七年级数学上册 1.4.1 有理数的乘法第3课时教学设计 新版新人教版
七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题新版新人教版2
(2)上面的解法对你有何启发,你认为还有更好的解法吗?如果有,请把它 写出来;
(2)还有更好的解法,解法如下:
24
4925
×(-5)= 50
1
25
×(-5)
1
=50×(-5)-25 ×(-5)
1
=-2504+5
5
=-249 .
(3)用你认为合适的方法计算:1915 ×(-8).
16
(3)1915
25
(-5),看谁算得又快又对.有两位同学的解法如下:
1249
1249
4
小明:原式=-25 ×5=- 5 =-2495 ;
24
24
24
4
小军:原式=(49+25 )×(-5)=49×(-5)+25 ×(-5)=-245-5 =-2495 .
(1)对于以上两种解法,你认为谁的解法较好?
解:(1)小军的解法较好.
易错点 利用分配律计算时,漏乘或弄错符号
9.计算:|-12|×
1 3
1
3 4
1 12
1
6
.
1
解:原式=12×3
3
+12×(-1)+12×4
+12×
1 12
1
+12×6
=4-12+9-1+2
=2.
10.下列计算(-55)×99+(-44)×99-99正确的是( C ) A.原式=99×(-55-44)=-9801 B.原式=99×(-55-44+1)=-9702 C.原式=99×(-55-44-1)=-9900 D.原式=99×(-55-44-99)=-19 602
16
×(-8)= 20
1 16
1
=20×(-8)-16 ×(-8)
有理数 1.4.1乘法运算律教学设计
(1) 乘法的交换律、结合律只涉及一种运算,而分配律要涉及两种运算.
(2) 分配律还可写成: a×b+a×c=a×(b+c),利用它有时也可以简化计算.
(3) 字母a、b、c可以表示正数、负数,也可以表示零,即a、b、c可以表示任意有理数.
(4) 乘法分配律揭示了加法和乘法的运算性质,利用它可以简化有理数的运算,对于乘法分配律,不仅要会正向应用,而且要会逆向应用,有时还要构造条件变形后再用,以求简便、迅速、准确解答习题.
2.请一位同学回答多个有理数相乘时,积的符号是如何确定的。
(学生:几个不等于零的数相乘,积的符号由负因数的个数决定:(1)当负因数的个数是偶数时,积是正数;
(2)当负因数的个数是奇数时,积是负数。
几个数相乘,如果其中有因数为0,积等于0.)
让学生复习有理数的乘法运算法则,为后面的新课内容做好铺垫,同时为今天的新课减少学生的陌生感。
教学难点
正确理解并运用运算律,从而使运算简化
知识重点
运算律的运用,从而使运算过程简化
教学过程(师生活动)
设计理念
温故知新引入课题
上节课我们学习了有理数的乘法,下面我(教师)将抽几位同学来回顾一下昨天所学的知识:问题展示(ppt)
1.请一位同学回答两个有理数相乘的乘法法则。
(学生:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘,积仍为0.)
=- ×12
=- 1
解法2:
原式= ×12 + ×12- ×12
= 3 + 2- 6
=-1.
通过计算让学生更加深刻的理解运算律可简化运算过程,同也增强学生的竞争意识与集体荣誉感.通过以上的比较,学生会深刻地体验到运用算律来简化运算,形成知识的正迁移.
