2020届好教育云平台高三第三次模拟考试卷 理科数学(一)
2019-2020年高三第三次模拟考试数学理试题 含答案
2019-2020年高三第三次模拟考试数学理试题含答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。
4.保持卡面清洁,不折叠,不破损。
5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。
第I卷一、选择题:本大题共12小题,每小题5分,共60分.1.若复数满足(其中是虚数单位),则的实部为()(A)6 (B)1 (C)(D)2.已知集合A={x|(a2-a)x+1=0,x∈R},B={x|ax2-x+1=0,x∈R},若A∪B=,则a的值为 ( ) A.0 B.1 C.0或1 D.0或43.直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形的面积为()A. B. C. D.4.已知一个空间几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.4 cm3 B.5 cm3 C.6 cm3 D.7 cm35. 要得到函数y=cosx的图像,只需将函数y=sin(2x+)的图像上所有的点的 ( )A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度6.如图,若程序框图输出的S是126,则判断框①中应为()A.B.C.D.7.已知,则的最大值为() A. 6 B. 4 C. 3 D.8.已知正方体的棱长为2, 长为2的线段的一个端点在棱上运动, 另一端点在正方形内运动, 则的中点的轨迹的面积为()A. B. C. D.9.在中,角A,B,C的对边分别是,且则等于( ),设函数=,,则大致是()题图11.已知是定义在R上的不恒为零的函数,且对任意的都满足,若,则( )A. B. C. D.12.是定义在区间【-c,c】上的奇函数,其图象如图所示,令,则下列关于函数的叙述正确的是()A.若,则函数的图象关于原点对称B.若,,则方程必有三个实根C.若,,则方程必有两个实根D.若,,则方程必有大于2的实根第II卷二、填空题:本大题共4小题,每小题5分,共20分。
2020届高三理科数学好教育第三次模拟测试卷(一)附解析
2020届高三理科数学第三次模拟测试卷(一)附解析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{0,1}A =,{0,1,2}B =,则满足A C B =U 的集合C 的个数为( ) A .4B .3C .2D .12.已知i 为虚数单位,复数93i2i 1iz -=++,则||z =( ) A .235+B .2022C .5D .253.抛物线22y x =的通径长为( ) A .4B .2C .1D .124.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少B .与2015年相比,2018年二本达线人数增加了0.5倍C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加5.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,,9L 填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方记(3)n n ≥阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么8N 的值为( )A .260B .369C .400D .4206.根据如下样本数据得到的回归方程为ˆˆˆybx a =+,则( ) A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >7.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为n S ,2n S ,3n S ,则下列等式中恒成立的是( )A .322n n n S S S +=B .2233()()n n n n n n S S S S S S -=-C .223n n n S S S =D .223()()n n n n n n S S S S S S -=-8.设2019log 2020a =,2020log 2019b =,120202019c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>9.已知函数()sin()(0,π0)f x x ωϕωϕ=+>-<<的最小正周期是π,将函数()f x 的图象向左平移π3个单位长度后所得的函数图象过点(0,1)P ,则下列结论中正确的是( ) A .()f x 的最大值为2B .()f x 在区间ππ(,)63-上单调递增 C .()f x 的图像关于直线π12x =对称 D .()f x 的图像关于点π(,0)3对称10.过正方体1111ABCD A B C D -的顶点A 作平面α,使得正方体的各棱与平面α所成的角都相等,则满足条件的平面α的个数为( )A .1B .3C .4D .611.椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( )A .222212cos sin 1e e θθ+=B .222212sin cos 1e e θθ+= C .2212221cos sin e e θθ+= D .2212221sin cos e e θθ+= 12.已知正方形ABCD 的边长为1,M 为ABC △内一点,满足10MDB MBC ∠=∠=︒, 则MAD ∠=( )第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.26(32)x x ++展开式中x 的系数为 .14.设实数x ,y 满足不等式211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,当3z x y =+时取得最小值时,直线3z x y =+与以(1,1)为圆心的圆相切,则圆的面积为 .15.已知等差数列{}n a 的公差(0,π)d ∈,1π2a =,则使得集合{|sin(),}n M x x a n *==∈N , 恰好有两个元素的d 的值为 .16.在三棱锥P ABC -中,2PA PC ==,1BA BC ==,90ABC ∠=︒,若PA 与底面ABC所成的角为60︒,则点P 到底面ABC 的距离是 ;三棱锥P ABC -的外接球的表面积是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知A 、B 分别在射线CM 、CN (不含端点C )上运动,2π3MCN ∠=,在ABC △中,角A 、B 、C 所对的边分别是a ,b ,c .(1)若a ,b ,c 依次成等差数列,且公差为2,求c 的值;(2)若3c =,ABC θ∠=,试用θ表示ABC △的周长,并求周长的最大值.18.(12分)如图,在三棱锥P ABC -中,底面是边长为4的正三角形,2PA =,PA ⊥底面ABC ,点E ,F 分别为AC ,PC 的中点. (1)求证:平面BEF⊥平面PAC ;(2)在线段PB 上是否存在点G ,使得直线AG 与平面PBC 所成的角的正弦值为155?若存在,确定点G 的位置;若不存在,请说明理由.19.(12分)已知(1,0)A -,(1,0)B ,AP AB AC =+u u u r u u u r u u u r ,||||4AP AC +=u u u r u u u r .(1)求P 的轨迹E ;(2)过轨迹E 上任意一点P 作圆22:3O x y +=的切线1l ,2l ,设直线OP ,1l ,2l 的斜率分别是0k ,1k ,2k ,试问在三个斜率都存在且不为0的条件下,012111()k k k +时候是定值,请说明理由,并加以证明.20.(12分)已知函数242()xx x f x e ++=.(1)求函数()f x 的单调区间;(2)若对任意的(2,0]x ∈-,不等式2(1)()m x f x +>恒成立,求实数m 的取值范围.21.(12分)2019年3月5日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:20192020-年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量()m m *∈N 在17与26之间,日需求量m (件)的频率()P m 分布如下表所示:己知其成本为每件5元,售价为每件10元若供大于求,则每件需降价处理,处理价每件2元.(1)设每天的进货量为(16,1,2,,10)n n X X n n =+=L ,视日需求量(16,1,2,,10)i i Y Y i i =+=L 的频率为概率(1,2,,10)i P i =L ,求在每天进货量为n X 的条件下,日销售量n Z 的期望值()n E Z (用i P 表示);(2)在(1)的条件下,写出()n E Z 和1()n E Z +的关系式,并判断X 为何值时,日利润的均值最大.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】 在直角坐标系xOy 中,直线l 的参数方程为31x ty t =-⎧⎨=+⎩(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线π:22cos()4C ρθ=-.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.23.(10分)【选修4-5:不等式选讲】 设0a >,0b >,且a b ab +=.(1)若不等式2x x a b +-≤+恒成立,求实数x 的取值范围; (2)是否存在实数a ,b ,使得48a b +=?并说明理由.理 科 数 学(一)答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.【答案】A【解析】由A C B =U 可知集合C 中一定有元素2,所以符合要求的集合C 有{2},{2,0},{2,1},{2,0,1}共4种情况. 2.【答案】C【解析】对复数z 进行化简:93i (93i)(1i)2i 2i 34i 1i 2z ---=+=+=-+, 所以22345z =+=. 3.【答案】D 【解析】标准化212x y =,通径122p =. 4.【答案】D【解析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 对于选项A ,2015年一本达线人数为0.28S ,2018年一本达线人数为0.24 1.50.36S S ⨯=, 可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=, 显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年,艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S ,2018年不上线人数为0.28 1.50.42S S ⨯=, 不达线人数有所增加. 5.【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,31(123456789)153N =++++++++=, 41(12345678910111213141516)344N =+++++++++++++++=,51(125N =+345678910111213141516171819+++++++++++++++++202122232425)65++++++=,…,∴222211(1)(1)(12345)22n n n n n N n n n ++=++++++=⨯=L ,6.【答案】A【解析】画出散点图知0a >,0b <,故选A . 7.【答案】D【解析】由等比数列的性质得n S ,2n n S S -,32n n S S -成等比数列,2232()()n n n n n S S S S S -=-,化简得223()()n n n n n n S S S S S S -=-.8.【答案】C 【解析】220192019201920191111log 2019log 2020log 2020log 201912222a =<==<=, 2020202020201110log 2019log 2019log 2020222b <==<=,1202020191c =>.9.【答案】B【解析】由条件知π()sin(2)6f x x =-,结合图像得B . 10.【答案】C【解析】在正方体1111ABCD A B C D -中,四面体11A B D C -的四面与12条棱所成的角相等, ∴正方体的12条棱所在的直线所成的角均相等的平面有4个. 11.【答案】B【解析】设椭圆的长轴长为12a ,双曲线的实轴长为22a , 交点P 到两焦点的距离分别为,(0)m n m n >>,焦距为2c , 则2222cos 2(2)m n mn c θ+-=, 又12m n a +=,22m n a -=,故12m a a =+,12n a a =-,2222222221212222212sin cos sin cos (1cos 2)(1cos 2)211a a a a c c c e e θθθθθθ-++=⇒+=⇒+=. 