sin x (2 x )cos x x x
例2
3 2 y (1 2 x )(3 x 2 x ) 的导数 求
解 y (1 2 x )(3 x 3 2 x 2 ) (1 2 x )(3 x 3 2 x 2 )
2(3 x 3 2 x 2 ) (1 2 x )(9 x 2 4 x)
导数的基本公式与运算法则
ln y
1 [ln|x 1| ln|x 2| ln|x 3| ln|x 4|] , 2
上式两边对x求导,得
1 1 y y 1 1 ( ( 1 1 1 1 1 1 1 1 ) , ) , y y 2 2 x x 1 1 x x 2 2 x x 3 3 x x 4 4
解 当x0时, f(x)1,
当x0时, f ( x ) 1 ,
1 x 当x0时,
f (0 )h l i0m (0h ) h ln 1( 0 ) 1,
f (0 ) h l 0 ilm n 1 (0 [ h h ) ]ln 1 0 ( ) 1,
f(0)1.f(x)111,x,
x0 x0.
2. 设 f(x ) (x a )(x ),其中(x) 在 xa处连续,
两边对 x 求导
y ln a a b
y
bxx
yb axb xaa xbln
a b
a x
b x
七、由参数方程所确定的函数的导数
若参数方 xy 程 ((tt))确定 y与x间的函数 , 关
称此为由参数 定方 的程 函 . 所 数确
例如
x 2t,
y
t
2,
t x 2
消去参数
yt2 (x)2 x 2 24
(arcsin x ) 1 1 x2
(arctan
x )
1 1 x2
( x ) x 1 (cos x ) sin x
(cot x ) csc 2 x (csc x ) csc x cot x
(e x ) e x
(ln x ) 1 x
(arccosx) 1 1 x2
(
arccot
推论:
n
n
导数公式及导数的运算法则
导数公式及导数的运算法则导数是微积分中的重要概念,用来描述函数在其中一点处的变化率。
导数公式和导数的运算法则是使用导数进行计算和推导的基本工具。
下面将介绍导数的定义、导数公式以及导数的运算法则。
一、导数的定义对于给定的函数y=f(x),在其中一点x=a处的导数定义如下:f'(a) = lim┬(h→0)(f(a+h)-f(a))/h其中,lim表示极限,h为x在a点的增量。
该定义表明导数表示函数在其中一点处的斜率或变化率。
二、导数的主要公式1.常数的导数公式如果f(x)=c,其中c为常数,则f'(x)=0。
2.幂函数的导数公式如果f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
3.指数函数的导数公式如果f(x)=e^x,则f'(x)=e^x。
指数函数e^x的导数仍然是e^x。
4.对数函数的导数公式如果f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。
5.三角函数的导数公式- sin函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- cos函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- tan函数的导数:f(x) = tan(x),则f'(x) = sec^2(x),其中sec^2表示secant的平方。
6.反三角函数的导数公式- arcsin函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
- arccos函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
- arctan函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
导数具有一些基本的运算法则,可以用于计算复杂函数的导数。
1.常数乘以函数的导数法则如果f(x)的导数是f'(x),则(cf(x))' = cf'(x),其中c为常数。
导数的基本公式与运算法则
16 9
2
解:把椭圆方程的两边分别对x求导,得
x 2 y y 0 。 89 从而 y 9x .
16y
将 x2 ,y 3 3 ,代入上式得 所求切线的斜率 2
k 3 . 所求的切线方程为
4
yy33 33 33(x(x22) ),,即即 33xx44yy88 3300。。
22
44
六、对数求导法
v(x)
v2 ( x)
推论:
n
n
(1) [ fi ( x)] fi( x);
i 1
i 1
(2) [Cf ( x)] Cf ( x);
(3)
n
[
fi (x)] f1(x) f2 (x)
fn (x)
i 1
f1(x) f2 (x) fn(x).
二、例题分析
例1 求 y x3 2 x2 sin x 的导数 . 解: y 3x 2 4x cos x.
四、复合函数的求导法则
前面我们已经会求简单函数——基本初等函数经 有限次四则运算的结果的导数,但是像
ln
tan
x,e
x2
, sin
2x x2
1
等函数(复合函数)是否可导,可导的话,如何求 它们的导数。
定理 如果函数u g(x)在点 x可导 , 而y f (u)
在点u g(x)可导 , 则复合函数 y f [g(x)]在点
一般地
f ( x) u( x)v( x) (u( x) 0)
两边取对数得
ln f (x) v(x) ln u(x)
f (x) v(x) ln u(x) v(x)u(x)
f (x)
u(x)
f ( x) u( x)v( x)[v( x) ln u( x) v( x)u( x)] u( x)
导数计算公式和法则
导数计算公式和法则导数是微积分中的重要概念,用于描述函数在某一点处的变化率。
计算导数的公式和法则是求解导数的基础工具,掌握了这些公式和法则,可以更加方便地计算各种函数的导数。
我们来看一下导数的定义。
对于函数f(x),在x点处的导数表示为f'(x),可以用以下公式来表示:f'(x) = lim(h->0)(f(x+h)-f(x))/h其中,lim表示极限的意思,h表示自变量x的增量。
这个定义可以理解为,当自变量的增量趋近于0时,函数在该点处的变化率就是该点的导数。
接下来,我们来看一些常见函数的导数计算公式和法则。
1. 常数函数的导数计算公式:常数函数的导数始终为0。
例如,对于函数f(x) = c,其中c是一个常数,其导数表示为f'(x) = 0。
2. 幂函数的导数计算公式:幂函数的导数可以通过以下公式来计算:f(x) = x^n,则f'(x) = n*x^(n-1)。
其中n是幂函数的指数。
3. 指数函数的导数计算公式:指数函数的导数可以通过以下公式来计算:f(x) = a^x,则f'(x) = a^x * ln(a)。
其中a是指数函数的底数,ln(a)是以e为底a的对数。
4. 对数函数的导数计算公式:对数函数的导数可以通过以下公式来计算:f(x) = log_a(x),其中a为对数函数的底数,则f'(x) = 1/(x * ln(a))。
5. 三角函数的导数计算公式:三角函数的导数可以通过以下公式来计算:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = sec^2(x)。
6. 反三角函数的导数计算公式:反三角函数的导数可以通过以下公式来计算:- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1/sqrt(1-x^2)。
3.3导数的基本公式与运算法则
dy 1 sin( e x ) x = ⋅ ( − sin v ) ⋅ e x = − ⋅ e = − e x tan(e x ). dx u cos(e x )
例13
解
y=e
sin
sin
1 x
1 x
, 求 y′.
