1.2.1几个常用函数的导数 基本初等函数的导数公式及导数的运算法则(一)
基本初等函数的导数公式及导数的运算法则 课件 (1)
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
导函数 f′(x)=_0__ f′(x)=_α_x_α_-_1_ f′(x)=_c_o_s_x__ f′(x)=__-__s_in__x_ f′(x)= axln a (a>0)
f(x)=ex f(x)=logax f(x)=ln x
∴所求的最短距离
d=1本初等函数的导数公式
知识点一 几个常用函数的导数
原函数 f(x)=c f(x)=x f(x)=x2 f(x)= 1
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
命题角度2 求切点坐标问题 例3 求抛物线y=x2上的点到直线x-y-2=0的最短距离.
解 设切点坐标为(x0,x20),依题意知与直线 x-y-2=0 平行的抛物线 y =x2 的切线的切点到直线 x-y-2=0 的距离最短.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
f′(x)=_e_x_
1 f′(x)= xln a (a>0且a≠1)
1 f′(x)=__x_
类型一 利用导数公式求函数的导数
例1 求下列函数的导数. (1)y=sin π6; 解 y′=0. (2)y=12x; 解 y′=12xln12=-12xln 2.
(3)y=lg x;
解 y′=xln110.
(4)y= x2x;
解
∵y=
x2x=x
3 2
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则(一)基本初等函数的导数公式表x y x y xy x y y x y cos )6(log )5(ln )4(1)3(5)2()1(125======、求下列函数的导数例 例处的切线方程。
在、求函数2cos 2π==x x y(二)导数的四则运算法则:(2)推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)例3、根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)y = (3)sin ln y x x x =⋅⋅;(4)4x x y =; (5)1ln 1ln x y x -=+. (6)2(251)x y x x e =-+⋅;三.课堂练习1、求下列函数的导数:)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω 2、已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;3、处的导数。
在求3332=++=x x x y 4、处的切线方程。
,在点求曲线)20(1P e y x += ______________________1216______________)42()04(4522处的切线方程为垂直,则过点的切线与直线上的点,若过点是曲线、的坐标为,则于处的切线恰好平行,若曲线上一点,、,上两点、曲线P x y P x y P P AB P B A x x y +-==-= 7、曲线3()2f x x x =+-在0P 点处的切线平行于直线41y x =-,则0P 点的坐标为 .8、已知抛物线2y x bx c =++上的点(1,2)处的切线与直线2y x =-平行,求b ,c 的值。
几个常用函数的导数与基本初等函数的导数公式
几个常用函数的导数与基本初等函数的导数公式常用函数的导数公式及基本初等函数的导数公式是微积分中非常重要的知识点。
在计算导数时,这些公式能帮助我们更加方便地得到结果。
下面是常用函数的导数公式及基本初等函数的导数公式:1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。
2.幂函数:若 f(x) = x^n,其中 n 为常数,则 f'(x) = nx^(n-1)。
3.指数函数:若 f(x) = a^x,其中 a 为常数且 a > 0,a ≠ 1,则 f'(x) =ln(a) * a^x。
4.对数函数:(1) 若 f(x) = ln(x),则 f'(x) = 1/x。
(2) 对数函数的基本性质:若 f(x) = ln(g(x)),则 f'(x) =g'(x)/g(x)。
5.三角函数:(1) 若 f(x) = sin(x),则 f'(x) = cos(x)。
(2) 若 f(x) = cos(x),则 f'(x) = -sin(x)。
(3) 若 f(x) = tan(x),则 f'(x) = sec^2(x)。
(4) 若 f(x) = cot(x),则 f'(x) = -cosec^2(x)。
(5) 若 f(x) = sec(x),则 f'(x) = sec(x) * tan(x)。
(6) 若 f(x) = cosec(x),则 f'(x) = -cosec(x) * cot(x)。
6.反三角函数:包括反正弦函数(arcsin(x)或sin^(-1)(x))、反余弦函数(arccos(x)或cos^(-1)(x))和反正切函数(arctan(x)或tan^(-1)(x))等。
根据反函数的导数公式,可以得到它们的导数公式:(1) 若 f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
高中数学第一章导数及其应用1.2.1_2几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)课件新
1. 能根据定义求函数 y=c(c 为常数),y=x,y=x2,y=1x, y= x的导数.
2.能利用给出的基本初等函数的导数公式求简单函数的导 数.
自主学习 基础认识
|新知预习|
1.几个常用函数的导数
函数 导数 函数
导数
f(x)=c f′(x)=0 f(x)=x f′(x)=1
f(x)=x2 f′(x)=2x f(x)=1x f′(x)=-x12
3.函数 f(x)=sinx,则 f′(6π)=________.
解析:f′(x)=cosx,所以 f′(6π)=1. 答案:1
【解析】 (1)因为 y=sinx,所以 y′=cosx,
曲线在点 Pπ6,12处的切线斜率是
y′|x=π6=cosπ6=
3 2.
所以过点
P
且与切线垂直的直线的斜率为-
2, 3
故所求的直线方程为 y-12=- 23x-π6,
即 2x+ 3y- 23-π3=0.
(2)因为 y′=(x2)′=2x, 设切点为 M(x0,y0), 则 y′|x=x0=2x0, 又因为直线 PQ 的斜率为 k=42- +11=1,而切线平行于直线 PQ,
切线方程为 y-14=-x+12, 即 4x+4y+1=0.
|素养提升|
1.基本初等函数的导数公式可分为四类 第一类为幂函数,y′=(xα)′=αxα-1(注意幂指数 α 可推广到全体 非零实数); 第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函 数的导数为正弦函数的相反数; 第三类为指数函数,y′=(ax)′=axlna,当 a=e 时,y=ex 的导 数是指数函数的导数的一个特例; 第四类为对数函数,y′=(logax)′=xl1na,也可写为(logax)′= 1x·logae,当 a=e 时,y=lnx 的导数是对数函数的导数的一个特例.
高二数学 1.2.1-1.2.2几个常用函数的导数 基本初等函数的导数公式及导数的运算法则(一)
1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)1.主要问题及教学建议(1)根据导数定义求常用函数的导数.建议教师让学生明确导数的定义本身包含着可导与导数两层含义.可导是指有极限,反映函数在一点所具有的性质,导数是刻画这一性质的数量.因为教材不介绍极限,尽量淡化用定义法求导的严格性要求及涉及的相关技巧.(2)基本初等函数的导数公式.建议教师在教学中适量地增加练习去熟悉公式的运用,但要避免过量形式化的运算练习.同时,选配适量的求导问题,帮助学生熟悉导数公式.备选习题1.已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:由于y=sin x,y=cos x,设两条曲线的一个公共点为P(x0,y0),则两条曲线在P(x0,y0)处的切线斜率分别为k1=y'=cos x0,k2=y'=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin 2x0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.2.已知函数f(x)=,g(x)=a ln x,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程.解:∵f(x)=,g(x)=a ln x,∴f'(x)=,g'(x)=.设两曲线的交点坐标为(x0,y0),又两曲线在交点处有相同的切线,∴解得∴两曲线的交点坐标为(e2,e),切线斜率为.∴切线方程为y-e=(x-e2),即x-2e y+e2=0.。
高中数学第一章几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)课件
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
【跟踪训练 2】 已知点 P(-1,1),点 Q(2,4)是曲线 y=x2 上的两点,求 与直线 PQ 平行的曲线 y=x2 的切线方程.
