Modeling Collections in UML and ORM
UML的三层结构
UML的三层结构UML(Unified Modeling Language,统一建模语言)是一种用于建模软件系统的标准化语言,它具有丰富的图形表示符号和语义。
它通常用于软件开发、系统分析、建模等领域。
而这个标准化语言又分为三层结构,分别是:业务层、逻辑层、物理层。
这三层结构是非常重要的,下面将分别介绍一下。
业务层(Business Layer)业务层是UML的第一层,也是最上层的层。
它主要关注的是业务对象和业务规则的抽象描述。
它是整个系统的最高层,承载着软件系统的通用性和未来的可扩展性。
这一层中的类可以分为三类:1. 控制类控制类是业务层中的一个重要元素,它是系统的核心。
控制类封装了系统的业务逻辑,负责将输入数据转换成业务规则并产生输出。
控制类与界面类、数据持久化类等其他类共同协作,来实现整个系统的业务流程。
它相当于MVC中的控制器。
2. 实体类实体类是应用程序中非常常见的一种类,它通常表示了业务对象、数据实体等。
它是在业务层中数据的流动依赖。
在一个实体类中封装了业务对象需要的数据属性和对应操作的方法。
它相当于MVC中的模型。
3. 辅助类辅助类是一个支持类,它用于增强系统的可复用性、可维护性等。
辅助类通常与实体类、控制类等其他类协作,实现特定的业务功能。
它相当于MVC中的辅助类。
逻辑层(Logic Layer)逻辑层是UML的第二层,它负责逻辑的抽象和处理。
它是整个系统的核心,负责实现逻辑的控制和处理。
这一层中的类可以分为两类:1. 服务类服务类是逻辑层中的一个重要元素,它是系统的核心。
服务类封装了业务逻辑的处理,负责接收从业务层传递进来的数据,并通过操作实现业务逻辑处理。
它相当于MVC中的服务类。
2. 工具类工具类是一个支持类,它用于增强系统的可复用性、可维护性等。
工具类通常与服务类协作,实现特定的业务逻辑。
它相当于MVC中的辅助类。
物理层(Physical Layer)物理层是UML的第三层,它是最底层的层,负责实际的数据操作。
UML原理与应用
UML原理与应用UML(Unified Modeling Language)是一种标准的图形化建模语言,它提供了一套丰富的符号和构造,用于描述软件系统的结构、行为和交互。
UML不仅仅是一种用于建模的语言,更是一种软件工程中的艺术和科学。
它的设计原则是简洁、直观和易于理解,适用于各种软件开发方法和过程。
UML的核心概念主要包括结构图和行为图。
结构图用于描述系统的静态结构,其中最常使用的是类图、对象图和组件图。
类图描述了系统中的对象和它们之间的关系,其中包括类、接口、关联、继承、依赖等元素。
对象图是类图的实例化,用于描述系统中的具体对象和对象之间的关系。
组件图则描述了系统中的组件和组件之间的关系,可以用于描述系统的模块化结构。
行为图用于描述系统的动态行为,其中最常使用的是用例图、活动图和状态图。
用例图用于描述系统的功能需求,其中包括参与者、用例、关联关系等元素。
活动图描述了系统中的控制流程和并发行为,可以用于描述系统的业务流程、算法等。
状态图描述系统中对象的状态转换和事件触发的流程,可以用于描述系统的状态变化和状态机制。
UML不仅仅可以用于系统设计和分析,还可以用于系统开发的各个阶段,包括需求分析、设计、编码和测试等。
在需求分析阶段,可以使用用例图和活动图来描述系统的功能需求和业务流程。
在设计阶段,可以使用类图和组件图来描述系统的结构和模块化设计。
在编码阶段,可以使用类图来实现系统的类和对象,并通过序列图来描述类之间的交互。
在测试阶段,可以使用状态图来描述系统的状态变化和状态转换的测试用例。
除了用于系统开发的各个阶段,UML还可以应用于系统维护和演化。
通过使用UML建模工具,可以方便地对系统进行分析和改进。
比如在系统维护阶段,可以使用类图来识别系统中的代码重复和耦合,从而进行代码重构。
在系统演化阶段,可以使用组件图来识别系统中的模块,从而进行模块化的重构。
总之,UML是一种广泛应用于软件工程的建模语言,它提供了一套丰富的图形符号和构造,用于描述软件系统的结构和行为。
uml图练习题
uml图练习题UML(Unified Modeling Language)是一种广泛应用于软件开发的建模语言,它通过图形化的方式来表示软件系统的结构和行为。
在软件工程中,UML图是非常重要的工具,能够帮助开发人员更好地理解和设计软件系统。
下面将通过练习题来巩固对UML图的理解和应用,从而进一步提升软件开发的能力。
题目一:银行管理系统某银行打算开发一个全新的银行管理系统,方便用户进行存取款、转账、查询等操作。
请根据以下需求描述,使用UML图设计该银行管理系统的类图。
需求描述:1. 银行系统中有多个用户,每个用户拥有一个唯一的账户。
2. 每个账户可以进行存款、取款和转账操作。
3. 转账操作可以在不同的账户之间进行。
4. 银行系统需要记录每个用户的账户信息,包括账户号码、用户名和余额。
根据上述需求,我们可以设计如下的UML类图:[银行管理系统类图]在类图中,我们可以看到四个主要的类:用户类(User)、账户类(Account)、存款类(Deposit)和转账类(Transfer)。
它们之间的关系可以通过箭头表示,例如,用户类与账户类之间的关系是“拥有”,账户类与存款类之间的关系是“操作”,账户类与转账类之间的关系是“发起”。
题目二:订单管理系统某电商公司需要开发一个订单管理系统,用于管理用户的购买订单。
请根据以下需求描述,使用UML图设计该订单管理系统的活动图。
需求描述:1. 用户可以浏览商品列表和商品详情。
2. 用户可以将选中的商品添加到购物车。
3. 用户可以在购物车中修改商品数量或删除商品。
4. 用户可以选择结算购物车中的商品并生成订单。
5. 用户可以查看订单列表和订单详情。
根据上述需求,我们可以设计如下的UML活动图:[订单管理系统活动图]在活动图中,我们可以看到几个关键的活动:浏览商品、添加到购物车、修改购物车、生成订单和查看订单。
这些活动之间通过箭头连接,表示顺序执行的关系。
题目三:酒店管理系统某酒店需要开发一个酒店管理系统,方便管理员进行房间、客户和订单的管理。
UML建模期末考试题及答案
UML建模期末考试题及答案一、单项选择题(每题2分,共20分)1. UML中用于表示系统的静态结构的图是:A. 活动图B. 用例图C. 类图D. 状态图答案:C2. 在UML中,一个类可以拥有的属性和方法的集合被称为:A. 接口B. 实现C. 封装D. 抽象答案:C3. 以下哪个不是UML中的关系?A. 关联B. 依赖C. 泛化D. 映射答案:D4. 以下哪个不是UML中的行为图?A. 活动图B. 序列图C. 状态图D. 部署图答案:D5. 在UML中,表示对象之间交互的图是:A. 用例图B. 类图C. 序列图D. 组件图答案:C6. 在UML中,一个对象的生命周期可以用以下哪个图来表示?A. 活动图B. 序列图C. 状态图D. 部署图答案:C7. 在UML中,表示系统的物理架构的图是:A. 用例图B. 部署图C. 组件图D. 包图答案:B8. 以下哪个是UML中的对象?A. 类B. 接口C. 实例D. 以上都是答案:C9. 在UML中,表示一个类可以实例化多少次的关系是:B. 泛化C. 聚合D. 组合答案:D10. 在UML中,表示对象之间交互的顺序的图是:A. 活动图B. 序列图C. 状态图D. 用例图答案:B二、多项选择题(每题3分,共15分)1. UML中,以下哪些图可以用来描述系统的动态行为?A. 活动图B. 序列图C. 状态图D. 用例图答案:A、B、C2. 在UML中,以下哪些元素可以表示类之间的关系?A. 关联B. 依赖C. 泛化D. 组合答案:A、B、C、D3. 以下哪些图可以用来描述系统的静态结构?A. 类图B. 对象图D. 部署图答案:A、B、C、D4. 在UML中,以下哪些图可以用来描述系统的交互?A. 序列图B. 通信图C. 用例图D. 活动图答案:A、B5. 在UML中,以下哪些元素可以表示对象之间的交互?A. 消息B. 信号C. 事件D. 操作答案:A、B、C三、简答题(每题10分,共30分)1. 请简述UML中用例图的作用。
JAVA使用技巧:使用ORM框架简化数据库操作
JAVA使用技巧:使用ORM框架简化数据库操作引言:在软件开发领域,数据库操作是一个非常重要的环节。
传统的数据库操作方式需要编写大量的SQL语句,对于开发人员来说,这无疑增加了开发的复杂度和难度。
为了简化数据库操作,提高开发效率,ORM(Object-Relational Mapping)框架应运而生。
本文将介绍使用ORM框架简化数据库操作的技巧和方法。
一、什么是ORM框架ORM框架是一种将对象模型与关系数据库之间进行映射的技术。
它能够自动将数据库中的表和字段映射为对象和属性,从而实现对象和数据库的无缝交互。
ORM框架的出现,极大地简化了数据库操作,提高了开发效率。
二、为什么使用ORM框架1. 简化开发:使用ORM框架可以避免手写大量的SQL语句,开发人员只需要关注业务逻辑和对象操作,大大减少了代码量和开发难度。
2. 提高可维护性:ORM框架将数据库操作封装在框架内部,使得代码更加清晰、易于理解和维护。
3. 跨数据库支持:ORM框架通常支持多种数据库,开发人员无需关心具体的数据库实现细节,提高了代码的可移植性。
4. 性能优化:ORM框架通常会提供缓存、批量操作等性能优化机制,提高了数据库操作的效率。
三、常用的ORM框架1. Hibernate:Hibernate是一个开源的ORM框架,它是Java领域最流行的ORM框架之一。
Hibernate提供了丰富的功能和灵活的配置,支持多种数据库,是开发人员的首选。
2. MyBatis:MyBatis是另一个流行的ORM框架,它与Hibernate相比更加轻量级,适用于对SQL语句有更高要求的开发人员。
3. Spring Data JPA:Spring Data JPA是Spring框架提供的一种简化数据库访问的方式,它基于JPA(Java Persistence API)标准,提供了一套简单易用的API,可以快速实现数据库操作。
四、使用ORM框架的基本步骤1. 引入依赖:首先需要在项目中引入相应的ORM框架依赖。
请说明uml标准的主要版本,并简要描述每个版本的主要特点
请说明uml标准的主要版本,并简要描述每个版本的主要特点UML(Unified Modeling Language)是一种用于软件系统建模的标准化语言。
以下是UML主要版本的简要描述:1. UML 1.x:UML的最早版本,于1997年发布。
它引入了基本的建模概念和图表,包括用例图、类图、对象图、状态图、活动图、顺序图等。
UML 1.x版本相对简单,注重静态结构的建模。
2. UML 2.0:UML的第二个主要版本,于2005年发布。
UML 2.0对UML 1.x进行了扩展和改进,引入了更多的建模概念和图表,如组件图、部署图、通信图等。
它还引入了更多的语义规则和约束,提供了更丰富的建模能力和表达能力。
3. UML 2.1:UML 2.1是UML 2.0的一个更新版本,于2007年发布。
它修复了一些错误和缺陷,并提供了更清晰的规范和指南。
此外,UML 2.1还引入了几个新的图表,如时间图和交互概览图,以及一些新的建模概念。
4. UML 2.2:UML 2.2是UML 2.1的一个小幅更新版本,于2009年发布。
它主要修复了一些错误和缺陷,并提供了更清晰的规范和指南。
此外,UML 2.2还引入了一些新的建模概念和图表,如模型合成和系统分析图。
5. UML 2.3:UML 2.3是UML 2.2的一个小幅更新版本,于2010年发布。
它主要修复了一些错误和缺陷,并提供了更清晰的规范和指南。
此外,UML 2.3还引入了一些新的建模概念和图表,如需求图和结构化活动节点。
总的来说,UML的主要版本包括UML 1.x、UML 2.0、UML 2.1、UML 2.2和UML 2.3。
每个版本都在前一个版本的基础上进行了扩展和改进,引入了新的建模概念、图表和语义规则,提供了更丰富和强大的建模能力和表达能力。
随着UML的不断发展,它已经成为软件系统建模领域的主要标准之一。
uml建模案例
uml建模案例UML(Unified Modeling Language)是一种软件工程的建模语言,用于描述、分析和设计软件系统。
它提供了一套图形化的表示法,用于可视化和概括软件系统的各个方面,包括结构、行为和交互等。
以下是一个简单的 UML 建模案例,以一个图书馆管理系统为例:首先,我们需要定义系统的主要角色。
在这个案例中,主要角色有图书馆管理员、读者和图书。
接下来,我们可以开始构建类图,用于描述系统中的类及其之间的关系。
我们可以创建以下类:1. 图书类(Book):包含图书的相关信息,如书名、作者、出版社等。
2. 读者类(Reader):包含读者的相关信息,如姓名、年龄、地址等。
3. 图书馆管理员类(Librarian):包含管理员的相关信息,如姓名、工号等。
该类可以包含一些操作,例如借书、还书等。
4. 图书管理系统类(LibraryManagementSystem):负责管理图书、读者和管理员。
该类可以包含一些操作,如添加图书、删除图书、注册读者、借书、还书等。
接下来,我们可以定义类之间的关系。
在这个案例中,可以定义如下关系:1. 图书与读者之间的关系:读者可以借阅图书,每位读者可以借阅多本图书,而每本图书只能被一个读者借阅。
