【精选】_高中数学第一讲坐标系1.1平面直角坐标系课件新人教A版选修4_4
平面直角坐标系
D
E
120m
C
60 3m
45o 50m 60o A) 60m B A(O
x
二、极坐标系 极坐标(,)与(,+2k)(k∈Z)表示 同一个点.特别地,极点O的坐标为(0,) ( ∈R).和直角坐标不同,平面内一个 点的极坐标有无数种表示. 如果规定>0,0≤<2,那么除 极点外,平面内的点可用惟一的极坐标 (,)表示;同时,极坐标表示的点(,) 也是惟一确定的.
x x ② y 3 y 我们把②式叫做平面直角坐标系中的一个标伸长变换.
问题3:怎样由正弦曲线y=sinx得到曲线y=3sin2x? y 在正弦曲线y=sinx上任取一 点P(x, y),保持纵坐标不变, 将横坐标x缩为原来的1/2; O x 在此基础上,将纵坐标变为原来的 3倍,就得到正弦曲线y=3sin2x. 即在正弦曲线y=sinx上任取一点P(x,y),若设点 P(x,y)经变换得到点为P’(x’, y’),坐标对应关系 为: 1
5 6
2 3
2
B
A
3
6
2
5 6
2 3
2
3
E
B A D
6
2
7 6
7 6
4 3
C
3 2
5 3
11 6
4 3
C
F
3 2
5 3
11 6
例2、在图中,用点A,B,C,D,E
分别表示教学楼,体育馆,图书馆, 实验楼,办公楼的位置.建立适当的 极坐标系,写出各点的极坐标.
∵点M的直角坐标为 (1,
3)
y
M (1, 3)
θ
人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系
3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.
人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件
A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,
高中数学 第一讲 坐标系 四 柱坐标系与球坐标系简介学案 新人教A版选修4-4
四 柱坐标系与球坐标系简介1.借助具体实例了解柱坐标系、球坐标系中刻画空间中点的位置的方法. 2.与空间直角坐标系中刻画点的位置方法相比较,体会它们的区别与联系.1.柱坐标系(1)定义:建立空间直角坐标系Oxyz ,设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点Q 在平面Oxy 上的极坐标.这时点P 的位置可用有序数组________(z ∈R )表示,这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作________,其中________________________.(2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为__________ 【做一做1-1】 设点P 的直角坐标为(1,1,3),则它的柱坐标是__________. 【做一做1-2】 柱坐标满足方程ρ=2的点所构成的图形是________. 2.球坐标系(1)定义:建立空间直角坐标系Oxyz ,设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角θ.这样点P 的位置就可以用有序数组________表示.这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ)叫做点P 的球坐标,记作__________,其中______________________.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为______________在测量实践中,球坐标中的角θ称为被测点P (r ,φ,θ)的方位角,π2-φ称为高低角.【做一做2】 已知点M 的球坐标为(4,π4,3π4),则它的直角坐标是______,它的柱坐标是______.答案:1.(1)(ρ,θ,z ) P (ρ,θ,z ) ρ≥0,0≤θ<2π,-∞<z <+∞(2)⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z .【做一做1-1】 (2,π4,3) 【做一做1-2】 以Oz 轴所在直线为轴,且垂直于轴的截面是半径为2的圆柱侧面 2.(1)(r ,φ,θ) P (r ,φ,θ) r ≥0,0≤φ≤π,0≤θ<2π(2)⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ.【做一做2】 (-2,2,22) (22,3π4,22)1.空间直角坐标系、柱坐标系、球坐标系的联系和区别剖析:它们都是三维的坐标,球坐标与柱坐标都是在空间直角坐标基础上建立的. 在直角坐标中,我们需要三个长度x ,y ,z ,而在柱坐标与球坐标中,我们需要长度,还需要角度.它们是从长度、方向来描述一个点的位置,需要ρ,θ,z 或者r ,φ,θ.空间直角坐标:设点M 为空间一已知点.我们过点M 作三个平面分别垂直于x 轴、y 轴、z 轴,它们与x 轴、y 轴、z 轴的交点依次为P ,Q ,R ,这三点在x 轴、y 轴、z 轴的坐标依次为x ,y ,z .于是空间的一点M 就惟一地确定了一个有序数组x ,y ,z .这组数x ,y ,z 就叫做点M 的坐标,并依次称x ,y 和z 为点M 的横坐标、纵坐标和竖坐标(如图所示).坐标为(x ,y ,z )的点M 通常记为M (x ,y ,z ).这样,通过空间直角坐标系,我们就建立了空间的点M 和有序数组(x ,y ,z )之间的一一对应关系.如果点M 在yOz 平面上,则x =0;同样,zOx 面上的点,y =0;如果点M 在x 轴上,则y =z =0;如果M 是原点,则x =y =z =0等.几种三维坐标互相不同,互相有联系,互相能够转化,都是刻画空间一点的位置,只是描述的角度不同.2.建立空间坐标系的方法剖析:我们已经学习了数轴、平面直角坐标系、平面极坐标系、空间直角坐标系、柱坐标系、球坐标系等.坐标系是联系形与数的桥梁,利用坐标系可以实现几何问题与代数问题的相互转化.不同的坐标系有不同的特点,在实际应用时,我们就可以根据问题的特点选择适当的坐标系,借助坐标系方便、简捷地研究问题.当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系. 有些图形虽然没有互相垂直且相交于一点的三条直线,但是图形中有一定的对称关系(如:正三棱锥、正四棱锥、正六棱锥等),我们可以利用图形的对称性建立空间坐标系来解题.有些图形没有互相垂直且相交于一点的三条直线,但是有两个互相垂直的平面,我们可以利用面面垂直的性质定理,作出互相垂直且相交于一点的三条直线,建立空间坐标系.题型一 直角坐标与柱坐标的互化【例1】 设点M 的直角坐标为(1,1,1),求它在柱坐标系中的坐标.分析:把直角坐标系中的直角坐标化为柱坐标,利用公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,求出ρ,θ即可.反思:由直角坐标求柱坐标,可以先设出点M 的柱坐标为(ρ,θ,z ),代入变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z求ρ;也可以利用ρ2=x 2+y 2求ρ,利用tan θ=yx求θ,在求θ时,要特别注意角θ所在的象限,从而确定θ的取值.题型二 直角坐标与球坐标的互化【例2】 已知点M 的球坐标为(2,3π4,3π4),求它的直角坐标.分析:利用变换公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ求解,其中r =x 2+y 2+z 2,cos φ=z r ,tan θ=yx. 反思:由直角坐标求球坐标时,可先设点M 的球坐标为(r ,φ,θ),利用变换公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ求出r ,φ,θ即可;也可以利用r 2=x 2+y 2+z 2,tan θ=y x,cos φ=zr来求.需要特别注意的是在求φ和θ时,要先弄清楚点M 所在的位置. 题型三 求空间一点的坐标【例3】 一个圆形体育馆,自正东方向起,按逆时针方向等分为十六个扇形区域,顺次记为一区,二区,…,十六区,我们设圆形体育场第一排与体育馆中心的距离为200 m ,每相邻两排的间距为1 m ,每层看台的高度为0.7 m ,现在需要确定第九区第四排正中的位置A ,请建立适当的坐标系,把点A 的坐标求出来.反思:找空间中一点的柱坐标,与找平面极坐标是类似的,需要确定极径、极角,只是比平面极坐标多了一个量,即点在空间中的高度.题型四 柱坐标系、球坐标系的应用【例4】 已知点P 1的球坐标是P 1(23,π3,π4),P 2的柱坐标是P 2(6,π6,1),求|P 1P 2|.分析:可把两点坐标均化为空间直角坐标,再用空间两点间的距离公式求距离.