人教版数学七年级上册1.4.1有理数的乘法(第3课时)教学设计
1.让学生总结本节课所学的有理数乘法法则及运用。
2.教师点评学生的总结,强调重点知识点。
五、课后作业
1.设计适量的课后作业,巩固有理数乘法知识。
2.鼓励学生运用所学知识解决实际问题,提高学生的应用能力。
六、课后反思
1.教师反思本节课的教学效果,为下一节课做好准备。
2.学生反思自己的学习过程,查漏补缺,不断提高。
人教版数学七年级上册1.4.1有理数的乘法(第3课时)教学设计
一、教学目标
(一)知识与技能
1.让学生理解有理数乘法的概念,掌握有理数乘法法则,能够熟练进行有理数乘法运算。
2.培养学生运用有理数乘法解决实际问题的能力,例如:计算温度变化、计算物品的增减等。
3.使学生能够运用有理数乘法法则,解释和证明一些与乘法相关的数学性质和定理。
2.分层次教学,因材施教:针对不同学生的学习基础和认知水平,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
3.突破重难点,强化练习:在讲解有理数乘法法则时,通过举例、对比、归纳等方法,帮助学生理解和掌握。同时,设计有针对性的练习题,强化学生的计算能力和解决问题的能力。
4.合作交流,提升能力:组织学生进行小组讨论、合作学习,培养学生团队协作能力和交流表达能力,提高学生的综合素质。
3.教师点评:教师对学生的总结进行点评,强调重点知识,提醒学生注意易错点。
4.布置作业:布置适量的课后作业,巩固本节课所学知识。
五、作业布置
为了巩固本节课的有理数乘法知识,确保学生对课堂内容的深度理解和掌握,特布置以下作业:
1.基础练习题:完成课本第25页的练习题1、2、3,这些题目旨在帮助学生巩固有理数乘法的基本运算,强化乘法法则的运用。
七年级数学上册1.4.1有理数的乘法(第3课时)教案新人教版
七年级数学上册1.4.1有理数的乘法(第3课时)教案新人教版1.4.1 有理数的乘法(第三课时)三维目标:知识与技能(1)能用乘法的三个运算律来进行乘法的简化运算.(2)能进行乘法及加减法的混合运算.过程与方法经历探索有理数乘法运算律的过程,发展学生观察、归纳、验证等能力.情感态度与价值观鼓励学生积极思考,并与同伴进行交流的思想,体会运算律对简化运算的作用.教学重、难点与关键1.重点:能运用乘法运算律进行乘法运算.2.难点:灵活运用运算律进行乘法运算.3.关键:掌握乘法运算律以及运算法则.教学过程在小学里,数的乘法满足交换律,例如8×3=3×8.还满足结合律,例如(4×6)×3=4×(6×3).引入负数后,乘法交换律、结合律是否还成立?规定有理数乘法法则后,显然乘法交换律、结合律仍然成立.例如:5×(-6)=-30,(-6)×5=-30即5×(-6)=(-6)×5[3×(-4)]×(-5)=(-12)×(-5)=603×[(-4)×(-5)]=3×(+20)=60即[3×(-4)]×(-5)=3×[(-4)×(-5)]大家可以再任意取一些数,试一试.一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba.说明:a×b可以写成a·b或ab.当用字母表示乘法时“×”号可写成“·”或省略.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab)c=a(bc).在小学里,乘法还满足分配律,例如6×(+)=6×+6×.任意选取三个有理数(至少有一个负数)分别填入下列□、○和△内,并比较两个运算结果,你能发现什么?所以:-5×[+(-2)]=-5×+(-5)×(-2)这就是说,有理数的乘法仍满足分配律.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律: a(b+c)=ab+ac.以上表示乘法运算律的式子中,a、b、c表示任意有理数.乘法的运算律与加法运算律类似,也可以推广到多个数的情况.在代数学的研究中,运算律是很重要的内容.在计算时运用运算律,往往能使计算简便.例4:用两种方法计算(+-)×12.解法1:按运算顺序,先计算小括号内的数.(+-)×12=()×12=-×12=-1解法2:运用分配律.(+-)×12=×12+×12-×12=3+2-6=-1思考:比较以上两种方法,哪种解法运算量小?显然解法2运算量小,它不需要通分.课堂练习课本第33页练习.(1)-8500,运用结合律,先算(-25)×(-4).(2)25,运用分配律.(3)15,运用结合律.(4)-4,分配律.延伸拓展计算:(1)(2)(3)(4)49×9999(5)课堂小结运算律的运用十分灵活,在有理数的混合运算中,各种运算律常常是混合运用的,这就要求我们要有较好的掌握运算律进行计算的能力,在平时的练习中,要观察题目特点,寻找最佳解题方法,这样往往可以减少计算量.作业布置课本第39页,习题1.4第14题.。
1.4.1 第3课时 有理数的乘法运算律
1.4 有理数的乘除法
4 5 解:(1)(-7)×- × 3 14 5 4 =(-7)× ×- 14 3 5 4 - - = × 2 3
7 5 3 7 (2) - + - ×36 9 6 4 18
am+bm+cm 解法二: 乘法的分配律是(a+b+c)m=________________ . 根
据乘法的分配律先做三个乘法,后做加减法.具体步骤如下: 1 1 1 12 12 12 原式= ×______+ ×______- ×______( 乘法分配律的应 4 6 2 用)
3+2-6 =______________( 计算三个乘法)
1.4 有理数的乘除法
3.分配律:有理数乘法中,一个数同两个数的和相乘,等于 把这个数分别同这两个数相乘,再把积________ 相加 ,即a(b+c)
ab+ac . =__________
[点拨] 分配律是乘法对加法的分配律,加数的个数可以不限 于两个.一个数除以多个数的和不能用分配律.