解 因为 y′=(x2)′=2x,设切点为 M(x0,y0), 则 y′| x=x0=2x0. 又因为 PQ 的斜率为 k=42- +11=1,而切线平行于 PQ,
3.曲线 y=cosx 在点 Aπ6, 23处的切线方程为________.
答案 解析
x+2y- 3-π6=0 因为 y′=(cosx)′=-sinx,所以 k=-sinπ6=-12,所以在点 A
处的切线方程为 y- 23=-12x-π6,即 x+2y- 3-π6=0.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
(3)第三类为指数函数,y′=(ax)′=ax·ln a,当 a=e 时,ex 的导数是(ax)′
的一个特例.
(4)
第
四
类
为
对
数
函
数
,
y′
=
(logax)′
=
1 x·ln
a
,
也
可
记
为
(logax)′
=
1x·logae,当 a=e 时,ln x 的导数也是(logax)′的一个特例.
课后课时精练
随堂达标自测
1.已知函数 f(x)=5,则 f′(1)等于( ) A.5 B.1 C.0 D.不存在
答案 C 解析 因为 f(x)=5,所以 f′(x)=0,所以 f′(1)=0.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
基本初等函数的导数公式及导数的运算法则
5、若 f ( x) a ,则 f ( x) _______________
'
a ln a(a 0) x x ' e 6、若 f ( x) e ,则 f ( x) _______
x
1 7、若 f ( x) loga x ,则 f ( x) ________________ (a 0, 且a 1) x ln a 1 ' 8、若 f ( x) ln x ,则 f ( x) _____ x
2、求导数的一般步骤: (1)求函数的增量Δy=f(x0+Δx) -f(x0)
y (2)求平均变化率 x
(3)求极限 f ' ( x ) lim
y x 0 x
新课讲解
课题:基本初等函数的导数公式及导数的运算法则(1)
几个常用函数的导数 1、 函数 y f ( x) c 的导数 y ' 0
'
1
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
4
【例1】已知 y x (1)求y’; (2)求曲线在点(1,1)处的切线方程。
1 y x 4
'
3 4
1 3 y x 4 4
2
【练习】若抛物线y 4 x 上的点P到直线y 4 x 5 的距离最短,求点P的坐标。
1 4 s t 4t 3 16t 2 4
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
【例 5】偶函数 f(x)=ax4+bx3+cx2+dx+e 的图象过点 P(0,1),且在 x=1 处的切线方程 为 y=x-2,求 y=f(x)的解析式.
高中数学导数及其应用导数的计算几个常用函数的导数基本初等函数的导数公式及导数的运算法则
2021/12/8
第十页,共二十八页。
[规律方法] 1.若所求函数符合导数公式,则直接利用公式求解 2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原 则,避免不必要的运算失误 3.要特别注意“1x与ln x”,“ax与logax”,“sin x与cos x”的导数区别.
2021/12/8
第一章 导数及其应用(yìngyòng)。谢谢观看
No Image
12/8/2021
第二十八页,共二十八页。
2021/12/8
第十九页,共二十八页。
其中正确命题的个数为( )
A.1
B.2
C.3
D.4
C
[对于①,y′=0,故①错;对于②,∵y′=-
2 x3
,∴y′|x=3=-
2 27
,
故②正确;显然③,④正确,故选C.]
2021/12/8
第二十页,共二十八页。
2.已知f(x)=xα(α∈Q*),若f′(1)=14,则α等于(
(4)若y=2sin x-cos x,则y′=2cos x+sin x.( )
[答案] (1)× (2)× (3)√ (4)√
2021/12/8
第六页,共二十八页。
2.若函数y=10xn 10
D.10l1n 10
C [∵y′=10xln 10,∴y′|x=1=10ln 10.]
)
A.13
B.12
C.18
D.14
D [∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=14.]
2021/12/8
第二十一页,共二十八页。
3.设y=-2exsin x,则y′等于( )
【导学号:31062023】
基本初等函数的导数公式及导数的运算法则(1)教案(2)
1.2.1 几个常用函数的导数一、课前准备1.课时目标1.理解几个常用函数的导数公式的证明过程;2.掌握常用函数的导数公式,并能灵活使用公式求某些函数的导数;3.解决与常用函数导数公式相关的问题。
2.基础预探1.常用函数的导数(1)函数y =c (c 为常数)的导数y ′=________; (2)函数y =x 的导数y ′=________;(3)函数y =x 2的导数y ′=________; (4)函数y =1x的导数y ′=________; (5)函数y =x 的导数y ′=________.二、学习引领1.利用定义求导数的步骤(1)求函数增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ; (3)取极限lim Δx →0 Δy Δx. 2.对几个常用函数的导数公式的理解1.常数的导数为0,其几何意义为f(x)=c 在任意点处的切线平行于x 轴,其斜率为零。
若y=c 表示路程关于时间的函数,则y '=0能够解释为某物体作瞬时速度为0,即一直处于静止状态。
2. f(x)=x 的导数为1,其几何意义为y=x 图像上每一点处的切线斜率为1,若y=x 表示路程关于时间的函数,则y '=1能够解释为某物体作瞬时速度为1的匀速运动。
3.函数y =x 2的导数为y ′=2x .y ′=2x 表示函数y =x 2图象上点(x ,y )处的斜率为2x ,说明随着x 的变化,切线的斜率也在变化.若y =x 2表示路程关于时间的函数,则y ′=2x 能够解释当某物体做变速运动做,它在时刻x 的瞬时速度为2x .三、典例导析题型一 利用常用函数的导数公式求导数值例1 求曲线y =1x在点M (3,3)处的切线方程. 思路导析:利用(1x )′=-1x 2求出曲线在点M (3,3)切线的斜率,然后利用点斜式写出直线方程.解析:∵ y ′=(1x )′=-1x 2,∴ 31|9x y ='=-. ∴ 过(3,3)点斜率为-19的切线方程为y -3=-19(x -3),即x+9y-30=0. 归纳总结:将曲线上点的横坐标代入曲线导数方程便可求出切线的斜率,再代入点斜式即可求出切线方程.变式训练:求曲线y =x 2在点(1,1)处的切线方程.题型二 常用函数的导数公式的综合应用例2 求抛物线y =x 2上的点到直线x -y -2=0的最短距离.思路导析:与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0的距离最短。
选修2-2——基本初等函数的导数公式及导数的运算法则(一)
1.2 导数的计算1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一), [学生用书P 11])1.问题导航(1)函数y =c ,y =x ,y =x -1,y =x 2,y =x 1的导数分别是什么?能否得出y =x n 的导数公式?(2)正余弦函数的导数公式、指数函数、对数函数的导数公式分别是什么?如何应用这些公式?2.例题导读通过对P 14例1的学习,应注意以下两个问题: (1)用导数公式直接求函数的导数.(2)变化率的实际意义及利用导数知识解决实际问题的优越性.1.几个常用函数的导数(1)若y =f (x )=c ,则f ′(x )=0. (2)若y =f (x )=x ,则f ′(x )=1. (3)若y =f (x )=x 2,则f ′(x )=2x .(4)若y =f (x )=1x ,则f ′(x )=-1x2=-x -2.(5)若y =f (x )=x ,则f ′(x ).2.基本初等函数的导数公式(1)若f (x )=c (c 为常数),则f ′(x )=0.(2)若f (x )=x α(α∈Q *),则f ′(x )=αx α-1. (3)若f (x )=sin x ,则f ′(x )=cos_x . (4)若f (x )=cos x ,则f ′(x )=-sin_x . (5)若f (x )=a x ,则f ′(x )=a x ln_a . (6)若f (x )=e x ,则f ′(x )=e x .(7)若f (x )=log a x ,则f ′(x )=1x ln a .