反思:柱坐标及球坐标问题可以统一化为直角坐标问题来解决. 题型五 易错辨析【例5】 设点M 的直角坐标为(1,1,2),求它的球坐标. 错解:点M 的球坐标为(2,2,2).答案:【例1】 解:设点M 的柱坐标为(ρ,θ,z ), 则有⎩⎪⎨⎪⎧1=ρcos θ,1=ρsin θ,z =1,解之得ρ=2,θ=π4.因此,点M 的柱坐标为(2,π4,1).【例2】 解:设点M 的直角坐标为(x ,y ,z ),则有⎩⎪⎨⎪⎧x =2sin3π4cos 3π4=2×22-22=-1,y =2sin 3π4sin 3π4=2×22×22=1,z =2cos 3π4=-22=- 2.∴点M 的直角坐标为(-1,1,-2).【例3】 解:以圆形体育场中心O 为极点,选取以O 为端点且过正东入口的射线Ox 为极轴,在地面上建立极坐标系,则点A 与体育场中轴线Oz 的距离为203 m ,极轴Ox 按逆时针方向旋转17π16,就是OA 在地平面上的射影,A 距地面的高度为2.8 m ,因此我们可以用柱坐标来表示点A 的准确位置.∴点A 的柱坐标为(203,17π16,2.8).【例4】 解:设P 1的直角坐标为P 1(x 1,y 1,z 1),则⎩⎪⎨⎪⎧x 1=23sin π3cos π4=322,y 1=23sin π3sin π4=322,z 1=23cos π3=3,∴P 1的直角坐标为(322,322,3).设P 2的直角坐标为P 2(x 2,y 2,z 2),则⎩⎪⎨⎪⎧x 2=6cos π6=322,y 2=6sin π6=62,z 2=1,∴P 2的直角坐标为(322,62,1).∴|P 1P 2|=0+322-622+3-2=30-102. 【例5】 错因分析:球坐标和柱坐标与直角坐标互化的公式记忆混淆,错用公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z .正解:∵r =x 2+y 2+z 2=12+12+22=2,z =r cos φ=2,∴cos φ=22.∴φ=π4. 又∵tan θ=y x =1,∴θ=π4.∴点M 的球坐标为(2,π4,π4).1在空间直角坐标系Oxyz 中,方程x =1表示( ).A .点B .直线C .平面D .以上都不对 2在空间球坐标系中,方程r =2(0≤φ≤2π,0≤θ<2π)表示(). A .圆 B .半圆 C .球面 D .半球面 3点M 的直角坐标为1,-2),则它的球坐标为( ).A.3,)46ππ B.,)46ππ C.,)43ππ D .3,)43ππ4空间点P 的柱坐标为(6,3π,4),则点P 关于z 轴的对称点为________. 5把下列用柱坐标表示的各点用直角坐标表示出来.(1)(2,0,-2);(2)(π,π,π)6把下列用球坐标表示的各点用直角坐标表示出来. (1)(2,,63ππ);(2)(2,7,44ππ).答案:1.C 由空间点的直角坐标的定义知,方程x =1表示与x 轴垂直且到原点的距离为1的平面.2.D 由空间点的球坐标的定义可知,方程r =2(0≤φ≤2π,0≤θ<2π)表示半球面. 3.A 设M 的球坐标为(r ,φ,θ),则sin cos ,1sin sin ,2cos ,r r r ϕθϕθϕ==⎨⎪-=⎩解得3,4.6r πϕπθ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩4.(6,43π,4) 5.解:设点的直角坐标为(x ,y ,z ). (1)∵(ρ,θ,z )=(2,0,-2),∴2cos 02,sin 00,2,x y z ==⎧⎪==⎨⎪=-⎩∴(2,0,-2)为所求点的直角坐标. (2)∵(ρ,θ,z )=(π,π,π),∴cos ,sin 0,,x y z ππππππ==-⎧⎪==⎨⎪=⎩∴(-π,0,π)为所求点的直角坐标. 6.解:设点的直角坐标为(x ,y ,z ).(1)∵(r ,φ,θ)=(2,,63ππ),∴1sin cos 2sin cos ,632sin 2sin sin 63cos 2cos 6x r y r z r ππϕθππϕθπϕ⎧===⎪⎪⎪===⎨⎪⎪===⎪⎩∴1(2为所求点的直角坐标.(2)∵(r,φ,θ)=(2,7,44ππ),∴7sin cos2sin cos1,447sin sin2sin sin1,44cos2cos4x ry rz rππϕθππϕθπϕ⎧===⎪⎪⎪===-⎨⎪⎪===⎪⎩∴(1,-1为所求点的直角坐标.。
高中数学人教A版选修4-4课件:平面直角坐标系 (共31张PPT)
例1 在直角坐标系中,求下列方程所对应 x 2 x 的图形经过伸缩变换: 后的图形。
y 3 y
x 2 x x 解:(1)由伸缩变换 y 3 y 得到 ; y
x (2)将 y 1 x 2 代入x2+y2=1, 1 y 3
例1 说出下 图中各点的极坐标 标出(2, π/6), (4, 3π/4),
2
5 6
C E D O B A
4
4 3
X
(3.5, 5π/3)
F
G
所在位置。
5 3
练习: 在图中标出点
5 H ( 3, ), P (4, ), Q(6, ) 6 2 3
2
5 6
P
C E D B A
四、课堂练习
4 1.已知极坐标 M (5, 3 ),下列所给出的
不能表示点M的坐标的是( C )
10 2 A、 (5, ) B、 ( 5, ) C、 (5, ) 3 3 3
8 D(5, ) 3
3 2.已知三点的极坐标为 A( 2, ), B( 2 , ), 2 4 O(0,0) ,则 ABO 为( D )
3 y tan , 4 x
。
即y x( y 0)
4 把极坐标方程 =sin+2cos 化为直角坐标方程。
解:因给定的不恒等于零, 得 = sin 2 cos
2
化成直角坐标方程为 x2 y2 y 2x
1 2 5 即( x 1) ( y ) 2 4
例2:下图是某校园的平面示意图,点 A,B,C,D,E分别表示教学楼,体育馆,图 书馆,实验楼,办公楼的位置,建立适当 的极坐标系,写出各点的极坐标。
高中数学第一讲极坐标系与平面直角坐标系的互化同步测试新人教A版选修4-4
极坐标系与平面直角坐标系的互化典题探究例1 将点M 的极坐标2(5,)3π化成直角坐标.例2将点M 的直角坐标)1,3(--化成极坐标.例3在极坐标系中,已知),6,2(),6,2(ππ-B A 求A,B 两点的距离。
例4已知,,A B C 三点的极坐标分别是52(2,),(6,),(4,6123πππ),求ABC ∆的面积.演练方阵A 档(巩固专练)1.将点的直角坐标(-2,23)化成极坐标得( ). A .(4,32π) B .(-4,32π) C .(-4,3π) D .(4,3π) 2.点M 的极坐标是(2,3π),则M 的直角坐标为( ) A .(1,3) B .(−3,1) C .(3,1) D .(−1,3) 3.极坐标方程 cos =sin2( ≥0)表示的曲线是( ). A .一个圆 B .两条射线或一个圆 C .两条直线D .一条射线或一个圆4.极坐标方程θρcos +12= 化为普通方程是( ).A .y 2=4(x -1) B .y 2=4(1-x )C .y 2=2(x -1)D .y 2=2(1-x )5.点M 的直角坐标是(1,3)-,则点M 的极坐标为 . 6 化极坐标方程2cos 0ρθρ-=为直角坐标方程为 .7.将下列各点的极坐标化成直角坐标:3(3,),(4,).42A B ππ--8.将下列各点的直角坐标化成极坐标:(4,43),(1,1).C D ---9.在极坐标系中,求下列两点之间的距离: (1)5(7,),(2,)44A B ππ; (2)11(6,),(4,)412A B ππ-.10.在符合互化条件的直角坐标系和极坐标系中,将下列直角坐标方程(极坐标方程)转化为极坐标方程(直角坐标方程).(1)cos sin 0x y αα-=;(2)24cos52θρ=.B 档(提升精练)1.点P 在曲线 cos +2 sin =3上,其中0≤≤4π,>0,则点P 的轨迹是( ).A .直线x +2y -3=0B .以(3,0)为端点的射线C . 圆(x -2)2+y =1D .以(1,1),(3,0)为端点的线段2.设点P 在曲线 sin=2上,点Q 在曲线=-2cos上,则|PQ |的最小值为 ( ).A .2B .1C .3D .0 3.在满足极坐标和直角坐标互的化条件下,极坐标方程θθρ222sin 4+ cos 312=经过直角坐标系下的伸缩变换⎪⎩⎪⎨⎧''y =y x = x 3321后,得到的曲线是( ). A .直线 B .椭圆 C . 双曲线 D . 圆4.在极坐标系中,直线2= 4π+ sin )(θρ,被圆 =3截得的弦长为( ).A .22B .2C .52D .325 直线cos sin 0x y αα+=的极坐标方程为____________________6.极坐标方程24sin52θρ⋅=表示的曲线是 。
人教版高中数学选修4-4课件:第一讲二极坐标
4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.