12.【答案】D【解析】设正方形ABCD 的边长为1, 在BMD △中,由正弦定理得2sin 35sin 35sin135DM DB DM =⇒=︒︒︒,在AMD △中,由余弦定理得2214sin 354sin35cos551AM =+︒-︒︒=, ∴AMD △为等腰三角形,70MAD ∠=︒.二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】576【解析】26(32)x x ++展开式中含x 的项为15565C (3)C 26332576x x x ⋅⋅=⨯⨯=,即x 的系数为576. 14.【答案】5π2【解析】当直线过点(1,2)-时,3z x y =+取得最小值1-, 故|311|10210r d ++===,从而圆的面积为5π2. 15.【答案】2π3【解析】要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,此时2π3d =. 16.【答案】3;5π【解析】将三棱锥P ABC -置于长方体中,其中1PP ⊥平面ABC ,由PA 与底面ABC 所成的角为60︒,可得13PP =,即为点P 到底面ABC 的距离, 由11PP A PPC ≌△△,得111P A PC ==, 如图,PB 就是长方体(三条棱长分别为1,1,3)外接球的直径, 也是三棱锥P ABC -外接球的直径,即5PB =,所以球的表面积为254π()5π2=.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.【解析】(1)a ,b ,c 成等差数列,且公差为2,∴4a c =-,2b c =-,又2π3MCN ∠=,1cos 2C =-,∴222(4)(2)12(4)(2)2c c c c c -+--=---,恒等变形得29140c c -+=,解得7c =或2c =, 又∵4c >,∴7c =. (2)在ABC △中,sin sin sin AC BC ABABC BAC ACB==∠∠∠, ∴32π2πsin sin()sin 33AC BC θθ===-,2sin AC θ=,π2sin()3BC θ=-, ∴ABC △的周长π()||||||2sin 2sin()33f AC BC AB θθθ=++=+-+13π2[sin cos ]32sin()3223θθθ=++=++,又∵π(0,)3θ∈,∴ππ2π333θ<+<, 当ππ32θ+=,即π6θ=时,()f θ取得最大值23+. 18.【答案】(1)证明见解析;(2)存在,G 为线段PB 的中点. 【解析】(1)证明:∵AB BC =,E 为AC 的中点,∴BE AC ⊥, 又PA ⊥平面ABCP ,BE ⊂平面ABC ,∴PA BE ⊥, ∵PA AC A =I ,∴BE ⊥平面PAC , ∵BE ⊂平面BEF ,∴平面BEF⊥平面PAC .(2)如图,由(1)知,PA BE ⊥,PA AC ⊥,点E ,F 分别为AC ,PC 的中点, ∴EF PA ∥,∴EF BE ⊥,EF AC ⊥, 又BE AC ⊥,∴EB ,EC ,EF 两两垂直,分别以EB u u u r ,EC uuu r ,EF uuu r方向为x ,y ,z 轴建立坐标系,设(23,2,2)BG BP λλλλ==--u u u r u u u r ,[0,1]λ∈, 所以(23(1),2(1),2)AG AB BG λλλ=+=--u u u r u u u r u u u r ,(23,2,0)BC =-u u u r ,(0,4,2)PC -u u u r, 设平面PBC 的法向量为(,,)x y z =n ,则023204200BC x y y z PC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-=⎪⋅=⎪⎩⎩u u u r u u u r n n , 令1x =,则3y =,23z =,∴(1,3,23)=n , 由已知221515431552||||416(1)4AG AG λλλ⋅=⇒=⇒=⋅-+u u u r u u u r n n 或1110(舍去), 故12λ=,故线段PB 上存在点G , 使得直线AG 与平面PBG 所成的角的正弦值为155,此时G 为线段PB 的中点. 19.【答案】(1)22:143x y E +=;(2)为定值,详见解析. 【解析】(1)方法一:如图因为AP AB AC =+u u u r u u u r u u u r ,所以四边形ACPB 是平行四边形,所以||||BP AC =u u u r u u u r ,由||||4AP AC +=u u u r u u u r ,得||||4AP BP +=u u u r u u u r ,所以P 的轨迹以A ,B 为焦点的椭圆易知24a =,1c =,所以方程E 为22143x y +=. 方法二:设(,)P x y ,由AP AB AC =+u u u r u u u r u u u r ,得(1,)AC AP AB BP x y =-==-u u u r u u u r u u u r u u u r ,再||||4AP AC +=u u u r u u u r ,得2222(1)(1)4x y x y +++-+=, 移项2222(1)4(1)x y x y ++=--+,平方化简得22143x y +=. (从2222(1)(1)4x y x y +++-+=发现是椭圆方程也可以直接得24a =,1c =).(2)设00(,)P x y ,过P 的斜率为k 的直线为00()y y k x x -=-,由直线与圆O 相切可得02||31y kx k -=+,即2220000(3)230x k x y k y --+-=,由已知可得1k ,2k 是方程(关于k )2220000(3)230x k x y k y --+-=的两个根, 所以由韦达定理:0012202012202333x y k k x y k k x ⎧+=⎪-⎪⎨-⎪=⎪-⎩,两式相除0012212023x y k k k k y +=⋅-, 又因为2200143x y +=,所以2200334y x -=-, 代入上式可得01212083y k k k k x +=-⋅,即0121118()3k k k +=-为定值.20.【答案】(1)见解析;(2)2(1,]e . 【解析】(1)2(22)()x x x f x e-+-'=,记2()22g x x x =--+, 令()0g x >,得1313x --<<-+,函数()f x 在(13,13)---+上单调递增;()0g x <,得13x <--或13x >-+,函数()f x 在(,13)-∞--或(13,)-++∞上单调递减.(2)记2()2(1)42x h x me x x x =+---,由(0)0221h m m >⇒>⇒>,()0h x '=,得2x =-或ln x m =-,∵(2,0]x ∈-,所以2(2)0x +>.①当21m e <<时,ln (2,0)m -∈-,且(2,ln )x m ∈--时,()0h x '<; (ln ,0)x m ∈-时,()0h x '>,所以min ()(ln )ln (2ln )0h x h m m m =-=⋅->,∴(2,0]x ∈-时,()0h x >恒成立;②当2m e =时,2()2(2)(1)x h x x e +'=+-,因为(2,0]x ∈-,所以()0h x '>,此时()h x 单调递增,且22(2)2(1)4820h e e --=--+-=,所以(2,0]x ∈-,()(2)0h x h >-=成立; ③当2m e >时,2(2)220m h e-=-+<,(0)220h m =->, 所以存在0(2,0)x ∈-使得0()0h x =,因此()0h x >不恒成立,综上,m 的取值范围是2(1,]e .21.【答案】(1)见解析;(2)20件.【解析】(1)当日需求量n m X ≤时,日销售量n Z 为m ;日需求量n m X >时,日销售量n Z 为n X ,故日销售量n Z 的期望()n E Z 为:当19n ≤≤时,1011()(16)(16)n n i ii i n E Z i P n P ==+=+++∑∑; 当10n =时,10101()(16)i i E Z i P ==+∑. (2)1101010112111()(16)(161)(16)(161)()n n n i i i i n i i i n i i n i n E Z i P n P i P n P E Z P ++==+==+=+=++++=++++=+∑∑∑∑∑, 设每天进货量为n X ,日利润为n ξ,则()5()3[(16)()]8()3(16)n n n n E E Z n E Z E Z n ξ=-+-=-+,111210()()8[()()]38()3n n n n n n E E E Z E Z P P P ξξ++++-=--=+++-L , 由1125()()08n n n E E P P P ξξ+-≥⇒+++≤L , 又∵123450.668P P P P +++=>,12350.538P P P ++=<, ∴4()E ξ最大,所以应进货20件时,日利润均值最大.22.【答案】(1):40l x y +-=,22:(1)(1)2C x y -+-=;(2)22.【解析】(1)由31x t y t =-⎧⎨=+⎩,消去t ,得40x y +-=, 所以直线l 的普通方程为40x y +-=,由πππ22cos()22(cos cossin sin )2cos 2sin 444ρθθθθθ=-=+=+, 得22cos 2sin ρρθρθ=+, 将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 得曲线C 的直角坐标方程为2222x y x y +=+,即22(1)(1)2x y -+-=. (2)设曲线C 上的点为(12cos ,12sin )P αα++, 则点P 到直线l 的距离|12cos 12sin 4||2(sin cos )2|22d αααα+++-+-== π|2sin()2|42α+-=, 当πsin()14α+=-时,max 22d =, 所以曲线C 上的点到直线l 的距离的最大值为22.23.【答案】(1)[]1,3-;(2)不存在,详见解析.【解析】(1)由a b ab +=,得111a b +=,1111()()224a b a b ab a b a b +=++≥⋅⋅=, 当且仅当2a b ==时""=成立. 不等式2x x a b +-≤+,即为24x x +-≤,当0x <时,不等式为224x -+≤,此时10x -≤<; 当02x ≤≤时,不等式24≤成立,此时02x ≤≤; 当2x >时,不等式为224x -≤,此时23x <≤, 综上,实数x 的取值范围是[]1,3-.(2)由于0a >,0b >, 则1144(4)()5b a a b a b a b a b +=++=++4529b a a b≥+⋅=, 当且仅当4b a a b a b ab⎧=⎪⎨⎪+=⎩,即32a =,3b =时,4a b +取得最小值9, 所以不存在实数a ,b ,使得48a b +=成立.。
最新2020年高三第三次模拟考试卷理科数学(一)(含答案)
( 2)在线段 PB 上是否存在点 G ,使得直线 AG 与平面 PBC 所成的角的正弦值为 确定点 G 的位置;若不存在,请说明理由.
15 ?若存在, 5
( 1)求 P 的轨迹 E ; ( 2)过轨迹 E 上任意一点 P 作圆 O : x2 y 2 3 的切线 l1 ,l2 ,设直线 OP ,l1 ,l2 的斜率分别是 k 0 ,
8.答案: C
解: 1
1 log 2019 2019
22
0 b log 2020 2019
a log 2019 2020
1 log 2019 2020
2
1 log 2019 2019 2 1 , 2
1
1 2 log 2020 2019
1
log 2
2020
2020
1 , c 2019 2020 2
1.
20.( 12 分)已知函数 f (x)
ex
.
( 1)求函数 f (x) 的单调区间; ( 2)若对任意的 x ( 2,0] ,不等式 2m( x 1) f ( x) 恒成立,求实数 m 的取值范围.
产业扶贫、 保障扶贫、 安居扶贫三场攻坚战. 为响应国家政策, 老张自力更生开了一间小型杂货店. 据
贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好
请考生在 22 、 23 两题中任选一题作答,如果多做,则按所做的第一题记分.
22.( 10 分)【选修 4-4 :坐标系与参数方程】
在直角坐标系 xOy 中,直线 l 的参数方程为
x 3t ( t 为参数),在以坐标原点为极点,
C. 400
D. 420
得到的回归方程为 y? b?x a?,则(
河南省2020 年高三第三次模拟考试理科数学试卷-含答案
)
SABO
A.1
B. 2
C. 3
D. 4
10.半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多
边形为面的多面体,体现了数学的对称美.二十四等边体就是
一种半正多面体,是由正方体切截而成的,它由八个正三角形
和六个正方形为面的半正多面体.如图所示,图中网格是边长
3
上单调递增, f (log2 9) f (2 2 ) f ( 5) ,即 b a c ,故选:C.