(8)若f (x )=ln x ,则f ′(x )=1.1.判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( )(2)若y =1x ,则y ′=1x2.( )(3)若y =2x,则y ′=x ·2x -1.( ) 答案:(1)× (2)× (3)×2.余弦曲线y =cos x 在(0,1)处的切线的斜率为( ) A .1 B .0 C.π2D .-1 答案:B3.若y =25,则y ′=________. 答案:04.已知f (x )=x α,若f ′(-1)=-4,则α=________. 答案:41.对常数函数导数的几何意义与物理意义的两点说明(1)常数函数的导数为0,其几何意义为f (x )=c 在任意点处的切线平行于x 轴或与x 轴重合,其斜率为0.(2)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.2.函数y =kx (k 为常数)的导数值k 与该函数增减快慢之间的关系(1)函数y =kx (k >0)增加的快慢与k 有关系,即与函数的导数有关系,k 越大,函数增加得越快,k 越小,函数增加得越慢.(2)函数y =kx (k <0)减少的快慢与|k |有关系,即与函数导数的绝对值有关系,|k |越大,函数减少得越快,|k |越小,函数减少得越慢.利用导数公式求函数的导数[学生用书P 12]求下列函数的导数: (1)y =x 12;(2)y =1x4;(3)y =5x 3;(4)y =⎝⎛⎭⎫12x ;(5)y =2cos 2x 2-1.[解] (1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=()x 35′=35x -25=355x2.(4)y ′=⎝⎛⎭⎫12x ln 2-1=-⎝⎛⎭⎫12x ln 2. (5)y =2cos 2x2-1=cos x ,∴y ′=-sin x .用公式求函数导数的方法:(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是合理转化函数的关系式为可以直接应用公式的基本函数的模式,如y =1x4可以写成y =x -4,y =5x 3可以写成y =x 35等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.(1)已知函数f (x )=1x3,则f ′(-3)=( )A .81B .243C .-243D .-127解析:选D.∵f (x )=x -3,∴f ′(x )=-3x -4=-3x 4,∴f ′(-3)=-3(-3)4=-127. (2)已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0=________.解析:∵f (x )=ln x (x >0),∴f ′(x )=1x,∴f ′(x 0)=1x 0=1x 20,∴x 0=1. 答案:1导数的几何意义(1)求曲线y =e x 在x =0处的切线方程. [解] ∵y ′=(e x )′=e x ,∴曲线y =e x 在x =0处的切线斜率为e 0=1, 又∵切线过点(0,1),∴切线方程为y -1=x -0, 即x -y +1=0.(2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解] 由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), 所以两条曲线在P (x 0,y 0)处的切线斜率分别为k 1=y ′|x =x 0=cos x 0, k 2=y ′|x =x 0=-sin x 0.若使两条切线互相垂直, 必有cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.利用导数的几何意义解决曲线切线问题的方法:2.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于________.解析:∵y ′=-12x -32,∴切线的斜率k =-12a -32,∴切线方程是y -a -12=-12a -32(x -a ).令x =0,得y =32a -12,令y =0,得x =3a ,∴三角形的面积S =12·3a ·32a -12=18,解得a =64.答案:64导数几何意义的综合应用[学生用书P 12](1)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1nB.1n +1C.n n +1D .1 [解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n . 令x =1,得在点(1,1)处的切线的斜率k =n +1, ∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1),令y =0,则x n =nn +1,∴x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.[答案] B (2)(2015·高考全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.[解析] ∵ f ′(x )=3ax 2+1, ∴ f ′(1)=3a +1. 又f (1)=a +2,∴ 切线方程为y -(a +2)=(3a +1)(x -1).∵ 切线过点(2,7),∴ 7-(a +2)=3a +1,解得a =1. [答案] 1利用导数的几何意义求解曲线的切线与坐标轴所围成的三角形的面积问题,切线与数列的交汇问题,公切线问题等,首先要熟记导数公式,对函数能够正确求导,再注意转化思想,数形结合思想及构造法、配方法的运用.3.已知直线x +2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,试在抛物线弧AOB ︵上求一点P ,使△ABP 的面积最大.解:如图所示,|AB |为定值,要使△P AB 面积最大,只要使P 到AB 的距离最大,所以点P 是抛物线的平行于AB 的切线的切点.设P (x ,y ),由图知,点P 在x 轴下方的图象上,所以y =-2x .由导函数的定义不难求得y ′=-1x. 因为k AB =-12,所以-1x=-12,即x =2,x =4.由y 2=4x (y <0),得y =-4,所以P (4,-4).下列结论:①若y =3x ,则y ′=133x ;②若y =x 3,则y ′=3x 2;③若f (x )=x 2,则f ′(3)=9.其中正确的序号是________.[解析] y =3x ,y ′=(3x )′=()x 13′ =13x -23=133x 2. ∵f (x )=x 2,∴f ′(x )=2x ,则f ′(3)=2×3=6. [答案] ② [错因与防范](1)求导时易出现的错误是解析式化简出错,符号处理不清,理解不到位,从而出错. (2)对用根式形式表示的函数要化商成指数式,能够化商后变为基本初等函数的函数求导问题是易错点.4.求下列函数的导数. (1)y =7x 3; (2)y =lg x ;(3)y =cos t (t 为常数). 解:(1)∵y =7x 3=x 37,∴y ′=(7x 3)′=(x 37)′=37x -47=377x 4.(2)y ′=(lg x )′=1x ln 10.(3)y ′=(cos t )′=0.1.若f (x )=sin x ,f ′(α)=12,则下列α的值中满足条件的是( )A.π3B.π6C.23πD.56π 解析:选A.∵f (x )=sin x ,∴f ′(x )=cos x .又∵f ′(α)=cos α=12,∴α=2k π±π3(k ∈Z ).当k =0时,α=π3,故选A.2.(2015·广州高二检测)已知直线y =kx 是曲线y =3x 的切线,则k 的值为( ) A.13B .eln 3C .log 3 eD .e 解析:选B.设切点为(x 0,y 0), 因为y ′=3x ln 3, 所以k =3x 0ln 3, 所以y =3x 0ln 3·x ,又因为(x 0,y 0)在曲线y =3x 上, 所以3x 0ln 3·x 0=3x 0,所以x 0=1ln 3=log 3 e.所以k =eln 3. 3.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,且a 1=16,则a 1+a 3+a 5=________.解析:在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,∴a k +1=a k2,∵a 1=16,∴a 2=8,a 3=4,a 4=2,a 5=1,∴a 1+a 3+a 5=16+4+1=21.答案:21[A.基础达标]1.下列结论不正确的是( ) A .