2. 图书与图书馆管理员之间的关系:管理员可以管理图书,例如添加图书、删除图书等操作。
3. 读者与图书馆管理员之间的关系:管理员可以注册读者,读者可以向管理员借书、还书。
最后,我们可以根据需求进一步细化类的行为和交互。
例如,根据借书和还书的需求,可以设计用例图,描述用户与系统之间的交互流程。
在用例图中,我们可以定义以下用例:1. 注册读者:读者通过系统界面提供个人信息进行注册。
2. 添加图书:管理员通过系统界面提供图书信息进行添加。
3. 借书:读者通过系统界面搜索图书并进行借书操作。
4. 还书:读者通过系统界面搜索已借阅的图书并进行还书操作。
以上仅为一个简单的UML 建模案例,实际情况可能更为复杂,涉及更多的类和关系。
简述orm框架的基本结构。
简述orm框架的基本结构ORM(Object-Relational Mapping)框架是一种将对象模型与关系型数据库之间进行映射的工具,简化了在应用程序中操作数据库的过程。
ORM框架的基本结构通常包括以下几个核心组件:一、实体类(Entity Class):实体类是ORM框架中的核心,它对应着数据库中的表结构。
每个实体类通常都映射到数据库中的一张表,类的属性对应表的列,对象的实例对应表中的一行数据。
二、映射文件(Mapping File):映射文件是用于描述实体类与数据库表之间映射关系的配置文件。
这些文件通常采用XML或注解的方式,定义了实体类属性与数据库表列的对应关系、主键、外键等信息。
三、会话工厂(Session Factory):会话工厂是ORM框架的一个重要组件,负责创建和管理会话对象。
会话工厂的初始化通常发生在应用程序启动时,它负责加载映射文件、建立数据库连接等操作。
四、会话(Session):会话是与数据库交互的一个单线程工作单元。
通过会话,应用程序可以进行数据库的增、删、改、查等操作。
会话负责管理实体对象的生命周期,包括对象的加载、保存、更新和删除等操作。
五、查询语言(Query Language):ORM框架通常提供一种查询语言,用于执行数据库查询操作而不是直接使用SQL语句。
这种查询语言可以是面向对象的,更贴近实体类的属性和关系,使查询更加直观。
六、事务管理(Transaction Management):ORM框架通常提供事务管理机制,确保对数据库的一系列操作要么全部成功提交,要么全部回滚。
事务管理是保证数据一致性和完整性的重要组成部分。
七、连接池(Connection Pool):为了提高数据库访问的性能,ORM 框架通常使用连接池管理数据库连接。
连接池负责维护一定数量的数据库连接,使其可以被重复使用,减少连接的创建和关闭开销。
八、缓存(Cache):缓存是为了提高性能而引入的机制,用于缓存已经查询过的实体对象或查询结果。
uml类模型知识点总结
uml类模型知识点总结UML类模型是软件工程中一种重要的建模工具,它用于描述系统中的对象、类、属性和方法等元素,以及它们之间的关系。
下面是对UML 类模型的详细总结。
1. 类和对象在UML类模型中,类是一个抽象的概念,用于描述一组具有相同属性和行为的对象。
而对象则是类的实例化结果,它拥有类定义的所有属性和方法。
2. 属性属性是指一个类或对象所拥有的数据元素,用于描述该类或对象的特征。
在UML类模型中,属性通常包括名称、类型、可见性(public、private、protected)、默认值等信息。
3. 方法方法是指一个类或对象所具有的行为或操作,用于描述该类或对象可以执行哪些操作。
在UML类模型中,方法通常包括名称、参数列表、返回值类型、可见性等信息。
4. 继承继承是指一个子类从父类继承其所有属性和方法,并且可以添加自己独有的属性和方法。
在UML类模型中,继承关系通常用带箭头直线表示。
5. 关联关联是指两个或多个不同的对象之间存在某种联系,并且这种联系可以被表示为一个成员变量。
在UML类模型中,关联关系通常用带箭头直线表示,箭头指向被关联的类。
6. 聚合聚合是指两个或多个不同的对象之间存在一种弱关联,其中一个对象可以包含另一个对象,但它们之间的生命周期并不相互依赖。
在UML 类模型中,聚合关系通常用带空心菱形的直线表示。
7. 组合组合是指两个或多个不同的对象之间存在一种强关联,其中一个对象是另一个对象的组成部分,并且它们之间的生命周期相互依赖。
在UML类模型中,组合关系通常用带实心菱形的直线表示。
8. 接口接口是指一组方法定义,但没有具体实现。
在UML类模型中,接口通常用带虚线框和斜体字表示。
一个类可以实现多个接口,并且必须实现接口中定义的所有方法。
9. 泛化泛化是指一种特殊类型的继承关系,在泛化中子类会继承父类所有属性和方法,并且可以添加自己独有的属性和方法。
在UML类模型中,泛化关系通常用带空心三角形和实心箭头表示。
13种uml简介、工具及示例
13种uml简介、工具及示例UML(Unified Modeling Language)是一种用于软件开发的标准化建模语言,它使用图形表示法来描述软件系统的不同方面。
在软件开发过程中,使用UML可以帮助开发人员更清晰地理解系统的结构和行为,从而更好地进行设计和实现。
UML提供了包括结构模型、行为模型和交互模型在内的多种建模方式,其中每种模型都有各自的符号和语法规则。
通过使用这些模型,开发人员可以将系统分解成不同的部分,然后逐步细化这些部分的设计,以便更好地组织和管理项目。
在UML中,最常用的建模元素包括用例图、类图、时序图、活动图、状态图等。
每种图表都有其特定的用途和表达能力,开发人员可以根据实际需要选择合适的图表进行建模。
除了建模元素外,UML还定义了一系列的建模工具,这些工具可以帮助开发人员更高效地进行建模和分析。
其中一些常用的建模工具包括Enterprise Architect、Rational Rose、StarUML等。
下面将对13种UML简介、工具及示例进行详细介绍:1. 用例图(Use Case Diagram)用例图是UML中描述系统功能和用户交互的基本图表之一。
它用椭圆表示用例,用直线连接用例和参与者,展示了系统外部用户和系统之间的交互。
用例图可以帮助开发人员更清晰地理解系统的功能需求,从而指导系统的设计和实现。
示例:一个简单的在线购物系统的用例图包括用例“浏览商品”、“添加商品到购物车”、“提交订单”等,以及参与者“顾客”和“管理员”。
2. 类图(Class Diagram)类图是UML中描述系统结构和静态关系的基本图表之一。
它用矩形表示类,用线连接类之间的关系,包括关联关系、聚合关系、继承关系等。
类图可以帮助开发人员更清晰地理解系统的对象结构和类之间的关系,从而支持系统的设计和重构。
示例:一个简单的学生信息管理系统的类图包括类“学生”、“课程”、“教师”等,以及它们之间的关系如“选修”、“授课”等。
软件工程的十大模型
软件工程的十大模型软件工程是涉及规划、设计、开发、测试和维护软件系统的学科领域。
在软件开发过程中,存在多种模型用于组织和管理项目的不同阶段。
以下是十大常见的软件工程模型:1.瀑布模型(Waterfall Model):这是最传统的软件开发模型,依序执行阶段(需求、设计、实现、测试、部署和维护)。
每个阶段按顺序进行,前一阶段完成后才开始下一阶段。
2.原型模型(Prototyping Model):原型模型通过迭代构建原型来理解和确认用户需求。
在反复的原型构建和用户反馈中,逐步完善系统需求。
3.迭代模型(Iterative Model):迭代模型将软件开发过程分成多个迭代周期,每个迭代周期包括需求、设计、开发和测试等阶段。
每次迭代都会增加新功能或修复问题。
4.增量模型(Incremental Model):增量模型将系统功能分成多个增量,在每个增量中逐步构建、测试和交付部分功能。
5.螺旋模型(Spiral Model):螺旋模型以风险管理为核心,通过不断迭代的螺旋来完成软件的开发。
每个螺旋圈代表一个迭代周期,包括计划、风险评估、工程和评审等阶段。
6.敏捷开发模型(Agile Model):敏捷开发是一种迭代和增量开发方法,强调团队合作、快速交付、持续反馈和灵活响应变化。
7.V模型(V-Model):V模型将软件开发的各个阶段与对应的测试阶段相对应。
每个开发阶段都有对应的验证和确认测试阶段,形成V形状的结构。
8.喷泉模型(Fountain Model):喷泉模型强调软件开发过程中的知识管理和复用,鼓励团队在开发中积累并共享知识。
9.融合模型(Hybrid Model):融合模型是将多种软件工程模型和方法结合使用,根据项目的需求和特点来灵活选择和应用不同的模型元素。
10.脚手架模型(Scaffold Model):脚手架模型强调在软件开发中使用现有的、可复用的组件或结构,以加速和简化开发过程。
每种模型都有其独特的优点和局限性,选择最合适的模型取决于项目的特点、需求和团队的工作方式。
邻接模型 物化路径模型 嵌套集合模型
邻接模型物化路径模型嵌套集合模型
邻接模型、物化路径模型和嵌套集合模型是三种用于在关系型数据库中表示层次结构或树形结构的技术。
1.邻接模型:在这种模型中,每个节点都有一个父节点ID(parent_id),通过该ID
可以连接到其父节点。
这种模型的特点是插入、移动和删除节点非常快捷,只支持单父节点,不支持多父节点。
然而,删除子树相对较难。
在三种模型中,邻接模型的性能最高,每秒返回的查询记录数最多。
2.物化路径模型:这种模型使用层次式的路径来明确标识层次结构,路径通常以字符
串格式保存,如PathID(1,1.1,1.2,1.1.1,1.2.1,...)。
每个节点都存储了其在树中的位置信息,这种模式还可以体现同级节点的顺序。
物化路径模型在查询编写方面相对容易,但计算层次结构可能不太方便。
3.嵌套集合模型:这种模型从根节点开始给每个节点编号,每个节点都有一个左值
(left_num)和一个右值(right_num)。
对于某个节点的所有后代,它们的左值和右值都会落在这个节点的左值和右值之间。
嵌套集合模型在查找某个节点的子节点时相对容易,但在进行结果集排序和数据更新、删除、插入操作时可能会面临较大的开销。
在三种模型中,嵌套集合模型的查询性能最低。
综上所述,邻接模型、物化路径模型和嵌套集合模型各有优缺点,选择哪种模型取决于具体的应用场景和需求。
UML
第1章1.UML中英文含义:Unified Modeling Language 统一建模语言。
2. 从UML模型生成编码语言代码的过程称为正向工程。
从编程语言代码生成UML模型的过程称为逆向工程。
3.UML由视图(View)、图(Diagram)、模型元素(Model Element)和通用机制(GeneralMechanism)几个部分组成。
4.视图并不是具体的图,它是由一个或多个图组成的对系统某个角度的抽象。
5.UML视图的类型:用例图(Use Case View)、逻辑视图(Logical View)、组件视图(Component View)、部署视图(Deployment View)。
6.UML图的类型:用例图、类图、对象图、组件图、部署图、顺序图、通信图、状态机图、活动图。
7.UML图的分类:(1)用例图(2)静态图:类图、对象图(3)行为图:状态机图、活动图(4)交互图:顺序图、通信图(5)实现图:组件图、部署图习题1.Rational Rose 2003具有非常友好的图形用户界面,其初始界面主要包括标题栏、菜单栏、工具栏、模型浏览窗口、文档窗口、模型图窗口、日志窗口、状态栏等部分。
2.Rational Rose同时支持Booch方法、OMT方法和UML方法,不同的建模方法其模型元素的图标以及工具栏图标一般不同。
采用不同的建模方法时。
可以在view菜单中选择相应的菜单项即可。
3.Rose模型文件有多种形式的扩展名,默认情况下,Rose模型文件的扩展名为mdl,类似于模型文件但只是模型文件一部分的扩展名是md~。
4.在模型绘制窗口或者模型浏览窗口中按任意顺序选取任意多个模型元素,只要按下Ctrl 键,然后选取要选择的模型元素即可。
5.在模型元素的属性设置窗口中,一般都有Cencral、Relations选项卡。
第2章1.用例图描述哪几个方面内容(1)简要说明(2)前置条件(3)基本事件流(4)其他事件流(5)后置条件2.用例图元素主要包括参与者与用例两个部分,另外还包括参与者(Actor)与(Use Case)之间以及用例之间的关系。
面向对象数据库(ODBMS)考试
面向对象数据库(ODBMS)考试(答案见尾页)一、选择题1. 面向对象数据库(ODBMS)是一种基于对象概念的数据库管理系统,它使用对象及其之间的关系来表示和存储数据。
请问下列哪一项不是面向对象数据库的核心特性?A. 封装B. 多态C. 继承D. 抽象2. 在面向对象数据库中,类可以被实例化为对象。
以下哪个选项描述了面向对象编程中的类与对象的关系?A. 类是对象的蓝图或原型。
B. 类是对象的实例。
C. 类是对象的集合。
D. 类是对象的祖先。
3. 面向对象数据库中的继承允许我们定义一个类作为另一个类的子类。
这种机制有助于实现代码重用。
在面向对象数据库中,类之间的继承关系是如何表示的?A. 使用属性和方法的定义。
B. 使用接口的定义。
C. 使用类的层次结构。
D. 使用类的具体实例。
4. 在面向对象数据库中,封装是指将数据(属性)和操作数据的函数(方法)结合在一起,形成一个独立的单元。
这种机制有助于保护数据的完整性。