7.【答案】B
b 在 a 上投影为 2 ,即
b
cos
a ,
b
2
b
0
cos a,b 0 又
cos
a,
b
1,
0
b 2
超标的概率均为 p(0 p 1) ,且各个时间段每套系统监测出排放超标情况相互独立. (1)当 p 1 时,求某个时间段需要检查污染源处理系统的概率;
2
(2)若每套环境监测系统运行成本为 300 元/小时(不启动则不产生运行费用),除运行费 用外,所有的环境监测系统每年的维修和保养费用需要 100 万元.现以此方案实施,问该企 业的环境监测费用是否会超过预算(全年按 9000 小时计算)?并说明理由.
BAC BAA1 60 ,A1AC 的角平分线 AD
交 CC1 于 D .
(1)求证:平面 BAD 平面 AA1C1C ;
(2)求二面角 A B1C1 A1 的余弦值.
19.已知椭圆
C:
x2 a2
y2 b2
1(a
b
0) 的离心率为
2020年普通高等学校招生第三次统一模拟考试理科数学参考答案
2 Sn = 3 × 3 × 21 + 5 × 3 × 22 + 7 × 3 × 23 + × × × + (2n - 1) × 3 × 2n-1 + (2n + 1) × 3 × 2n
-------------------- ④ 由③-④得:
- Sn = 9+6[ 21 + 22 + 23 + × × × + 2n-1 ]-(2n + 1) × 3 × 2n ∴ Sn = (6n - 3) × 2n + 3 . -----------------------------------12 分
平均数为:
X 160 0.06 170 0.12 180 0.34 190 0.30 200 0.1 210 0.08
= 185( 个 ).
----------------------------------------6 分
( Ⅱ ) 跳 绳 个 数 在 [155 , 165) 内 的 人 数 为 100 0.06 6 个 ,
12
高三理科数学参考答案 第 5 页 (共 8 页)
20.(本小题满分 12 分)
已 知 函 数 f (x) x ln(x a) 1(a < 0) .
(Ⅰ)若 函 数 f (x) 在 定 义 域 上 为 增 函 数 , 求 a 的 取 值 范 围 ;
(Ⅱ )证 明 : f(x) < ex + sin x .
绝密★启用前
2020 年普通高等学校招生第一次统一模拟考试 理科数学参考答案及评分标准 2020.03
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
2020届高中毕业班第三次教学质量检测理科数学试卷
高中毕业班第三次教学质量检测理科数学试题本试卷共 6 页。
满分 150 分。
考生注意:1. 答题前, 考生务必将自己的准考证号、 姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的 “准考证号、 姓名、 考试科目” 与考生本人准考证号、 姓名是否一致.2. 第I 卷每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑, 如需改动, 用橡皮擦干净后, 再选涂其他答案标号. 第II 卷用0. 5 毫米的黑色墨水签字笔在答题卡上书写作答. 若在试题卷上作答, 答案无效.3. 考试结束, 考生必须将试题卷和答题卡一并交回.一、 选择题: 本大题共 12 小题, 每小题 5 分, 共 60 分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合 A ={}23x x -≤≤ , 集合 B 满足 A ∩ B = A , 则 B 可能为 A. {}13x x -<≤ B. {}23x x -<< C. {}32x x -≤≤ D. {}33x x -≤≤2.已知复平面内点 M , N 分别对应复数12z i =+ 和21z i =-, 则向量MN 的模长为A.1B.C.D. 33.等比数列{}n a 的前 n 项和为Sn , 且1234,2,a a a 成等差数列, 若 a 1=1, 则 S 4=A.7B.8C.15D.164.已知40.40.40.3log ,0.2,0.3a b c ===, 则A. a < b < cB. a< c < bC. b< c< aD. b< a< c5.已知角 α 的终边过点 P (-2m ,8) 且 cos α =35, 则tan α 的值为 A. 34 B. 43 C. 43- D. 43±6.甲、 乙等 4 人排成一列, 则甲乙两人不相邻的排法种数为A. 24B.12C.6D.47.函数1()()sin f x x x x =-在[,0)(0,]ππ-的图象大致为8. 如图, 网格纸的小正方形的边长是 1, 在其上用粗实线和粗虚线画出了某三棱锥的三视图, 则该三棱锥的内切球表面积为A. 323B. 163π C. 48π D. 39.中国是茶的故乡,也是茶文化的发源地 中国茶的发现和利用已有四千七百多年的历史, 且长盛不衰, 传遍全球 为了弘扬中国茶文化, 某酒店推出特色茶食品“金萱排骨茶”, 为了解每壶“金萱排骨茶” 中所放茶叶量x 克与食客的满意率y 的关系, 通过试验调查研究,发现可选择函数模型bx c y ae +=来拟合y 与 x 的关系, 根据以下数据:可求得y最新x 的回归方程为A. 0.043 4.291x y e-= B. 0.043 4.291x y e += C. 0.043 4.2911100x y e -= D. 0.043 4.2911100x y e += 10.已知点Q 在椭圆22184x y +=上运动, 过点 Q 作圆22(1)1x y -+=的两条切线, 切点分别为 A , B , 则AB 的最小值为 A. 25 B. 6 C. 6 D. 26 11. 如图, 大摆锤是一种大型游乐设备, 常见于各大游乐园.游客坐在圆形的座舱中, 面向外.通常大摆锤以压肩作为安全束缚, 配以安全带作为二次保险,座舱旋转的同时, 悬挂座舱的主轴在电机的驱动下做单摆运动.今年五一, 小明去某游乐园玩“大摆锤”, 他坐在点 A 处, “大摆锤” 启动后, 主轴OB 在平面α 内绕点O 左右摆动, 平面α与水平地面垂直,OB 摆动的过程中, 点A 在平面β 内绕点B 作圆周运动, 并且始终保持OB ⊥ β, B ∈β.已知 OB =6AB , 在“大摆锤” 启动后, 给出下列结论:① 点 A 在某个定球面上运动;② 线段 AB 在水平地面上的正投影的长度为定值;③ 直线 OA 与平面 α 所成角的正弦值的最大值为3737④ β 与水平地面所成角记为 θ,直线OB 与水平地面所成角记为δ,当 0 < θ <2π时, θ + δ 为定值.其中正确结论的个数为A. 1B.2C. 3D. 412. 已知函数()2sin()f x x h ωϕ=++的最小正周期为π, 若()f x 在[0,]4π 上的最大值为 M , 则 M 的最小值为A. B. C. 1 D. 二、 填空题: 本大题共 4 小题, 每小题 5 分, 共 20 分。
2020年高考第三模拟考试数学(理)试题(全国新课标1卷)-含答案
2020年⾼考第三模拟考试数学(理)试题(全国新课标1卷)-含答案2020年⾼考第三模拟考试数学(理)试题(全国新课标1卷)注意事项:1.答卷前,考⽣务必将⾃⼰的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上⽆效。
3.考试结束后,将本试卷和答题卡⼀并交回。
⼀、选择题:本⼤题共12⼩题,每⼩题5分,满分60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.设集合{1,2,4}A =,2{|40}B x x x m =-+=,若}1{=B A ,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 2.设复数1z ,2z 在复平⾯内的对应点关于虚轴对称,13z i =+,则12z z =A .10B .9i --C .9i -+D .-103.已知向量)4,(),3,2(x b a ==,若)(b a a -⊥,则x =A .21B .1C .2D .34.设等差数列{}n a 的前n 项和为n S ,若3623a a +=,535S =,则{}n a 的公差为A .2B .3C .6D .95.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平⾯,则下列说法正确的是()A .若βαβα//,,??n m ,则n m //B .若βαα//,?m ,则β//mC. 若βαβ⊥⊥,n ,则α//nD .若βα??n m ,,l =βα,且l n l m ⊥⊥,,则βα⊥6.某学校计划在周⼀⾄周四的艺术节上展演《雷⾬》,《茶馆》,《天籁》,《马蹄声碎》四部话剧,每天⼀部,受多种因素影响,话剧《雷⾬》不能在周⼀和周四上演,《茶馆》不能在周⼀和周三上演,《天籁》不能在周三和周四上演,《马蹄声碎》不能在周⼀和周四上演,那么下列说法正确的是A .《雷⾬》只能在周⼆上演B .《茶馆》可能在周⼆或周四上演C .周三可能上演《雷⾬》或《马蹄声碎》D .四部话剧都有可能在周⼆上演7.函数x e x f xcos )112()(-+=(其中e 为⾃然对数的底数)图象的⼤致形状是A B C D8.被誉为“中国现代数学之⽗”的著名数学家华罗庚先⽣倡导的“0.618优选法”在⽣产和科研实践中得到了⾮常⼴泛的应⽤,0.618就是黄⾦分割⽐m =的近似值,黄⾦分割⽐还可以表⽰成2sin18?= A .4 B1 C .2 D19.已知y x ,满⾜约束条件??≤+≤--≥++00202m y y x y x ,若⽬标函数y x z -=2的最⼤值为3,则实数m 的值为A .-1B .0C .1D .210.如图是某⼏何体的三视图,正视图是等边三⾓形,侧视图和俯视图为直⾓三⾓形,则该⼏何体外接球的表⾯积为A .193πB .8πC .9πD .203π 11.已知函数)0(sin )42(cos sin 2)(22>--=ωωπωωx x x x f 在区间]65,32[ππ-上是增函数,且在区间],0[π上恰好取得⼀次最⼤值,则ω的范围是A .]53,0(B .]53,21[C .]43,21[D .)25,21[12.若,,x a b 均为任意实数,且22(2)(3)1a b ++-=,则22()(ln )x a x b -+-的最⼩值为A.B .18 C.1 D.19-⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.13.ABC ?的内⾓C B A ,,的对边分别为c b a ,,,若1,135cos ,54cos ===a B A ,则=b __________.14.已知函数1)1ln()(2+++=x x x f ,若2)(=a f ,则=-)(a f __________.15.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则1220...a a a +++=_______.16.已知四边形ABCD 为矩形,AB=2AD=4,M 为AB 的中点,将ADM ?沿DM 折起,得到四棱锥DMBC A -1,设C A 1的中点为N ,在翻折过程中,得到如下三个命题:①DM A //1平⾯BN ,且BN 的长度为定值5;②三棱锥DMC N -的体积最⼤值为322;③在翻折过程中,存在某个位置,使得C A DM 1⊥其中正确命题的序号为__________.三、解答题:共70分,解答时应写出必要的⽂字说明、演算步骤.第17~21题为必考题,第22、23题为选考题.(⼀)必考题:共60分17.(12分)已知函数()sin ()3f x A x π=+,x R ∈,0A >,0π?<<.()y f x =的部分图像,如图所⽰,P 、Q 分别为该图像的最⾼点和最低点,点P 的坐标为(1,)A .(1)求()f x 的最⼩正周期及?的值;(2)若点R 的坐标为(1,0),23PRQ π∠=,求18.(12分)已知数列}{n a 满⾜)1(2)1(,211+++==+n n S n nS a n n .(1)证明数列}{nS n 是等差数列,并求出数列}{n a 的通项公式;(2)设n a a a a b n 2842++++=,求n b .。
2020年全国Ⅲ卷理科数学统一考试仿真卷(一)答案
理科数学试卷答案 第 2页(共 6页)
以 D 为原点,以 DA , DB , DC 所在直线分别为轴, y 轴,轴建立空间直角坐标系,由
已知可得 AC1 2 , AD 1 , BD A1D DC 3 , BC 6 ,
∴ D 0, 0, 0 , A1, 0, 0 , B 0,0, 3 , C1 1, 0, 0 , C 0, 3,0 ,·····6 分
5 y2
y1
x
3
5 2
y1
5 2
y2
5 y2
y1
9 2
5 y2
y1
,
即 x 9 ,···········11 分 2
故点 S 恒在定直线 x 9 上.···········12 分 2
21.【答案】(1)见解析;(2) 4 . 3
【解析】(1) f x x2 1 a x a x 1 x a .···········1 分
因为 Sn Sn1 2an n 2an1 n 1 n≥2 ,
所以 an 2an1 1 ,···········3 分
从而由
an
1
2 an1
1
得
an 1 an1 1
2
n≥2 ,···········5
分
所以an 1 是以为首项,为公比的等比数列.···········6 分
(2)由(1)得 an 2n 1,···········8 分
P X 0 15 ,···········7 分
28
P X 1 12 3 ,···········8 分
28 7
P X 2 1 ,···········9 分
28 故 X 的分布列为:
X
0
1
2020届高三三诊模拟考试数学理科试卷
xP xQ
2 2k k
4 ,所以| OP | | OQ | 为定值 4.