最新人教版高中数学选修4-4《平面直角坐标系》教材梳理
庖丁巧解牛知识·巧学一,平面直角坐标系1.平面直角坐标系的建立在生产,生活或科技中有很多问题都是可以通过坐标系来分析解决的.解决问题的过程中,有两种情况:(1)所研究的问题中已经有坐标系,此时在给定的坐标系中求出方程即可;(2)条件中无坐标系,这时必须首先选取适当坐标系,通常总是选取特殊位置的点为原点,相互垂直的直线为坐标轴等.某地发生严重的地震灾害,各地群众纷纷捐款捐物,救灾物资分批到达.但是,有些地方因为环境很恶劣,物资不能直接送达,就派送一架飞机在1000米高的上空正对目的地以100千米/时的速度做水平飞行,那么飞机应在离目的地水平距离大约多少米处抛下救灾物资,使物资能落到目的地呢?物资落下的路线是一条抛物线.物资下落的过程可分解为水平方向的匀速直线运动和竖直方向的自由落体运动.当将此抛物线放到一个合适的坐标系中解决时,就会很容易得到飞机应在离目的地水平距离400米处抛下这批救灾物资.2.求轨迹方程的一般步骤.(1)分析曲线的特征,揭示隐含条件;(2)找出曲线上与任意点有关的位置关系和满足的几何条件;(3)列出方程.方法点拨 求圆锥曲线方程的常用方法:定义法、待定系数法、直接法、代入法、参数法、几何法等.关键是数形结合,建立等量关系.二、平面直角坐标系中的伸缩变换以函数y=Asin(ωx+φ)的图象的形成过程为例,研究在平面直角坐标系中伸缩变换作用下的图形的变化情况.函数y=sinωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作是把正弦曲线上所有的点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸缩过程,即保持纵坐标不变,将x 轴进行压缩或伸长.函数y=Asinx,x ∈R (其中A>0,ω≠1)的图象,可以看作是把正弦曲线上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1时)到原来的A 倍(横坐标不变)而得到.平面直角坐标系中的伸缩变换可认为是一个坐标伸缩过程,即保持横坐标不变,将y 轴进行压缩或伸长.深化升华 正弦曲线经过这两种变换后,所得到图形的形状是完全相同的.平面直角坐标系中的伸缩变换只是从说法上有所不同,本质上是一样的.应该注意到:通过一个表达式,平面直角坐标系中的坐标伸缩变换将x 与y 的伸缩变换统一成了一个式子,即⎩⎨⎧>∙='>∙='.0,,0,μμλλy y x x 如果不改变坐标轴的方向和长度单位,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.设原坐标系为xOy ,平移后新坐标系为x′O′y′,新坐标系的坐标原点在原坐标系中的坐标是O′(h,k),在坐标平面内的任意一点,都有两个坐标,它们有如下平移公式⎩⎨⎧-='-='.,k y y h x x 在新旧坐标变换和方程变换时,可选择使用.问题·探究问题1 究竟以什么样的方法建立平面直角坐标系,才能够使方程最为简单呢?在建立坐标系的过程中我们应该注意什么呢?探究:建立坐标系的规律:(1)当题目中有两条互相垂直的直线,以这两条直线为坐标轴;(2)当题目中有对称图形,以对称图形的对称轴为坐标轴;(3)当题目中有已知长度的线段,以线段所在直线为横轴,以端点或中点为原点,使图形上的特殊点尽可能地在坐标轴上. 直角坐标系建立完后,需仔细分析曲线的特征,注意揭示隐含条件.如:已知动点P 与两定点A 、B 的距离的平方和为122,|AB|=10,求动点P 的轨迹方程.要使AB 在x 轴上,以AB 的中点为原点建立坐标系.再如:已知线段AB 的长为3,平面上一动点M 到定点A 的距离是到定点B 距离的两倍,求动点的轨迹方程.注意到动点M 运动到线段AB 上时,有|AM|=2|MB|,点M 恰为线段AB 的一个三等分点,故考虑以这个三等分点为坐标原点建立直角坐标系.再如:在相距1 400米的A 、B 两个哨所,听到炮弹爆炸的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上?它是怎样建立直角坐标系的呢?以A 、B 两个哨所所在的直线为x 轴,AB 的中点为坐标原点,建立直角坐标系.问题2 在伸缩变换下,椭圆能否变成圆?抛物线和双曲线能变成什么曲线?探究:圆锥曲线之间的图象关系.在一定的伸缩变换规律下椭圆能够变成圆,而双曲线与抛物线仍然是双曲线和抛物线.如:能把椭圆4)1(9)1(22-++y x =1变为中心在原点的单位圆吗? 先经过平移变换⎩⎨⎧-='+='.1,1y y x x 把椭圆变为4922y x '+'=1,再通过伸缩变换⎪⎪⎩⎪⎪⎨⎧'='''='',2,3y y x x 把此椭圆 变为单位圆x″2+y″2=1.上述两种变换可合成一个变换为⎪⎪⎩⎪⎪⎨⎧-=''+='',21,31y y x x .按照这个道理,按照变换⎩⎨⎧>∙='>∙='.0,,0,μμλλy y x x 对于双曲线和抛物线的方程,不管进行什么样的伸缩变换(当然,把图象伸缩的无限大,或者无限小的极限位置排除在外)之后,方程特点仍然没有变,抛物线方程的二次项和一次项都没有变,双曲线的两个二次项仍然是二次项,这两个二次项之间的减号也没有变;从另外一个角度来说,把它们的图象进行压缩时,图象特点是没有变的,压缩后的图象仍然是抛物线型和双曲线型的,所以它们的图象是没有变化的,仍然是双曲线和抛物线.典题·热题例1如图1-1-2,圆O 1与圆O 2的半径都是1,|O 1O 2|=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM=2PN,试建立适当的坐标系,并求动点P 的轨迹方程.图1-1-2思路分析:本题利用数形结合思想、勾股定理、两点间距离公式等相关知识点,及分析推理、计算化简技能、技巧等,是一道很综合的题目.由题意建立坐标系,写出相关点的坐标,由几何关系式PM=2PN ,即(PM)2=2(PN)2,结合图形由勾股定理转化为PO 12-1=2(PO 22-1),设P(x ,y),由距离公式写出代数关系式,化简整理可得.图1-1-3解:如图1-1-3,以直线O 1O 2为x 轴,线段O 1O 2的垂直平分线为y 轴,建立平面直角坐标系,则两圆心的坐标分别为O 1(-2,0),O 2(2,0).设P(x,y),则PM 2=PO 12-MO 12=(x+2)2+y 2-1.同理,PN 2=(x-2)2+y 2-1.∵PM=2PN ,∴(x+2)2+y 2-1=2[(x-2)2+y 2-1],即x 2-12x+y 2+3=0,即(x-6)2+y 2=33,这就是动点P 的轨迹方程.深化升华 在求轨迹方程时,首先能够建立一个适当的坐标系.同一几何图形的方程在不同坐标系中具有不同的形式.选择适当的坐标系可以使表示图形的方程具有更方便的形式. 例2设有半径为3 km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇.设A 、B 两人速度一定,其速度比为3∶1,问两人在何处相遇?思路分析:因为A 、B 两人速度一定,其速度比为3∶1,可以先把其速度设出来.在这个问题中的关键是:路程之间的关系满足勾股定理,根据它可以建立一个关系式.解:如图1-1-4建立平面直角坐标系,由题意可设A 、B 两人速度分别为3v 千米/时,v 千米/时,再设出发x 0小时,在点P 改变方向,又经过y 0小时,在点Q 处与B 相遇,图1-1-4则P 、Q 两点坐标为(3vx 0,0),(0,vx 0+vy 0).