请问封装的主要目的是什么?A. 防止数据泄露B. 提高数据访问效率C. 确保数据一致性D. 保证数据安全性5. 在面向对象数据库中,多态是指允许不同的对象对同一消息做出响应的能力,即同一个接口可以被不同的对象以不同的方式实现。
这种机制有助于提高程序的灵活性。
请问多态在面向对象数据库中的应用主要体现在哪些方面?A. 不同的类可以使用相同的接口进行交互。
B. 类的实例化可以隐藏实现细节。
C. 对象的继承可以实现代码重用。
D. 类的封装可以隐藏实现细节。
6. 面向对象数据库中的关联关系是指两个或多个类之间的关系,这种关系描述了一个类与另一个类之间是否存在某种联系。
请问关联关系主要有哪几种类型?A. 一对一B. 一对多C. 多对多D. 依赖7. 在面向对象数据库中,继承和多态都是用来实现代码重用的机制。
它们的区别在于:A. 继承允许一个类继承另一个类的所有属性和方法,而多态只允许一个接口被不同的对象以不同的方式实现。
Python编程中的数据库管理和ORM框架
Python编程中的数据库管理和ORM框架Python编程语言被广泛用于开发Web应用程序。
在开发这些Web 应用程序时,与之相关的数据库管理和ORM框架显得尤为重要。
Python有许多优秀的数据库管理系统和ORM框架,可以使开发人员更快速、更高效地创建Web应用程序。
本文将介绍Python编程语言中的数据库管理和ORM框架。
一、数据库管理系统Python关系型数据库管理系统有许多选择,其中较常见的有MySQL、PostgreSQL和SQLite等。
这些数据库管理系统提供了许多执行数据库操作所需的功能,例如插入、更新和删除数据等。
1. MySQLMySQL是最受欢迎的关系型数据库管理系统之一,全球范围内有数百万的安装和部署。
在Python编程中,开发人员使用MySQL驱动程序来连接、读取和操作MySQL数据库。
Python MySQL Connector是MySQL的官方驱动程序,它支持Python的所有版本,具有高速和稳定性的连接等特点。
2. PostgreSQLPostgreSQL是一种广泛使用的开源关系型数据库管理系统,支持高级SQL功能,例如触发器、视图和事务。
与MySQL一样,Python开发人员使用Python PostgreSQL驱动程序来连接、读取和操作PostgreSQL数据库。
psycopg2是一个流行的Python数据库适配器,用于连接PostgreSQL。
3. SQLiteSQLite是一种基于文件的数据库管理系统,可在应用程序中使用少量内存和CPU处理器。
尽管它在生产环境中不如MySQL和PostgreSQL流行,但SQLite在小型项目或电子设备等不需要大规模数据的场合非常有用。
Python内置SQLite模块,可用于连接、读取和操作SQLite数据库。
二、ORM框架ORM是面向对象编程的一种方法,它允许开发人员使用面向对象的方式来操作数据库,而不需要使用SQL语句。
简述orm框架的基本结构。 -回复
简述orm框架的基本结构。
-回复ORM(Object-Relational Mapping,对象-关系映射)是一种将面向对象语言中的对象和关系数据库中的表进行映射的技术。
ORM框架是实现ORM技术的一种工具,通过它可以简化数据库操作,提高开发效率。
本文将详细介绍ORM框架的基本结构,包括对象模型、关系模型、映射定义和数据访问。
一、对象模型对象模型是ORM框架的核心部分,它定义了在应用程序中使用的数据对象及其属性和方法。
对象模型通常由类和对象组成,类代表数据库中的表,对象代表表中的一条记录。
在ORM框架中,每个对象都有一个唯一的标识符(通常是主键),用来在数据库中定位和修改对应的记录。
对象的属性和数据库表的字段可以一一对应,通过属性的get和set方法来访问和修改数据。
对象模型还可以定义对象之间的关系,包括一对一、一对多和多对多三种关系。
这些关系可以通过对象的属性或者关联表来表示,通过关系的导航可以进行数据的查询和修改。
二、关系模型关系模型是数据库中表与表之间的关系的抽象表示。
在关系数据库中,通常使用主键和外键来表示表与表之间的关系。
主键是唯一标识一张表中的记录的字段,外键是一个指向其他表的字段。
在ORM框架中,关系模型可以通过对象之间的关系来表示。
关系可以通过对象的属性或者关联表来表示,通过关系的导航可以进行数据的查询和修改。
关系模型还可以定义关系的级联操作和延迟加载。
级联操作指的是在进行增删改操作时,同时操作关联的对象或者表。
延迟加载指的是在访问关联对象或者表的数据时,才真正地加载数据,避免了不必要的数据加载和查询。
三、映射定义映射定义是将对象模型和关系模型对应起来的规则。
它定义了对象模型中的每个类和属性与关系数据库中的表和字段之间的对应关系。
在映射定义中,需要指定每个对象类对应的数据库表、每个属性对应的字段以及关系的导航属性。
还可以指定一些额外的映射规则,比如属性是否为可空、属性的长度限制、字段的索引和唯一约束等。
《UML系统建模基础教程(第3版)》课后习题
《UML系统建模基础教程(第3版)》课后习题习题 1填空题:(1)______是⾯向对象技术领域内占主导地位的标准建模语⾔,它统⼀了过去相互独⽴的数⼗种⾯向对象的建模语⾔共同存在的局⾯,形成了⼀个统⼀的、公共的、具有⼴泛适⽤性的建模语⾔。
(2)类的定义要包含_____、_____、_____要素。
(3)⾯向对象程序的三⼤要素是_____、_____和_____。
(4)⾯向对象⽅法中的_____机制使⼦类可以⾃动地拥有(复制)⽗类全部属性和操作。
(5)⾯向对象⽅法中系统分析要确定地3个系统模型是_____、_____和_____。
选择题:(1)如果想对⼀个类的意义进⾏描述,那么应该采⽤_____。
A. 标记值B. 规格描述C. 注释D. 构造型(2)建⽴对象的动态模型的步骤有_____。
A. 准备脚本B. 确定事件C. 构造状态图D. 准备事件跟踪表(3)软件的开发模式有_____。
A. 瀑布模型B. XP开发模型C. 喷泉模型D. 构建开发模型(4)下列关于类与对象的关系说法正确的是_____。
A. 有些对象是不能被抽象成类的B. 类给出了属于该类的全部对象的抽象定义C. 类是对象集合的再抽象D. 类是⽤来在内存中开辟⼀个数据区,存储新对象的属性(5)_____模型的缺点是缺乏灵活性,特别是⽆法解决软件需求不明确或不准确的问题。
A. 瀑布模型B. 增量模型C. 原型模型D. 螺旋模型(1)UML(2)名字 属性 操作(3)封装 继承 多态(4)继承(5)对象模型 功能模型 动态模型选择题:(1)C(2)ABCD(3)ABCD(4)BCD(5)A习题 2填空题:(1)UML中主要包含4种关系,分别是_____、_____、_____、_____。
(2)从可视化的⾓度来对UML的概念和模型进⾏划分,可将UML的概念和模型划分为_____、_____、_____。
(3)物理视图包含两种视图,分别是_____、_____。
uml 中的六大关系详解
uml 中的六大关系详解
UML(Unified Modeling Language)中的六大关系详解如下:
1. 依赖(Dependency):这是一种使用的关系,表示一个类需要另一个类的协助。
依赖关系通常表示为一个单向箭头,指向被依赖的类。
依赖关系是临时的,通常只在某个特定的时间点存在。
2. 泛化(Generalization):泛化是一种继承关系,表示一般与特殊之间的关系。
它规定了子类如何特化父类的特征和行为。
在UML中,泛化关系用一条带空心三角形的实线表示,三角形指向父类。
3. 实现(Realization):实现关系是类与接口的关系,表示类是接口所有特征行为的实现。
它的表示方法是带有三角箭头的虚线,箭头指向接口。
4. 关联(Association):关联是一种拥有关系,使一个类知道另一个类的属性和方法。
关联关系通常表示为一条实线,表示两个类之间的连接。
关联可以是双向的或单向的。
5. 聚合(Aggregation):聚合是整体与部分之间的关系,且部分可以离开整体而单独存在。
聚合关系通常表示为一条带空心菱形的实线,菱形指向整体。
6. 组合(Composition):组合也是整体与部分的关系,但是部分不能离开整体。
组合关系通常表示为一条带实心菱形的实线,菱形指向整体。
这些关系是UML的核心概念,理解和正确使用这些关系是掌握和应用UML 的关键。
UML复习汇总+答案详解
计科院UML复习汇总+答案详解一、单项选择题1、组成UML构造块三大要素为:(B)A、事物、元素、关系B、事物、关系、图形C、事物、组件、图形D、事物、图形、结构UML中有三种基本构造块,分别是事物、关系和图。
事物分结构事物(包括类、接口、协作、用况、主动类、构件和节点)、行为事物(包括交互和状态机)、分组事物(包)和注释事物(注解)。
2、UML中的事物分为哪几类?(A)A、结构、行为、分组、备注等四类事物B、结构、图形、行为、分组等四类事物C、类、行为、分组、备注等四类事物D、分组、备注、结构、图形等四类事物3、UML中的关系分为哪几种?(C)A、依赖关系、类关系、一般化关系、合作关系B、依赖关系、泛化关系、实现关系、继承关系C、依赖关系、关联关系、泛化关系、实现关系D、依赖关系、关联关系、泛化关系、合作关系4、所谓的4+1视图是指(A)A、Design View、Interaction View、Implementation View、Deployment View、useCase ViewB、Interaction View、Implementation View、Deployment View、Customer View、useCase ViewC、Interaction View、Implementation View、Deployment View、Process View、useCase ViewD、Design View、Interaction View、Implementation View、Process View、useCase View5、在UML中属于静态视图的是(D)A、顺序图、协作图、包图、类图B、对象图、类图、构件图、包图C、顺序图、用例图、对象图、类图D、对象、类图、构件图、部署图6、下列关于UML叙述正确的是( D )A、UML是一种语言,语言的使用者不能对其进行扩展B、UML仅是一组图形的集合C、UML仅适用于系统的分析与设计阶段D、UML是独立于软件开发过程的7、下列描述中,哪个不是建模的基本原则( D )A、要仔细的选择模型B、每一种模型可以在不同的精度级别上表示所要开发的系统C、模型要与现实相联系D、对一个重要的系统用一个模型就可以充分描述8、下列描述中,哪个不是软件与硬件的区别(D )A.软件是被开发或设计的,而不是被制造的;B.软件不会“磨损”,但会“退化”;C.软件的开发至今尚未摆脱手工艺的开发方式;D.软件开发与硬件开发的流程一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Modeling Collections in UML and ORMTerry HalpinMicrosoft Corporation, USAemail: TerryHa@[This paper first appeared in Halpin, T.A. 2000, ‘Modeling collections in UML and ORM’, Proc. EMMSAD’00: 5th IFIP WG8.1 Int. Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, ed. K. Siau, Kista, Sweden (June), and is reproduced here by permission.]Abstract: Collection types such as sets, bags and arrays have been used as data structures inboth traditional and object oriented programming. Although sets were used as recordcomponents in early database work, this practice was largely discontinued with thewidespread adoption of relational databases. Object-relational and object databases onceagain allow database designers to embed collections as database fields. Should collections bespecified directly on the conceptual schema, as mapping annotations to the conceptualschema, or only on the logical database schema? This paper discusses the pros and cons ofdifferent approaches to modeling collections. Overall it favors the annotation approach,whereby collection types are specified as adornments to the pure conceptual schema to guidethe mapping process from conceptual to lower levels. The ideas are illustrated using notationsfrom both object-oriented (Unified Modeling Language) and fact-oriented (Object-RoleModeling) approaches.1 INTRODUCTIONInformation systems may be modeled at various levels. For analysis purposes, a conceptual schema of the application domain should first be developed. At this stage, modelers communicate with domain experts in their own terms, making it easier to get a clear, correct and complete picture of the requirements. Once the business model is understood, it can be implemented by mapping the conceptual schema to logical, physical, and external schemas. During this mapping process, further implementation details may be added. For database applications, the mapping from a conceptual schema to a logical database schema often involves a transformation in data structures. For example, a conceptual association may map to a relational table attribute. Though commonly used in programming, the practice of using collection types (e.g. sets, bags and arrays) as record components in database schemas largely disappeared with the widespread adoption of relational databases, where each table column is based on an atomic domain. However, the recent emergence of object-relational and object databases once again allows collections as database fields.How should collection types be specified within the conceptual analysis and logical design of data? Some approaches use collections directly within the conceptual schema, some specify them as annotations to the conceptual schema, while others relegate them to the logical schema. This paper examines these alternative approaches by way of examples, highlighting the conceptual and pragmatic issues underlying such choices. Its focus is on how and where to specify collection types in the modeling process, not on the advisability or otherwise of using collection types in a database implementation. The ideas are illustrated using notations from both object-oriented (Unified Modeling Language (UML)) and fact-oriented (Object-Role Modeling (ORM)) approaches. The discussion is also relevant to some extended Entity Relationship (ER) approaches.Procedures for mapping from conceptual models to logical models are readily available (e.g. [3, 11, 13, 27]). For relational database systems, denormalization and fragmentation are often used to improve performance. Object-relational and object databases allow further denormalization, since table fields may contain collections rather than just atomic values. In practice, these performance-based design options are usually specified on the logical or internal model, and often the conceptual model is ignored after these changes are made. This practice can lead to weak coupling or inconsistencies between the conceptual and lower level models, making it difficult to leverage the conceptual model to facilitate schema evolution as the business changes, or to provide a conceptual means of accessing the data. One solution to this problem is to include collection types within the conceptual schema itself, where these collections map directly tosimilar structures in the implementation. Another solution is to exclude collections from the pure conceptual schema us ed to validate the business model with the domain expert, but afterwards allow collections to be specified as annotations to the conceptual model to guide the mapping to and from the implementation model. Both these solutions allow tools to synchronize the conceptual and the lower level models. Sometimes a mixture of these two solutions is used.The notion of annotating conceptual models is not new. Berglas proposed conceptual annotations for various rules, meta-authorization protocols and inheritance control [2], and both UML and ORM include features (e.g. classes, associations, multiplicity constraints) as well as object-oriented implementation features (e.g. navigation directions, visibility settings). When stripped of implementation features, UML class diagrams may be regarded as an extended version of ER, for use in conceptual data modeling. Although UML has no sharp dividing line between conceptual and lower level features, implementation details may be thought of as annotations to the conceptual or analysis model. The UML standard may be accessed on [28]. Detailed discussions of UML may be found in [6, 29] and (with some notational differences) in [3].using a relationship instead. For example, the attribute Employee.birthdate is modeled in ORM as the fact type: Employee was born on Date. Object types in ORM are semantic domains, hence the connectedness of the model is always apparent. While this approach leads to larger diagrams, it promotes simplicity, semantic stability, verbalizability and populatability. ORM includes rich graphical and textual languages for capturing a wide range of business rules. Although such detail is needed to fully capture and transform models [19], various abstraction mechanisms allow the modeler to hide unwanted detail. One abstraction displays minor fact types as attributes of major object types [7], enabling ER-models and OO-models to be derived as views. An overview of ORM may be found in [14], a detailed discussion in [13], and comparisons between ORM and UML data modeling in [15, 16, 17].or instead as annotations. Though the focus here is on sets, most of the discussion applies to collections in general. Collection types other than sets are then considered. The conclusion summarizes the main points and indicates areas of further research.2 SETS AS COLLECTION TYPESConceptual data modeling has two basic data structures: relationship types or associations, and object types or classes (and data types). In ER and UML, an object type may have attributes, and in a sense is a named collection or aggregation of attributes (cf. a relational table as a named set of attributes, populated by sets of tuples). Unless specified as a collection however, object types are treated as simple (e.g. an instance of Employee is a single employee, not a set of employees). UML includes three ways in which collection types may effectively be introduced: stereotypes; multi-valued attributes; and constraints.UML does not predefine any data types, leaving it up to modelers to define their own type systems. For example, collection types may be specified directly, as stereotypes of classes, as shown in Figure 1.[21]. Collection types may be realized by implementation classes [e.g. 29, p. 485], and may be homo-geneous (all its elements are of the same type, as in Figure 1) or heterogeneous (elements of different type).Figure 1 In UML, collection types may be specified as stereotypes of classSome target systems support no collections, many support homogenous collections only, and some support homogeneous and heterogeneous collections (e.g. Object Store). However such specifications are typically used for program code design rather than conceptual modeling, so our discussion of UML willfocus on the other options: multi-valued attributes and constraints. Figure 2(a) shows a simple ORM model. Object types are displayed as named ellipses, with solid lines of roles, where each role appears as a box connected to the object type playing it. Injective associations providing a reference scheme may be abbreviated in parentheses (e.g. empNr). A black dot indicates that a role is mandatory (e.g. each Employee has an EmpName). Arrow-tipped bars over one or more roles are uniqueness constraints, indicating that each instance populating that role sequence is unique. This example includes the four possible uniqueness patterns for binary associations: n:1 (each employee has at most one employee name); 1:1 (each employee heads at most one department, and vice versa); m:n (it is possible that the same employee drives many cars, and that the same car is driven by many employees); and 1:n (an employee may have many nicknames, but each nickname refers to at most one employee).Figure 2 Four binary associations in ORM modeled as associations or attributes in UMLFigure 2(b) shows a typical way of modeling this in UML. Department and Car are non-lexical object classes. The heads and drives information relates non-lexical types, so is modeled using associations. Since employee number, employee name and nickname and lexical, they would usually be modeled as attributes, as shown. The empNr and empName attributes are single-valued as in traditional ER. In UML the default multiplicity of an attribute is 1 (exactly one). So empNr and empName are mandatory (at least one) and single valued (at most one). Attribute multiplicities may be shown in square brackets after the attribute name. UML allows standard and user-defined constraints to be added in braces. In the absence of standard UML notation for primary reference, we use our own symbol {P}.Figure 2(c) shows an alternative way of modeling this situation that uses attributes only. If we decided be good for displaying the actual implementation model. The 0..1 multiplicity for deptHeaded indicates it is optional and single-valued. In the absence of standard UML notation for uniqueness of attributes, we use our own symbol {U1}.UML allows multi-valued attributes as an alternative to m:n and 1:n associations. In Figure 2(c), both cars and nicknames are multi-valued attributes whose instances are sets. This is one way of specifying set collections on a conceptual schema. The * (or 0..*) multiplicity indicates “zero or more”. An additional constraint is required to ensure that each nickname refers to at most one employee. A simple attribute uniqueness constraint (e.g. {U2}) is not enough, since nicknames is set-valued. Not only must each nicknames-set be unique for each employee, but each element in each set must be unique (the second condition implies the former). In both the UML models, this more complex constraint is specified informally in an attached note. From an implementation standpoint, this constraint is expensive if the structure is actually mapped to a set-valued attribute.In conceptual analysis, the model should be easily communicated and validated with the domain expert. For this purpose, explicit associations are typically more suitable than attributes, especially multi-valued attributes. Why? Associations and related constraints are easily verbalized as sentences readily understood by non-technicians. Moreover, constraints can more easily be checked using populations. Each association in Figure 2(a) can be populated with data illustrating which uniqueness pattern applies, and designed to facilitate this process, by having a role box associated with each column in the fact table. These benefits of ORM are exploited in Microsoft Visio Enterprise, which provides automated support for both verbalization and population of ORM models. This model validation could be done manually in UML, assuming extensions to disambiguate ordering within non-binary associations. UML provides object diagrams where each instance may be displayed separately with its own attribute values, but these are awkward for checking constraints against multiple instantiations [16, 17]. Associations allow various constraints on the “role played by the attribute” to be expressed in standard notation, rather than resorting to non-standard or complex extensions (as in our braced comments).Associations tend to be more stable than attributes. Consider the association: Employee drives Car. To record how many accidents an employee had when driving a given car, in UML we make a Drives class out of the drives association (the same name must be used for both association and class) and add the attribute Drives.nrAccidents. In ORM we objectify the drives association as Driving, and add the association Driving had NrAccidents. If instead we modeled the drives feature as an attribute, we could not add new details without first changing our original schema to replace the attribute by an association or class. Populating attributed classes leads to null values, with all their attendant problems, and the connectedness between an attribute and its domain may not be obvious. This is one reason to use attributes only when their domain is a simple data type rather than an object class. Finally, queries involving multi-valued attributes often require some way of extracting their components, and hence complicate the query process for users.For these reasons, multi-valued attributes should be avoided in conceptual models, which need to be validated with the domain expert. If attributes are used to show developers that an m:n or 1:n association will be implemented as a multi-valued attribute, this could be done as a sub-conceptual view of the association version of the model. For example, assuming some way of cross-referencing, we could use Figure 2(b) as an analysis model and Figure 2(c) as a design model. This objective can also be achieved by Although UML allows collection types to be introduced directly as stereotypes, base ORM, as supported in industry tools, has no such feature. However various ORM extensions, such as the Predicator Set Model (PSM) [22, 23, 24, 25] do support collection types (sets, sequences, unique sequences, bags andcollections as first class types. The schema type may be used to provide an argument on which operations may be defined ([10], [9]) in a similar way to UML’s identification do not involve collections, these features along with collection types are sometimes regarded as abstraction mechanisms [9]. Abstraction and view mechanisms help manage not just information quantity but also information complexity. As the underlying DBMS structures grow more complex, so do languages that deal directly with them. For example, the addition of constructors for building sets, bags and lists requires additional language features to not only declare such structures but also manipulate them. The language user now has many more choices as to how to formulate a model, update or query.ORM supports some object-oriented features directly (e.g. subtyping [18] and composite domains), mechanisms or annotations rather than by adding them to the base ORM framework, the simplicity and stability of ORM models and queries can be retained at the same time as performance is improved by use of non-relational implementation structures. In both UML and ORM, use of object-identifiers (oids) and complex object constructors (e.g. set or array constructors) seems best relegated to the logical level rather than the conceptual level.An analysis of how collection types have been used in practice indicates that such constructors should be used with extreme care, if at all, in developing a base conceptual model. Undisciplined use of constructors often leads to incorrect or incomplete solutions, or to overlooking a simpler solution that does not use collections. However, there are three main arguments in favor of conceptual constructor usage. Firstly, they lead to more compact models. Secondly they explicate the connection between conceptual and physical models (for a non-relational implementation). Thirdly they allow unnamed structures to be modeled directly. Let’s examine these claims briefly, using set collections.Collection types can reduce the size of a model diagram, but often at the expense of hiding other detail. The compactness advantage disappears if the collection-view can be generated as an abstraction, which is certainly possible. Collection types explicate the connection to an implementation model that uses those collections as storage structures. However this can also be achieved by specifying the collections as annotations to the conceptual model rather than as first class types.This leaves us with the advantage (or otherwise) of modeling unnamed structures as first class types. There are several examples in the literature used in support of this proposal. As a classic example [20], consider a convoy as an unnamed set shown in Figure 3(a). Various notations exist for collection types. In this paper, ORM collection types are depicted as soft rectangles, with the collection kind (set, bag etc.) indicated in bold. Figure 3(b) shows an alternative flat model in both ORM and UML using an association, and a name convoys, and to check constraints. The uniqueness constraint on the ORM model asserts that each Ship is in at most one Convoy. This constraint is captured in the UML diagram also, since the solid diamond indicates composition (strong aggregation). This constraint is missing from Figure 3(a). In most cases, use model can also be conveniently populated with fact instances, to help validate the constraint.Figure 3 Convoy modeled as: (a) an unnamed set type (b) a named simple object typeFor snapshot purposes, it is convenient to identify a convoy by its name (or by its flagship). The convoy membership fact type can be temporalized to maintain an historical record of membership, directly in temporal ORM, or in non-temporal ORM either by using the ternaries Ship joined Convoy on Date and Ship left Convoy on Date , or by nesting the historical m:n association (Ship was in Convoy ) as ConvoyMembership , and adding ConvoyMembership began on Date ; ConvoyMembership ended on Date . In UML, this history may be modeled using ConvoyMembership as an association class with appropriate date attributes (possibly multi-valued) or associations. Whether it is philosophically correct to use the word “convoy” to allow a convoy to be the same convoy after a ship leaves is of little practical interest.As a related example, consider the notion of team membership, where it is possible for a person to be a member of many teams and vice versa. Figure 4 shows how to model this in ORM with and without the set constructor. In Figure 4(b) the spanning uniqueness constraint indicates the association is m:n. The circled “eu” is an “extensional uniqueness” constraint [25], to declare that teams may be defined by their membership (i.e. different teams cannot have exactly the same set of members). This constraint is implicit in Figure 4(a). Its use in Figure 4(b) allows unnamed structures without introducing collection types.(a)Figure 4 Two ways of modeling team membershipAn alternative notation for this constraint is discussed in [1], where it is argued that if teams are conceptualization principle [26] by modeling only conceptually relevant features. We adopt a relaxed "Team""Convoy"advisable to add a simple identifier for teams (e.g. a team name) since this facilitates talk about teams. If Figure 4(b) depicts the as-is model, the to-be model would add “(name)” as a reference scheme for Team. The extensional uniqueness constraint is still required if we definitely don’t want two different teams to have the same membership. This constraint is very expensive to enforce, so should only be used when necessary. A complex example cited in the ORM literature to justify the use of constructors is the chemical reaction model [12]. This models reactions such as: 2H 2 + O 2 , 2H 2O. One way of modeling this with a set collection type is shown in Figure 5(a). This model, based on [22] treats each side of a reaction equation as 2, 2), (O 2, 1)}. The reaction itself is then captured in the binary input/output association. An alternative flat model is shown in Figure 5(b). Here a reaction number is introduced as a convenient way of referring to reactions. This model also shows a complex example of the extensional uniqueness constraint.(a) (b)Figure 5 Chemical reactions modeled (a) with and (b) without setsAlthough Figure 5(a) is more compact, its use of a set constructor makes it harder to think about. As evidence of this, it lacks a simple constraint captured in Figure 5(b). Can you spot it? The uniqueness constraints in Figure 5(b) ensure that each chemical occurs at most once in each reaction side (e.g. to exclude equations such as 5H , 3H + 2H). This is not enforced in Figure 5(a). For example, we may populate the input/output association with the tuple á{(H, 5)}, {(H, 3),(H, 2)}ñ. The set-based model makes this constraint harder to conceive and express.In Figure 5(a) the reaction association is m:n (presumably other conditions such as catalysts and temperature could be varied to have the same input reagents produce different results). If we instead demand that the same input always gives the same output, this association becomes 1:1. This is easy to model in Figure 5(a), but harder to model in Figure 5(b). This is one of those rare cases when we encounter situation (a constraint on members that is hard to model on collections) is far more common.An alternative way to model chemical reactions using collections is discussed in [12], which models a even for modelers much less the domain experts, it is argued to be the only correct way of modeling the situation, based on a deterministic principle that one birth transition instance must correspond to exactly one object instance. Our viewpoint is that communication is more important than determinism, and there are often many correct ways to model the same application.Hence there seems to be no compelling case to introduce collection types as first class citizens in the conceptual model. We still need some way of being able to specify collections for implementation in object-relational and object databases. While this can be done directly on the logical schema (as supported in some tools), it is desirable that there be a two-way transformation between conceptual and logical levels, so that changes in one can be communicated to the other to keep the models synchronized. The simplest way to do this is to specify collection type mapping as annotations to the pure conceptual schema, resulting in an annotated conceptual schema used only by the developer, not the domain expert, for the sole purpose of controlling the mapping between conceptual and lower levels.... inputs ... of ...... outputs ... of ...is input to/ is output from "Reaction side"Figure 6 A set annotation as an extension to (a) ORM and (b) UML, leading to implementation (c)As a simple example, see Figure 6(a) and (b). Here the reviewer role played by Person is annotated to indicate that its instances will be mapped as a set-valued attribute of Movie in the actual implementation, as shown more directly in Figure 6(c). For ORM, this already has tool support, though the current notation not standard, this is analogous to UML’s {ordered} constraint (see next section). Figure 6(a) includes an exclusion constraint between the director and reviewer associations. Depicted by “no Person directed and reviewed the same Movie . ORM tools treat this constraint as formal, and generate DDL code to enforce it. A counterexample has been added to test this constraint with the domain expert: Can Ron Howard both direct and review movie 1? UML has no graphic symbol for this constraint, so it is added informally as a note. It could be specified formally in UML’s Object