若y =3,则y ′=0B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1解析:选B.A 、D 显然正确;对于B ,y ′=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32=-12x 3,不正确;对于C ,y ′=(x )′=12x -12=12x.正确.2.曲线y =12x 2在点⎝⎛⎭⎫1,12处的切线的倾斜角为( ) A .-π4 B .1C.π4D.34π 解析:选C.y ′=x ,∴切线的斜率k =tan α=1,∴α=π4.3.曲线y =x 过点(1,1)的切线方程为( )A .y =x +1B .y =12x +12C .y =-12x +32D .y =x解析:选 B.∵y ′=12x,∴在点(1,1)处的切线的斜率为12,由点斜式得过点(1,1)的切线方程为y =12x +12.4.下列结论中不正确的是( ) A .若f (x )=x 4,则f ′(2)=32B .若f (x )=1x,则f ′(2)=-22C .若f (x )=1x 2·x,则f ′(1)=-52D .若f (x )=x -5,则f ′(-1)=-5解析:选B.对于A ,∵f ′(x )=4x 3,∴f ′(2)=4×23=32,正确;对于B ,∵f ′(x )=⎝⎛⎭⎫1x ′=(x -12)′=-12x -32,∴f ′(2)=-12×2-32=-12×123=-142=-28,不正确;对于C ,∵f ′(x )=⎝ ⎛⎭⎪⎫1x 2·x ′=⎝ ⎛⎭⎪⎫1x 52′=(x -52)′=-52x -72,∴f ′(1)=-52,正确;对于D ,∵f ′(x )=-5x -6,∴f ′(-1)=-5,正确. 5.曲线f (x )=x 3的斜率等于1的切线有( ) A .0条 B .1条 C .2条 D .3条解析:选C.f ′(x )=3x 2,设切点为(x 0,y 0),则f ′(x 0)=3x 20=1.解得切点坐标为⎝⎛⎭⎫33,39或⎝⎛⎭⎫-33,-39.∴切线有2条. 6.(2015·高考全国卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵ y =x +ln x ,∴ y ′=1+1x,y ′|x =1=2.∴ 曲线y =x +ln x 在点(1,1)处的切线方程为 y -1=2(x -1),即y =2x -1.∵ y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴ a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵ y ′=2ax +(a +2),∴ y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:87.质点的运动方程是s =1t4(其中s 的单位是m ,t 的单位是s).则质点在t =3s 时的速度是________.解析:∵s =t -4,∴s ′=-4t -5,∴质点在t =3 s 时的速度是(-4)×135=-4243(m/s).答案:-4243m/s8.已知f (x )=a 2(a 为常数),g (x )=ln x ,若2x [f ′(x )+1]-g ′(x )=1,则x =________. 解析:∵f (x )=a 2(a 为常数), ∴f ′(x )=0.又∵g (x )=ln x (x >0),∴g ′(x )=1x,∴2x [f ′(x )+1]-g ′(x )=1,即2x -1x=1,解之得x =1. 答案:19.(2015·长沙高二检测)求过曲线f (x )=cos x 上一点P ⎝⎛⎭⎫π3,12且与曲线在这点的切线垂直的直线方程.解:因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝⎛⎭⎫π3,12的切线斜率为f ′⎝⎛⎭⎫π3=-sin π3=-32,所以所求直线的斜率为233,所求直线方程为y -12=233⎝⎛⎭⎫x -π3.即y =233x -239π+12.10.(2015·苏州高二检测)设曲线y =e x (x ≥0)在点M (t ,e t )处的切线l 与x 轴、y 轴所围成的三角形的面积为S (t ),求S (t )的解析式.解:对y =e x 求导可得f ′(x )=(e x )′=e x , 故切线l 在点M (t ,e t )处的斜率为f ′(t )=e t , 故切线l 的方程为y -e t =e t (x -t ). 即e t x -y +e t (1-t )=0,令y =0可得x =t -1.令x =0可得y =e t (1-t ),所以S (t )=12|(t -1)·e t (1-t )|=⎪⎪⎪⎪-12(t -1)2e t =12(t -1)2e t .(t ≥0) [B.能力提升]1.曲线y =x n在x =2处的导数为12,则n 等于( ) A .1 B .2 C .3 D .4解析:选C.∵y ′=n ·x n -1,∴y ′|x =2=n ·2n -1=12,∴n =3. 2.(2015·北京高二检测)已知曲线y =x 3在点(2,8)处的切线方程为y =kx +b ,则k -b =( )A .4B .-4C .28D .-28解析:选C.∵y =x 3,∴y ′=3x 2, y ′|x =2=12,∴在点(2,8)处的切线方程为y =12x -16, ∴k =12,b =-16. ∴k -b =28. 3.若质点P 的运动方程是s =3t 2(s 单位为m ,t 单位为s),则质点P 在t =8时的瞬时速度是________.解析:∵s ′=(3t 2)′=(t 23)′=23t -13,∴当t =8时,s ′=23×8-13=23×2-1=13.∴质点P 在t =8时的瞬时速度为13m/s.答案:13m/s4.设直线l 1与曲线y =x 相切于点P ,直线l 2过点P 且垂直于l 1,若l 2交x 轴于点Q ,又作PK 垂直于x 轴于点K ,则KQ 的长为________.解析:如图所示,设P (x 0,y 0),∵y ′=12x ,∴kl 1=12x 0.∵直线l 1与l 2垂直,则kl 2=-2x 0,∴直线l 2的方程为y -y 0=-2x 0(x -x 0). ∵点P (x 0,y 0)在曲线y =x 上,∴y 0=x 0.在直线l 2的方程中令y =0,则-x 0=-2x 0(x -x 0).∴x =12+x 0,即x Q =12+x 0.又x K =x 0,∴|KQ |=x Q -x K =12+x 0-x 0=12.答案:125.(2015·淮南高二检测)已知 P (-1,1),Q (2,4)是曲线y =x 2上的两点,(1)求过点P ,Q 的曲线y =x 2的切线方程; (2)求与直线PQ 平行的曲线y =x 2的切线方程. 解:(1)因为y ′=2x ,P (-1,1),Q (2,4)都是曲线y =x 2上的点. 过P 点的切线的斜率k 1=y ′|x =-1=-2, 过Q 点的切线的斜率k 2=y ′|x =2=4, 过P 点的切线方程:y -1=-2(x +1), 即:2x +y +1=0.过Q 点的切线方程:y -4=4(x -2), 即4x -y -4=0.(2)因为y ′=2x ,直线PQ 的斜率k =4-12+1=1,切线的斜率k =y ′|x =x 0=2x 0=1,所以x 0=12,所以切点M ⎝⎛⎭⎫12,14, 与PQ 平行的切线方程:y -14=x -12,即:4x -4y -1=0.6.如图,已知曲线f (x )=2x 2+a (x ≥0)与曲线g (x )=x (x ≥0)相切于点P ,且在点P 处有相同的切线l .求点P 的坐标及a 的值.解:设切点P (x 0,y 0),由直线l 与曲线f (x )相切于点P ,得切线l 的斜率为f ′(x 0)=4x 0, 由直线l 与曲线g (x )相切于点P ,得切线l 的斜率为g ′(x 0)=12x 0,由f ′(x 0)=g ′(x 0),得4x 0=12x 0,解得x 0=14.所以y 0=x 0=12,即点P 的坐标为⎝⎛⎭⎫14,12. 由点P ⎝⎛⎭⎫14,12在曲线f (x )上,得2×⎝⎛⎭⎫142+a =12,解得a =38.所以点P 的坐标为⎝⎛⎭⎫14,12,a 的值为38.。
几种常见函数的导数基本初等函数的导数公式及导数的运算法则
几种常见函数的导数基本初等函数的导数公式及导数的运算法则一、常见函数的导数公式:1.常数函数的导数公式:若f(x)=C(C为常数),则f'(x)=0。
2. 幂函数的导数公式:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 指数函数的导数公式:若f(x) = a^x(a为正常数且a≠1),则f'(x) = ln(a)・a^x。
4. 对数函数的导数公式:若f(x) = log_a(x)(a为正常数且a≠1),则f'(x) = 1 / (x • ln(a))。