21.(1) f x 的定义域为 0, , f x 2x 5 2 2x2 5x 2 2x 1 x 2 ,
x
x
x
f
x
的单调递增区间为
0,
1 2
和
2,
,单调递减区间为
1 2
,
2
.
(2∵ f x 2x a 2 2x2 ax 2 , f x 有两个极值点
项和为
Sn ,
a9
1 2
a12
6, a2
4,
则数列{ 1 } Sn
的前
10
项和为
A. 11 12
B. 10 11
C. 9 10
D. 8 9
6.将函数
f
x
sin
2x
的图象向左平移
0
2
个单位长度,得到的函数为偶函数,则
的值
为
A. 12
B. 6
C. 3
D. 4
7.从装有若干个大小相同的红球、白球和黄球的袋中随机摸出 1 个球,摸到红球、白球和黄球的概
于 x 轴的对称点为 D,直线 BD 交 x 轴于点 Q.试探究| OP | | OQ | 是否为定值?请说明理由.
21.(12 分)已知函数 f (x) x2 ax 2 ln x .
(I)当 a 5 时,求 f (x) 的单调区间;
(II)若
f
(x)
有两个极值点
x1 ,
x2
,且
1 3
x1
1 e
x2
,求
a
取值范围.(其中
e
为自然对数的底数).
2019-2020年高三第三次模拟数学理试题 含答案
绝密★启用前2019-2020年高三第三次模拟数学理试题 含答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题 60分)一、选择题:本大题共12小题,每小题5分,在每小题所给的四个选项中,只有一项是符合题目要求的.1.已知集合,,若,则实数=A.3B.2C.2或 3D.0或2或32.复数为的共轭复数,则A .B .C .D . 3.函数的零点个数为A.1B.2C.3D.4 4. 某程序框图如图所示, 则该程序运行后输出的值是A.xxB.2012C.xxD.xx5.一个几何体的三视图如图所示(单位: ),则该几何体的体积为( )A. 36B. 30C.D.6. 已知函数,若,使得方程成立,则实数的取值范围为 A. B. C. D. 或7.在中,若lgsin lgcos lgsin lg 2A B C --=,则的形状是A.直角三角形B.等边三角形C.不能确定D.等腰三角形开始i =2013是否S =2013i >0 ?i=i-1(1)S S S=-+输出S 结束8.双曲线一条渐近线的倾斜角为,离心率为,当取最小值时,双曲线的实轴长为 A. B. C. D.49.已知满足⎪⎩⎪⎨⎧≤--≤+≥0242c y x y x x ,若目标函数的最小值为5,则的最大值为A.5B.8C.10D.2010.在直角梯形ABCD 中,,1,3AB AD AD DC AB ⊥===,动点在以点为圆心,且与直线相切的圆内运动,设(,)AP AD AB R αβαβ=+∈,则的取值范围是A . B. C . D .11. 如图,△与△都是边长为2的正三角形,平面⊥平面,⊥平面,,则点到平面的距离为 A . B . C . D .12. 已知函数在处取最大值,以下各式正确的序号为 ① ②③④⑤A.①④B.②④C.②⑤D.③⑤第Ⅱ卷本卷包括必考题和选考题两部分。
2019-2020年高三下学期三模考试数学(理)试题含答案.doc
2019-2020年高三下学期三模考试数学(理)试题含答案理科数学试题第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}2,|x 5x 60U R A x ==-+≥,则U C A =A.{}|2x x >B. {}|32x x x ><或 C. {}|23x x ≤≤ D. {}|23x x << 2.设复数z 满足()25i z i -=(i 为虚数单位),则复数z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.已知,a b R ∈,则"01a ≤≤且01"b ≤≤是"01"ab ≤≤的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知向量,a b 的夹角为60,且1,23a a b =-=,则b =A. 1B.D.25.在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1—30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[]77,90内的学生人数为A. 2B. 3C. 4D.56.如图所示的程序框图的算法思路源于我国古代数学中的秦九韶算法,执行该程序框图,则输出的结果S 表示的值为 A.0123a a a a +++ B. ()30123a a a a x +++C. 230123a a x a x a x +++D. 320123a x a x a x a +++ 7.已知函数()()sin 20f x x ωω=>,将()y f x =的图象向右平移个4π单位长度后,若所得图象与原图象重合,则ω的最小值等于A.2B. 4C.6D. 8 8.给出以下四个函数的大致图象:则函数()()()()ln ln ,,,x xx e f x x x g x h x xe t x x x====对应的图象序号顺序正确的是 A.②④③① B.④②③① C.③①②④ D.④①②③9.在一次抽奖活动中,8张奖券中有一、二、三等奖各1张,其余5张无奖.甲、乙、丙、丁四名顾客每人从中抽取2张,则不同的获奖情况有 A.24种 B.36种 C.60种 D.96种10.已知12,F F 为椭圆22221(0)x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为,B A ,若1ABF 为等边三角形,则椭圆的离心率为A.1B. 1C.D.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共计25分.11.若存在实数x 使4x a x -+≤成立,则实数a 的取值范围是 .12.已知函数()1x xe mf x mx e -=++是定义在R 上的奇函数,则实数m = . 13.圆心在x 轴的正半轴上,半径为双曲线221169x y -=的虚半轴长,且与该双曲线的渐近线相切的圆的方程是 .14. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为 . 15.已知函数()2h x x ax b =++在()0,1上有两个不同的零点,记{}()()min ,m m n m n n m n ≤⎧⎪=⎨>⎪⎩,则()(){}min 0,1h h 的取值范围为 .三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且3c o s c o s 13s i n s i n cAB A B +=+ (1)求C(2)若ABC 的面积为5b =,求sin .A17.(本小题满分12分)如图,已知四棱锥P A B C D -中,底面A B C D 是直角梯形,190,//,2,2A D C ABCD A DD C ∠===平面PBC ⊥平面A B C D .(1)求证:;AC PB ⊥(2)若PB PC ==,问在侧棱PB 上是否存在一点M ,使得二面角M AD B --的余弦值为9?若存在,求出PMPB的值;若不存在,说明理由.18.(本小题满分12分)某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课10人进行分析.(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率; (2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为X ,选择数学1的人数为Y ,设随机变量X Y ξ=-,求随机变量ξ的分布列和数学期望()E ξ.19.(本小题满分12分)下表是一个由2n 个正数组成的数表,用ij a 表示第i 行第j 个数(),,i j N ∈已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知113161351,9,48.a a a a =+==(1)求1n a 和4n a ; (2)设()()()()4144121nn n n n n a b a n N a a +=+-∈--,求数列{}n b 的前n 项和n S .20.(本小题满分13分)在平面直角坐标系中内动点(),P x y 到圆()22:11F x y +-=的圆心F 的距离比它到直线2y =-的距离小1.(1)求动点P 的轨迹方程;(2)设点P 的轨迹为曲线E ,过点F 的直线l 的斜率为k ,直线l 交曲线E 于,A B 两点,交圆F 于C,D 两点(A,C 两点相邻).①若BF tFA =,当[]1,2T ∈时,求k 的取值范围;②过,A B 两点分别作曲线E 的切线12,l l ,两切线交于点N ,求ACN 与BDN 面积之积的最小值.21.(本小题满分14分) 已知函数()()l n1.a fx x x a Rx=-++∈ (1)讨论()f x 的单调性与极值点的个数;(2)当0a =时,关于x 的方程()()f x m m R =∈有2个不同的实数根12,x x ,证明:12 2.x x +>。
2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案