1.4 有理数的乘除法
2 2 1 5 (2)(-13)× -0.34× + ×(-13)- ×0.34. 3 7 3 7
[解析] (1)直接计算比较麻烦,观察发现三个乘积式中都有 2 - 这个因数,因此可反用乘法分配律简化计算.(2)观察式 3 子可发现第一、三个乘积式中都有-13 这个因数,第二、四 个乘积式中都有 0.34 这个因数, 所以可分别反用乘法分配律 简化计算.
1.4 有理数的乘除法
2 解:(1)原式=- ×(15-16-20) 3 2 =- ×(-21)=14. 3 2 1 2 5 (2)原式=(-13)× + ×(-13)-0.34× - ×0.34 3 3 7 7 2 1 2 5 =(-13)×( + )-0.34×( + ) 3 3 7 7 =-13-0.34 =-13.34.
2024年新人教版七年级数学上册教学计划(2篇)
2024年新人教版七年级数学上册教学计划教学计划范本课程名称:新人教版七年级数学上册教材版本:新人教版七年级数学上册教学目标:1. 理解并掌握数学的基本概念和基本运算。
2. 培养学生的逻辑思维和解决问题的能力。
3. 提高学生的数学运算和推理能力。
4. 培养学生的数学兴趣和学习的积极性。
教学内容和进度:第一章:实数和整数1.1 实数和自然数1.2 整数的概念及性质1.3 整数组合加减法1.4 整数的乘法及性质1.5 正数的除法及性质1.6 负数的除法及性质第二章:比例和百分数2.1 比例的概念和性质2.2 比例与比例的应用2.3 百分数的概念和表示法2.4 百分数的计算2.5 百分数的应用第三章:图形的初步认识3.1 图形的基本概念3.2 点、线、面及其性质3.3 等腰三角形3.4 直角三角形和直角三角形的性质第四章:一次函数和一次函数方程4.1 一次函数及其图象4.2 一次函数方程4.3 一次函数方程的应用第五章:数的运算5.1 整数的加法和减法5.2 整数的乘法和除法5.3 有理数的加法和减法5.4 有理数的乘法和除法评价方法:1. 参与度:课堂练习、讨论、小组活动等。
2. 学业成绩:课堂作业、小测验、期中考试、期末考试等。
3. 学习态度:师生互动、合作学习、课堂纪律等。
教学方法:1. 探究法:通过让学生自主探索和实践,培养学生的主动学习和解决问题的能力。
2. 合作学习法:通过小组合作和讨论,促进学生之间的交流和合作,培养学生的团队精神和合作精神。
3. 演绎法:通过示例和练习,引导学生从具体到抽象的过程,提高学生的思维能力和逻辑推理能力。
教学资源准备:1. 数学教材:新人教版七年级数学上册教材。
2. 教具:黑板、彩色粉笔、数学实物模型等。
3. 辅助教具:投影仪、电子白板等。
教学实施:根据教学计划,每周安排2节课,每节课45分钟。
每节课分为以下几个环节:1. 导入新知识(10分钟):通过举例、提问等方式,引起学生的兴趣,预备学生进入新的学习内容。
《有理数的乘法(3)》名师教案
(1)﹣99 ×36
【知识点】有理数的乘法分配律.