由|OP|2+|OQ|2=|PQ|2,知(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2,即(x 0+y 0)(5x 0-4y 0)=0.∵x 0+y 0>0,∴5x 0=4y 0①.将①代入k PQ =0003x y x +-,得k PQ =43-. 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两人相遇的位置.设直线y=43-x+b 与圆O:x 2+y 2=9相切,则有2243|4|+b =3.∴b=415. 答:A 、B 两人的相遇点在离村中心正北433千米处. 方法归纳 在实际问题中能够根据已知条件合理地建立坐标系是个很关键的问题.本题当中,注意到村落为圆形,且A 、B 两人同时从村落中心出发分别沿东、北方向运动,于是可设想以村落的中心为圆点,以开始时A 、B 的前进方向为x 、y 轴,建立直角坐标系. 例3已知f 1(x)=cosx,f 2(x)=cosωx(ω>0),f 2(x)的图象可以看作是把f 1(x)的图象在其所在的坐标系中的横坐标压缩到原来的31倍(纵坐标不变)而得到的,则ω为( ) A.21 B.2 C.3 D.31 思路解析:函数y=cosωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到.答案:C误区警示 规律容易记错,认为函数y=cosωx,x ∈R (其中ω>0,ω≠1)的图象,可以看作把余弦曲线上所有点的横坐标伸长(当ω>1时)或缩短(当0<ω<1时)到原来的ω1倍(纵坐标不变)而得到,这是错误的认识.例4在同一平面直角坐标系中,将直线x-2y=2变成直线2x′-y′=4,求满足图象变换的伸缩变换.思路分析:设变换为⎩⎨⎧>∙='>∙=').0(),0(μμλλy y x x 可将其代入第二个方程,得2λx -μy=4.与x-2y=2比较,将其变成2x-4y=4,比较系数得λ=1,μ=4.解:设⎩⎨⎧∙='='.4,y y x x .直线x-2y=2图象上所有点的横坐标不变,纵坐标扩大到原来的4倍可得到直线2x′-y′=4.拓展延伸 求满足图象变换的伸缩变换,实际上是求其变换公式,将新旧坐标分清,代入对应的直线方程,然后比较系数就可以了.若将已知条件换成:将直线2x-y=4变成x′-2y′=2,如何求满足图象变换的伸缩变换呢? 解:设变换为⎩⎨⎧>∙='>∙=').0(),0(μμλλy y x x 可将其代入第二个方程,得λx -2μy=2,与2x-y=4比较,将λx -2μy=2变成2λx -4μy=4,比较系数得λ=1,μ=41.。
人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结
在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1
人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系
【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
高中数学选修4-4知识点(坐标系与参数方程)
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),
2018-2019学年高中数学 第一讲 坐标系 二 第二课时 极坐标和直角坐标的互化学案 新人教A版选修4-4
第2课时 极坐标和直角坐标的互化学习目标 1.了解极坐标和直角坐标互化的条件.2.掌握极坐标与直角坐标互化的公式,能进行极坐标和直角坐标间的互化.3.掌握极坐标系的简单应用.知识点 极坐标和直角坐标的互化思考1 平面内的一个点M 的坐标既可以用直角坐标表示也可以用极坐标表示,那么这两个坐标之间能否转化? 答案 可以.思考2 要进行极坐标和直角坐标的互化,两个坐标系有什么联系? 答案 ①直角坐标的原点为极点;②x 轴的正半轴为极轴;③单位长度相同. 梳理 互化的条件及互化公式(1)互化的前提条件:①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系取相同的长度单位. (2)互化公式①极坐标化直角坐标:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ.②直角坐标化极坐标:⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).类型一 点的极坐标化直角坐标 例1 把下列点的极坐标化为直角坐标. (1)A ⎝ ⎛⎭⎪⎫2,7π6;(2)B ⎝ ⎛⎭⎪⎫3,-π4;(3)M ⎝⎛⎭⎪⎫6,5π6.解 由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得(1)x =2cos 7π6=-3,y =2sin 7π6=-1,∴点A 的直角坐标为(-3,-1).(2)x =3cos ⎝ ⎛⎭⎪⎫-π4=322,y =3sin ⎝ ⎛⎭⎪⎫-π4=-322,∴点B 的直角坐标为⎝⎛⎭⎪⎫322,-322.(3)x =6cos 5π6=-33,y =6sin 5π6=3,∴点M 的直角坐标为(-33,3).反思与感悟 由极坐标化直角坐标是惟一的.由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ惟一确定.跟踪训练1 已知点的极坐标分别为A ⎝ ⎛⎭⎪⎫2,2π3,B ⎝ ⎛⎭⎪⎫32,π,C ⎝ ⎛⎭⎪⎫-4,π2,求它们的直角坐标.解 根据x =ρcos θ,y =ρsin θ, 得A (-1,3),B ⎝ ⎛⎭⎪⎫-32,0,C (0,-4). 类型二 点的直角坐标化极坐标例2 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π). (1)(-2,23);(2)(6,-2);(3)⎝⎛⎭⎪⎫3π2,3π2.解 (1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π). 由于点(-2,23)在第二象限,∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标为⎝⎛⎭⎪⎫4,2π3.(2)∵ρ=x 2+y 2=(6)2+(-2)2=22,tan θ=y x =-33,θ∈[0,2π),由于点(6,-2)在第四象限, ∴θ=11π6.∴点的直角坐标(6,-2)化为极坐标为⎝ ⎛⎭⎪⎫22,11π6.(3)∵ρ=x 2+y 2=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=y x =1,θ∈[0,2π). 由于点⎝⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4. ∴点的直角坐标⎝ ⎛⎭⎪⎫3π2,3π2化为极坐标为⎝ ⎛⎭⎪⎫32π2,π4.引申探究1.若规定θ∈R ,上述点的极坐标还惟一吗?解 (1)⎝ ⎛⎭⎪⎫4,2π3+2k π(k ∈Z ).(2)⎝ ⎛⎭⎪⎫22,11π6+2k π(k ∈Z ). (3)⎝⎛⎭⎪⎫32π2,π4+2k π(k ∈Z ). 极坐标不惟一.2.若点的直角坐标为(1)(0,23),(2)(0,-2),(3)⎝⎛⎭⎪⎫3π2,0化为极坐标(ρ≥0,0≤θ<2π).解 结合坐标系及直角坐标的特点知, (1)⎝ ⎛⎭⎪⎫23,π2.(2)⎝ ⎛⎭⎪⎫2,3π2.(3)⎝ ⎛⎭⎪⎫3π2,0.反思与感悟 (1)将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x (x ≠0)进行求解,先求极径,再求极角.