理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足: x2 3x 4 0 ,( x 4)( x 1) 0 , x 4 或x 1 , A {x | x 4 或 x 1} , CU A={x | 1 x 4} , y 2x 2 2 , B {y | y 2} ,可知 (CU A) B {x | 2 x 4} .故选 D. 2. 【答案】A【解析】 z 1 i (1 i)(1 2i) 1 3i ,复数 z 的虚部为 3 ,1 2i555故错误;② | z | ( 1)2 ( 3)2 10 ,故错误;③复数 z 对应的555点为 ( 1 , 3) 为第三象限内的点,故正确;④复数不能比较大小, 55故错误.故选 A.3. 【答案】C【解析】 Sn 2an 4 ,可得当 n 1 时, a1 2a1 4 , a1 4 ,当n 2时,S n 12 an 14与已知相减可得an an 12,可知数列{ an } 是首项为 4,公比为 2 的等比数列, a5 4 24 64 .故选 C.4. 【答案】D【解析】可知降落的概率为pA22 A55 A661 3.故选D.5. 【答案】C【解析】函数 f (x) 2 020x sin 2x 满足 f (x) 2 020x sin 2x f (x) ,且 f (x) 2 020 2cos 2x 0 ,可知函数 f (x) 为单调递增的奇函数, f (x2 x) f (1 t) 0 可以变为 f (x2 x) f (1 t) f (t 1) ,可知 x2 x t 1 ,t x2 x 1 ,x2 x 1 (x 1)2 2 3 3 ,可知实数 t 3 ,故实数 t 的取值范围为 (∞,3] .故选 C.44446. 【答案】A【解析】双曲线的渐近线方程为 y 3x ,可得双曲线的方程为x2 y2 ,把点 P(2,3) 代入可得 4 3= , 1 ,双曲线的 3方程为 x2 y2 1,c2 1 3 4,c 2,F(2,0) ,可得 A(2,2 3) , 3B(2, 23),可得SAOB1 224343 .故选 A.7. 【答案】B【解析】 f (x) sin(x π )sin x cos2 x3 (sin x cos π cos x sin π )sin x 1 cos 2x332 3 sin 2x 1 cos 2x 3 1 ( 3 sin 2x 1 cos 2x) 3444 2224 1 sin(2x π ) 3264把函数 f (x) 的图象向右平移 π 单位,再把横坐标缩小到原来的一 6半,得到函数 g(x) ,可得 g (x) 1 sin(4x π ) 3 ,最小正周期为2642π π ,故选项 A 错误; x π , 4x π 4 π π π ,故选426666 2项 B 正确;最大值为 1 3 5 ,故选项 C 错误;对称中心的方程 244为 (kπ π ,3)(k Z) ,故选项 D 错误.故选 B. 4 24 48. 【答案】D【解析】可知 BDC 120°,且 AD 3 ,BD DC 1 ,在 BDC中,根据余弦定理可得 BC 2 1 1 2 11 cos120° 3, BC 3 ,据正弦定理可得 BC 2r , sin120°3 32r,r 1 , O1 为 BDC2的外心,过点 O1 作 O1O 平面 BDC , O 为三棱锥 A BCD 的外 接球的球心,过点 O 作 OK AD , K 为 AD 的中点,连接 OD 即为外接球的半径 R 12 ( 3 )2 7 ,可得外接球的表面积为22S 4πR2 4π ( 7 )2 7π .故选 D. 29. 【答案】C【解析】二项式 (x y)n 的展开式的二项式项的系数和为 64 ,可得 2n 64 ,n 6 ,(2x 3)n (2x 3)6 ,设 x 1 t ,2x 3 2t 1 ,(2x 3)n (2x 3)6 (2t 1)6 a 0 a1t a 2t 2 a 6t 6 ,可得 Tr1 C64 (2t)6414 C64 22t 2 60t 2 ,可知 a2 60 .故选 C. 10.【答案】A【解析】设点 P(x0 ,y0) ,则 x0 y0 6 0 ,则过点 P 向圆 C 作切 线,切点为 A,B ,连接 AB ,则直线 AB 的方程为 xx0 yy0 4 ,可得y0x06,代入可得(xy) x06y40,满足 x y 0 6y 4 0 x 2 3,故过定点为M(2,2).故选A. y2 33311.【答案】B【解析】f (x) log2 (x2 e|x|) ,定义域为 R ,且满足 f ( x) f (| x |) ,当 x 0 时,单调递增,而 (5)0.2 1 , 0 (1)0.3 1 , b a ,42cf(log 125) 4f( log25) 4f(log25 4),而0log25 4 log221, 2( 1 )0.3 21 2, log 25 4 (1)0.3 , 2f(log25) 4f(( 1 )0.3 ) 2,故 c a,故 c a b .故选 B.12.【答案】D【解析】f (x1) f (x2 ) x1 x21 x1x2,不妨设 x1x2 ,则f( x1) f (x2 ) 1 x21 x1,整理可得f (x1) 1 x1f (x2 ) 1 x2,设函数 h(x) f (x) 1 xa ln xx1 x在[e2 ,e4 ]上单调递减,可知 h'(x)a(1 ln x2x)1 x20,可知 a 1 1 lnx,而函数F ( x)1 1 lnx在[e2,e4 ]单调递增,F (x)maxF (4)11 41 3,可知实数a 1 3.故选D.二、填空题13.【答案】 9 5 5【解析】向量 a b在 a上的投影为| a b|cos (a b) a|a| (1,5) (1,2) 9 5 .5514.【答案】 5 2 6【解析】首先作出可行域,把 z ax by(a 0,b 0) 变形为 y a x z ,根据图象可知当目标函数过点 A 时,取最大值为 1, bb理科数学答案第 1 页(共 4 页) x 2x y 1 0 y40A(3,2),代入可得3a2b1,则1 a1 b3a a2b 3a 2b 3 2b 3a 2 5 2 2b 3a 5 2 6 ,当且仅当bababb 6 a 取等号,可知最小值为 5 2 6 .故选 C. 215.【答案】 4 3【解析】 cos A cos B 2 3 sin C ,根据正弦定理 sin B cos A ab3asin Acos B 2 3 sin B sin C ,可知 sin( A B) 2 3 sin B sin C ,33sin C 2 3 sin B sin C ,sin B 3 ,在 ABC 内,可知 B π 或3232π ,因为锐角 ABC ,可知 B π ,利用余弦定理可得 b2 a2 c2 332ac cos B a2 c2 ac 2ac ac ac ,可知 ac 16 ,则 ABC 的面积的最大值 1 ac sin B 1 16 3 4 3 ,当且仅当 a c 时,取222等号,故面积的最大值为 4 3 .16.【答案】 4 5【解析】抛物线 C :y2 2 px( p 0) 的准线方程为 x 2 ,可知抛物线 C 的方程为:y2 8x ,设点 A(x1 ,y1) ,B(x2 ,y2 ) ,AB 的中点为 M (x0 ,y0 ) ,则 y12 8x1 ,y22 8x2 两式相减可得 ( y1 y2 )( y1 y2 ) 8(x1 x2 ),y1 y2 x1 x2 8 y1 y2 ,可知 8 (1) 1 2 y0 x0 y0 6 0,解得 x0 y02 4,可得 M(2,4),则 OA OB 2OM 2(2,4) (4,8) ,可得 | OA OB | | (4,8) | 42 82 4 5 .三、解答题17.【解析】(1) a1 1,an1 2an 1 ,可得 an1 1 2(an 1) ,{an 1} 是首项为 2,公比为 2 的等比数列.--------------- 2 分 an 1 2 2n1 2n , an 2n 1 .即数列 { an } 的通项公式 an 2n 1 .--------------- 4 分数列 { bn } 的前 n 项的和为 Sn n2 ,可得 b1 S1 1 ,当 n 2 时, bn Sn Sn1 n2 (n 1)2 2n 1 ,故数列 { bn } 的通项公式为 bn 2n 1 .--------------- 6 分(2)可知 cn bn an (2n 1) (2n 1) (2n 1) 2n (2n 1) --------------- 7 分设 An 1 2 3 22 5 23 (2n 1) 2 n , 2 An 1 22 3 23 (2n 3) 2 n (2n 1) 2 n 1 , 两式相减可得 An 2 2(22 23 2 n) (2n 1) 2 n 1 ,可得 An 6 (2n 1) 2n1 2n2 ,--------------- 10 分而数列 {2n 1}的前n项的和为Bn(1 2n 1) 2nn2,所以 Tn 6 (2n 1) 2n1 2n2 n2 .--------------- 12 分 18.【解析】(1)证明: PD 面 ABCD , PD BC ,在梯形 ABCD 中,过 B 作 BH DC 交 DC 于 H , BH 1 ,BD DH 2 BH 2 1 1 2 ,BC 2 ,( 2)2 ( 2)2 22 ,即 DB2 BC 2 DC 2 ,即 BC DB .--------------- 2 分 BC DB , PD BD D , BC 平面 PDB , BC 平面 EBC 平面 PBC 平面 PDB .--------------- 4 分 (2)连接 PH , BH 面 PDC ,BPH 为 PB 与面 PDC 所成的角, tan BPH BH 1 , BH 1 , PH 2 , PH 2 PD2 DH 2 PH 2 , PD2 1 2 , PD 1 ,--------------- 6 分以 D 为原点,分别以 DA , DC 与 PD 为 x ,y ,z 轴,建立如图所示的E(空0间,2直,角12)坐,标可系知,则PBP(0(1,,01,,1) ,1)A,(A1,B0,(00),,1B,(01),1,,0) ,C (0,2,0) ,设平面PAB 可知 PB a AB a 设平面 PEB的法向量为 a (x,y,z) , 0 0 xy y z 00,可取 a(1,0,1),-----------的法向量为 b(x,y ,z ) ,BE(1,1,1),8分2可知 PB BE b b 0 0 x x y y z 1 2 z0 0 ,可取 b(3,1,4),-----10分可知两向量的夹角的余弦值为 cos a b 1 3 0 11 4| a || b | 1 1 32 1 42 7 13 ,可知两平面所成的角为钝角,可知两平面所成角的余弦 26值为 7 13 .--------------- 12 分 2619.【解析】(1)完成 2 2 列联表, 满意 不满意总计男生302555女生50合计80156540120 ----------- 4 分根据列联表中的数据,得到 K 2 120 (30 15 25 50)2 55 65 80 40 960 6.713 6.635 ,所以有 99% 的把握认为对“线上教育是否 143满意与性别有关”.--------------- 6 分(2)由(1)可知男生抽 3 人,女生抽 5 人, 0,1,2,3 .P(0)C53 C835 ,P( 28 1)C52C31 C8315 28,P(2)C51C32 C8315 ,P( 563)C33 C831 56.---------------8分可得分布列为0123P515152828561------------ 10 分56可得 E( ) 0 5 1 15 2 15 3 1 9 .--------------- 12 分 28 28 56 56 820.【解析】(1)x2 4 y ,焦点 F (0 , 1) ,代入得 b 1,e c 2 , a2a2 b2 c2 ,解得 a2 2,b2 1 , x2 y2 1 ,-------------- 2 分 2 直线的斜率为 1,且经过 (1,0) ,则直线方程为 y x 1 ,联立 x2 2y2 1,解得y x 1,x y 0 1或 x y 4 3 1 3, ,C(0,1) ,D( 4 ,1) ,--------------- 4 分 33理科数学答案第 2 页(共 4 页)| CD | 4 2 ,又原点 O 到直线 y x 1 的距离 d 为 2 ,32 SCOD1 2| CD|d1 242 32 2 .