【思维点拨】首先把﹣99 ×36变为﹣(100﹣ )×36,再利用乘法分配律进行计算即可.
【解题过程】解:原式=﹣(100﹣ )×36
=﹣(100×36﹣ ×36)
=﹣(3600﹣ )
=﹣3599 .
【思维点拨】首先把﹣99 ×36变为﹣(100﹣ )×36,再利用乘法分配律进行计算即可.
【思维点拨】逆用乘法的分配律进行简便计算即可.
【答案】﹣27.
6.
【知识点】有理数的乘法分配律逆用.
【解题过程】解:(1)
=
=
=﹣13×1﹣1×0.34
=﹣13﹣0.34
=﹣13.34
【思维点拨】首先应用乘法交换律,把 化成 ,然后应用乘法分配律,求出算式的值是多少即可.
【答案】﹣13.34.
能力型师生共研
●活动①经历探索的过程
计算下列式子:
,
,
,
学生举手抢答: , ,
师问1:对比每一排左右两个式子的结果,你发现了什么?
生答:值相等.
师问2:你能用语言来表述这个规律吗?
生答:两个数相乘,交换因数的位置,积相等.(引导学生大胆的表达,言之有理即可,老师适时订正)
师问3:你能用字母来表示这个运算律吗?
生答:ab=ba
【解题过程】解:∵x﹣y=123456789×123456786﹣123456788×123456787
=(123456788+1)×123456786﹣123456788×(123456786+1)
=123456788×123456786+123456786﹣123456788×123456786﹣123456788
人教版七年级数学上册《有理数的乘方(第3课时)》示范教学课件
7-1=6
8-1=7
十二位数
12-1=11
n-1
2×105=200 000,
解:
例2 下列用科学记数法表示的数,原来分别是什么数?
2.03×107=2.03×10 000 000=20 300 000.
2×105,2.03×107.
数的还原 要将 还原成整数,就是把a的小数点向右移动 n 位,即 还原之后的整数有n+1个数位.如果 a 中的位数不够,用“0”补足,注意符号.
100 000 000
5.67×108
把一个大于 10 的数表示成 (其中a大于或等于1且小于 10,n 是正整数),使用的是科学记数法.
归纳
567 000 000=5.67×100 000 000
=5.67×108.
问题
567 000 000=56.7×10 000 000
1 000 000=1×106,
-123 000 000 000=-1.23×1011.
解:
57 000 000=5.7×107,
八位数
1 000 000=1×106,
-123 000 000 000=-1.23×1011.
等号左边整数的位数与等号右边 10 的指数有什么关系? 用科学记数法表示一个 n 位整数,其中 10 的指数是_______.
=56.7×107.
567 000 000=0.567×1 000 000 000
=0.567×109.
判断下列用科学记数法表示大数是否正确?
不正确,不是科学记数法.
注意:a 是整数数位只有一位的数,即1≤a<10.
问题
像-567 000 000 这样的负数,如何用科学记数法表示呢?