(2)在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.跟踪训练2 在直角坐标系中,求与点M ⎝ ⎛⎭⎪⎫52,-532的距离为1且与原点距离最近的点N 的极坐标.解 把点M 的直角坐标⎝ ⎛⎭⎪⎫52,-532化为极坐标,得ρ=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫-5322=5,tan θ=-53252=- 3. 因为点M 在第四象限,所以θ=5π3+2k π,k ∈Z ,则点M 的极坐标为⎝ ⎛⎭⎪⎫5,5π3+2k π,k ∈Z .依题意知,M ,N ,O 三点共线,则点N 的极坐标为⎝ ⎛⎭⎪⎫4,5π3+2k π,k ∈Z .类型三 极坐标与直角坐标互化的应用例3 已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3和⎝ ⎛⎭⎪⎫8,4π3,求线段AB 中点的直角坐标.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33),同理可得B (-4,-43).设线段AB 的中点为M (m ,n ),由线段中点的坐标公式可得⎩⎪⎨⎪⎧m =-4+32=-12,n =-43+332=-32,所以线段AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32.引申探究1.若本例条件不变,求线段AB 中点的极坐标. 解 由例3知,AB 中点的直角坐标为⎝ ⎛⎭⎪⎫-12,-32,∴ρ2=x 2+y 2=1,∴ρ=1.又tan θ=y x =3,∴θ=4π3,∴极坐标为⎝⎛⎭⎪⎫1,4π3. 2.若本例条件不变,求AB 的直线方程.解 因为A 点的极坐标为⎝⎛⎭⎪⎫6,π3,所以x A =6×cos π3=3,y A =6×sin π3=33,所以A (3,33).又因为直线AB 的倾斜角为π3,故斜率k =3,故直线AB 的方程为y -33=3(x -3),即3x -y =0. 反思与感悟 应用点的极坐标与直角坐标互化的策略在解决极坐标平面内较为复杂的图形问题时,若不方便利用极坐标直接解决,可先将极坐标化为直角坐标,利用直角坐标系中的公式、性质解决,再转化为极坐标系中的问题即可.跟踪训练3 在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π). 解 对于点A ⎝ ⎛⎭⎪⎫2,π4有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B ⎝⎛⎭⎪⎫2,5π4有ρ=2,θ=5π4,∴x =2cos 5π4=-2,y =2sin 5π4=-2.∴B (-2,-2).设点C 的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.∴点C 的坐标为(6,-6)或(-6,6).∴ρ=6+6=23,tan θ=-66=-1或tan θ=6-6=-1,∴θ=7π4或θ=3π4.故点C 的极坐标为⎝⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.1.将点M 的极坐标⎝ ⎛⎭⎪⎫10,π3化成直角坐标是( ) A .(5,53)B .(53,5)C .(5,5)D .(-5,-5)答案 A2.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝⎛⎭⎪⎫2,π4 B.⎝ ⎛⎭⎪⎫2,3π4 C.⎝ ⎛⎭⎪⎫2,5π4D.⎝⎛⎭⎪⎫2,7π4答案 B解析 设点P 的极坐标为(ρ,θ), ∵ρ2=x 2+y 2=4,∴ρ=2,又tan θ=y x =-1,且点P 在第二象限,∴θ=3π4.3.若M 点的极坐标为⎝⎛⎭⎪⎫2,5π6,则M 点的直角坐标是( )A .(-3,1)B .(-3,-1)C .(3,-1)D .(3,1) 答案 A解析 由公式可知⎩⎪⎨⎪⎧x =ρcos θ=2cos 5π6=-3,y =ρsin θ=2sin 5π6=1,∴M 点的直角坐标为(-3,1).4.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点P 的极坐标可以是( ) A.⎝ ⎛⎭⎪⎫1,-π3B.⎝⎛⎭⎪⎫2,4π3C.⎝ ⎛⎭⎪⎫2,-π3D.⎝⎛⎭⎪⎫2,-4π3 答案 C解析 以原点为极点,x 轴的正半轴为极轴建立极坐标系,则由极坐标与直角坐标的互化公式,得ρ=x 2+y 2=12+(-3)2=2,tan θ=y x =-31=- 3.∵点P 在第四象限,结合选项知,θ可以是-π3,∴点P 的极坐标可以是⎝⎛⎭⎪⎫2,-π3. 5.已知点M 的直角坐标为(-3,-33),若ρ>0,0≤θ<2π,则点M 的极坐标是________.答案 ⎝⎛⎭⎪⎫6,4π3解析 ρ=(-3)2+(-33)2=6, 由6cos θ=-3,得cos θ=-12,又0≤θ<2π,且M (-3,-33)在第三象限, ∴θ=4π3,故点M 的极坐标为⎝⎛⎭⎪⎫6,4π3.极坐标与直角坐标的互化任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带,事实上,若ρ>0,sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x(x ≠0).一、选择题1.已知点M 的极坐标为⎝ ⎛⎭⎪⎫-5,π3,下列所给出的四个坐标中不能表示点M 的坐标的是( ) A.⎝ ⎛⎭⎪⎫5,π3 B.⎝ ⎛⎭⎪⎫5,4π3 C.⎝ ⎛⎭⎪⎫5,-2π3 D.⎝ ⎛⎭⎪⎫-5,-5π3答案 A2.直角坐标为(-2,2)的点M 的极坐标可以为( ) A.⎝⎛⎭⎪⎫22,π4 B.⎝⎛⎭⎪⎫-22,π4C.⎝ ⎛⎭⎪⎫22,3π4D.⎝⎛⎭⎪⎫22,-π4 答案 C解析 易知ρ=(-2)2+22=22,tan θ=2-2=-1,因为点M 在第二象限,所以可取θ=3π4,则点M 的极坐标可以为⎝⎛⎭⎪⎫22,3π4.3.若点M 的极坐标为(5,θ),且tan θ=-43,π2<θ<π,则点M 的直角坐标为( )A .(3,4)B .(4,3)C .(-4,3)D .(-3,4) 答案 D4.点M 的直角坐标是(3,3),则点M 的极坐标可能为( ) A.⎝⎛⎭⎪⎫23,5π6 B.⎝⎛⎭⎪⎫23,π6C.⎝ ⎛⎭⎪⎫23,-π6D.⎝⎛⎭⎪⎫23,-5π6 答案 B解析 ρ=x 2+y 2=23,tan θ=yx =33, 又θ的终边过点(3,3),所以θ=π6+2k π,k ∈Z ,所以M 的极坐标可能为⎝⎛⎭⎪⎫23,π6. 5.在极坐标系中,已知△OAB 的顶点A 的极坐标为(2,π),AB 边的中点D 的极坐标为⎝⎛⎭⎪⎫4,5π4.若以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,则顶点B 的直角坐标为( ) A .(32,42) B .(-32,42) C .(-32,-42) D .(32,-42)答案 C解析 设顶点B 的直角坐标为(x 0,y 0).把A ,D 两点的极坐标化为直角坐标,得A (-2,0),D (-22,-22),则由中点坐标公式得-2+x 02=-22,0+y 02=-22,解得x 0=-32,y 0=-42,故顶点B 的直角坐标为(-32,-42). 二、填空题6.把点M 的极坐标⎝ ⎛⎭⎪⎫-10,π6化为直角坐标为________.