橡胶材料-橡胶的共混与改性

合集下载

氯丁橡胶的改性研究进展

氯丁橡胶的改性研究进展

氯丁橡胶的改性研究进展摘要:氯丁橡胶,简称CR,是七种合成橡胶中的一种,一般分为通用型和半通用型。

其中丁苯橡胶和异戊二烯橡胶为氯丁橡胶-丁腈橡胶的通用型,乙烯橡胶和丁基橡胶为半通用型。

探索氯丁橡胶的改性、使其具有更好的综合性能将是今后氯丁橡胶改性的发展方向。

基于此,本文就氯丁橡胶的改性研究进展进行了综述。

关键词:氯丁橡胶;改性;综述引言不管是哪种类型的橡胶,又具有特有的性能,其中所包含的缺陷会为相关研究增加难度,所以通过氯丁橡胶改性提升其应用性能非常重要。

基于此,本文就氯丁橡胶的改性进行综述,详情如下。

1.氯丁橡胶氯丁橡胶,简称CR,是七种合成橡胶中的一种,一般分为通用型和半通用型。

其中丁苯橡胶和异戊二烯橡胶为氯丁橡胶-丁腈橡胶的通用型,乙烯橡胶和丁基橡胶为半通用型。

氯丁橡胶是以2-氯-13-丁二烯为主要单体,通过自由基均聚或乳液共聚制得的合成氯丁橡胶。

分子量一般为10~20万,相对密度为1.15~1.25,玻璃过渡温度为-45℃。

氯丁橡胶与天然橡胶(NR)有着非常相似的化学结构。

氯丁橡胶表现出良好的耐热性、耐臭氧性和风化老化性以及良好的耐油性和多种化学物质的作用;具有良好的自增强性能。

极性分子间的相互作用对CR力学性能的改善并不比NR好,但改善后的CR力学性能比NR差。

图1 氯丁橡胶结构图2.氯丁橡胶的化学改性氯丁橡胶的化学改性一般采用共聚的方法,通过共聚改性和接枝改性,所谓共聚改性指的是氯丁橡胶与一些烯烃二烯单体的自由基共聚。

氯丁橡胶共聚改性能够使氯丁橡胶的结晶或结晶速度变慢,提高橡胶弹性以延长贮存期,如氯丁橡胶与苯乙烯橡胶共聚物合成氯苯橡胶,含10%苯乙烯的氯苯橡胶结晶速度慢了近一半,低温性能和抗压缩变形能力显著提高。

用3-DCBD共聚物改性氯丁二烯和2,不仅保留了CBD均聚物原有的阻燃、耐磨、耐候和化学性能,而且大大降低了2-DCBD细胞向分子链的结晶速率,使其抗寒性、油性和耐热性大大提高。

EPDM的性能及其并用研究

EPDM的性能及其并用研究

EPDM的性能及其并用研究1、前言1.1 EPDM的结构三元乙丙橡胶(EPDM)是以乙烯和丙烯为主要原料,并用少量的非共轭二烯烃在Zeigler-Netta催化剂作用下聚合而成的一种通用合成橡胶。

目前世界上约有20多个公司生产,共有100多个牌号(1),。

EPDM 具有优异的耐热、耐臭氧、耐老化和电绝缘性,且易与聚烯烃塑料共混,已广泛用于汽车配件、防水卷材、电线电缆及塑料改性等众多领域。

EPDM 与丁基橡胶并用制造汽车内胎,可延长内胎使用寿命。

由于用途广泛,在世界合成橡胶消费总量中,EPDM约占7%,其产耗量在合成橡胶中位居第三(2)。

在汽车用橡胶中,EPDM 是耗用量最大的胶种,主要是制造门窗密封胶条、散热器胶管及其他零件。

EPDM也称为饱和橡胶,与不饱和橡胶如NR(天然橡胶)、NBR(丁睛橡胶)等相比,其主链完全饱和,不饱和的第三单体为侧挂基团作为其硫化的活性点而存在;故其化学稳定性和热稳定性较高。

EPDM 分子主链和侧基上均无极性基团存在,因此,它也是非极性橡胶。

乙烯和丙烯的组成比例对EPDM的性能有着决定性的影响。

一般丙烯用量在30%-40% (mol)之间,且当丙烯用量增加,EPDM的玻璃化温度(Tg)升高。

丙烯用量低于27%时,其硫化胶及生胶强度均增加,但永久变形会增大,弹性会下降(3)”根据第三单体加入的种类不同,EPDM分为E、D和H型,即加入的第三单体分别为亚乙基降冰片烯(ENB)、双环戊二烯(DCPD)和1, 4己二烯(HD),第三单体用量高,EPDM不饱和度高,硫化速度快,但其耐热性能变差。