新课标人教版七年级数学上册《有理数的乘法》教学设计
新课标人教版七年级数学上册《有理数的乘法》教学设计新课标人教版七年级数学上册《有理数的乘法》教学设计一、教学目标1、知识与技能目标:经历有理数乘法法则探究的过程,学习两个有理数相乘的法则。
2、能力目标:通过推导两个有理数相乘法则的过程,培养归纳总结的能力,提高由特殊到一般的能力3、情感目标:通过小组合作,培养与他人合作的精神二、教学重点:经历由几组算式推导有理数乘法的法则的过程教学难点:如何观察给定的乘法算式,从哪几个角度概况算式的规律。
三、课前准备:1、复习小学的乘法法则2、出几道小学里已经做过的两数相乘的题目,并计算。
四、教学过程:(一)创设情境,引入新知问题:根据课前准备,小学我们计算的两个数相乘都是正数乘正数或者正数乘零,现在我们知道有理数包括正数、负数和零三类,根据这种分类,你能说出两个有理数相乘会出现哪几种情况?(根据学生回答板书各种类型)预设:学生可能会把正数乘负数、负数乘正数当作一种情况,教师可引导为两种。
(二)观察归纳,学习法则(设计说明:法则的得出分两部分)第一部分分类探究(说明:3组探究重点是探究1)探究1(师生共同活动)问题1、观察下面熟识的算式,你能发现什么规律?3×3=93×2=63×1=33×0=0预设:如果学生有困难,可以提示学生观察两个因数有什么变化规律,积有什么变化规律。
这样会得到规律:左边因数都是3,右边因数依次减1,而积依次减3。
问题2、根据这个规律,你能填写下面的结论吗?3×(-1)=3×(-2)=3×(-3)=问题3这组数据的规律,对其他组类似规律的数据也成立吗?自己根据这个规律构造一组数试一试。
问题4、以上两组数相乘属于正数乘正数、正数乘负数,你能类比加法法则,从符号与绝对值两方面再来观察他们存在什么规律吗?归纳可得:(板书)正数乘正数,结果为正,绝对值相乘;正数乘负数,结果为负,绝对值相乘。
有理数的乘法教案人教版有理数的乘法教案优秀6篇
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
新人教版七年级数学上册1.4.1《有理数的乘法》教学设计3
新人教版七年级数学上册1.4.1《有理数的乘法》教学设计3一. 教材分析新人教版七年级数学上册1.4.1《有理数的乘法》是学生在学习了有理数加减法的基础上进一步学习的知识点。
本节内容主要介绍有理数的乘法法则,以及乘法运算的结果。
通过本节课的学习,学生能够理解和掌握有理数的乘法运算,并能够运用乘法法则解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减法有一定的了解。
但是,对于有理数的乘法,学生可能还存在一些困惑和误解。
因此,在教学过程中,需要关注学生的学习情况,针对学生的困惑和误解进行讲解和辅导。
三. 教学目标1.理解有理数的乘法概念,掌握有理数的乘法法则。
2.能够运用有理数的乘法法则进行计算和解决问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.有理数的乘法法则的掌握和运用。
2.理解乘法运算的结果的符号规律。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索有理数的乘法。
2.使用案例分析法,通过具体的案例让学生理解和掌握有理数的乘法法则。
3.运用练习法,通过大量的练习让学生巩固和运用有理数的乘法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪和白板。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的加减法,为新知识的学习做好铺垫。
2.呈现(10分钟)展示有理数的乘法案例,让学生观察和思考乘法运算的结果的符号规律。
3.操练(10分钟)让学生分组进行有理数的乘法运算练习,教师巡回指导,及时纠正学生的错误。
4.巩固(10分钟)让学生独立完成一些有理数的乘法运算题目,检查学生对乘法法则的掌握情况。
5.拓展(10分钟)引导学生思考和探索有理数的乘法在实际问题中的应用,让学生举例说明。
6.小结(5分钟)教师引导学生总结有理数的乘法法则,并强调乘法运算的结果的符号规律。
7.家庭作业(5分钟)布置一些有理数的乘法运算题目,要求学生独立完成。
新人教版七年级上册数学第一章《有理数》1.4.1 有理数的乘法课件
为
。 -3
其结果可表示为(-2)×(-。3)=+6
2019/10/5
10
想一想:
问题4的结果(-2)×(-3)=+6 与 问题1的结果(+2)×(+3)=+6 有何区别?
因数符号的改变, 积的符号怎么变?
结论: 两个有理数相乘,同时改变两个 乘数的符号,积的符号不变。
2019/10/5
11
规律呈现:
L
0
1、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它 在什么位置?
2、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它 在什么位置?
3、如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它 在什么位置?
4、如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它 在什么位置?