--------------- 6 分 23(2)根据题意可知直线 m 的斜率存在,可设直线 m 的方程为: y kx t,ykxt,联立 x2 2y2 1,(2k 2 1)x24ktx2t 220,可得 (4kt)2 4(2k 2 1)(2t 2 2) 0 ,整理可得 t 2 2k 2 1 ,可知 F2 (1,0) , A(1,k t),B(2,2k t) ,--------------- 8 分则 | AF2 | (1 1)2 (k t 0)2 k 2 2kt t2| BF2 | (2 1)2 (2k t 0)2 1 (4k 2 4kt t2) k 2 2kt t2 2 为定值.--------------- 12 分 2k 2 4kt 2t 2 221.【解析】(1)函数 f (x) 的定义域为 (0, ∞) ,f (x) x a 1 x2 ax 1 ,设 h(x) x2 ax 1 ,xx函数 h(x) 在 (1,3) 内有且只有一个零点,满足 h(1) h(3) 0 ,可得 (1 a 1)(9 3a 1) 0 ,解得 2 a 10 , 3故实数 a 的取值范围为 (2,10) .--------------- 4 分3(2) 2 f (x) 2x 2 (a 1)x2 ,可以变形为 2ln x 2x 2 a(x22x),因为x0,可得a 2ln x x2 2x 2x2,--------------6分设g(x)2ln x 2x x2 2x2,g' ( x)2(x 1)(2ln x (x2 2x)2x).设 h(x) 2 ln x x ,h(x) 在 (0, ∞) 单调递增,h(1 ) 2ln 2 1 0 , h(1) 1 0 .22故存在一点 x0 (0.5,1) ,使得 h(x0 ) 0 ,--------------- 8 分当 0 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 单调递增;当 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 的最大值为 g(x0) ,且 2 ln x0 x0 0 ,--------------- 10 分g (x)max g(x0) 2ln x0 2x0 2 x02 2x01 x0,可知 a 1 x0,又1 x0 (1,2) ,可得整数 a 的最小值为 2.--------------- 12 分22.【解析】(1)由题可知:2 2 2 cos2 6 , 2(x2 y2 ) x2 6 ,曲线 C 的直角坐标方程为 y2 x2 1 , 32直线 l 的普通方程为 3x 4 y 4 3a 0 ,--------------- 3 分两方程联立可得 33x2 6 (4 3a)x (4 3a)2 48 0 ,可知 [6 (4 3a)]2 4 33 [(4 3a)2 48] 0 ,解得 a 66 4 或 a 66 4 .--------------- 6 分33(2)曲线 C 的方程y2x21,可设x 2 cos ,32 y 3 sin则 2x 3y 2 2 cos 3 3 sin (2 2)2 (3 3)2 sin( ) ,其中 tan 2 6 ,可知最大值为 9(2 2)2 (3 3)2 35 .--------------- 10 分 23.【解析】(1)当 a 1 时, f (x) | 3x 6 | | x 1 | x 10 ,当 x 1时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1;--------------- 2 分 当 1 x 2 时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1; 当 x 2 时, (3x 6) (x 1) x 10 ,解得 x 5 , 综上可得 {x | x 5或x 1} .--------------- 4 分 (2)由 f (x) 0 可知, f (x) | 3x 6 | | x 1| ax 0 , | 3x 6 | | x 1| ax ,设 g(x) | 3x 6 | | x 1| , h(x) ax , 同一坐标系中作出两函数的图象如图所示,--------------- 6 分 4x 5,x 1, g(x) 2x 7,1 x 2,可得 A(2,3) , 4x 5,x 2, 当函数 h(x) 与函数 g (x) 的图象有两个交点时,方程 f (x) 0 有两 个不同的实数根,--------------- 8 分由函数图象可知,当 3 a 4 时,有两个不同的解,故实数 a 的 2取值范围为 ( 3 ,4) .--------------- 10 分 2理科数学答案第 3 页(共 4 页)理科数学答案第 4 页(共 4 页)。
2020-2021学年高三数学(理科)第三次统一模拟考试试题机答案解析
绝密★启用前最新高三第三次统一考试 理科数学(新课标卷)本试题卷分第I 卷(选择题)和第Ⅱ卷(必考题和选考题两部分)。
考生做答时,将第I 卷的选择题答案填涂在答题卷的答题卡上(答题注意事项见答题卡),必考题(13题—21题)和选考题(22、23、24)答在答题卷上,考试结束后,将答题卷交回。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求的。
1.设集合P={2, 3a }, Q={a , b},若P ∩Q = { 1},则P ∪Q 等于 A.{2,0} B.{2,1,0} C.{3,2,0} D.{3,2,1,0}2.若复数12bii ++的实部与虚部相等,则实数b 等于 A. 3 B. 21-C.13D. 1 3.已知向量a 、b 满足|a |=3,且a 丄(a +b ),则b 在a 方向上的投影为 A. 3 B.-3C.233-D. 2334. 甲、乙、丙三位同学相互传球,第一次由甲将球传出去,每次传球时,传球者将球等可能地传给另外2个人中的任何1人,经过3次传球后,球仍在甲手中的概率是 A.41 B. 31 C. 21 D. 325.如图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则满足上述条件的所有x 的值为 A.-1,0,1,3B.1,2,3C.0,1,3D. -3,-1,1,36.某四面体的三视图如图所示,则该四面体的四个面中面积最大的为 A. 1 B. 2C. 3D. 27.等比数列{a n }的前n 项和为S n , 若S 3= a 2+10a 1 , a 5=9 , 则a 1=A.31 B. 31-C. 91D. 91- 8. 已知椭圆C:12222=+b y a x (a >b >0)的离心率为23,双曲线122=-y x 的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为A. 12822=+y xB. 161222=+y xC. 141622=+y xD. 152022=+y x 9.已知f(x)=)sin (cos sin 2x x x ωωω+ 的图像在x ∈[0,1]上恰有一个对称轴和一个对称中心,则实数ω的取值范围为A.)85,83(ππ B. )85,83[ππ C. ]85,83(ππ D. ]85,83[ππ10. 已知函数f(x) = ⎪⎩⎪⎨⎧≤<102),4sin(2<<0|,log |2y x x x π,若存在实数x 1、x 2、x 3、x 4,(其中x 1<x 2<x 3<x 4)满足f(x 1)= f(x 2)= f(x 3)= f(x 4),则 2143)2)(2(x x x x •-- 的取值范围是A.(0,12)B.(4,16)C.(9,21)D.(15,25)11.棱长为2的正方体ABCD-A 1B 1C 1D 1 ,点M 在与正方体的各棱都相切的球面上运动, 点N 在△ACB 1的外接圆上运动,则线段MN 长度的最小值是 A.213+ B. 212- C. 213- D. 23-12. y=f(x-1)的图像关于直线x=1对称,且当x ∈(∞-,0)时,f(x)+'()xf x <0成立,a=)2(22.02.0f ,b=(ln2)f(ln2),c=)41(log )41(log 2121f ,则a,b,c 的大小关系是A.a >b >cB.b >a >cC.c >a >bD.a >c >b第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上。
2019-2020年高三第三次模拟考试数学(理)试题 含答案
2019-2020年高三第三次模拟考试数学(理)试题 含答案一、选择题 1.设复数,则A .B .C .D .2.设全集{}{}{}|5,1,2,3,1,4U x N x A B =∈≤==,则 A . B . C . D . 3.运行如图所示的程序框图,输出的等于A .30零B .29C .28D .274.一几何体的三视图如图所示,则它的体积为A .B .C .D . 5.为等比数列,,则A .有B .24C .D .48 6.已知,则A .B .C .D . 7.实数满足,则的最小值为A.B.C.D.28.经过点,渐近线与圆相切的双曲线的标准方程为A.B.C.D.9.边界在直线及曲线上的封闭的图形的面积为A.1 B.C.2 D.10.函数由确定,则方程的实数解有A.0个B.1个C.2个D.3个11.一种电子抽奖方式是:一次抽奖点击四次按钮,每次点击后,随机出现数字1,2,3,4。
当出现的四个数字不重复,且相邻两数字不是连续数字(即两个数字差的绝对值为1)时,获头奖,则第一次抽奖获头奖的概率为A.B.C.D.12.定义在上的函数,则A.既有最大值也有最小值B.既没有最大值,也没有最小值C.有最大值,但没有最小值D.没有最大值,但有最小值二、填空题13.若向量,则向量与的夹角的余弦值为。
14.为椭圆上一点,为两焦点,,则椭圆的离心率。
15.三棱锥的四个顶点都在半径为4的球面上,且三条侧棱两两互相垂直,则该三棱锥侧面积的最大值为。
16.如图,在圆内:画1条弦,把圆分成2部分;画2条相交的弦,把圆分成4部分,画3条两两相交的弦,把圆最多分成7部分;…,画条两两相交的弦,把圆最多分成部分。
三、解答题17.如图,是半径为2,圆心角为的扇形,是扇形的内接矩形。
(1)当时,求的长;(2)求矩形面积的最大值。
18.某经销商试销A、B两种商品一个月(30天)的记录如下:日销售量(件)0 1 2 3 4 5 商品A的频数 3 5 7 7 5 3 商品B的频数 4 4 6 8 5 3 若售出每种商品1件均获利40元,用表示售出A、B商品的日利润值(单位:元)。
陕西省2020届高三第三次教学质量检测数学(理)答案
转换为直角坐标方程为:x2 +y2 =2x+2槡3y, 所以:x2+y2-2x-2槡3y=0. 4分
{ (2)将线 l的参数方程为: xy==11++ttcsionsφφ(t为参数),
代入 x2+y2-2x-2槡3y=0. 所以 t2-2(槡3-1)sinφ·t-2槡3=0 设点 A、B所对应的参数为 t1和 t2,
解法 2:当 λ=13,即A→G=13G→E,FG//面 ABC.