1.2 EPDM的性能总的来说,EPDM具有高度的化学稳定性、卓越的耐天候性,其耐臭氧、耐热性能及其耐水蒸气性能也相当优异,同时还具有良好的电绝缘及耐磨性能;与硅橡胶、氟橡胶相比,其物理机械性能和综合性能比较均衡。

但其硫化速度较慢,黏结性及耐脂肪族溶剂性能较差。

(1)耐热空气老化性能EPDM具有优异的耐臭氧、耐热、耐天候性能,在通用橡胶中其老化性能最好。

乙丙橡胶的合成和改性

乙丙橡胶的合成和改性

CompanyLOGO乙丙橡胶合成工艺什么是乙丙橡胶EPR ❖乙丙橡胶(EPM\EPDM)乙烯和丙烯的共聚体,一般分为二元乙丙橡胶和三元乙丙橡胶。

特点是抗臭氧、耐紫外线、耐天候性和耐老化性优异,居通用橡胶之首。

电绝缘性、耐化学性、冲击弹性很好,耐酸碱,比重小,可进行高填充配合。

耐热可达150℃,耐极性溶剂-酮、酯等,但不耐脂肪烃和芳香烃,其他物理机械性能略次于天然橡胶而优于丁苯橡胶。

缺点是自粘性和互粘性很差,不易粘合。

使用温度范围:约-50℃~+150℃。

主要用作化工设备衬里、电线电缆包皮、蒸汽胶管、耐热运输带、汽车用橡胶制品及其他工业制品。

二元乙丙橡胶EPM三元乙丙橡胶EPDM 乙丙橡胶EPR❖EPM主要指乙烯和丙烯共聚的二元乙丙橡胶。

❖EPDM是指以乙烯和丙烯为基础单体,同时加入了非共轭二烯烃共聚得到的三元乙丙橡胶。

乙丙橡胶现状和前景乙丙橡胶是产量仅次于丁苯和顺丁橡胶的主要合成橡胶品种之一, 其具有耐天候、耐热老化、耐臭氧、耐化学介质、耐低温、电绝缘性能好等优异的性能, 广泛用于汽车工业、电线电缆工业、建筑工业和共混改性等领域。

但是, 由于乙丙橡胶大分子链上没有极性基团, 因而它对许多基材( 如金属)的粘接性能极差, 与许多极性材料的混合效果也不佳, 而且本身的着色、印刷、电镀都较困难;引入极性基团后, 可以克服上述不足, 可用于涂料、粘合剂中, 与极性工程塑料如尼龙、聚酯等共混复合制备塑料合金, 从而使乙丙橡胶的应用领域更加广泛。

溶液聚合悬浮聚合气相聚合原材料催化剂-----V O Cl 3一1/2Al 2Et 3Cl 3溶剂(己烷)分子量调节剂-----氢气第三单体---乙叉降冰片烯(ENB)或双环戊二烯(DCPD )30-50°C0.4-0.8MPa 聚合催化剂脱除单体和溶剂回收凝聚干燥包装原材料催化剂----乙酰丙酮钒、AlEt2Cl 活化剂----二氯丙二酸乙酯分子量调节剂----二乙基锌、氢气溶剂----丙烯-20---20°C0.35--1.05MPa聚合间歇洗涤(10-15次/h)聚丙二醇催化剂失活NaOH水溶液洗涤气提塔气提未反应的乙烯、丙烯、ENB精制回收振动筛脱水包装原材料----60%乙烯35.5%丙烯第三单体----45%ENB催化剂分子量调节剂----氢气其他----炭黑50-65°C2.07KPa流比反应器气体压缩机未反应气体冷凝脱除残留烃类回收ENB微粒状产品包装氮气三元乙丙橡胶改性从相关文献来看,关于乙丙橡胶改性,主要是针对三元乙丙橡胶的改性,而对于二元橡胶改性的报道,还是相对比较少。

tpee标准

tpee标准

tpee标准热塑性聚酯弹性体(TPC-ET)又称聚酯橡胶(或TPEE),是一类含有PBT(聚对苯二甲酸丁二醇酯)聚酯硬段和脂肪族聚酯或聚醚软段的线型嵌段共聚物,兼具橡胶优良的弹性和热塑性塑料的易加工性,软硬度可调,设计自由,是热塑性弹性体中倍受关注的新品种。

●一、反应原理●TPEE主要由对苯二甲酸、BDO、PTM GE通过酯交换反应,缩聚反应制备。

其反应方程式如下:式中:HOOC-R''-COOH 为对苯二甲酸;HO-R'-OH为1,4-丁二醇、PTMEG等。

●二、性能特点●TPEE属于高性能工程级弹性体,具有机械强度高、弹性好、抗冲击、耐蠕变、耐寒、耐弯曲疲劳性、耐油、耐化学药品和溶剂侵蚀等优点,具有良好的加工性,并可填充、增强及合金化改性,在汽车零部件、液压软管、电缆电线、电子电器、工业制品、文体用品、生物材料等领域得到了广泛的应用。

1、力学性能通过对软硬段比例的调节,TPEE的硬度可以从邵氏D32到D80变化,其弹性和强度介于橡胶和塑料之间。

与其他热塑性弹性体(TPE)相比,在低应变条件下,TPEE模量比相同硬度的其他TPE高。

当以模量为重要的设计条件时,用TPEE可缩小制品的横截面积,减少材料用量。

2、拉伸强度与聚氨酯弹性体(TPU)相比,TPEE压缩模量与拉伸模量要高得多,用相同硬度的TPEE和TPU制作同一零件,前者可以承受更大的负载。

在室温以上,TPEE弯曲模量很高,适宜制作悬臂梁或扭矩型部件,特别适合制作高温部件。

TPEE低温柔顺性好,低温缺口冲击强度优于其他TPE,耐磨耗性与TPU相当。

TPEE具有优异的耐疲劳性能,与高弹性特点相结合,使该材料成为多次循环负载使用条件下的理想材料,适宜制作齿轮、胶辊、挠性联轴节、皮带等。

3、耐热性能TPEE具有优异的耐热性能,硬度越高,耐热性越好。

TPEE的使用温度非常高,能适应汽车生产线上的烘漆温度(150-160℃),并且它在高温下机械性能损失小。

乙丙橡胶与SBR、NBR共混改性的综述

乙丙橡胶与SBR、NBR共混改性的综述

乙丙橡胶与SBR、NBR共混改性的综述赵阳(中石油吉林石化公司有机合成厂,吉林132021)摘要:三元乙丙橡胶(EPDM)是一种性能优异且广泛应用的特种橡胶。

随着当今世界对其材料性能要求越来越高,利用其优点与其他橡胶或塑料等材料共混的研究,改变材料的使用性能、加工性能以及降低成本,也变得越来越重要和有意义。

把EPDM与其他橡胶共混,一方面可以提高共混胶的物理机械性能,满足实际工程的需要;另一方面还可以扩展EPDM及其他橡胶的使用范围;同时加工性能得到改善,成本也有所降低。