sin 1 x
1 y′ = (e )′ = e (sin )′ x 1 1 sin sin 1 1 1 1 x x = e ⋅ cos ⋅ ( )′ = − 2 e cos . x x x x
= f ′( u) g′( x ).
例9
解
dy y = e ,求 . dx
x3
y = e 可看作 y = e u , u = x 3复合而成,因此 复合而成,
x3
dy dy du u 2 2 x3 = ⋅ = e ⋅ 3x = 3x e . dx du dx 2x dy , . 例10 y = sin 2 求 dx 1+ x
( uvw )′ = [( uv )w ]′= ( uv )′ w + ( uv )w′ = ( u′v + uv′ )w + uvw′ = u′vw + uv′w + uvw′
特别 ( Cu )′ = C u ′ , 其中 C 是常数 .
y = 2 x 3 − 5 x 2 + 3 x − 7 , 求 y′ . 例1
所以 在 I x = (−1,1)内有 −
1 1 1 1 = (arcsin x)′ = = = . 2 2 (sin y)′ cos y 1−sin y 1− x
1 (arccos x)′ = − . 2 1− x
例7 求函数 y = arctan x的导数 .
导数运算法则公式加减乘除
导数运算法则公式加减乘除
导数运算法则是微积分中的重要内容,它包括加法法则、减法
法则、乘法法则和除法法则。
下面我将分别介绍这些法则的公式。
1. 加法法则:
如果函数 f(x) 和 g(x) 都是可导的,那么它们的和的导数就
是它们各自的导数之和,即 (f(x) + g(x))' = f'(x) + g'(x)。
2. 减法法则:
同样地,如果函数 f(x) 和 g(x) 都是可导的,那么它们的差
的导数就是它们各自的导数之差,即 (f(x) g(x))' = f'(x) g'(x)。
3. 乘法法则:
对于两个可导的函数 f(x) 和 g(x),它们的乘积的导数可以用
以下公式表示,(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)。
4. 除法法则:
如果函数 f(x) 和 g(x) 都是可导的,且 g(x) 不等于 0,那
么它们的商的导数可以用以下公式表示,(f(x) / g(x))' = (f'(x) g(x) f(x) g'(x)) / (g(x))^2。
这些导数的运算法则是微积分中非常基础和重要的内容,它们
帮助我们计算复杂函数的导数,从而更好地理解函数的变化规律和
性质。
在实际应用中,这些法则可以帮助我们简化计算,提高效率。
希望这些公式能够帮助你更好地理解导数运算法则。
高中导数公式及导数的运算法则
高中导数公式及导数的运算法则导数是微积分中的重要概念,它描述了函数在其中一点的变化率。
在高中阶段的数学学习中,学生们一般会接触到导数的基本概念和求导的基本方法。
下面将详细介绍高中阶段导数的公式和运算法则。
一、导数的基本概念:导数表示了函数在其中一点上的变化率。
对于函数f(x),在x=a处的导数表示为f'(a),它的几何意义是函数图像在该点处的切线斜率。
导数的定义如下:f'(a) = lim┬(h→0)〖(f(a+h)-f(a))/h〗其中,lim代表极限,h代表自变量的微小增量,也可以理解成取极限时的无穷小增量。
导数表示了函数在无穷小范围内的平均变化率,当h 趋于0时,导数表示了函数在该点上的瞬时变化率。
二、导数的公式:导数的计算根据函数的不同形式有不同的公式。
在高中阶段,最常见的导数公式有以下几种:1.常数函数的导数对于常数函数f(x)=C,它的导数为f'(x)=0。
这是因为常数函数的图像是一条水平直线,它在任何点上的斜率都为0。
2.幂函数的导数对于幂函数 f(x) = x^n,其中n为常数,它的导数为 f'(x) =nx^(n-1)。
例如,f(x) = x^2 的导数为 f'(x) = 2x。
3.指数函数的导数对于指数函数 f(x) = a^x,其中a为常数且a>0,它的导数为 f'(x) = ln(a) * a^x。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
4.对数函数的导数对于对数函数 f(x) = logₐx,其中a为常数且a>0且不等于1,它的导数为 f'(x) = 1/(x * ln(a))。
其中ln(a)表示以自然对数e为底的对数,它是一个常数。
5.三角函数的导数对于三角函数 f(x) = sin(x) 和 f(x) = cos(x),它们的导数分别为 f'(x) = cos(x) 和 f'(x) = -sin(x)。