答案 (-53,-5)7.已知两点的极坐标A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则直线AB 的倾斜角为________. 答案5π6解析 点A ,B 的直角坐标分别为(0,3),⎝⎛⎭⎪⎫332,32,故k AB =32-3332-0=-33,故直线AB 的倾斜角为5π6.8.将向量OM →=(-1,3)绕原点逆时针旋转120°得到向量的直角坐标为________. 答案 (-1,-3)解析 由于M (-1,3)的极坐标为⎝ ⎛⎭⎪⎫2,2π3,绕极点(即原点)逆时针旋转120°得到的点的极坐标为⎝⎛⎭⎪⎫2,4π3,化为直角坐标为(-1,-3).9.在极坐标系中,O 是极点,点A ⎝ ⎛⎭⎪⎫4,π6,B ⎝ ⎛⎭⎪⎫3,2π3,则点O 到AB 所在直线的距离是________.答案125解析 点A ,B 的直角坐标分别为(23,2),⎝ ⎛⎭⎪⎫-32,332,则直线AB 的方程为y -2332-2=x -23-32-23,即(4-33)x -(43+3)y +24=0,则点O 到直线AB 的距离为24(4-33)2+[-(43+3)]2=125.10.在极轴上与点A ⎝ ⎛⎭⎪⎫42,π4的距离为5的点M 的坐标为________. 答案 (1,0)或(7,0)解析 设M (r,0),因为A ⎝ ⎛⎭⎪⎫42,π4,所以(42)2+r 2-82r ·cos π4=5,即r 2-8r +7=0,解得r =1或r =7.所以M 点的坐标为(1,0)或(7,0). 三、解答题11.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,求它的直角坐标;(2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标.(ρ>0,0≤θ<2π)解 (1)∵x =ρcos θ=4cos 5π3=2,y =ρsin θ=4sin5π3=-23, ∴A 点的直角坐标为(2,-23). (2)∵ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1,且点B 位于第四象限内,∴θ=7π4,∴点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又∵x =0,y <0,∴ρ=15,θ=3π2.∴点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 12.在极坐标系中,已知点A ⎝ ⎛⎭⎪⎫3,π3,B ⎝ ⎛⎭⎪⎫43,7π6.(1)求|AB |的值;(2)求△AOB 的面积(O 为极点). 解 如图所示,(1)∠AOB =7π6-π3=5π6,所以|AB |2=32+(43)2-2×3×43cos 5π6=93,所以|AB |=93.(2)S △AOB =12OA ·OB sin∠AOB =12×3×43×12=3 3.13.在极坐标系中,已知三点M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝ ⎛⎭⎪⎫23,π6.判断M ,N ,P 三点是否共线?说明理由.解 将极坐标M ⎝ ⎛⎭⎪⎫2,-π3,N (2,0),P ⎝⎛⎭⎪⎫23,π6分别化为直角坐标,得M (1,-3),N (2,0),P (3,3).方法一 因为k MN =k PN =3,所以M ,N ,P 三点共线. 方法二 因为MN →=NP →=(1,3),所以MN →∥NP →, 所以M ,N ,P 三点共线.四、探究与拓展14.已知点P 在第三象限的角平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.答案 ⎝ ⎛⎭⎪⎫22,54π 解析 ∵点P (x ,y )在第三象限的角平分线上,且到横轴的距离为2,∴x =-2,y =-2,∴ρ=x 2+y 2=2 2. 又tan θ=y x =1,且θ∈[0,2π),∴θ=54π. 因此,点P 的极坐标为⎝⎛⎭⎪⎫22,54π. 15.已知点M 的极坐标为⎝ ⎛⎭⎪⎫4,π6,极点O ′在直角坐标系xOy 中的直角坐标为(2,3),极轴平行于x 轴,极轴的方向与x 轴的正方向相同,两坐标系的长度单位相同,求点M 的直角坐标.解 如图所示.设M 在直角坐标系x ′O ′y ′中的坐标为(x ′,y ′),则x ′=ρcos θ=4cos π6=23,y ′=ρsin θ=4sin π6=2, 又M 在原坐标系中的坐标为(x ,y ),则x =x ′+2=23+2,y =y ′+3=5,∴点M 的直角坐标是(23+2,5).。
高中数学选修4-4第一讲坐标系1.1平面直角坐标系
得9x -9y =9 即x -y =1
2
2
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题; (2)掌握平面直角坐标系中的伸缩 变换。
xxz
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
思考:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?
1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2
x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0 (2)把图形看成点的运动轨迹,平面图 形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不 变,在同一直角坐标系下进行伸缩变换。
例2:在直角坐标系中,求下列方程所对应的图形经过 伸缩变换 x 2 x
1 x x 2 y 3 y
3
通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点, 在变换 ( 0) x' x : 4 ( 0) y' y 的作用下,点P(x,y)对应 p x, y 称
选修4-4第一讲-1平面直角坐标系及其伸缩变换习题课
5.在同一直角坐标标系中,经过伸缩换xy
3x后, y
曲线C变为曲线x2 9 y2 9,求曲线C的方程。
x2 y2 1
课本第8页
x x
(1)
y
4
y
(2)xy
2x 1y 2
小结:
建系时,根据几何特点选择适当的直角坐标系: (1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。
即|AB|-|AC|=
1 2
a(定值)
(-
a ,B0) 2
A(x,y)
y
(a ,0) 2
Cx
由双曲线的定义,实轴
2a 1 a得a 1 a,半焦距c 1 a,
2
4
2
得b2 c2 a2 3 a2 16
轨迹方程为
例2:已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若ΔAMN为 锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,求曲 线段C的方程.
[思路分析]:坐标系的建立是本题的
突破口,由于L1⊥L2,故可选择它们 为坐标轴;也可以以线段MN的垂直
L1
y B
A
平分线为y轴.(哪一种更好呢?)由 M 题设可知曲线段C为抛物线的一部
N L2 x
分,L1为准线,N为焦点,很显然选择 标准方程y2=2px(p>0).下面的关键
是求出p的值,而ΔAMN为锐角三角
形及|BN|=6又起什么作用呢?请大
家认真思考.