5.三角函数的导数公式:a) 正弦函数的导数公式:f(x) = sin(x),则f'(x) = cos(x)。
b) 余弦函数的导数公式:f(x) = cos(x),则f'(x) = -sin(x)。
c) 正切函数的导数公式:f(x) = tan(x),则f'(x) = sec^2(x)。
d) 余切函数的导数公式:f(x) = cot(x),则f'(x) = -csc^2(x)。
二、基本初等函数的导数公式:1.(f+g)'(x)=f'(x)+g'(x)(求和法则)2.(a・f)'(x)=a・f'(x)(常数倍法则)3.(f・g)'(x)=f'(x)・g(x)+f(x)・g'(x)(乘积法则)4.(f/g)'(x)=(f'(x)・g(x)-f(x)・g'(x))/(g(x))^2(商法则)5.(fⁿ)'(x)=n・f'(x)・f^(n-1)(x)(幂法则)其中,f'表示f的导数,fⁿ表示f的n次幂,f^(n-1)表示f的n-1次导数。
三、导数的运算法则:1.和差法则:(f+g)'(x)=f'(x)+g'(x);(f-g)'(x)=f'(x)-g'(x)。
几个常见函数的导数公式和基本初等函数的导数公式
几个常见函数的导数公式和基本初等函数的导数公式函数的导数是用来描述函数在一点上的变化率。
对于常见函数的导数公式和基本初等函数的导数公式,以下是一些常见的公式和规则。
常见函数的导数公式:1.常数函数:导数为0。
即对于函数f(x)=C,其中C是常数,导数f'(x)=0。
2.幂函数:对于函数f(x)=x^n,其中n是一个实数,导数f'(x)=n*x^(n-1)。
3. 指数函数:对于函数 f(x) = a^x,其中 a 是一个正实数且a ≠ 1,导数 f'(x) = a^x * ln(a)。
4. 对数函数:对于函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,导数 f'(x) = 1 / (x * ln(a))。
5. 三角函数:常见的三角函数包括正弦函数(sin(x))、余弦函数(cos(x))、正切函数(tan(x)),它们的导数分别为 sin'(x) =cos(x)、cos'(x) = -sin(x)、tan'(x) = sec^2(x),其中 sec(x) = 1 / cos(x)。
基本初等函数的导数公式:1.常见的常数导数公式:即常数函数的导数为0,如f(x)=5的导数为0。
2.单项式函数导数公式:对于f(x)=a*x^n,其中a是常数且n是正整数,导数f'(x)=a*n*x^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,导数f'(x)=e^x,其中e是自然对数的底数。
4. 对数函数导数公式:对于 f(x) = ln(x),导数 f'(x) = 1 / x。
5. 反三角函数导数公式:包括反正弦函数(arcsin(x))、反余弦函数(arccos(x))、反正切函数(arctan(x))等。
其导数分别为:arcsin'(x) = 1 / sqrt(1-x^2)、arccos'(x) = -1 / sqrt(1-x^2)、arctan'(x) = 1 / (1+x^2)。
16-17版:1.2.1 几个常用函数的导数~1.2.2 基本初等函数的导数公式及导数的运算 法则(
1.2.1 几个常用函数的导数1.2.2 基本初等函数的导数公式及导数的运算法则(一)[学习目标] 1.能根据定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数思考 (1)函数f (x )=c ,f (x )=x ,f (x )=x 2的导数的几何意义和物理意义分别是什么? (2)函数f (x )=1x 导数的几何意义是什么?知识点二基本初等函数的导数公式思考由函数y=x,y=x2的导数,你能得到y=xα(α∈Q*)的导数吗?如何记忆该公式?题型一运用求导公式求常见的基本初等函数的导数例1求下列函数的导数:(1)y=1x5;(2)y=12log x;(3)y=cos π4;(4)y=22x.反思与感悟 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 跟踪训练1 求下列函数的导数: (1)y =x 8;(2)y =⎝⎛⎭⎫12x; (3)y =x x ;(4)y =12log x .题型二 利用导数公式求曲线的切线方程例2 求过曲线y =sin x 上点P ⎝⎛⎭⎫π6,12且与过这点的切线垂直的直线方程.反思与感悟 导数的几何意义是曲线在某点处的切线斜率,两条直线互相垂直时,其斜率之积为-1(在其斜率都存在的情形下). 跟踪训练2 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.在利用求导公式时,因没有进行等价变形出错例3 求函数y =3x 2的导数. 错解 ∵y =3x 2,∴y =x 32,故y ′=3212x .错因分析 出错的地方是根式化为指数幂,没有进行等价变形,从而导致得到错误的结果. 正解 ∵y =3x 2=23x ,∴y ′=2313x -.防范措施 准确把握根式与指数幂的互化:nx m =m nx ,1n x m=m nx-.1.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a 等于( ) A .0 B .1 C .2D .32.函数f (x )=x ,则f ′(3)等于( ) A.36B .0 C.12xD.323.给出下列结论:①⎝⎛⎭⎫cos π6′=-sin π6=-12; ②若y =1x 2,则y ′=-2x -3;③若f (x )=3x ,则[f ′(1)]′=3; ④若y =5x ,则y ′=155x .其中正确的个数是( ) A .1 B .2 C .3D .44.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________.5.求下列函数的导数:(1)y=1x3;(2)y=3 x.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.提醒:完成作业 1.2.1~1.2.2(一)答案精析知识梳理 知识点一0 1 2x -1x 2 12x思考 (1)常数函数f (x )=c :导数为0,几何意义为函数在任意点处的切线垂直于y 轴,斜率为0;当y =c 表示路程关于时间的函数时,y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.一次函数f (x )=x :导数为1,几何意义为函数在任意点处的切线斜率为1,当y =x 表示路程与时间的函数,则y ′=1可以解释为某物体作瞬时速度为1的匀速运动;一般地,一次函数y =kx :导数y ′=k 的几何意义为函数在任意点处的切线斜率为k ,|k |越大,函数变化得越快.二次函数f (x )=x 2:导数y ′=2x ,几何意义为函数y =x 2的图象上点(x ,y )处的切线斜率为2x ,当y =x 2表示路程关于时间的函数时,y ′=2x 表示在时刻x 的瞬时速度为2x . (2)反比例函数f (x )=1x :导数y ′=-1x 2,几何意义为函数y =1x 的图象上某点处切线的斜率为-1x 2. 知识点二0 αx α-1 cos x -sin x a x ln a e x1x ln a 1x思考 因y =x ,得y ′=1;y =x 2,得y ′=2x ,故y =x α的导数y ′=αx α-1,结合该规律,可记忆为“求导幂减1,原幂作系数”. 题型探究例1 解 (1)y ′=⎝⎛⎭⎫1x 5′=(x -5)′=-5x -6=-5x 6; (2)y ′=1x ln 12=-1x ln2;(3)y ′=⎝⎛⎭⎫cos π4′=0; (4)y ′=(22x )′=(4x )′=4x ·ln 4. 跟踪训练1 解 (1)y ′=8x 7; (2)y ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2;(3)∵y =x x =x 32,∴y ′=32x 12;(4) y ′=1x ln 13=-1x ln 3.例2 解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝⎛⎭⎫π6,12处的切线斜率是: y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23⎝⎛⎭⎫x -π6, 即2x +3y -32-π3=0. 跟踪训练2 解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1. 又∵f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4).∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2).又∵切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2). 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1.当x 0=2时,f ′(x 0)=1,此时所求切线方程为x -y -4=0; 当x 0=1时,f ′(x 0)=0,此时所求切线方程为y +2=0. 故经过点A (2,-2)的曲线f (x )的切线方程为 x -y -4=0或y +2=0. 当堂检测1.D [令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义,可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.]2.A [∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.]3.A [cos π6=32为常数,则⎝⎛⎭⎫cos π6′=0,所以①错误;y ′=⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,所以②正确;因为f (x )=3x ,所以f ′(x )=3,所以[f ′(1)]′=0,所以③错误;y ′=(5x )′=⎝⎛⎭⎫x 15′=15x -45,所以④错误.] 4.12e 2 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×||-e 2=12e 2.5.解 (1)y ′=⎝⎛⎭⎫1x 3′=(x -3)′=-3x -3-1=-3x -4. (2)y ′=(3x )′=(x 13)′=13x 13-1=13x -23.。
1.2 导数的计算 导学案(教师版)
§1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则(一)内容要求 1.能根据定义,求函数y=c,y=x,y=x2,y=1x的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 3.会使用导数公式表.知识点1几个常用函数的导数原函数导函数f(x)=c f′(x)=0f(x)=x f′(x)=1f(x)=x2f′(x)=2xf(x)=1x f′(x)=-1x2f(x)=x f′(x)=1 2x【预习评价】思考根据上述五个公式,你能总结出函数y=xα的导数是什么吗?提示y=xα的导数是y′=αxα-1.知识点2基本初等函数的导数公式原函数导函数f(x)=c f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sin x f′(x)=cos__xf(x)=cos x f′(x)=-sin__xf(x)=a x f′(x)=a x ln__a(a>0)f(x)=e x f′(x)=e xf(x)=log a x f′(x)=1x ln a(a>0,且a≠1)f (x )=ln xf′(x )=1x求下列函数的导数:(1)f (x )=4x 5;(2)g (x )=cos π4;(3)h (x )=3x . 解 (1)f (x )=x 54,∴f ′(x )=54x 14; (2)g (x )=cos π4=22,∴g ′(x )=0; (3)h ′(x )=3x ln 3.题型一 利用导数定义求函数的导数【例1】 利用导数的定义求函数f (x )=2 019x 2的导数. 解 f ′(x )=0limx ∆→2 019(x +Δx )2-2 019x 2x +Δx -x=0lim x ∆→2 019[x 2+2x ·Δx +(Δx )2]-2 019x 2Δx=0lim x ∆→4 038x ·Δx +2 019(Δx )2Δx =0lim x ∆→(4 038x +2 019Δx )=4 038x .规律方法 解答此类问题,应注意以下几条: (1)严格遵循“一差、二比、三取极限”的步骤.(2)当Δx 趋于0时,k ·Δx (k ∈R ),(Δx )n (n ∈N *)等也趋于0.(3)注意通分、分母(或分子)有理化、因式分解、配方等技巧的应用. 【训练1】 利用导数的定义求函数y =x 2+ax +b (a ,b 为常数)的导数. 解 y ′=0lim x ∆→(x +Δx )2+a (x +Δx )+b -(x 2+ax +b )Δx=0lim x ∆→x 2+2x ·Δx +(Δx )2+ax +a ·Δx +b -x 2-ax -bΔx=0lim x ∆→2x ·Δx +a ·Δx +(Δx )2Δx=0lim x ∆→ (2x +a +Δx )=2x +a .题型二 利用导数公式求函数的导数 【例2】 求下列函数的导数:(1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3; (5)y =log 3x . 解 (1)y ′=0; (2)y ′=(5x )′=5x ln 5; (3)y ′=(x -3)′=-3x -4; (4)y ′=(4x3)′=(x 34)′=34x -14=344x; (5)y ′=(log 3x )′=1x ln 3.规律方法 求简单函数的导函数的基本方法: (1)用导数的定义求导,但运算比较烦琐;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【训练2】 求下列函数的导数: (1)y =x 13; (2)y =4x ; (3)y =sin x ; (4)y =15x 2.解 (1)y ′=(x 13)′=13x 13-1=13x 12; (2)y ′=(4x )′=(x 14)′=14x 14-1=14x -34;(3)y ′=(sin x )′=cos x ; (4)y ′=(15x 2)′=(x -25)′=-25x -25-1=-25x -75.方向1 利用导数求曲线的切线方程【例3-1】 求过曲线y =sin x 上点P ⎝ ⎛⎭⎪⎫π6,12且与在这点处的切线垂直的直线方程.解 ∵y =sin x ,∴y ′=cos x , 曲线在点P ⎝ ⎛⎭⎪⎫π6,12处的切线斜率是:y ′|x =π6=cos π6=32.∴过点P 且与切线垂直的直线的斜率为-23, 故所求的直线方程为y -12=-23(x -π6),即2x +3y -32-π3=0. 方向2 切线方程的综合应用【例3-2】 设P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 解 如图,设l 是与直线y =x 平行,且与曲线y =e x 相切的直线,则切点到直线y =x 的距离最小.设与直线y =x 平行的直线l 与曲线y =e x 相切于点P (x 0,y 0). 因为y ′=e x ,所以e x 0=1,所以x 0=0. 代入y =e x ,得y 0=1,所以P (0,1). 所以点P 到直线y =x 的最小距离为|0-1|2=22. 规律方法 导数的几何意义是曲线在某点处的切线的斜率;相互垂直的直线斜率乘积等于-1是解题的关键.【训练3】 (1)求曲线y =cos x 在点A ⎝ ⎛⎭⎪⎫π6,32处的切线方程;(2)求曲线y =sin ⎝ ⎛⎭⎪⎫π2-x 在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线方程.解 (1)∵y =cos x ,∴y ′=-sin x ,y ′|x =π6=-sin π6=-12.∴曲线在点A 处的切线方程为y -32=-12⎝ ⎛⎭⎪⎫x -π6,即6x +12y -63-π=0. (2)∵sin ⎝ ⎛⎭⎪⎫π2-x =cos x ,∴y ′=(cos x )′=-sin x .∴曲线在点A ⎝ ⎛⎭⎪⎫-π3,12处的切线的斜率为k =-sin ⎝ ⎛⎭⎪⎫-π3=32.∴切线方程为y -12=32⎝ ⎛⎭⎪⎫x +π3,即33x -6y +3π+3=0.课堂达标1.已知f (x )=x 2,则f ′(3)等于( ) A.0B.2xC.6D.9解析 ∵f (x )=x 2,∴f ′(x )=2x ,∴f ′(3)=6. 答案 C2.函数f (x )=x ,则f ′(3)等于( ) A.36B.0C.12xD.32解析 ∵f ′(x )=(x )′=12x ,∴f ′(3)=123=36.答案 A3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的范围是( ) A.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π B.[0,π)C.⎣⎢⎡⎦⎥⎤π4,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤π2,3π4 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤tan α≤1,又∵α∈[0,π), ∴α∈⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.答案 A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________. 解析 ∵y ′=(e x )′=e x ,∴k =e 2,∴曲线在点(2,e 2)处的切线方程为y -e 2=e 2(x -2), 即y =e 2x -e 2.当x =0时,y =-e 2,当y =0时,x =1. ∴S △=12×1×|-e 2|=12e 2. 答案 12e 25.已知f(x)=52x2,g(x)=x3,若f′(x)-g′(x)=-2,则x=________.解析因为f′(x)=5x,g′(x)=3x2,所以5x-3x2=-2,解得x1=-13,x2=2.答案-13或2课堂小结1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin 2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正弦、余弦函数的导数,一是注意函数的变化,二是注意符号的变化.基础过关1.函数y=3x在x=2处的导数为()A.9B.6C.9ln 3D.6ln 3解析y′=(3x)′=3x ln 3,故所求导数为9ln 3.答案 C2.下列结论中,不正确的是()A.若y=1x3,则y′=-3x4B.若y=3x,则y′=3x3C.若y=1x2,则y′=-2x-3D.若f(x)=3x,则f′(1)=3 解析由(x n)′=nx n-1知,选项A,y=1x3=x-3,则y′=-3x-4=-3x4;选项B ,y =3x =x 13,则y ′=13x -23≠3x3;选项C ,y =1x 2=x -2,则y ′=-2x -3; 选项D ,由f (x )=3x 知f ′(x )=3, ∴f ′(1)=3.∴选项A ,C ,D 正确.故选B. 答案 B3.已知f (x )=cos x ,f ′(x )=-1,则x 等于( ) A.π2B.-π2C.π2+2k π,k ∈ZD.-π2+2k π,k ∈Z解析 ∵f ′(x )=-sin x ,则sin x =1, ∴x =π2+2k π,k ∈Z . 答案 C4. 曲线y =x 2+1x 在点(1,2)处的切线方程为________. 解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +15.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________. 解析∵y =x -12,∴y ′=-12x -32,∴曲线在点(a ,a -12)处的切线斜率k =-12a -32,∴切线方程为y -a -12=-12a -32(x -a ).令x =0得y =32a -12;令y =0得x =3a . ∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·32a -12=94a 12=18,∴a =64. 答案 646.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1. 由f ′(x )+g ′(x )≤0, 得-sin x +1≤0, 即sin x ≥1, 但sin x ∈[-1,1],∴sin x =1,∴x =2k π+π2,k ∈Z .7.求下列函数的导数:(1)y =5x 3;(2)y =1x 4;(3)y =-2sin x 2(1-2cos 2x 4);(4)y =log 2x 2-log 2x .解 (1)y ′=(5x 3)′=(x 35)′=35x 35-1=35x -25=355x2. (2)y ′=⎝⎛⎭⎫1x 4′=(x -4)=-4x -4-1=-4x -5=-4x 5. (3)∵y =-2sin x2⎝⎛⎭⎫1-2cos 2x 4 =2sin x 2⎝⎛⎭⎫2cos 2x 4-1=2sin x 2cos x2=sin x , ∴y ′=(sin x )′=cos x .(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2. 能力提升8.函数f (x )=x 3的斜率等于1的切线有( ) A.1条 B.2条 C.3条D.不确定解析 ∵f ′(x )=3x 2,设切点为(x 0,y 0),则3x 20=1,得x 0=±33,即在点⎝ ⎛⎭⎪⎫33,39和点⎝ ⎛⎭⎪⎫-33,-39处分别有斜率为1的切线.答案 B9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B.-1e C.-eD.e解析y ′=e x,设切点为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=kx 0,y 0=e x0,k =e x 0,∴e x 0=e x 0·x 0,∴x 0=1,∴k =e. 答案 D10.曲线y =ln x 在x =a 处的切线倾斜角为π4,则a =________. 解析 ∵y ′=1x ,∴y ′|x =a =1a =1. ∴a =1. 答案 111.若y =10x ,则y ′|x =1=________. 解析 y ′=10x ln 10,∴y ′|x =1=10ln 10. 答案 10ln 1012.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离d =⎪⎪⎪⎪⎪⎪12-14-22=728, 所以抛物线上的点到直线x -y -2=0的最短距离为728.创新突破13.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,试求f 2 019(x ). 解 ∵f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,∴f n +4(x )=f n (x ),可知f (x )的周期为4,∴f 2 019(x )=f 3(x )=-cos x .。
几个常用函数的导数~基本初等函数的导数公式及导数的运算法则(一)
2
3.2.1~3.2.2(一)
【学法指导】 1.利用导数的定义推导简单函数的导数公式,类推一般多项 式函数的导数公式, 体会由特殊到一般的思想.通过定义求
本 讲 栏 目 开 关
-4
④由 f(x)=3x,知 f′(x)=3,
∴f′(1)=3.
∴①③④正确.
答案
C
练一练·当堂检测、目标达成落实处
3.2.1~3.2.2(一)
本 讲 栏 目 开 关
2.函数 f(x)= x,则 f′(3)等于 3 1 A. B.0 C. 6 2 x 1 解析 ∵f′(x)=( x)′= , 2 x 1 3 ∴f′(3)= = . 2 3 6
研一研·问题探究、课堂更高效
3.2.1~3.2.2(一)
跟踪训练 1 求下列函数的导数: 1x 8 (1)y=x ;(2)y=( ) ;(3)y=x x;(4)y=log1 x. 2
解
本 讲 栏 目 开 关
(1)y′=8x ;
7
3
1x 1 1x (2)y′=(2) ln 2=-(2) ln 2;
(3)∵y=x x= x ,∴y′= x ; 2
例1
本 讲 栏 目 开 关
求下列函数的导数: π 1 4 3 x (1)y=sin ;(2)y=5 ;(3)y= 3;(4)y= x ; (5)y=log3x. 3 x
解 (1)y′=0;
(2)y′=(5x)′=5xln 5;
1 (3)y′= 3′=(x-3)′=-3x-4; x
导数的过程,培养归纳、探求规律的能力,提高学习兴趣. 2.本节公式是下面几节课的基础,记准公式是学好本章内容 的关键.记公式时,要注意观察公式之间的联系,如公式 6 是公式 5 的特例,公式 8 是公式 7 的特例.公式 5 与公式 7 中 ln a 的位置的不同等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ 小组合作型]
利用导数公式求函数的导数
求下列函数的导数: 1 5 3 (1)y=x ;(2)y=x4;(3)y= x ;(4)y=3x;(5)y=log5x.
12
【精彩点拨】
首先观察函数解析式是否符合求导形式,若不符合可先将
函数解析式化为基本初等函数的求导形式.
【自主解答】
(1)y′=(x12)′=12x11.
[ 再练一题] 1 2.(1)求函数 f(x)= 在(1,1)处的导数; 3 x (2)求函数 f(x)=cos x
π 在 4,
2 处的导数. 2
1 1 1 4 1 【解】 (1)∵f′(x)= 3 ′=(x-3)′=-3x-3=- , 3 4 x 3 x 1 1 ∴f′(1)=- =-3. 3 3 1 (2)∵f′(x)=-sin x, π π 2 ∴f′ 4 =-sin 4=- 2 .
原函数 f(x)=ax f(x)=ex f(x)=logax f(x)=ln x
【答案】 0 αxα-1 cos x
导函数 f′(x)=____________ f′(x)=__________ 1 f′(x)=xln a 1 f′(x)=x
-sin x axln a ex
1.给出下列命题: 1 ①y=ln 2,则 y′=2; 1 2 ②y=x2,则 y′|x=3=-27; ③y=2x,则 y′=2xln 2; 1 ④y=log2x,则 y′=xln 2. 其中正确命题的个数为( A.1 B.2 ) C.3 D.4
π t,∴v3=cos
π 1 3=2.
∴加速度 a(t)=v′(t)=(cos t)′=-sin t.
1. 速度是路程对时间的导数, 加速度是速度对时间的导数. 2 .求函数在某定点 ( 点在函数曲线上 ) 的导数的方法步骤 是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求 相应的导数值.
[ 质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_______________________________________________________ 解惑:________________________________________________________ 疑问 2:_______________________________________________________ 解惑:________________________________________________________ 疑问 3:_______________________________________________________ 解惑:________________________________________________________
2
利ቤተ መጻሕፍቲ ባይዱ公式求函数在某点处的导数
质点的运动方程是 s=sin t, π (1)求质点在 t=3时的速度; (2)求质点运动的加速度.
【精彩点拨】 (1)先求 s′(t),再求
π s′3.
(2)加速度是速度 v(t)对 t 的导数,故先求 v(t),再求导.
【自主解答】 (1)v(t)=s′(t)=cos π 1 即质点在 t=3时的速度为2. (2)∵v(t)=cos t,
0-x3′ -3x2 -3 【解析】 对于①,y′= = x6 = x4 ,正确; x6 1 1 1 2 对于②,y′=3x3-1=3x-3,不正确; 对于③,f′(x)=3,故 f′(1)=3,正确.
【答案】 B
3.(2015· 全国卷Ⅰ)已知函数 f(x)=ax3+x+1 的图象在点(1,f(1))处的切线 过点(2,7),则 a=________.
【答案】 (1)× (2)× (3)√
教材整理 2
基本初等函数的导数公式
阅读教材 P14“例 1”以上部分内容,完成下列问题. 原函数 f(x)=c(c 为常数) f(x)=xα(α∈Q*) f(x)=sin x f(x)=cos x 导函数 f′(x)=______ f′(x)=__________ f′(x)=________ f′(x)=________
求曲线方程或切线方程时,应注意: 1切点是曲线与切线的公共点,切点坐标既满足曲线方程也 满足切线方程; 2曲线在切点处的导数就是切线的斜率; 3必须明确已知点是不是切点,如果不是,应先设出切点.
[ 再练一题] 3.若将上例中点 P 的坐标改为(π,-1),求相应的直线方程.
【解】 ∵f(x)=cos x,∴f′(x)=-sin x, 则曲线 f(x)=cos x 在点 P(π,-1)处的切线斜率为 f′(π)=-sin π=0, 所以所求直线的斜率不存在, 所以所求直线方程为 x=π.
【解析】 设切点为(x0,y0). 因为 y′=3xln 3,① 所以 k=3x0ln 3, 所以 y=3x0ln 3· x, 又因为(x0,y0)在曲线 y=3x 上, 所以 3x0ln 3· x0=3x0,② 1 所以 x0=ln 3=log3 e. 所以 k=eln 3.
【答案】 eln 3
我还有这些不足: (1) __________________________________________________ (2) _________________________________________________ 我的课下提升方案: (1) (2) _________________________________________________ _________________________________________________
[ 构建· 体系]
1 1.已知 f(x)=x (α∈Q ),若 f′(1)=4,则 α 等于(
α *
)
1 A.3 1 C.8
1 B.2 1 D.4
α α-1
【解析】 ∵f(x)=x ,∴f′(x)=αx
【答案】 D
1 ,∴f′(1)=α=4.
2.给出下列结论: 1 3 ①若 y=x3,则 y′=-x4; 13 ②若 y= x,则 y′=3 x; 3 ③若 f(x)=3x,则 f′(1)=3. 其中正确的个数是( A.1 C.3 ) B.2 D.0
【解析】 ∵f′(x)=3ax2+1, ∴f′(1)=3a+1. 又 f(1)=a+2, ∴切线方程为 y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7),∴7-(a+2)=3a+1,解得 a=1. 【答案】 1
4.(2016· 烟台高二检测)已知函数 y=kx 是曲线 y=ln x 的一条切线,则 k= __________. 【导学号:60030010】
(2016· 长沙高二检测)求过曲线 f(x)=cos 这点的切线垂直的直线方程.
π 1 x 上一点 P3,2且与曲线在
【精彩点拨】
π 求导数f′x0 → 计算f′3 →
所求直线斜率k=- π → 利用点斜式写出直线方程 f′3
1
【自主解答】 在点
探究 2 点 P 是曲线 y=ex 上的任意一点,求点 P 到直线 y=x 的最小距离.
【提示】
如图,当曲线 y=ex 在点 P(x0,y0)处的切线与
直线 y=x 平行时,点 P 到直线 y=x 的距离最近, 则曲线 y=ex 在点 P(x0,y0)处的切线斜率为 1,又 y′= (ex)′=ex, ∴ex0=1,得 x0=0,代入 y=ex,得 y0=1,即 P(0,1). 2 利用点到直线的距离公式得最小距离为 2 .
[ 探究共研型]
导数公式的应用
探究 1 f(x)=x,f(x)=x2,f(x)= x均可表示为 y=xα(α∈Q*)的形式,其导 数有何规律?
【提示】 ∵(x)′=1· x
-
1-1
,(x )′=2· x
2
2-1
,(
1 1 1 x)′= x2 ′=2x2-1,
∴(xα)′=α· xα 1 .
1 4 -4 -5 (2)y′= x4 ′=(x )′=-4x =-x5.
3 3 2 (3)y′=( x )′=(x5)′=5x-5. 5
3
(4)y′=(3x)′=3xln 3. 1 (5)y′=(log5x)′=xln 5.
1.若所求函数符合导数公式,则直接利用公式求解. 2.对于不能直接利用公式的类型,一般遵循“先化简,再求 导”的基本原则,避免不必要的运算失误. 1 3.要特别注意“x 与 ln x”,“ax 与 logax”,“sin x 与 cos x”的导 数区别.
阶 段 一
阶 段 三
1.2 1.2.1
阶 段 二
导数的计算
学 业 分 层 测 评
几个常用函数的导数
1.2.2
基本初等函数的导数公式及导数的 运算法则(一)
1 1.能根据定义求函数 y=c,y=x,y=x ,y=x ,y= x的导数.(难
2
点) 2.掌握基本初等函数的导数公式,并能进行简单的应用. (重点、 易混点)
学业分层测评
点击图标进入…
[ 基础· 初探] 教材整理 1 几个常用函数的导数 原函数 f(x)=c(c 为常数) f(x)=x f(x)=x2 1 f ( x) = x f ( x) = x 导函数 f′(x)=____ f′(x)=____ f′(x)=______ f′(x)=______________ f′(x)= 2 x 1 阅读教材 P12~P14“1.2.2”节以上部分,完成下列问题.
【答案】 2x 1 -x2
0
1
判断(正确的打“√”,错误的打“×”) (1)若 y=x3+2,则 y′=3x2+2.( 1 1 (2)若 y=x ,则 y′=x2.( (3)若 y=e,则 y′=0.( ) ) )