第 18题图(1)
过 G作 GL//BE,交 AB于点 L.连结 LC.
GL//BE,GL=14BE,CF//BE,GL=14CD=14BE,
GL//CF四边形 CFGL为平行四边形,FG//CL,又 FG面 ABC,FG//面 ABC. =
由定义得, x-1 + y+1 + x + y-1 =( x-1 + x)+( y+1 + y-1)≥ (x-1)-x +
(y+1)-(y-1) =1+2=3
(当且仅当 0≤x≤1且 -1≤y≤1时取等号) 8分 即 t2-2t≤3t2-2t-3≤0,∴t∈[ -1,3]. 10分
(一)必考题:共 60分.
17.(12分)【解】(1)∵Sn-1 = 43(an-1 -1)(n≥2),Sn-1 = 43(an-1 -1)(n≥2),
∴an=Sn-Sn-1=4 3(an-an-1),所以 an=4an-1. 2分
又 a1=S1=4 3(a1-1),∴a1=4.
{ yx2=+k4xy+22-4=0(1+4k2)x2 +16kx+12=0
Δ≥0, (1)
x1
+x2
=1-+146kk2,
则
x1x2
=1+124k2,
(2) 6分
(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届好教育云平台高三第三次模拟考试卷理 科 数 学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{0,1}A =,{0,1,2}B =,则满足A C B =U 的集合C 的个数为( ) A .4B .3C .2D .12.已知i 为虚数单位,复数93i2i 1iz -=++,则||z =( )A .235+B .2022C .5D .253.抛物线22y x =的通径长为( ) A .4B .2C .1D .124.某地某所高中2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如下柱状图:则下列结论正确的是( )A .与2015年相比,2018年一本达线人数减少C .2015年与2018年艺体达线人数相同D .与2015年相比,2018年不上线的人数有所增加5.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,,9L 填入33⨯的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数21,2,3,,n L 填入n n ⨯个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方记(3)n n ≥阶幻方的对角线上的数字之和为n N ,如图三阶幻方的315N =,那么8N 的值为( )A .260B .369C .400D .4206.根据如下样本数据得到的回归方程为ˆˆˆybx a =+,则( ) A .0a >,0b <B .0a >,0b >C .0a <,0b <D .0a <,0b >7.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为n S ,2n S ,3n S ,则下列等式中恒成立的是( )A .322n n n S S S +=B .2233()()n n n n n n S S S S S S -=-C .223n n n S S S =D .223()()n n n n n n S S S S S S -=-8.设2019log 2020a =,2020log 2019b =,120202019c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>9.已知函数()sin()(0,π0)f x x ωϕωϕ=+>-<<的最小正周期是π,将函数()f x 的图象向左平移π3个单位长度后所得的函数图象过点(0,1)P ,则下列结论中正确的是( ) A .()f x 的最大值为2B .()f x 在区间ππ(,)63-上单调递增 C .()f x 的图像关于直线π12x =对称 D .()f x 的图像关于点π(,0)3对称10.过正方体1111ABCD A B C D -的顶点A 作平面α,使得正方体的各棱与平面α所成的角都相等,此卷只装订不密封班级 姓名 准考证号 考场号 座位号则满足条件的平面α的个数为( ) A .1B .3C .4D .611.椭圆与双曲线共焦点1F ,2F ,它们在第一象限的交点为P ,设122F PF θ∠=,椭圆与双曲线的离心率分别为1e ,2e ,则( ) A .222212cos sin 1e e θθ+= B .222212sin cos 1e e θθ+= C .2212221cos sin e eθθ+=D .2212221sin cos e eθθ+= 12.已知正方形ABCD 的边长为1,M 为ABC △内一点,满足10MDB MBC ∠=∠=︒, 则MAD ∠=( ) A .45︒ B .50︒C .60︒D .70︒第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.26(32)x x ++展开式中x 的系数为 .14.设实数x ,y 满足不等式211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,当3z x y =+时取得最小值时,直线3z x y =+与以(1,1)为圆心的圆相切,则圆的面积为 . 15.已知等差数列{}n a 的公差(0,π)d ∈,1π2a =,则使得集合{|sin(),}n M x x a n *==∈N , 恰好有两个元素的d 的值为 .16.在三棱锥P ABC -中,2PA PC ==,1BA BC ==,90ABC ∠=︒,若PA 与底面ABC 所成的角为60︒,则点P 到底面ABC 的距离是 ;三棱锥P ABC -的外接球的表面积是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知A 、B 分别在射线CM 、CN (不含端点C )上运动,2π3MCN ∠=,在ABC △中,角A 、B 、C 所对的边分别是a ,b ,c .(1)若a ,b ,c 依次成等差数列,且公差为2,求c 的值;(2)若3c =,ABC θ∠=,试用θ表示ABC △的周长,并求周长的最大值.18.(12分)如图,在三棱锥P ABC -中,底面是边长为4的正三角形,2PA =,PA ⊥底面ABC ,点E ,F 分别为AC ,PC 的中点. (1)求证:平面BEF⊥平面PAC ;(2)在线段PB 上是否存在点G ,使得直线AG 与平面PBC 所成的角的正弦值为155?若存在,确定点G 的位置;若不存在,请说明理由.u u u r u u u r u u u r u u u r u u u r(1)求P 的轨迹E ;(2)过轨迹E 上任意一点P 作圆22:3O x y +=的切线1l ,2l ,设直线OP ,1l ,2l 的斜率分别是0k ,1k ,2k ,试问在三个斜率都存在且不为0的条件下,012111()k k k +时候是定值,请说明理由,并加以证明.20.(12分)已知函数242()xx x f x e++=.(1)求函数()f x的单调区间;(2)若对任意的(2,0]x∈-,不等式2(1)()m x f x+>恒成立,求实数m的取值范围.21.(12分)2019年3月5日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:20192020-年,稳定实现扶贫对象“两不愁、三保障”,贫业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量()m m*∈N在17与26之间,日需求量m(件)的频率()P m分布如下表所示:己知其成本为每件5元,售价为每件10元若供大于求,则每件需降价处理,处理价每件2元.(1)设每天的进货量为(16,1,2,,10)n nX X n n=+=L,视日需求量(16,1,2,,10)i iY Y i i=+=L的频率为概率(1,2,,10)iP i=L,求在每天进货量为nX的条件下,日销售量nZ的期望值()nE Z(用iP表示);(2)在(1)的条件下,写出()nE Z和1()nE Z+的关系式,并判断X为何值时,日利润的均值最大.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线l的参数方程为3x t=-⎧⎨(t为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线π:22cos()4C ρθ=-.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.23.(10分)【选修4-5:不等式选讲】 设0a >,0b >,且a b ab +=.(1)若不等式2x x a b +-≤+恒成立,求实数x 的取值范围; (2)是否存在实数a ,b ,使得48a b +=?并说明理由.2020届好教育云平台高三第三次模拟考试卷理 科 数 学(一)答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】A【解析】由A C B =U 可知集合C 中一定有元素2,所以符合要求的集合C 有{2},{2,0},{2,1},{2,0,1}共4种情况. 2.【答案】C【解析】对复数z 进行化简:93i (93i)(1i)2i 2i 34i 1i 2z ---=+=+=-+, 所以22345z =+=. 3.【答案】D 【解析】标准化212x y =,通径122p =. 4.【答案】D【解析】设2015年该校参加高考的人数为S ,则2018年该校参加高考的人数为1.5S . 对于选项A ,2015年一本达线人数为0.28S ,2018年一本达线人数为0.24 1.50.36S S ⨯=,可见一本达线人数增加了,故选项A 错误;对于选项B ,2015年二本达线人数为0.32S ,2018年二本达线人数为0.4 1.50.6S S ⨯=, 显然2018年二本达线人数不是增加了0.5倍,故选项B 错误;对于选项C ,2015年和2018年,艺体达线率没变,但是人数是不相同的,故选项C 错误; 对于选项D ,2015年不上线人数为0.32S ,2018年不上线人数为0.28 1.50.42S S ⨯=, 不达线人数有所增加. 5.【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,31(123456789)153N =++++++++=,41(12345678910111213141516)344N =+++++++++++++++=,51(125N =+345678910111213141516171819+++++++++++++++++202122232425)65++++++=,…,∴222211(1)(1)(12345)22n n n n n N n n n ++=++++++=⨯=L ,∴288(81)2602N +==. 6.【答案】A【解析】画出散点图知0a >,0b <,故选A . 7.【答案】D【解析】由等比数列的性质得n S ,2n n S S -,32n n S S -成等比数列,2232()()n n n n n S S S S S -=-,化简得223()()n n n n n n S S S S S S -=-.8.【答案】C 【解析】220192019201920191111log 2019log 2020log 2020log 201912222a =<==<=, 2020202020201110log 2019log 2019log 2020222b <==<=,1202020191c =>.9.【答案】B【解析】由条件知π()sin(2)6f x x =-,结合图像得B . 10.【答案】C【解析】在正方体1111ABCD A B C D -中,四面体11A B D C -的四面与12条棱所成的角相等, ∴正方体的12条棱所在的直线所成的角均相等的平面有4个. 11.【答案】B【解析】设椭圆的长轴长为12a ,双曲线的实轴长为22a , 交点P 到两焦点的距离分别为,(0)m n m n >>,焦距为2c , 则2222cos 2(2)m n mn c θ+-=,又12m n a +=,22m n a -=,故12m a a =+,12n a a =-,2222222221212222212sin cos sin cos (1cos 2)(1cos 2)211a a a a c c c e e θθθθθθ-++=⇒+=⇒+=.12.【答案】D【解析】设正方形ABCD 的边长为1, 在BMD △中,由正弦定理得2sin 35sin 35sin135DM DBDM =⇒=︒︒︒,在AMD △中,由余弦定理得2214sin 354sin35cos551AM =+︒-︒︒=, ∴AMD △为等腰三角形,70MAD ∠=︒.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】576【解析】26(32)x x ++展开式中含x 的项为15565C (3)C 26332576x x x ⋅⋅=⨯⨯=,即x 的系数为576. 14.【答案】5π2【解析】当直线过点(1,2)-时,3z x y =+取得最小值1-,故|311|10210r d ++===,从而圆的面积为5π2. 15.【答案】2π3【解析】要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,此时2π3d =. 16.【答案】3;5π【解析】将三棱锥P ABC -置于长方体中,其中1PP ⊥平面ABC ,由PA 与底面ABC 所成的角为60︒,可得13PP =,即为点P 到底面ABC 的距离, 由11PP A PPC ≌△△,得111P A PC ==, 如图,PB 就是长方体(三条棱长分别为1,1,3)外接球的直径, 也是三棱锥P ABC -外接球的直径,即5PB =,所以球的表面积为254π()5π2=.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)7;(2)周长π()2sin()33f θθ=++,π6θ=时,()f θ取得最大值为23+.【解析】(1)a ,b ,c 成等差数列,且公差为2,∴4a c =-,2b c =-,又2π3MCN ∠=,1cos 2C =-,∴222(4)(2)12(4)(2)2c c c c c -+--=---, 恒等变形得29140c c -+=,解得7c =或2c =, 又∵4c >,∴7c =. (2)在ABC △中,sin sin sin AC BC ABABC BAC ACB==∠∠∠, ∴32π2πsin sin()sin 33AC BC θθ===-,2sin AC θ=,π2sin()3BC θ=-,∴ABC △的周长π()||||||2sin 2sin()33f AC BC AB θθθ=++=+-+ 13π2[sin cos ]32sin()3223θθθ=++=++,又∵π(0,)3θ∈,∴ππ2π333θ<+<, 当ππ32θ+=,即π6θ=时,()f θ取得最大值23+. 18.【答案】(1)证明见解析;(2)存在,G 为线段PB 的中点. 【解析】(1)证明:∵AB BC =,E 为AC 的中点,∴BE AC ⊥, 又PA ⊥平面ABCP ,BE ⊂平面ABC ,∴PA BE ⊥, ∵PA AC A =I ,∴BE ⊥平面PAC , ∵BE ⊂平面BEF ,∴平面BEF⊥平面PAC .(2)如图,由(1)知,PA BE ⊥,PA AC ⊥,点E ,F 分别为AC ,PC 的中点, ∴EF PA ∥,∴EF BE ⊥,EF AC ⊥, 又BE AC ⊥,∴EB ,EC ,EF 两两垂直,分别以EB u u u r ,EC uuu r ,EF u u u r方向为x ,y ,z 轴建立坐标系,则(0,2,0)A -,(0,2,2)P -,(23,0,0)B ,(0,2,0)C ,设(23,2,2)BG BP λλλλ==--u u u r u u u r,[0,1]λ∈,所以(23(1),2(1),2)AG AB BG λλλ=+=--u u u r u u u r u u u r ,(23,2,0)BC =-u u u r ,(0,4,2)PC -u u u r,设平面PBC 的法向量为(,,)x y z =n ,则023204200BC x y y z PC ⎧⎧⋅=-+=⎪⎪⇒⎨⎨-=⎪⋅=⎪⎩⎩u u u r u u u r n n ,令1x =,则3y =,23z =,∴(1,3,23)=n ,由已知221515431552||||416(1)4AGAGλλλ⋅=⇒=⇒=⋅-+u u u ru u u r nn或1110(舍去),故12λ=,故线段PB上存在点G,使得直线AG与平面PBG所成的角的正弦值为155,此时G为线段PB的中点.19.【答案】(1)22:143x yE+=;(2)为定值,详见解析.【解析】(1)方法一:如图因为AP AB AC=+u u u r u u u r u u u r,所以四边形ACPB是平行四边形,所以||||BP AC=u u u r u u u r,由||||4AP AC+=u u u r u u u r,得||||4AP BP+=u u u r u u u r,所以P的轨迹以A,B为焦点的椭圆易知24a=,1c=,所以方程E为22143x y+=.方法二:设(,)P x y,由AP AB AC=+u u u r u u u r u u u r,得(1,)AC AP AB BP x y=-==-u u u r u u u r u u u r u u u r,再||||4AP AC+=u u u r u u u r,得2222(1)(1)4x y x y+++-+=,移项2222(1)4(1)x y x y++=--+,平方化简得22143x y+=.(从2222(1)(1)4x y x y+++-+=发现是椭圆方程也可以直接得24a=,1c=).(2)设00(,)P x y,过P的斜率为k的直线为00()y y k x x-=-,由直线与圆O相切可得02||31y kxk-=+,即2220000(3)230x k x y k y--+-=,由已知可得1k,2k是方程(关于k)2220000(3)230x k x y k y--+-=的两个根,所以由韦达定理:00 12221222333x yk kxyk kx⎧+=⎪-⎪⎨-⎪=⎪-⎩,两式相除0012212023x yk kk k y+=⋅-,又因为2200143x y+=,所以2200334y x-=-,代入上式可得01212083yk kk k x+=-⋅,即0121118()3k k k+=-为定值.20.【答案】(1)见解析;(2)2(1,]e.【解析】(1)2(22)()xx xf xe-+-'=,记2()22g x x x=--+,令()0g x>,得1313x--<<-+,函数()f x在(13,13)---+上单调递增;()0g x<,得13x<--或13x>-+,函数()f x在(,13)-∞--或(13,)-++∞上单调递减.(2)记2()2(1)42xh x me x x x=+---,由(0)0221h m m>⇒>⇒>,()0h x'=,得2x=-或lnx m=-,∵(2,0]x∈-,所以2(2)0x+>.①当21m e<<时,ln(2,0)m-∈-,且(2,ln)x m∈--时,()0h x'<;(ln,0)x m∈-时,()0h x'>,所以min()(ln)ln(2ln)0h x h m m m=-=⋅->,∴(2,0]x∈-时,()0h x>恒成立;②当2m e=时,2()2(2)(1)xh x x e+'=+-,因为(2,0]x ∈-,所以()0h x '>,此时()h x 单调递增,且22(2)2(1)4820h e e --=--+-=,所以(2,0]x ∈-,()(2)0h x h >-=成立; ③当2m e >时,2(2)220mh e-=-+<,(0)220h m =->, 所以存在0(2,0)x ∈-使得0()0h x =,因此()0h x >不恒成立, 综上,m 的取值范围是2(1,]e .21.【答案】(1)见解析;(2)20件.【解析】(1)当日需求量n m X ≤时,日销售量n Z 为m ; 日需求量n m X >时,日销售量n Z 为n X , 故日销售量n Z 的期望()n E Z 为: 当19n ≤≤时,1011()(16)(16)n n iii i n E Z i P n P ==+=+++∑∑;当10n =时,10101()(16)ii E Z i P ==+∑.(2)1101010112111()(16)(161)(16)(161)()n n n i iiinii i n i i n i n E Z i P n P i P n P E ZP++==+==+=+=++++=++++=+∑∑∑∑∑,设每天进货量为n X ,日利润为n ξ,则()5()3[(16)()]8()3(16)n n n n E E Z n E Z E Z n ξ=-+-=-+,111210()()8[()()]38()3n n n n n n E E E Z E Z P P P ξξ++++-=--=+++-L ,由1125()()08n n n E E P P P ξξ+-≥⇒+++≤L , 又∵123450.668P P P P +++=>,12350.538P P P ++=<, ∴4()E ξ最大,所以应进货20件时,日利润均值最大.22.【答案】(1):40l x y +-=,22:(1)(1)2C x y -+-=;(2)22. 【解析】(1)由31x ty t=-⎧⎨=+⎩,消去t ,得40x y +-=,所以直线l 的普通方程为40x y +-=,由πππ22cos()22(cos cos sin sin )2cos 2sin 444ρθθθθθ=-=+=+, 得22cos 2sin ρρθρθ=+,将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式,得曲线C 的直角坐标方程为2222x y x y +=+,即22(1)(1)2x y -+-=. (2)设曲线C 上的点为(12cos ,12sin )P αα++, 则点P 到直线l 的距离|12cos 12sin 4||2(sin cos )2|22d αααα+++-+-==π|2sin()2|42α+-=, 当πsin()14α+=-时,max 22d =, 所以曲线C 上的点到直线l 的距离的最大值为22. 23.【答案】(1)[]1,3-;(2)不存在,详见解析. 【解析】(1)由a b ab +=,得111a b +=,1111()()224a b a b ab a b a b+=++≥⋅⋅=, 当且仅当2a b ==时""=成立.不等式2x x a b +-≤+,即为24x x +-≤, 当0x <时,不等式为224x -+≤,此时10x -≤<; 当02x ≤≤时,不等式24≤成立,此时02x ≤≤; 当2x >时,不等式为224x -≤,此时23x <≤, 综上,实数x 的取值范围是[]1,3-. (2)由于0a >,0b >,则1144(4)()5b a a b a b a b a b +=++=++4529b a a b≥+⋅=, 当且仅当4b aa ba b ab⎧=⎪⎨⎪+=⎩,即32a =,3b =时,4a b +取得最小值9, 所以不存在实数a ,b ,使得48a b +=成立.。