关键词:三元乙丙橡胶;丁苯橡胶;丁腈橡胶;共混改性一、乙丙橡胶与丁苯橡胶(SBR)共混改性的综述SBR是一种不饱和的橡胶耐热、寒性差,强度低。

EPDM对SBR改性可以提高SBR橡胶的耐老化性和耐高温性能,同时SBR也可以提高EPDM的粘合性;SBR与EPDM并用可制作汽车密封条,效果比较理想。

吕咏梅指出,SBR中加入一定的EPDM,可使SBR耐臭氧龟裂性能提高24倍。

有人研究了过氧化物和硫黄共硫化体系对EPDM/SBR并用硫化胶性能的影响,得出结论:用过氧化物和硫黄做共硫化体系时,可以用低成本的乳聚SBR替代EPDM (最多30份),同时制品的物理机械性能没有下降。

彭雪丽研究了次磺酰胺类促进剂对EPDM/SBR 并用胶性能的影响。

结果表明:用次磺酰胺类促进剂硫化的混炼胶与用过氧化物和硫黄做共硫化体系形成的硫化胶的物理机械性能是相似的[1]。

唐远旺等人在《混炼工艺对超细全硫化粉末SBR/EPDM并用胶结构和性能的影响》中研究开炼机和密炼机混炼工艺对超细全硫化粉末SBR(UFPSBR)/EPDM 并用胶结构和性能的影响。

在开炼机混炼工艺为:将双辊开炼机辊距调至小,加入EPDM塑炼至包辊,然后加入UFPSBR混炼均匀,再加入硫化剂DCP混炼均匀,将辊距调至1.5mm出片。

密炼机混炼工艺:将EPDM加入密炼机中塑炼至转子转矩恒定,转子转速为80r・min-1。

BR_SBR橡胶共混

BR_SBR橡胶共混

目录目录 ------------------------------------------------------------------------------------------------------------------ 11.前言---------------------------------------------------------------------------------------------------------------- 22.橡胶共混改性 --------------------------------------------------------------------------------------------------- 2 2.1橡胶共混改性的目的 ------------------------------------------------------------------------------------- 2 2.2橡胶共混改性的方法 ------------------------------------------------------------------------------------- 3 2.3共混物形态结构的类型及与性能的关系 ------------------------------------------------------------ 32.3.1均相结构 ----------------------------------------------------------------------------------------------- 32.3.2单相连续结构(海岛结构) ---------------------------------------------------------------------- 32.3.3两相连续结构(海海结构) ---------------------------------------------------------------------- 4 2.4影响共混物形态结构的因素 ---------------------------------------------------------------------------- 42.4.1组分的浓度-------------------------------------------------------------------------------------------- 42.4.2组分粘度 ----------------------------------------------------------------------------------------------- 42.4.3内聚能 -------------------------------------------------------------------------------------------------- 42.4.4组分相容性-------------------------------------------------------------------------------------------- 42.4.5共混时间 ----------------------------------------------------------------------------------------------- 52.4.6共混方法 ----------------------------------------------------------------------------------------------- 52.4.7加工助剂 ----------------------------------------------------------------------------------------------- 5 2.5共交联 -------------------------------------------------------------------------------------------------------- 52.5.1同步硫化 ----------------------------------------------------------------------------------------------- 62.5.2相间交联 ----------------------------------------------------------------------------------------------- 62.6 顺丁橡胶(BR)/丁苯橡胶(BSR)共混改性 ------------------------------------------------------ 63.参考文献 --------------------------------------------------------------------------------------------------------- 81.前言共混是指共同混合,是一种物理方法,使几种材料均匀混合,以提高材料性能的方法,工业上用炼胶机将不同橡胶或橡胶与塑料,均匀地混炼成胶料是典型的例子,也可以在聚合物中加入某些特殊性能的成分以改变聚合物的性能如导电性能等。

第7章 橡胶的共混与改性

第7章 橡胶的共混与改性

图7-2聚合物共混物的力学损耗-温度谱图
¾ 只有一个Tg出现且位置介于两纯组分聚合物Tg之间时, 说明二者是完全相容的; ¾ 有两个Tg出现且其值与两纯组分Tg分别吻合时,说明二 者是完全不相容的; ¾ 当有两个Tg出现但其间距与前一种情况相比明相容聚合物的增容
¾ 热力学相容性: 两种聚合物以任何比例都能形成以分子状态 分散的稳定的体系,混合过程中吉布斯自由能小于0,称之 为热力学相容性。
¾ 工艺相容性:若两种聚合物的共混物的物理机械性能指标可 以全面满足预先设计的要求,并能保证在使用过程中它的 非均相性不会增大,并且能长期使用,则此两种聚合物具 有工艺相容性。
第三节 聚合物共混物的形态结构
聚合物共混物的形态结构也就是它的聚集态结构, 包括共混物的相态类型、多相体系中分散相的分散程 度和均一性以及两相的界面结构等内容。
一、共混物的相态类型
聚合物共混物是由两种或两种以上的聚合物 组成,因而可能形成两个或两个以上的相态。
通常以双组分共混物为最常见: 它的相态按照有无相分离现象而分为均相结构和两 相结构。前者很少见。更有意义的是后者,它又可分为 单相连续结构和两相连续结构。
¾ 与热力学相容性的关系: 9 聚合物之间有适当的热力学相容性,才有良好的工艺相 容性,才能形成良好的界面层,进一步提高共混物的稳 定性。 9 热力学完全不相容的一般不具有工艺相容性。 ¾ 工艺相容性的理论依据: 9 聚合物分子量大,黏度大,分子运动困难,分离速度 满,长时间也不容易产生宏观分相; 9 9 形成界面层有利于体系稳定; 填充剂的加入使分散相变小,硫化剂在相间/内产生交 联,束缚 了分子运动
CH2 COOH
除了商品化和预制的相容剂外,还可以原位生成相容剂。
除了上述相容剂外,商品化的化学改性聚合物如CPE、 CSM、ENR、HNBR等也都具有相容剂的功能。 如ENR就是NR/NBR体系的相容剂。