2019/10/5
引入相反数后加减混合运算可以统一为加法运算.
a+b-c=a+b+(-c).
减一个数等于加上这个数的相反数,那么,加上一 个数也等于减去这个数的相反数.
(1) (4) (3) (0.5) 解: = 1 4 3 0.5
= 1 3 4 0.5
2019/10/5
= 4 4.5 = 0.5
2 × 3= 6 ········ 把绝对值相乘
所以 (-2)×(-3)=6
一定又,如,二(求-3,.6) ×5 ····· 异号两数相乘 三相乘.(-3.6)×5= -() ········ 得负
3.6 ×5=18 ······· 把绝对值相乘
所以 (-3.6) ×4= -18
有理数相乘,先确定积的 符号 , 再确定积的 绝对值 .
4、乘积是1的两个数互为倒数.
人教版数学七年级上册1.4.1《有理数的乘法(3)》教学设计
人教版数学七年级上册1.4.1《有理数的乘法(3)》教学设计一. 教材分析《有理数的乘法(3)》是人教版数学七年级上册第一章第四节的一个知识点。
这部分内容是在学生已经掌握了有理数的加减乘除、乘方的基本运算法则的基础上进行深入学习的。
本节课主要让学生掌握两个负数相乘的规律,以及利用这个规律解决实际问题。
教材通过例题和练习,让学生在实践中理解和掌握有理数的乘法运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的加减乘除、乘方运算已经有了一定的认识。
但是,学生在解决实际问题时,往往会因为对概念理解不深、运算规则记忆不牢而出现错误。
因此,在教学过程中,需要引导学生通过实例来深入理解概念,并通过大量的练习来巩固知识点。
三. 教学目标1.知识与技能:让学生掌握两个负数相乘的规律,能熟练地进行有理数的乘法运算。
2.过程与方法:通过实例分析,让学生在实践中掌握有理数的乘法运算方法。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:让学生掌握两个负数相乘的规律。
2.难点:如何引导学生运用规律解决实际问题。
五. 教学方法采用问题驱动法、实例分析法、小组合作法等教学方法。
通过设置问题,引导学生思考;通过实例分析,让学生在实践中理解和掌握知识点;通过小组合作,促进学生之间的交流和合作。
六. 教学准备1.准备相关的教学PPT,包括知识点讲解、例题、练习等。
2.准备一些实际问题,用于引导学生运用知识点解决实际问题。
3.准备一些练习题,用于巩固知识点。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考两个负数相乘的结果。
例如:已知地球表面的重力加速度为9.8m/s²,一名宇航员在月球表面的重力加速度为1.6m/s²,请问宇航员在地球表面和月球表面的质量之比是多少?2.呈现(10分钟)讲解两个负数相乘的规律。
通过PPT展示相关的知识点,引导学生理解和记忆。
人教版初中七年级上册数学教案(完整版)
七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2… 议一议 你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试 你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做 以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内:127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...… … … …有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗?(2)生活中,我们也常常对事物进行分类,请你举例说明.【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,12,-312,3,0,50%,-0.3(1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3}(3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%} 分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边.(三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B) ⑦-1-2021-1-45E DC B AA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。
人教版数学《有理数的乘除法》_课件
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
第3课时 有理数的乘法运算律
【解析】(1)直接计算比较麻烦,观察发现三个乘积式中都有-23这个 因数,因此可逆用分配律简化计算.(2)观察式子可发现第一、三个乘积 式中都有-13 这个因数,第二、四个乘积式中都有 0.34 这个因数,所以 可分别逆用分配律简化计算.
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
第3课时 有理数的乘法运算律
Байду номын сангаас
2.乘法结合律:有理数乘法中,三个数相乘,先把___前_____ 两个数相乘,或者先把____后____两个数相乘,积___相_等____,即
将公式 a(b+c)=ab+ac 等号左右两边交换位置即得公式 ab+ac=a(b+c).
当计算几个积的和时可考虑用以上公式简化计算,此公式的 特点是各个乘积式中含有一个相同的因数.有时需改变算式的结 构才能找出这个相同的因数.