例3:已知ΔABC底边BC的长为2a(a>0),又知tanBtanC=t(t≠0).(a,t均为
第一讲 坐标系 知识归纳 课件(人教A选修4-4)
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
[答案]
8 5 5
返回
[例 5]
π 在极坐标系中,点 M 坐标是(2, ),曲线 C 的 3
π 方程为 ρ=2 2sin(θ+ ); 以极点为坐标原点, 极轴为 x 轴的 4 正半轴建立平面直角坐标系,直线 l 经过点 M 和极点. (1)写出直线 l 的极坐标方程和曲线 C 的直角坐标方程; (2)直线 l 和曲线 C 相交于两点 A、B,求线段 AB 的长.
返回
在给定的平面上的极坐标系下,有一个二元方程F(ρ,
θ)=0 如果曲线C是由极坐标(ρ,θ)满足方程的所有点组成的, 则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程. 由于平面上点的极坐标的表示形式不唯一,因此曲线 的极坐标方程和直角坐标方程也有不同之处,一条曲线上 的点的极坐标有多组表示形式,有些表示形式可能不满足
方程为ρcos θ-2ρsin θ+7=0,则圆心到直线的距离为
________.
[解析] 将 ρ=2cos θ 化为 ρ2=2ρcos θ,即有
x2+y2-2x=0,亦即(x-1)2+y2=1. 将 ρcos θ-2ρsin θ+7=0 化为 x-2y+7=0, |1+7| 8 5 故圆心到直线的距离 d= 2 = . 5 1 +-22
(2)点 M 的直角坐标为(1, 3),直线 l 过点 M 和原点, ∴直线 l 的直角坐标方程为 y= 3x. 曲线 C 的圆心坐标为(1,1),半径 r= 2,圆心到直线 l 的 3-1 距离为 d= ,∴|AB|= 3+1. 2
1.1《平面直角坐标系》 课件(人教A版选修4-4)
2.动点P到直线x+y-4=0的距离等于它到点M(2,2)的距离, 则点P的轨迹是( )
(A)直线
(C)双曲线
(B)椭圆
(D)抛物线
【解析】选A.由于点M(2,2)在直线x+y-4=0上,而|PM|等 于P到直线x+y-4=0的距离,所以动点P的轨迹为过点M垂直于 直线x+y-4=0的直线.
【解析】(1)设曲线方程为 y=ax 2 +
7
64 , 7
因点D(8,0)在抛物线上,∴ a=- 1 , ∴曲线方程为 y=- 1 x 2 + 64 .
7 7
标系,则B(40,0),以点B为圆
心,30为半径的圆的方程为 (x-40)2+y2=302,台风中心移动 到圆B内时,城市B处于危险区, 台风中心移动的轨迹为直线y=x,与圆B相交于点M、N,点B到
直线y=x的距离 d= 40 =20 2, 求得|MN|= 2 302 -d2 =20 (km),
2
∴ |MN| =1,所以城市B处于危险区的时间为1 h .
3.在同一平面直角坐标系中,将曲线y=2sin3x变为曲线 y=sinx的伸缩变换是( )
x=3x 1 =sin3x,令 【解析】选C.由曲线y=2sin3x,得 y 1 , 2 y= 2 y
得y′=sinx′,即y=sinx.
1 x = x 4.若点P(-2 009,2 010)经过伸缩变换 2 010 后所得的 y= 1 y 2 009
3
11.(14分)已知△ABC的两个顶点B(-2,0),C(2,0),
顶点A在抛物线y=x2+1上移动,求△ABC的重心的轨迹方程.
【解析】
人教A版高中数学选修4-1 第一讲 四 直角三角形的射影定理 课件(共16张PPT)精品课件PPT
课堂小结
射影定理 直角三角形斜边上的高是两直角边在斜边上 射影的比例中项;两直角边分别是它们在斜边 上射影与斜边的比例中项.
很重要!
随堂练习
1.已知:Rt△ABC,CD是斜边AB上的高, CD=4,BD=2,
求:AD、AB、AC、BC.
A
解: 根据射影定理:CD2=AD·BD
∴AD=16÷2=8. ∴AB=AD+BD=10.
情感态度与价值观
1.通过直角三角形的射影定理,体会并推 出一般三角形的射影性质.
2.通过课堂学习培养敢于结合以前所学知 识,推导出新的知识或性质,有利于深刻理解.
教学重难点
重点
直角三角形的射影定理.
难点
灵活应用直角三角形的射影定理并能证明.
研讨
A
B
A
M
A′
N M A′
B′ N
A ′是点A在MN上的正射影,A ′ B ′是线段AB 在MN上的正射影.
思考
C
A
DB
找出上图中相似三角 形的个数?
研讨
考察Rt△ACD和Rt △CBD.
ACD 90 BCD,B 90 BCD,
B ACD.
ACD CBD.
A
AD CD .即C D 2 AD BD.(1)
CD BD
CD是AD、BD的比例中项.
C DB
考察Rt△BDC和Rt △BCA. B是公共角.
新课导入
阳光照射下,物体都有影子!
观察
A
M
A′
N
A在MN的射影在哪?
探讨
B
A思M来自N考线段AB在直线MN上的射影又是什么呢?
教学目标
知识与能力
1.掌握直角三角形的射影定理. 2.能够利用射影定理求解线段的长.
人教版数学选修4-4课件 1.1 平面直角坐标系
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
• 思维导引:本题涉及两点间的距离及曲线, 故要想到坐标法解决问题.
解析:以 A,B 所在直线为 x 轴,A,B 中点 O 为坐标原点,建立如图的直角坐标 系.
∵|AB|=10,∴点 A(-5,0),B(5,0).设某地 P 的坐标为(x,y),并设 A 地运费为 3a 元/公里,则 B 地运费为 a 元/公里,设 P 地居民购货总费用满足条件(P 地居民选择 A 地 购货):价格+A 地运费≤价格+B 地运费,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
•要点二 平面直角坐标系中的伸缩变换
定义:设 P(x,y)是平面直角坐标系中任意一点,在变换 φ:xy′′==λμxy,,λμ>>00,
• 的作用下,点P(x,y)对应到点P′(x′,y′),就 坐称标φ伸为缩平变面换 直角伸坐缩标变换系中的________________, 简称______________.
人教A版高中数学选修4—4《坐标系与参数方程》简析
烧 全鱼” ,是 解 析 几 何 教 学 中 必须 予 以 充 分 重 视 的 问 题。 教科 书在 这 方 面 作 出 了 努 力 , 如 , 出 问题 背 景 例 给
球 坐 标 系 简 介 , 中 以极 坐 标 系 为 重 点 ; 二讲 《 数 其 第 参
方程 》 内容 包 括 : , 曲线 的 参 数 方程 、 圆锥 曲线 的参 数 方 程 、 线 的参 数 方程 和 渐 开 线 与摆 线 , 中 以参 数 方程 直 其
_ — ■一 ■■ — ● 锹 千
—隧卿——●■●
人教A 高中数学选修4 4 版 —
《 坐标系与参数方程》 简析
人 民教 育 出版社 中学数 学室 章建跃 郭慧清
一பைடு நூலகம்
、
内容安排与说明
二、 编写时 考虑的几个主要问题
1突 出 坐 标 法 的 核 心 概 念 地 位 , 调 数 形 结 合 。 . 强
坐 标 法 是 解 析 几 何 的 核 心 , 本 专 题 的 主 要 目 的 是
通 过 认 识 不 同 的坐 标 系的 特 点和 在 刻 画 几何 图形 或 描 述 自然 现 象 中 的 作 用 , 促 使 学 生 学 习 如 何 根 据 问 题 的
需要 建 立 适 当 的坐 标 系、 引 入适 当的 参 变量 来 表 示 曲 线 上点 的坐 标 及 其 方程 , 从而 更 深 入地 体 会 坐 标 法 。 因
为 重 点 。 专 题 中 , 形 结合 、 动 变化 、 对 与 绝 对 、 本 数 运 相
程 的 对 应 关 系 , 一 步 体 会 数 形 结 合 的 思 想 。 3) 为 解 进 ( 做
析 几 何 初 步 、 面 向量 、 角 函 数 等 内 容 的 综 合 与 深 化 , 平 三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1-
一 平面直角坐标系
-2-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
学习目标
1.体会平面直角坐标系的作用,掌握平面直角 坐标系中刻画点的位置的方法和坐标法的解 题步骤. 2.会运用坐标法解决实际问题与几何问题. 3.通过具体例子,了解在平面直角坐标系伸缩 变换下平面图形的变化情况.