乙丙橡胶共混改性ABS树脂、低密度聚乙烯、高密度聚乙烯

乙丙橡胶共混改性ABS树脂、低密度聚乙烯、高密度聚乙烯

乙丙橡胶共混改性ABS树脂、高密度聚乙烯、低密度聚乙烯相关性能的综述赵阳(中石油吉林石化公司有机合成厂,吉林132021)摘要:三元乙丙橡胶具有耐热氧、耐候、耐老化、耐臭氧、耐化学腐蚀和电绝缘性优秀等特点,广泛应用于当今各行各业中。

通过与其他高聚物进行共混改性,使三元乙丙橡胶或其它高聚合物性能更趋完善。

关键词:乙丙橡胶;ABS树脂;低密度聚乙烯;高密度聚乙烯;共混改性一、乙丙橡胶与ABS树脂共混改性的综述AES(丙烯腈/三元乙丙橡胶/苯乙烯共聚物)是针对ABS耐候性差而开发的一种工程塑料新品种,AES树脂中EPDM(三元乙丙橡胶)分子链双键含量少,故AES 的耐候性比ABS高4~8倍,AES的热稳定性、吸水率和冲击强度均优于ABS树脂,其他性能则与ABS相似。

AES树脂的制备方法有直接合成法和共混法2种,直接合成法是按预先设定的AN(丙烯腈)/EPDM/St(苯乙烯)配料比,用溶液聚合、乳液聚合或悬浮聚合直接合成,得到的产物是一种以EPDM为主链,以SAN(St-2AN共聚物)为支链的新型接枝共聚物EPDM2-g-2SAN。

共混法则是利用增容技术将EPDM和SAN在熔融状态下混合制备,虽然目前工业化的方法只有溶液聚合法,但在国内外研究者们坚持不懈地努力下,其他制备方法也有了较大进展。

顾准等人在《溶剂法制备AES树脂及其性能研究》中详细叙述了溶剂法制备AES树脂的工艺过程和相关配方,并对其性能展开了进一步研究。

他们使用荷兰DSM公司生产的牌号为Keltan51,乙烯含量为64%的乙丙橡胶与苯乙烯和丙烯腈进行聚合反应。

反应配比为10%的EPDM和少量丁二烯胶(质量比4:1)混合,溶解于苯乙烯(55%)、乙苯(20%)中,常温下搅拌溶解8 h,形成橡胶溶液,然后加入丙烯腈(15%)及引发剂、分子量调节剂等。

具体反应过程分三阶段进行:(1)体系升温至100℃,反应1.5 h;(2)升温至120℃,反应1.5 h;(3)升温至140~150℃,反应3 h。

橡胶各项性能简介

橡胶各项性能简介

配方与各种物性之间的关系:各种橡胶制品都有它特定的使有用性能和工艺要求.为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计.首先要了解配方设计与硫化橡胶物理性能的关系.硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异.一、拉伸强度拉伸强度是制品能够抵抗拉伸破坏的根限能力.它是橡胶制品一个重要指标之一.许多橡胶制品的寿命都直接与拉伸强度有关.如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的. 拉伸强度与橡胶的结构有关,分了量较小时,分子间相互作用的次价健就较小.所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏.反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小.凡影响分子间作用力的其它因素均对拉伸强度有影响.如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高.也就是这些橡胶自补强性能好的主要原因之一.一般橡胶随着结晶度提高,拉伸强度增大.拉伸强度还根温度有关,高温下拉伸强度远远低于室温下的拉伸强度.拉伸强度根交联密度有关,随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降.硫化橡胶的拉伸强度随着交联键能增加而减小.能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度.通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用),拉伸强度与填充剂的关系,补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好.结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向.低不和橡胶随着用量的增加达到最在值可保持不变. 拉伸强度与软化剂的关系加入软化剂会降低拉伸强度,但少量加入,一般在开练机7份以下,密练机在5份以下会改善分散,有利于提高拉伸强度.软化剂的不同对拉伸强度降低的程度也不同.一般天然橡胶适用于植物油类.非极性橡胶用芳烃油如SBR/IR/BR. .如IIR /EPDM用石腊油、环烷油.NBR/CR 用DBP/DOP.之类. 提高拉伸强度的其它放法有,用橡胶与树脂共混、橡胶化学改性、填料表面改性(如加桂烷等)二、撕裂强度橡胶的撕裂是由于材料中的裂纹或裂口受力时迅速扩大开裂而导至破坏现象.撕裂强度与拉伸没有直接关系.在许多情况下撕裂与拉伸是不成正比的.一般情况下,结晶橡胶比非结晶橡胶撕裂强高.撕裂强度与温度有关.除了天然橡胶外,高温下撕裂强度均有明显地下降.碳黑、白炭黑填充的橡胶其撕裂强度有明显地提高.撕裂强度与硫化体系有关.多硫键有较高的撕裂强度.硫黄用量高撕裂强度高.但过多的硫黄用量撕裂强度会显着地降低.使用平坦性较好的促进剂有利于提高撕裂强度. 撕裂强度与填充体系有关,各种补强填充如、碳黑、白炭黑、白艳华、氧化锌等,可获较高的撕裂强度.某些桂烷等偶联剂可以提高撕裂强度.通常加入软化剂会使撕裂强度下降.如石腊油会使丁苯胶的撕裂强度极为不利.而芳烃油就变化不大.如CM/NBR用酯类增塑剂比其它软化剂就影响小多了.三、定伸应力与硬度定伸应力与硬度是橡胶材料的刚度重要指标,是硫化胶产生一定形变所需要的力,与较大的拉伸形变有关,两者相关性较好,变化规律基本一至.橡胶分子量越大,有效交联定伸应力越大.为了得到规定的定伸应力,可对分子量较小的橡胶适当提高交联密度.凡能增加分子间作用力的结构因素.都能提高硫化胶的网洛抵抗变形能力.如CR/NBR/PU/NR等有较高的定伸应力.定伸应力与交联密度影响极大.不论是纯胶还是补强硫化胶,随着交联密度的增加,定伸应力与硬度也随之直线增加.通常是通过对硫化剂、促进剂、助硫化剂、活性剂等品种的调节来实现的.含硫的促进对提高定伸应力更有显着的效果.多硫健有利于提高定伸应力.填充剂能提高制品的定伸应力、硬度.补强性能越高、硬度越高,定伸应力就越高.定伸应力随着硬度的增加,填充的增加越高.相反软化剂的增加,硬度降低,定伸应力下降.除了增加补强剂外还有并用烷基酚醛树脂硬度可达95度、高苯乙烯树脂.使用树脂RS、促进剂H并用体系硬度可达85度等等.四、耐磨性耐磨耗性能表征是硫化胶抵抗摩察力作用下因表面破坏而使材料损耗的能力.是与橡胶制品使用寿命密切相关的力学性能.它的形式有; 1.磨损磨耗,在摩擦时表面上不平的尖锐的粗糙物不断地切割、乱擦.致使橡胶表面接触点被切割、扯断成微小的颗粒,从橡胶表面脱落下来、形成磨耗 .磨耗强度与压力成正比与拉伸强度成反比.随着回弹性提高而下降. 2.疲劳磨耗,与摩擦面相接触的硫化胶表面,在反复的过程中受周期性的压缩、剪切、拉伸等变形作用,使橡胶表面产生疲劳,并逐渐在其中产生微裂纹.这些裂纹的发展造成材料表面的微观剥落.疲劳磨耗随着橡胶的弹性模量、压力提高而增加,随着拉伸强度的降低而和疲劳性能变差而加大. 3.巻曲磨耗,橡胶下光滑的表面接触时,由于磨擦力的作用,使硫化胶表面不平的地方发生变形,并被撕裂破坏,成巻的脱落表面. 耐磨性能和硫化胶的主要力学性能有关.在设计配方时要设法平衡各种性能之间的关系.耐磨性与胶种之间关系最大,一般来讲NBR>BR>SSBR>SBR(EPDM)>NR>IR (IIR)>CR 耐磨性与硫化体系有关,适量地提高交联徎度能提高耐磨性能.单硫健越多耐磨性越好,这就是半有效硫化体系的耐磨性最好的道理.用CZ做第一促进剂的耐磨性能要比其它促进剂好,最佳的补强剂用量会提高一定的耐磨性能.合理地使用软化剂会能最小地降低耐磨性.如天然胶、丁苯胶用芳烃油. 有效地使用防老剂,可防止疲劳老化.提高碳黑的分散性可提高耐磨性能. 使用桂烷表面处理剂改性可大大地提高耐磨性能. 采用橡塑共混来提高耐磨性能,如丁睛与聚氯乙烯并用,所制造的纺织皮结. 用丁睛与三元尼龙并用,丁晴与酚醛树脂并用. 添加固体润滑剂和减磨性材料.如丁睛胶橡胶胶料中添加石墨、二硫化钼、氮化硅、碳纤维,可使硫化胶的磨擦系数降低,提高其耐磨性能.五,疲劳与疲劳破坏.硫化胶受到交变应力作用时,材料的结构和性能发生变化的现象叫疲劳.随着疲劳过徎的进行,导至材料破坏的现象叫做疲劳破坏. 1. 橡胶结构的影响,玻璃化温度低的橡胶耐疲劳性能好.有极性基团的橡胶耐疲劳性能差.分子内有庞大基团或侧基的橡胶,耐疲劳性能差、结构序列规整的橡胶,容易聚向结晶,耐疲劳性差. 2. 橡胶硫化体系影响,单硫健的硫化体系,疲劳性能最小,耐疲劳性能好,增加交联剂的用量会使硫化胶的疲劳性能下降.所以应尽量减少交联剂的用量. 3. 填充剂的影响,补强性能越小的填充剂影响越小,填充剂用量越大影响越大,应尽量少用填充剂. 4. 软化体系的影响,尽可能选用软化点低的非粘稠性软化剂;软化剂的用量尽可能多一些,相反高粘度软化剂不宜多用,如松焦油的耐疲劳性差,脂类增塑剂的耐疲劳性就好.六,弹性橡胶最宝贵特性是弹性.高弹性源于橡胶分子运动,完全由卷曲分子的构象变化所造成的,除去外力后能立即恢复原状,称理想的弹性体.橡胶分子之间的作用会妨碍分子链段运动,表现出粘性或粘度.所以说橡胶的特性是既有弹性又有粘性.影响弹性的因素有形变大小、作用时间、温度等.橡胶分子间的作用增大,分子链的规整性高时,易产生拉伸结晶,有利于强度提高,显示出高弹性.在通用橡胶中的天然、顺丁胶弹性最好,其次是丁睛、氯丁.丁苯与丁基较差. 弹性与交联密度有关,随着交联密度的增加,硫化胶的弹性增加,并出现最大值,交联密继续增加弹性呈下的趣势.适当地提高流化程度对弹性有利.在高弹性配合中选用硫黄与CZ并用、与促进D并用硫化胶的回弹性较高,滞后损失小. 弹性与填充体系有关,提高含胶率是提高弹性的最直接、最有效的办法,补强性越好的填充对弹性越不利. 弹性与软化剂的关系.软化剂与橡胶的相溶性有关,相溶性越小,弹性越差.如天然、顺丁、丁基加石腊油,优于加环烷油.丁睛加DOP 优于使用环烷油、芳烃油.一般来说增塑剂会降低橡胶的弹性,应尽量少用增塑剂.七,扯断伸长率(延伸率)扯断伸长率与拉伸强度有关,只有具有较高的拉伸强度,保证其在变形过程中不受破坏,才会有较高的伸长率.一般随着定伸应力和硬度增大则扯断伸长率下降,回弹性大、永久变形小,则扯断伸长率大.不同的橡胶,它的扯断伸长率不同,天然胶它的含胶率在80%以上时它的扯断伸长率可达1000%.在形变时易产生塑性流动的橡胶也会有较高的伸长率.如丁基橡胶. 扯断伸长率随着交联密度的提高而降低.制造高定伸制品,硫化程度不宜过高,可以稍欠硫或降低硫化剂用量.增加填充剂的用量会降低扯断伸长率,结构越高的补强剂,扯断伸长率越低,曾加软化剂的用量,可以获较大的扯断伸长。