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
第3课时 有理数的乘法运算律
目标二 能逆用分配律进行计算
例 2 教材补充例题 计算: (1)15×-23-16×-23-20×-23; (2)(-13)×23-0.34×27+13×(-13)-57×0.34.
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版数学《有理数 的乘除 法》_ 课件1- 课件分 析下载
七年级数学上册 1.4.1 有理数的乘法(第三课时)教案 (新版)新人教版
1.4.1 有理数乘法(3)中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:a×b可以写成a·b或ab.当用字母表示乘法时“×”号可写成“·”或省略.
三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
乘法结合律:(ab)c=a(bc).
在小学里,乘法还满足分配律,例如6×(+)=6×+6×.
任意选取三个有理数(至少有一个负数)分别填入下列□、○和△内,并比较两个运算结果,你能发现什么?
七、课后反思
教具准备
投影仪.多媒体课件.
一、复习提问,引入新课
1.有理数的乘法法则是什么?
2.在小学里学过正有理数乘法有哪些运算律?
二、新课讲授
在小学里,数的乘法满足交换律,例如8×3=3×8.
还满足结合律,例如(4×6)×3=4×(6×3).
引入负数后,乘法交换律、结合律是否还成立?
规定有理数乘法法则后,显然乘法交换律、结合律仍然成立.
在代数学的研究中,运算律是很重要的内容.在计算时运用运算律,往往能使计算简便.
例4:用两种方法计算(+-)×12.
解法1:按运算顺序,先计算小括号内的数.
(+-)×12
=()×12
=-×12=-1
解法2:运用分配律.
(+-)×12
=×12+×12-×12
=3+2-6=-1
思考:比较以上两种方法,哪种解法运算量小?
显然解法2运算量小,它不需要通分.
三、巩固练习
1.课本第33页练习.
(1)-8500,运用结合律,先算(-25)×(-4).
(2)15,运用乘法交换律和结合律.
(3)25,运用分配律.
四、课堂小结
运算律的运用十分灵活,在有理数的混合运算中,各种运算律常常是混合运用的,这就要求我们要有较好的掌握运算律进行计算的能力,在平时的练习中,要观察题目特点,寻找最佳解题方法,这样往往可以减少计算量.
有理数的乘法
教学设计意图综述
在学习了有理数乘法法则后,在进行有理数乘法的运算律的探究与学习,符合学习规律。让学生观察实例,发现规律.通过实例探究发现规律,巩固学生上一节课的成果。掌握乘法运算律以及运算法则.
活动
目标及重难点
一、知识与技能:(1)能用乘法的三个运算律来进行乘法的简化运算.(2)能进行乘法及加减法的混合运算.二、过程与方法:经历探索有理数乘法运算律的过程,发展学生观察、归纳、验证等能力.三、情感态度与价值观:鼓励学生积极思考,并与同伴进行交流的思想,体会运算律对简化运算的作用.重点:能运用乘法运算律进行乘法运算.难点:灵活运用运算律进行乘法运算.
五、作业布置
1.课本第39页,习题1.4第7题第(1)、(2)、(3)小题.
六、板书设计:
1.4.1有理数的乘法(第三课时)
1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
2、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
3、随堂练习。
4、小结。
5、课后作业。
例如:5×(-6)=-30,(-6)×5=-30
即5×(-6)=(-6)×5
[3×(-4)]×(-5)=(-12)×(-5)=60
3×[(-4)×(-5)]=3×(+20)=60
即[3×(-4)]×(-5)=3×[(-4)×(-5)]
大家可以再任意取一些数,试一试.
一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.
所以:-5×[+(-2)]=-5×+(-5)×(-2)
这就是说,有理数的乘法仍满足分配律.
一般地,一个数同两个数的和相乘,等于把这Biblioteka 数分别同这两个数相乘,再把积相加.
分配律:a(b+c)=ab+ac.
以上表示乘法运算律的式子中,a、b、c表示任意有理数.
乘法的运算律与加法运算律类似,也可以推广到多个数的情况.