Constraint Language (OCL) [30], but rules in OCL are typically too mathematical for the average domain expert to understand.For a relational implementation, if the set annotation is removed from Figure 6(a) or (b), the default mapping generates three tables (Movie (movieNr, title, director), Person (personName, birthCountry)Reviewed (personName, movieNr)), three foreign key references (Movie.director references Person , Reviewed.personName references Person , Reviewed.movieNr references Person ) and the exclusion constraint assertion check (not exists (select * from Movie natural join Reviewed where director = personName).For an object-relational implementation, if the set annotation is included, the review facts are grouped as a set-valued field in the Movie table, leading to two tables (Person (personName, birthCountry), Movie (movieNr, title, director, reviewers: set of Person)), one foreign key reference (Movie.director references Person ) and appropriate to code to enforce the constraint director not in reviewers . Figure 6(c) shows this implementation more directly, with one constraint captured informally as a note. Although this figure might assist the developer once the implementation choice has been made, it should not be used for the conceptual model. The review facts could be grouped into a separate table, a Movie table or even a Person table. The modeler needs to consider carefully the impact on queries and updates (e.g. component access) before deciding which is the best choice. These considerations are not relevant to conceptual analysis, where a non-annotated version of Figure 6(a) or (b) should be used.was directed by/directed 1 Ron Howard?(a)(b)(c)3 OTHER KINDS OF COLLECTION TYPESAlthough a number of collection types were slated for inclusion in the object-relational database standard SQL:1999, the only one that made it was array (a one dimensional array with a maximum number of elements). It is anticipated that three further collection types will be added in SQL200n: set (unordered collection with no duplicates); multiset (bag, i.e. unordered collection that allows duplicates); and list (sequence, i.e. an ordered bag). Some commercial systems already support these. Our experience with these systems is that little performance gain is actually achieved by use of collection types. This may change as the technology matures. Array, set, bag and list are also included as collection types in the object database standard ODMG 2.0 [8]. Currently UML includes none of these as standard constraint annotations, but does include the constraint {ordered} to indicate mapping to an ordered set (i.e. a sequence with no duplicates).A simple example of a flat model for the bag (multiset) constructor is shown in Figure 7. Again, an identifier for bags may be introduced.Figure 7 Flat metamodel of a bagA sequence is an ordered bag, and in ORM its collection type is marked “seq”. If the sequence cannot have duplicates, it is a “unique sequence” and is marked “seq”. As an example of the unique sequence (or ordered set) constructor, see Figure 8(a). Here an author list is a sequence of authors, each of whom may appear at most once on the list. This may be modeled in flat ORM by introducing a Position object type to store the sequential position of any author on the list, as shown in Figure 8(b). The uniqueness constraint on covering the first and third roles indicates that for any paper, each position is occupied by at most one author. The textual constraint indicates that the positions in any list are numbered sequentially from 1. Although this ternary representation may appear awkward, it is easy to populate and it facilitates any discussion involving position (e.g. who is the second author for paper 21?). From an implementation perspective, a sequence structure could still be chosen: this can simplify updates by localizing their impact. However the update overhead of the positional structure is not onerous, given set-at-a-time processing (e.g. to delete author n, simply set position to position –1 for position > n).Though not shown here, the ternary solution can also be modeled in UML. If the ternary model is chosen as the base model, it would be useful to support the annotated binary shown in Figure 8(c) or Figure 8(d) as a view of the base model. In ORM a unique sequence annotation is connected to the relevant role. This representation is equivalent to the {ordered} constraint in UML, as shown in Figure 8(d), indicating that the authors are to be stored as a unique sequence.As an example of a pure sequence (allowing duplicates), a paragraph may be modeled as a sequence of sentences. Arrays may be handled in base ORM by using a numeric object type that explicitly denotes the ordering. Use of arrays in mapping may be indicated by a square brackets marker, optionally including array size. For example, for the association Athlete holds Rank in Sport a “[10]”annotation at the right end of the pair of roles played by Athlete and Rank indicates that this information will be stored within Sport in an array of size 10 encoding Rank as the array index.When it comes to querying models as opposed to building them, users are typically far less skilled than modelers, and it seems unreasonable to burden users with the complexity of accessing information via constructors. At least at the query level, users should be able to formulate their queries in plain language without having to know how facts are grouped into structures in the underlying database or how particular constructors may be used in the query. An ORM conceptual query tool has been developed with just this in mind [4, 5]. The mapping of a conceptual query to an internal query is a job for an expert, not the average。