丁腈橡胶与尼龙6共混性能的研究

丁腈橡胶与尼龙6共混性能的研究

摘要丁腈橡胶是丁二烯与丙烯腈进行乳液聚合而获得的一种通用耐油橡胶,因具有优良的耐油性和良好的物性、耐热性,成为耐油橡胶制品的标准弹性体。

但是随着丙烯腈含量增加,硫化胶的耐油性、耐热性、耐磨耗性、耐气体渗透性、硬度、定伸应力、拉伸强度等性能增加,但耐寒性、弹性、抗压缩永久变形性能变差。

为了考察丁腈橡胶(NBR)与聚酰胺6(PA6)共混产物综合性能变化,本文采用不同种类NBR与PA6熔融共混,考察共混过程中转矩值变化,表征了共混物的力学性能、耐溶剂性能,并且共混产物进行了红外光谱分析。

研究结果表明:随着共混物体系中橡胶相含量的增加,共混物体系的熔体粘度上升。

相同腈基含量下的NBR/PA6共混物的平衡转矩值随着NBR含量的增加而增加;拉伸强度随着共混物中NBR橡胶含量的上升,呈下降趋势。

在相同的NBR含量条件下,拉伸强度随着腈基含量的增加而增加;红外测试结果显示NBR与PA间在高温高剪切作用下存在微化学反应,即双键与胺基间的反应;共混物体系中随着NBR含量的上升,共混物体系的体积溶胀率与质量溶胀率均呈上升趋势。

关键词:丁腈橡胶尼龙6 共混聚合物耐溶剂性能红外光谱分析AbstractNitrile-butadiene rubber is obtain by butadiene and acrylonitrile in emulsion polymerization to get on a universal oil resistant rubber, because of excellent oil resistance and good property heat-resistant became the standard of oil resistant rubber elastomers. But with the content of acrylonitrile increased, the vulcanizates oil resistant, heat-resistant, abrasion resistance, gas permeability resistance, hardness, elongation, tensile strength performance increase, but the low temperature resistance,elasticity, resistance of permanent deformation to compression are go bad. In order to examine the comprehensive performance changes of nitrile-butadiene rubber and polyamide 6(PA6) blending product, this thesis using different kind of NBR and PA6 for melt blending, inspects the changes of balance torque values during blending process. Research the mechanical properties, solvent resistance performance of blending product,and take a series of tests by infrared spectroscopic analysis.The research results show that the melt viscosity is rising up with the increase of the content of the NBR . In the same content of nitrile group the NBR and PA6 balance torque values is rising up with the increase of content of basic-rubber,the tensile strengthis reduced with the increase of content of basic-rubber. .In the same content of NBR, the tensile strength is rising up with the content of nitrile group; The infrared spectroscopic analysis test results show that there have micro chemical reactions between with NBR and PA6 in high temperature and high shear function, namely the reaction between double bond and amino group; V olume swelling ratio and quality swelling ratio at blend system is rising up with the increase of content of basic-rubbe.Keyword:Nitrile-butadiene rubber Polyamide6 Polymer blend Solvent resistance Infrared spectroscopic analysis目录摘要 (I)Abstract (II)第一部分文献综述 (1)1.1 前言 (1)1.2 NBR的结构与性能的关系 (1)1.2.1 NBR 的生产工艺 (2)1.2.2 改性NBR品种 (2)1.3 丁晴橡胶在国内外发展现状 (3)1.3.1 国内NBR发展现状 (3)1.3.2 国外NBR发展现状 (4)聚酰胺的增韧研究 (4)聚烯烃弹性体增韧机理 (4)1.4.2 PA/工程塑料合金增韧机理 (5)1.4.3 无机非弹性体增韧机理 (5)1.4.4 PA的物理化学性质的优缺点 (5)1.4.5 尼龙6(PA6)物理化学性质 (6)1.5 NBR的共混物 (7)1.5.1 NBR/PVC (7)1.5.2 NBR/PP[20] (7)1.5.3 NBR/氯磺化聚乙烯(CSM) (7)1.5.4 NBR/PA (8)1.6 红外光谱分析 (14)1.7 本论文的研究方案 (15)第二章实验部分 (16)2.1 NBR与PA6共混 (16)2.1.1 实验配方 (16)2.1.2 实验原料 (17)2.2 耐溶剂性测试 (17)2.3 红外光谱测试 (18)2.4 力学性能测试 (18)第三章结果与讨论 (19)3.1 NBR/PA6熔融共混过程中转矩值变化 (19)共混物的红外光谱分析 (21)3.4 NBR/PA6共混物的耐溶剂性能 (23)结论 (26)致谢 (27)参考文献 (28)第一部分文献综述1.1 前言丁腈橡胶(NBR)因具有优良的耐油性和良好的物性、耐热性,成为耐油橡胶制品的标准弹性体,广泛用于汽车、航空航天、石油开采、石油化工、纺织与印刷等领域的耐油橡胶部件。

橡胶(并用)共混原理,您真的了解吗?

橡胶(并用)共混原理,您真的了解吗?

橡胶(并用)共混原理,您真的了解吗?概述橡胶共混的意义:改善工艺性能,使用性能和技术经济性能。

大约 70%以上的橡胶是以橡胶并用或橡塑并用的形式进行加工和使用。

橡胶共混的内容:相容性形成均相体的能力:热力学相容、工艺相容共混物形态结构:连续相、分散相、界面配合剂在共混物中分布:硫化助剂、填料的分布,共交联和物性橡胶的工艺相容性:通过机械方法或其他条件将热力学不相容体系混合,可以获得足够稳定的共混物,这种共混物在微观区域内构成多相形态,但在宏观上仍能保持其均匀性。

聚合物共混影响因素:混炼工艺条件:时间、强度、辊温、加工方法配方组成:生胶、共混比、相容剂、加工助剂共混物形态结构的影响因素一是粘度不匹配引起的不相容性,由于粘度相差太大,并用胶难以形成紧密结合的共混物;二是热力学不相容性,从而使共混物难以形成分子级共混;三是由于硫化速率不匹配引起的硫化不相容性。

(1) 聚合物共混时的分散过程分散相平均粒径的大小决定于:混炼时间、混炼强度、分散相用量。

分散相宏观破碎能↓,相容性↑,界面张力↓,分散相体积分数↓,剪切速率↑,则:平均粒径↓(2) 相容性对共混物形态结构的影响聚合物相容性两种极端:完全不相容完全相容或相容性极好。

较好的共混改性物:分散相大小适宜、需要多相结构、相之间结合力较强。

对于单纯热力学不相容性,改进的方法很多,最常见的方法是添加增容剂。

(3) 组分浓度对共混物形态的影响组分体积分数 > 74%,连续相;< 26%,分散相;26-74% ,视具体条件而定。

当二者的初始粘度和内聚能接近时,浓度大者易形成连续相。

(4) 组分粘度对共混物形态结构的影响二者粘度相差越大,分散相体积分数↑,分散相粒径↓;二者粘度接近,分散相体积分数↑,分散相粒径↑;粘度低组分,连续相;粘度相近,“海-海”结构。

对于单纯的粘度不匹配导致的不相容性,可以选择合适的牌号或通过改进共混工艺过程如加增塑剂、填料等调节各相的粘度使之匹配。

NBR、PVC共混

NBR、PVC共混

NBR/PVC橡塑共混材料的应用丁腈橡胶(NBR)与聚氯乙烯(PVC)共混制成的共混胶已是目前橡塑并用的主要胶种。

NBR/PVC共混胶的主要优点是兼有PVC的耐臭氧性和NBR的耐油性和可交联性,而且有一定的阻燃性能,具有良好的物理机械性能,其主体原料PVC 来源丰富、价格低廉,因此应用相当广泛。

NBR/PVC共混物共混工艺主要有乳液共沉法和机械共混法。

乳液共沉法是使橡胶和塑料处于乳液状态下进行混合,通过共沉、干燥而得到干胶,产品具有较高的分散性,胶料门尼粘度低,物理机械性能好。

此法是橡胶生产企业常用的方法。

机械共混法是把橡胶和塑料在开炼机或密炼机上直接进行混合,此法操作简单、成本较低,并用比例可以任意变更,是制品生产企业产用的方法NBR/PVC共混胶的优点兼有PVC的耐臭氧性和丁腈橡胶的耐油性和可交联性。

与纯NBR相比,NBR/PVC共混胶具有以下的特点:1. 显著提高了耐臭氧和耐天候老化性能;2. 改善了拉伸强度、定伸应力、抗撕裂性、耐热性和耐燃性;3. 提高了耐油、耐燃油和耐化学药品等性能;4. 提高了压出、压延性能,同时胶料不易自硫化,增强了贮存稳定性;5. 可任意着色.制做艳色制品。

CN%为30-40%时NBR和PVC的相容性较好。

应用NBR/PVC共混胶主要用于油管和燃油管外层胶、电线电缆护套、耐油输送带、汽车密封件、胶辊和胶圈、汽车模压零件、微孔海绵、发泡绝热层、汽车防水条、靴底和防护涂层。

1、胶管NBR/PVC共混胶在胶管中应用广泛,特别是耐油胶管、煤气胶管和消防胶管。

2、电线电缆NBR/PVC共混胶广泛应用于电线电缆行业,在海底电缆等特殊电缆领域中可与EPDM/PP相竞争。

3、胶辊聚氯乙烯(PVC)与丁腈橡胶(NBR)共混料综合了PVC、NBR两者的优点,具有较好的耐油性、耐化学药品性,耐臭氧性等性能。

同NBR胶辊相比,PVC/NRB 共混并用胶辊的拉伸强度、撕裂强度、耐磨性、抗溶剂性和耐臭氧龟裂性能等有显著提高。

橡胶材料-第1章2热塑弹性体液体橡胶再生胶胶粉等-61页文档资料

橡胶材料-第1章2热塑弹性体液体橡胶再生胶胶粉等-61页文档资料
硬段要求链段间的作用力是以形成物理“交联”或“缔合”, 或者具有在高温下能离解的化学键;
软段则要求是自由旋转能力较大的高弹性链段。 硬段显示高度刚性,不能过长,而软段显示高度的柔性,不
能过短。 例如:苯乙烯与丁二烯嵌段共聚物SBS。
软链段
硬链段
PS BR
PS
<一> 共聚型TPE的结构特征 共聚型TPE是采用嵌段共聚的方式将柔性链
适合制造汽车轮胎。
<四> 乙烯-α-辛烯共聚热塑性弹性体(POE)
1. 结构
该TPE是通过乙烯与α辛烯在茂金属催化剂的催化下 定向共聚而成的具有特殊序列分布的聚烯烃共聚物。 POE是Poly Olefin Elastomer的缩写。
辛烯共聚单体在分子链上均匀分布,其质量含量>20 wt%。
POE的力学性能良好。 POE主链的特性与PE类似——良好的绝缘性
和耐化学介质性。 但耐热性低——永久变形大。 通过部分交联的方式可ห้องสมุดไป่ตู้改善。
3. 应用 替代EPDM制造防水卷材,耐候性更好。 微交联的POE——高耐候电缆料。 POE还可以用于PP的增韧改性剂,在提高韧
性的同时,强度和加工性牺牲较小。
(软段)同刚性链(硬段)交替连接成大 分子。
玻璃态或结晶态微区
<二> 苯乙烯共聚热塑性弹性体
1. 结构
苯乙烯类嵌段共聚型热塑性弹性体的结构 为S—D—S。S为聚苯乙烯硬段,其聚集微 区为无定形玻璃态——物理交联点;D为聚 二烯烃或氢化聚丁二烯软段,在常温下处 于高弹态——提供橡胶的弹性。
常见的三种苯乙烯类热塑性弹性体
SBS SIS
SEBS
2. 性能

橡胶材料第三章橡胶的共混与改性

橡胶材料第三章橡胶的共混与改性
在恒温恒压下,两种聚合物能发生热力学相容的必要条件是共混体系 的混合自由能ΔGm必须满足下列条件。
ΔGm=ΔHm-TΔSm≤0 (7-1)
式中 ΔHm-混合热;ΔSm-混合熵;T-绝对温度。 二元聚合物共混时,混合熵可用式(7-2)表示。
ΔSm=-R(n1lnφ1+n2lnБайду номын сангаас2) (7-2)
式中 n1 ,n2-分别为共混聚合物组分的物质的量; Φ1 ,Φ2—分别为共混聚合物组分的体积分数;R-气体常数。
第七章 橡胶的共混与改性
将两种或两种以上的不同橡胶或橡胶与合成树脂,借助机械力的作用 掺混成一体,用以制造各种橡胶制品,称为橡胶机械共混或橡胶的并用。 共混已成为橡胶改性的有效和重要手段。
第一节 概 述 一、橡胶共混的目的和意义 ? 改善橡胶的使用性能和/或加工性能
橡胶共混的主要目的是改善现有橡胶性能上的不足。例如天然橡胶, 因具有良好的综合力学性能和加工性能,被广泛用应用,但它的耐热氧老 化性、耐臭氧老化性、耐油性及耐化学介质性欠佳。
三、聚合物相容性的预测 当决定将一种聚合物与另一种聚合物进行共混改性时,首先要对这两种
聚合物相容性的程度进行预测,以判断共混工艺的可行性。如果两种聚合物 有一定的相容性或相容性良好,可直接实施共混,否则应作增容共混处理。
12
预测聚合物是否相容最常用的方法是溶解度参数相近程度判断法,原 理如式(7-3)所示。两种聚合物的溶解度参数相差越小,越有利于ΔGm< 0 ,故相容性越好。对大量聚合物共混体系的研究发现,当两种聚合物的 溶解度参数之差大于0.5以后,两种聚合物便不能以任意比例实现工艺相 容,多数情况会出现相分离。
17
18
除了上述无规共聚物以外,某些嵌段共聚物或接枝共聚物也是常用的非 反应型相容剂。

反式聚辛烯橡胶改性天然橡胶顺丁橡胶共混胶的性能

反式聚辛烯橡胶改性天然橡胶顺丁橡胶共混胶的性能

合成橡胶工业,2021-01-15,44(1):23〜27CHINA SYNTHETIC RUBBER INDUSTRY 实验DOI:10.19908/ki.ISSN1000-1255.2021.01.0023反式聚辛烯橡胶改性天然橡胶/顺丁橡胶共混胶的性能李丹丹刘振学3,高波3,张文洁李兰阁2'3,葛怀涛2,任学斌I郝福兰IS(1.山东京博中聚新材料有限公司,山东滨州256500; 2.山东华聚高分子材料有限公司,山东滨州256500;3.山东省烯烃催化与聚合重点实验,山东滨州256500$摘要:研究了反式聚辛烯橡胶(TOR)改性天然橡胶(NR)/顺丁橡胶('#)(二者质量比80/20)共混胶的性能&结果表明,采用5〜15份(质量,下同)TO%改性NR/BR混炼胶的门尼黏度逐渐降低、Payne效应基本不变,共混胶的焦烧时间和工艺正硫化时间延长、硫化速率减慢&相比NR/BR硫化胶,NR/BR/TOR硫化胶的拉伸强度、扯断伸长率和撕裂强度明显减小,回弹性能提高,100%定伸应力、硬度和滚动阻力略有增大,压缩生热有所升高,耐磨和耐疲劳裂纹引发性能得到改善&用TO%改性NR/BR共混胶时的最佳用量为5份&关键词:反式聚辛烯橡胶;天然橡胶;顺丁橡胶;共混胶;硫化特性;物理机械性能;耐疲劳性能;耐磨性能中图分类号:TQ333.99文献标志码:A天然橡胶(NR)具有优异的综合性能,而顺丁橡胶(BR)具有优异的耐疲劳和耐磨性能以及较低的滚动阻力,因此NR/BR共混胶被广泛应用于轮胎和橡胶制品领域**1-3+。

由于NR与BR的相容性和共硫化性较差,以及填料易在BR相区聚集导致NR/BR共混胶的性能不能有效发挥[4-6],因而NR/BR共混胶的改性受到重视。

研究表明,反式丁戊橡胶可以同时改善NR与BR之间的相容性、共硫化性以及填料在橡胶基质中的分散状况,从而赋予NR/BR共混胶非常优异的耐疲劳性能*7-9+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档