D 当堂检测 ANGTANGJIANCE
-12-
一 平面直角坐标系 探究一
探究二
首页
探究三
思维辨析
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
求曲线的轨迹方程 【例2】 已知线段AB的两个端点分别在两条互相垂直的直线上 滑动,且|AB|=4,求AB的中点P的轨迹方程. 分析:题目未给出坐标系,因此,应先建立适当的平面直角坐标 系,显然以互相垂直的两条直线分别为x轴、y轴最合适.
反思感悟建立平面直角坐标系的规律技巧 坐标系建立的是否恰当,直接影响到方程的繁简.因此,在建立平 面直角坐标系时,要尽量研究所给图形的对称性.若是轴对称图形, 一般选取对称轴为坐标轴;若是中心对称图形,一般以对称中心为 原点;若存在两条互相垂直的直线,一般以这两条直线为坐标轴. 总之,在建立平面直角坐标系时,原则是使尽可能多的点落在坐 标轴上,有对称性的尽可能使它们关于坐标轴或原点对称.在解题 时,注意不断归纳总结,积累经验方法,针对题设条件建立恰当的坐 标系,使运算简便,求得的方程形式简单.
������' = 2������, ������' = 4������ 后的曲线的方程.
分析:利用伸缩变换公式代入求解.
-17-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
探究一
探究二
探究三
思维辨析
解:(1)设满足条件的伸缩变换为
������' ������'
设点A的坐标为(b,c),点C的坐标为(a,0),则点B的坐标为(-a,0).
∵|AB|2=(a+b)2+c2,|AC|2=(a-b)2+c2,
|AO|2=b2+c2,|OC|2=a2,
∴|AB|2+|AC|2=2(a2+b2+c2).
又|AO|2+|OC|2=a2+b2+c2,
∴|AB|2+|AC|2=2(|AO|2+|OC|2).
(方法二)建立平面直角坐标系,同方法一.
设 P(x,y),A(x1,0),B(0,y2),则������12 + ������22=16.①
又点P为线段AB的中点,所以x1=2x,y2=2y.
将其代入①,得4x2+4y2=16.
故点P的轨迹方程为x2+y2=4.
D 当堂检测 ANGTANGJIANCE -14-
D 当堂检测 ANGTANGJIANCE
2.伸缩变换对图形的影响.
������' = ������������,������ > 0, (1)由伸缩变换公式知 ������' = ������������,������ > 0 ,当0<λ<1时,原图形上点的 横坐标缩为原来的λ,当λ>1时,原图形上点的横坐标伸长为原来的λ 倍;当0<μ<1时,原图形上点的纵坐标缩为原来的μ,当μ>1时,原图形 上点的纵坐标伸长为原来的μ倍.(2)因为伸缩变换把直线变成直线, 所以伸缩变换把多边形变成边数一致的多边形;伸缩变换不能实现 曲线段与直线段的互变.换句话说,它不能把圆变成正方形.
������+������+������ 4
,
������+������ 4
.
三条连线的中点的坐标完全相同,说明三条线段EG,FH,MN均相
交于此点,且互相平分.
-10-
一 平面直角坐标系 探究一
探究二
首页
探究三
思维辨析
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
D 当堂检测 ANGTANGJIANCE
思考辨析 判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画
“×”.
(1)在平面直角坐标系中,线段通过伸缩变换后还是线段.√( ) (2)在平面直角坐标系中,通过伸缩变换可以把圆变成椭圆.√( ) (3)在平面直角坐标系中,通过伸缩变换可以把双曲线变成抛物线.
答案:(1)A
(2)
������'
=
3 2
������,
������'
=
2 3
������
������'
=
3 2
������,
������'
=
2 3
������.
D 当堂检测 ANGTANGJIANCE -7-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
名师点拨1.理解伸缩变换,应注意以下几点: (1)λ>0,μ>0;(2)把图形看成点的运动轨迹,平面图形的伸缩变换可 以用点的坐标的伸缩变换得到;(3)在伸缩变换下,平面直角坐标系 不变,即在同一平面直角坐标系中进行伸缩变换.
-5-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
-13-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
探究一
探究二
探究三
思维辨析
解:(方法一)以两条互相垂直的直线分别为x轴、y轴建立平面
直角坐标系,如图所示.
设P(x,y),由于三角形OAB是直角三角形,点P为线段AB的中点, 所以|OP|=12|AB|, 即 ������2 + ������2 = 12×4=2,即 x2+y2=4, 故点P的轨迹方程为x2+y2=4.
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
探究一
探究二
探究三
思维辨析
反思感悟求轨迹的常用方法
1.直接法.如果题目中的条件有明显的等量关系或者可以推出某 个等量关系,那么可用求曲线方程的步骤直接求解.
2.定义法.如果动点的轨迹满足某种已知曲线的定义,那么可依据 定义写出轨迹方程.
D 当堂检测 ANGTANGJIANCE
-15-
一 平面直角坐标系 探究一
探究二
首页
探究三
思维辨析
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
变式训练2 已知动点M(x,y)到直线l:x=4的距离是它到点N(1,0)
的距离的2倍,则动点M的轨迹方程是
(2)由
������' ������'
= =
24������������,可得
������
=
1 2
������',
������
=
1 4
������',
将其代入 x2+y2=4,得
1 2
������'
2
+
1 4
������'
2
=4,
整理得������'2
16
+
������'2 64
=1.
故曲线
x2+y2=4
D 当堂检测 ANGTANGJIANCE
-9-
一 平面直角坐标系 探究一
探究二
首页
探究三
思维辨析
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
若点E,F,G,H,M,N分别为线段AB,BC,CD,DA,AC,BD的中点,连接
EG,FH,MN,则
则E
������ 2
,0
,F
������+������ 2
,
������ 2
,G
������+������ 2
,
������+������ 2
,H
������ 2
,
������ 2
,M
������ 2
,
������ 2
,N
������+������ 2
,
������ 2
.
由中点坐标公式求得线段EG,FH,MN的中点坐标都是
2.平面直角坐标系中的伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:
������' = ������������,������ > 0, ������' = ������������,������ > 0 的作用下,点P(x,y)对应到点P'(x',y'),称φ为平面直角 坐标系中的坐标伸缩变换,简称伸缩变换.
思维脉络
平面直角坐标系 坐标法 轨迹问题 伸缩变换
-3-
一 平面直角坐标系
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO