2011届高三数学下册高考冲刺检测试题21
2011届高三第二次联考数学试题(文科)参考答案
2011届高三第二次联考数学试题(文科)参考答案一、1.B 2.C 3.C 4.D 5.A 6.C 7.B 8.C 9.C 10.A 二、11.π12 12.1120 1314.45[,]33ππ15.①[3,)+∞;② 16.解:(Ⅰ)假设a ∥b ,则2cos (cos sin )sin (cos sin )0x x x x x x +--=,……… 2分 ∴221cos211cos22cos sin cos sin 0,2sin20222x xx x x x x +-++=⋅++=, 即sin 2cos 23x x +=-2)34x π+=-,…………………………………… 4分与)|4x π+∴假设不成立,故向量a 与向量b 不可能平行.……………………………………… 6分 (Ⅱ)∵a ⋅b (cos sin )(cos sin )sin 2cos x x x x x x =+⋅-+⋅22cos sin 2sin cos x x x x =-+cos 2sin 222)2)4x x x x x π=+==+,……… 8分∴sin(2)42x π+=. ]2,0[π∈x ,∴52[,]444x πππ+∈,……………………………………………………10分442ππ=+∴x 或4342ππ=+x ,0=∴x 或4π=x .………………………………12分17.解:(Ⅰ)305350?,205250?,∴男生被抽取人数为3人,女生被抽取人数为2人. ………………………………4分(Ⅱ)2225C 91C 10-=.…………………………………………………………………………8分 (Ⅲ)333544124128C ()555625´鬃==.………………………………………………………12分 18.解:(Ⅰ)取AD 中点H ,连EH ,则EH ⊥平面ABCD .过H 作HF ⊥AC 于F ,连FE .∵EF 在平面ABCD 内的射影为HF , ∵HF ⊥AC ,∴由三垂线定理得EF ⊥AC ,∴EFH Ð为二面角E AC B --的平面角的补角.……3分∵EH a =,14HF BD ==,∴tan EHEFH HF?=== ∴二面角E AC B --的正切值为-.……………………………………………6分 (Ⅱ)直线A 1C 1到平面ACE 的距离,即A 1到平面ACE 的距离,设为d .…………8分∵11A EAC C A AEV V --=,∴11133EAC A AE S dS CD D D ??.C 1D 1 B 1A 1D CE ABHF∵AE==,32CE a=,AC=,∴222592cosa a aEAC+-?∴sin EAC?,∴21324EACS aD=,121224A AEa aS aD=鬃=,∴22344aa d a??,∴3ad=.∴直线A1C1到平面EAC的距离为3a.………………………………………………12分19.解:(Ⅰ)2()34f x tx x¢=-,令2()34g t x t x=-,则有(1)0,(1)0.gg≥≥ì-ïïíïïî即22340,340.x xx x≥≥ìï--ïíï-ïî……………………………………2分∴40,340.3xx x≤≤≤或≥ìïï-ïïïíïïïïïî∴43x≤≤-.∴x的取值范围为4[,0]3-.……………………………………………………5分(Ⅱ)32()21f x x x=-+,2()34(34)f x x x x x¢=-=-,令()0f x¢>得0x<或43x>.令()0f x¢<得43x<<,∴()f x在(,0)-?和4(,)3+?为递增函数,在4(0,)3为递减函数.又因为(0)1f=,45()327f=-,令()1f x=可得0x=或2x=.……………8分①当30a+<,即3a<-时,()f x在[,3]a a+单调递增,∴32()(3)71510h a f a a a a=+=+++.②当032a≤≤+,即31a≤≤--时,()(0)1h a f==.③当32a+>,即01a>>-时,32()(3)71510h a f a a a a=+=+++,∴321(31)()71510(31)ah aa a a a a≤≤或ìï--ï=íï+++<->-ïî……………………………12分20.解:(Ⅰ)由已知得11n na a+=+,∴{}na为首项为1,公差为1的等差数列,∴na n=.………………………………………………………………………………3分∵13n n n b b +-=,∴21321()()()0n n n b b b b b b b -=-+-++-+121333n -=+++113(13)313(31)313222n n n---==-=?-, ∴n a n =,13322n n b =?.……………………………………………………………6分 (Ⅱ)132(3)cos 22n n C n n π=⋅⋅-(33),(33),nnn n n n ⎧--⎪=⎨-⎪⎩为奇数,为偶数.……………………8分∴当n 为偶数时123(33)2(33)3(33)(33)n n S n =--+⋅--⋅-++-12345(3233343533)(32333433)n n n =-+⋅-⋅+⋅-⋅++⋅+-⋅+⋅-⋅+- . 设23323333n n T n =-+??+?,则23413323333n n T n +-=-??-?,∴23414333333n n n T n +=-+-+-++?131()344n n +=-++⋅,∴11[3(41)3]16n n T n +=-++⋅. ∴1113(41)3243[3(41)3]()16216n n n n n S n n +++⋅--=-++⋅+-=.……………………11分当n 为奇数时 11(41)3242116n n n n n n S S c +--+⋅++=+=,∴11(41)32421,16(41)3243,16n n n n n n S n n n ++⎧-+⋅++⎪⎪=⎨+⋅--⎪⎪⎩为奇数.为偶数.……………………………………13分 21. 解: (Ⅰ)依题意,有点C 到定点M 的距离等于到直线l 的距离,所以点C 的轨迹为抛物线,方程为y x 42=.……………………………………………………………………3分(Ⅱ)可得直线AB 的方程是0122=+-y x ,由⎩⎨⎧=+-=,0122,42y x y x 得点A 、B 的坐标分别是(6,9)、(4,4)-.…………………………………………………………………………4分由y x 42=得241x y =, 12y x '=, 所以抛物线y x 42=在点A 处切线的斜率为63x y ='=.设圆C 的方程是222)()(r b y a x =-+-,则222291,63(6)(9)(4)(4).b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩………………………………………………………6分 解之得 .2125)4()4(,223,23222=-++==-=b a r b a 所以圆C 的方程是2125)223()23(22=-++y x .……………………………………8分(Ⅲ)设)4,(211x x A ,)4,(222x x B ,由241x y =得x y 21=',所以过点A 的切线的斜率为121x ,切线方程为042211=--x y x x .令1-=y 得Q 点横坐标为12124x x x -=,同理可得22224x x x -=,所以1211212424x x x x -=-,化简得421-=x x .…………………………………………………………………………10分又21222144x x xx k AB--==421x x +,所以直线AB 的方程为21121()44x x x y x x +-=-. 令0=x ,得1421-==x x y ,所以1-=t .……………………………………………12分 )44,24(21121++=x x x ,同理)44,24(22222++=x x x ,所以0)16141)(4)(4(212221=+++=⋅x x x x QB QA .……………………………14分第21题第三问,1-=t 应为1t =(Ⅲ)设)4,(211x x A ,)4,(222x x B ,由241x y =得x y 21=',所以过点A 的切线的斜率为121x ,切线方程为042211=--x y x x .令1-=y 得Q 点横坐标为12124x x x -=,同理可得22224x x x -=,所以1211212424x x x x -=-,化简得421-=x x .…………………………………………………………………………10分又21222144x x xx k AB --==421x x +,所以直线AB 的方程为21121()44x x x y x x +-=-.令0=x ,得1214x x y =-=,所以1t =.……………………………………………12分)44,24(21121++=x x x ,同理)44,24(22222++=x x x ,所以0)16141)(4)(4(212221=+++=⋅x x x x QB QA .……………………………14分。
2011届高三数学下册专题检测试题6
2011届高三数学下册专题检测试题6综合测评(五)立体几何(时间:120分钟;满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面几何体各自的三视图中,至少有两个视图相同的是()A.①②③B.①④C.②④D.①②④2.(2010年山东枣庄第八中学质检)等体积的球与正方体,它们的表面积的大小关系是()A.S球>S正方体B.S球=S正方体C.S球<S正方体D.不能确定3.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的()A.32B.92C.34D.944.如图,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )6.如图,已知△ABC 的平面直观图A ′B ′C ′是边长为2的正三角形,则原△ABC 的面积为( )A. 3 B .2 3C. 6 D .2 67.(2010年辽宁抚顺一中模拟)若圆锥的侧面展开图是圆心角为120°、半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A .3∶2B .2∶1C .4∶3D .5∶38.已知S ,A ,B ,C 是球O 表面上的点,12.如图,正方体ABCD-A1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E⊥平面ABF,则点E、F满足的条件一定是()A.CE=D1F=1 2B.CE+DF=1C.BE+D1F=1D.E、F为棱BC、DD1上的任意位置二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2010年高考天津卷)一个几何体的三视图如图所示,则这个几何体的体积为________.14.如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.15.已知a、b是两条异面直线,a⊥b.点P∉a 且P∉b.下列命题中:①在上述已知条件下,平面α一定满足:P ∈α且a∥α且b∥α;②在上述已知条件下,存在平面α,使P∉α,a⊂α且b⊥α;③在上述已知条件下,直线c一定满足:P ∈c,a∥c且b∥c;④在上述已知条件下,存在直线c,使P∉α,a⊥c且b⊥c.正确的命题有________(把所有正确的序号都填上).16.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)一几何体的三视图如下:(1)画出它的直观图,并求其体积;(2)你能发现该几何体的哪些面互相垂直?试一一列出.18.(本小题满分12分)如图,已知三棱锥A -PBC,∠ACB=90°,AB=20,BC=4,AP⊥PC,D为AB的中点,且△PDB为正三角形.(1)求证:BC⊥平面PAC;(2)求三棱锥D-PBC的体积.19.(本小题满分12分)如图1所示,在边长为12的正方形AA1A′1A′中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分别交BB1、CC1于点P、Q,将该正方形沿BB1、CC1折叠,使得A′A′1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1.(1)求证:AB⊥PQ;(2)在底边AC上有一点M,AM∶MC=3∶4,求证:BM∥平面APQ.20.(本小题满分12分)四棱柱ABCD—A1B1C1D1的三视图如下.(1)求出该四棱柱的表面积;(2)求证:D1C⊥AC1.21.(本小题满分12分)一个空间几何体G -ABCD的三视图如图所示,其中A i、B i、C i、D i、G i(i=1,2,3)分别是A、B、C、D、G五点在直立、侧立、水平三个投影面内的投影.在正(主)视图中,四边形A1B1C1D1为正方形,且A1B1=2a;在侧(左)视图中,A2D2⊥A2G2;在俯视图中,A3G3=B3G3.(1)根据三视图作出空间几何体G-ABCD的直观图,并标明A 、B 、C 、D 、G 五点的位置;(2)在空间几何体G -ABCD 中,过点B 作平面AGC 的垂线,若垂足H 在直线CG 上,求证:平面AGD ⊥平面BGC ;(3)在(2)的条件下,求三棱锥D -ACG 的体积及其外接球的表面积.22.(本小题满分12分)如图,四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CG →=13CB →. (1)求证:PC ⊥BC ;(2)求三棱锥C -DEG 的体积;(3)AD 边上是否存在一点M ,使得PA ∥平面MEG ?若存在,求AM 的长;否则,说明理由.。
安徽省省级示范高中2011届高三数学下学期联考 理
安徽省2011年省级示范高中名校高三联考数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
全卷满分150分,考试时间120分钟。
注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两闰。
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II 卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,..............在试题卷、草稿纸上答题无效。
..............4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:球的半径为R ,它的体积343V R π=,表面积24S R π=第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数32ii -+=的实部为( )A .iB .-iC .1D .-12.设集合{|2011},{|01}M x x N x x =<=<<,则下列关系中正确的是 ( ) A .MN R =B .{|01}M N x x =<<C .N N ∈D .MN φ=3.已知平面向量a ,b 满足||1,||2,a b ==a 与b 的夹角为60︒,则“m=1”是“()a mb a -⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知抛物线22y px =上一点M (1,m )到其焦点的距离为5,则该抛物线的准线方程为( ) A .x=8B .x=-8C .x=4D .x=-45.若a 为实数,且9()ax x +的展开式中3x 的系数为94,则a=( )A .14 B .12C .2D .46.已知曲线C 的极坐标方程是1ρ=,以极点为平面直角坐标系的原点,极轴为x 的轴的正半轴,建立平面直角坐标系,直线l 的参数方程是143x ty t=-+⎧⎨=⎩(t 为参数),则直线l 与曲线C 相交所截的弦长为( )A .45B .85C .2D .37.某几何体的三视图如右图所示,则该几何体的外接球的表面积 为 ( ) A .4π B .5πC .8πD .10π 8.函数2log ||x y x=的图象大致是 ( )9.从221x y m n-=(其中,{1,2,3}m n ∈-)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在x 轴上的双曲线方程的概率为 ( )A .12B .47C .23D .3410.2010年,我国南方省市遭遇旱灾以及洪水灾害,为防洪抗旱,某地区大面积种植树造林,如图,在区域{(,)|0,0}x y x y ≥≥ 内植树,第一棵树在1(0,1)A 点,第二棵树在1(1,1)B 点,第三棵 树在C 1(1,0)点,第四棵树2(2,0)C 点,接着按图中箭头方向每隔一个单位种一棵树,那么第2011棵树所在的点的坐标是( ) A .(13,44) B .(12,44) C .(13,43) D .(14,43)第II 卷(非选择题,共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
2011年高考全国数学试卷(新课标)-文科(含详解答案)
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年江苏数学高考试卷含答案和解析
2011年江苏数学高考试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)已知,则的值为_________.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_________.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)= _________.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为_________.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为_________.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_________.13.(5分)设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_________.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是_________.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C ( O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.2011年江苏数学高考试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B={﹣1,2}.考点:交集及其运算.专题:计算题.分析:根据已知中集合A={﹣1,1,2,4},B={﹣1,0,2},根据集合交集运算法则我们易给出A∩B 解答:解:∵集合A={﹣1,1,2,4},B={﹣1,0,2},∴A∩B={﹣1,2}故答案为:{﹣1,2}点评:本题考查的知识点是集合交集及其运算,这是一道简单题,利用交集运算的定义即可得到答案.2.(5分)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解答:解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)点评:本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R 的错解.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是1.考点:复数代数形式的混合运算.专题:计算题.分析:复数方程两边同乘i,化简后移项可得复数z,然后求出它的实部.解答:解:因为i(z+1)=﹣3+2i,所以i•i(z+1)=﹣3i+2i•i,所以z+1=3i+2,z=1+3i它的实部为:1;故答案为:1点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为3.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数 m=的值,代入a=2,b=3,即可得到答案.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数 m=的值,∵a=2<b=3,∴m=3故答案为:3点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:根据题意,首先用列举法列举从1,2,3,4这四个数中一次随机取两个数的全部情况,可得其情况数目,进而可得其中一个数是另一个的两倍的情况数目,由古典概型的公式,计算可得答案.解答:解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.点评:本题考查古典概型的计算,解本题时,用列举法,注意按一定的顺序,做到不重不漏.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2= 3.2.考点:极差、方差与标准差.专题:计算题.分析:首先根据所给的这组数据求出这组数据的平均数,再利用求方差的公式,代入数据求出这组数据的方差,得到结果.解答:解:∵收到信件数分别是10,6,8,5,6,∴收到信件数的平均数是=7,∴该组数据的方差是,故答案为:3.2点评:本题考查求一组数据的方差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,方差分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.7.(5分)已知,则的值为.考点:二倍角的正切;两角和与差的正切函数.专题:计算题;方程思想.分析:先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得.解答:解:∵,∴=2,解得tanx=;∴tan2x===∴==故答案为点评:本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是个基础题.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是4.考点:两点间距离公式的应用.专题:计算题.分析:由题意和函数的图象关于原点对称知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,写出直线的方程,求出直线与函数的交点坐标,利用两点之间的距离公式得到结果.解答:解:由题意知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,而y=x与y=的两个交点的坐标是(,)(﹣,﹣),∴根据两点之间的距离公式得到|PQ|===4,故答案为:4点评:本题考查反比例函数的图形的特点,考查直线与双曲线之间的交点坐标的求法,考查两点之间的距离公式,是一个综合题目.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;数形结合.分析:根据已知的函数图象,我们根据函数图象过(,0),(,﹣)点,我们易结合A>0,w>0求出满足条件的A、ω、φ的值,进而求出满足条件的函数f(x)的解析式,将x=0代入即可得到f(0)的值.解答:解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)点故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:点评:本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,其中利用已知函数的图象求出满足条件的A、ω、φ的值,是解答本题的关键.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.考点:平面向量数量积的运算.专题:计算题.分析:利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k.解答:解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:点评:本题考查向量的数量积公式、考查向量的运算律、考查向量模的平方等于向量的平方.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为.考点:函数的值;分段函数的应用.专题:计算题.分析:对a分类讨论判断出1﹣a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.解答:解:当a>0时,1﹣a<1,1+a>1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=故答案为点评:本题考查分段函数的函数值的求法:关键是判断出自变量所在的范围.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.解答:解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t=[(2﹣m)e m+me﹣m]t'=[﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的最值问题,属于中档题.13.(5分)设 1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.考点:等差数列与等比数列的综合.专题:计算题;压轴题.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7; a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即基本量法.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是[,2+].考点:直线与圆的位置关系.专题:计算题;压轴题.分析:根据题意可把问题转换为圆与直线有交点,即圆心到直线的距离小于或等于半径,进而联立不等式组求得m的范围.解答:解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥当m≤0时,有||>﹣m且||>﹣m;则有﹣m>﹣m,﹣m>﹣m,又由m≤0,则2>2m+1,可得A∩B=∅,当m≥时,有||≤m或||≤m,解可得:2﹣≤m≤2+,1﹣≤m≤1+,又由m≥,则m的范围是[,2+];综合可得m的范围是[,2+];故答案为[,2+].点评:本题主要考查了直线与圆的位置关系.一般是利用数形结合的方法,通过圆心到直线的距离来判断.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.考点:正弦定理;两角和与差的正弦函数.专题:计算题.分析:(1)利用两角和的正弦函数化简,求出tanA,然后求出A的值即可.(2)利用余弦定理以及b=3c,求出a与c 的关系式,利用正弦定理求出sinC的值.解答:解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=点评:本题是基础题,考查正弦定理的应用,两角和的正弦函数的应用,余弦定理的应用,考查计算能力,常考题型.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD 即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.解答:证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.点评:本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点:函数模型的选择与应用.专题:应用题.分析:(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.解答:解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x <30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.点评:考查函数模型的选择与应用,考查函数、导数等基础知识,考查运算求解能力、空间想象能力、数学建模能力.属于基础题.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.考点:直线与圆锥曲线的综合问题.专题:计算题;证明题;压轴题;数形结合;分类讨论;转化思想.分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.解答:解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.点评:此题是个难题.考查椭圆的标准方程和简单的几何性质,以及直线斜率的求法,以及直线与椭圆的位置关系,体现了方程的思想和数形结合思想,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.考点:利用导数研究函数的单调性.专题:计算题.分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f'(x)g'(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.解答:解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题得f'(x)g'(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f'(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(﹣∝,﹣)时,f'(x)>0.因此,当x∈(﹣∝,﹣)时,f'(x)g'(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b<0,因此|a﹣b|≤,且当a=﹣,b=0时等号成立,又当a=﹣,b=0时,f'(x)g'(x)=6x(x2﹣),从而当x∈(﹣,0)时f'(x)g'(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.考点:数列递推式;数列与函数的综合.专题:综合题.分析:(1)由集合M的元素只有一个1,得到k=1,所以当n大于1即n大于等于2时,S n+1+S n﹣1=2(S n+S1)都成立,变形后,利用S n+1﹣S n=a n+1,及a1=1化简,得到当n大于等于2时,此数列除去首项后为一个等差数列,根据第2项的值和确定出的等差写出等差数列的通项公式,因为5大于2,所以把n=5代入通项公式即可求出第5项的值;(2)当n大于k时,根据题意可得S n+k+S n﹣k=2(S n+S k),记作①,把n换为n+1,得到一个关系式记作②,②﹣①后,移项变形后,又k等于3或4得到当n大于等于8时此数列每隔3项或4项成等差数列,即a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,根据等差数列的性质得到一个关系式,记作(*),且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,又根据等差数列的性质得到另外一个关系式,等量代换得到a n+2﹣a n=a n﹣a n﹣2,得到当n大于等于9时,每隔两项成等差数列,设出等差数列的四项,根据等差数列的性质化简变形,设d=a n﹣a n﹣1,从而得到当n大于等于2小于等于8时,n+6大于等于8,把n+6代入(*)中,得到一个关系式,同时把n+7也代入(*)得到另外一个关系式,两者相减后根据设出的d=a n﹣a n﹣1,经过计算后,得到n大于等于2时,d=a n﹣a n﹣1都成立,从而把k=3和k=4代入到已知的等式中,化简后得到d与前3项的和及d与前4项和的关系式,两关系式相减即可表示出第4项的值,根据d=a n﹣a n﹣1,同理表示出第3项,第2项及第1项,得到此数列为等差数列,由首项等于1即可求出d的值,根据首项和等差写出数列的通项公式即可.解答:解:(1)由M={1},根据题意可知k=1,所以n≥2时,S n+1+S n=2(S n+S1),﹣1即(S n+1﹣S n)﹣(S n﹣S n﹣1)=2S1,又a1=1,则a n+1﹣a n=2a1=2,又a2=2,所以数列{a n}除去首项后,是以2为首项,2为公差的等差数列,故当n≥2时,a n=a2+2(n﹣2)=2n﹣2,所以a5=8;(2)根据题意可知当k∈M={3,4},且n>k时,S n+k+S n﹣k=2(S n+S k)①,且S n+1+k+S n+1﹣k=2(S n+1+S k)②,②﹣①得:(S n+1+k﹣S n+k)+(S n+1﹣k﹣S n﹣k)=2(S n+1﹣S n),即a n+1+k+a n+1﹣k=2a n+1,可化为:a n+1+k﹣a n+1=a n+1﹣a n+1﹣k所以n≥8时,a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,从而当n≥8时,2a n=a n﹣3+a n+3=a n﹣6+a n+6,(*)且a n﹣2+a n+2=a n﹣6+a n+6,所以当n≥8时,2a n=a n﹣2+a n+2,即a n+2﹣a n=a n﹣a n﹣2,于是得到当n≥9时,a n﹣3,a n﹣1,a n+1,a n+3成等差数列,从而a n﹣3+a n+3=a n﹣1+a n+1,由(*)式可知:2a n=a n﹣1+a n+1,即a n+1﹣a n=a n﹣a n﹣1,当n≥9时,设d=a n﹣a n﹣1,则当2≤n≤8时,得到n+6≥8,从而由(*)可知,2a n+6=a n+a n+12,得到2a n+7=a n+1+a n+13,两式相减得:2(a n+7﹣a n+6)=a n+1﹣a n+(a n+13﹣a n+12),则a n+1﹣a n=2d﹣d=d,因此,a n﹣a n﹣1=d对任意n≥2都成立,又由S n+k+S n﹣k﹣2S n=2S k,可化为:(S n+k﹣S n)﹣(S n﹣S n﹣k)=2S k,当k=3时,(S n+3﹣S n)﹣(S n﹣S n﹣3)=9d=2S3;同理当k=4时,得到16d=2S4,两式相减得:2(S4﹣S3)=2a4=16d﹣9d=7d,解得a4=d,因为a4﹣a3=d,解得a3=d,同理a2=d,a1=,则数列{a n}为等差数列,由a1=1可知d=2,所以数列{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1.点评:此题考查学生灵活运用数列的递推式化简求值,掌握确定数列为等差数列的方法,会根据等差数列的首项和等差写出数列的通项公式,是一道中档题.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C ( O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.考点:椭圆的参数方程.专题:数形结合;转化思想.分析:A、如图,利用 EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.B、设向量=,由 A2=,利用矩阵的运算法则,用待定系数法可得x 和 y 的值,从而求得向量.C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式求得所求直线的方程.D、原不等式可化为,或,分别解出这两个不等式组的解集,再把解集取并集.解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2为定值.B、A2==,设向量=,由 A2=可得=,∴,解得 x=﹣1,y=2,∴向量=.C、椭圆(φ为参数)的普通方程为+=1,右焦点为(4,0),直线(t为参数)即 x﹣2 y+2=0,斜率等于,故所求的直线方程为y﹣0=(x﹣4),即 x﹣2 y﹣4=0.D、原不等式可化为,或,解得≤x<,或﹣2<x<,故不等式的解集为 {x|﹣2<x<}.点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.考点:向量在几何中的应用.专题:综合题;压轴题;转化思想.分析:(1)建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长.(2)利用cos=以及,求出CM 的长.解答:解:建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),则各点的坐标为A (1,0,0),A1(1,0,2),N(,1,0),M(0,1,t);所以=(,1,0).=(1,0,2),=(0,1,t)设平面DMN的法向量为=(x1,y1,z1),则,,即x1+2y1=0,y1+tz1=0,令z1=1,则y1=﹣t,x1=2t所以=(2t,﹣t,1),设平面A1DN的法向量为=(x2,y2,z2),则,,即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=﹣2所以=(﹣2,1,1),(1)因为θ=90°,所以解得t=从而M(0,1,),所以AM=(2)因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和(1)的结论,可知t=,从而CM的长为.点评:本题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.考点:数列递推式.专题:综合题;压轴题;转化思想.分析:(1)A n为满足a﹣b=3 的点P 的个数,显然P(a,b)的坐标的差值,与A n中元素个数有关,直接写出A n的表达式即可.(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,讨论f n(k)≥1的情形,推出f n(k)=n﹣3k,根据k的范围,说明n﹣1是3的倍数和余数,然后求出B n.解答:解:(1)点P的坐标中,满足条件:1≤b=a﹣3≤n﹣3,所以A n=n﹣3;(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,只要讨论f n(k)≥1的情形,由1≤b=a﹣3k≤n﹣3k,知f n(k)=n﹣3k且,设n﹣1=3m+r,其中m∈N+,r∈{0,1,2},则k≤m,所以B n===mn﹣=将m=代入上式,化简得B n=所以B n=点评:本题是难题,考查数列通项公式的求法,数列求和的方法,考查发现问题解决问题的能力,解题中注意整除知识的应用,转化思想的应用.。
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数与数列(2) (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—函数与数列2一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卷相应位置上。
1、等差数列{}n a 的前n 项和为)3,2,1(⋅⋅⋅=n S n ,当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则)3,2,1(⋅⋅⋅=n S n 中为定值的是 ▲ 。
2、在等比数列{n a }中,若7944,1a a a ⋅==,则12a 的值是 ▲ 。
3、已知数列{}n a 是以2-为公差的等差数列,n S 是其前n 项和,若7S 是数列{}n S 中的唯一最大项,则数列{}n a 的首项1a 的取值范围是 ▲ 。
4、在等差数列}{n a 中,39741=++a a a ,27963=++a a a ,则数列}{n a 的前9项之和9S 等于 ▲ 。
5、若数列}{n a 满足⎩⎨⎧≤≤>-=+)10(2)1(11n nn n n a a a a a ,若761=a ,则2008a = ▲ 。
6、已知数列}{n a 满足12a =,132n n a a +=-(n N +∈),则n a = ▲ 。
7、在等差数列{}n a 中,11101,a a <-若它的前n 项和n S 有最大值,则使n S 取得最小正数的n = ▲ 。
8、n S 为等差数列{}n a 的前n 项和,若24121n n a n a n -=-,则2n nS S = ▲ 。
9、已知数列1,,n n n a n n -⎧=⎨⎩为奇数为偶数则123499100a a a a a a ++++++= ▲ 。
10、已知数列12()3n n a =⋅,将{}n a 的各项排成三角形状:记(,)A m n 表示第m 行第n 列的项,则(10,8)A = ▲ 。
11、已知数列}{n a 的通项公式是12-=n n a ,数列}{n b 的通项公式是n b n 3=,令集合},,,,{21 n a a a A =,},,,,{21 n b b b B =,*N n ∈.将集合B A 中的元素按从小到大的顺序排列构成的数列记为}{n c .则数列}{n c 的前28项的和28S = ▲ 。
湖北省部分重点中学2011届高三数学第二次联考试卷理
7.有一正方体,六个面上分别写有数字 1、2、3、4、5、6,有三个人从不同的角度观察的结 果如图所示, 如果记 3 的对面的数字为 m,4 的对面的数字为 n,那么 m+n 的值为 ( )
A.3
B. 7
C.8
D. 11
8.已知函数 f (x) 的图像如图所示, f '(x)是f (x) 的导函数, 则下列数值排序正确的是 ( )
故不存在 k , n 使 kan 2 an 与 kan 3 an 1 有大于 1 的公约数 . 21.( I) f ( x) 1 aex 1 ……………… 1 分
(Ⅱ)记此人三次射击击中目标
次得分为 分,则 ~ B (3, 2) , =10 3
∴ E( ) 10 E( ) 10 3 2 20 3
…… 9 分
2 1 200 D ( ) 100D ( ) 100 3
33 3
…… 12 分
72
17.解:(Ⅰ)∵ 0 A
∴
A
由 sin( A)
4
4
42
4
10
…6 分
得 cos(
A.椭圆
B.双曲线
C.抛物线
D.圆
()
用心 爱心 专心
-2-
第二部分 非选择题
二、填空题:本大题共 5 小题,每小题 5 分,满分 25 分。
11.已知数列 { an} 是公差不为零的等差数列, a1 1.若a1,a2 , a5 成等比数列, 则 an =
。
12.已知 A、 B、 C 是 O : x2 y2 1上三点 , OA OB OC,则 AB OA =
()
A.4
B. 5
3.已知复数 Z 1 2i , 则1 z z2 1i
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数与不等式 (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—函数与不等式一、填空题:(请把答案直接填空在答题卷相应位置上。
)1. 若函数(1)f x +的定义域为[0,1],则(31)f x -的定义域为 ▲ .2. 已知集合10x A x x⎧⎫-=>⎨⎬⎩⎭,13x B y y ⎧⎫⎪⎪⎛⎫==⎨⎬⎪⎝⎭⎪⎪⎩⎭,则=B A ▲ .3. 下列说法错误的是: ▲ (1)命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠”(2)“1x >”是“||1x >”的充分不必要条件; (3)若p 且q 为假命题,则p 、q均为假命题;(4)命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥”4. 下列三个命题中,真命题是: ▲ ①“若1xy =,则,x y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ≤,则方程220x x m -+=有实根”的逆否命题.5.若函数()f x =,则a 的取值范围为 ▲ .6. 已知实数,x y 满足xx y y=-,则x 的取值范围是 ▲ .7. 函数()()y f x x R =∈的图象如图所示,则当01a <<时,函数()(log )a g x f x =的单调减区间是 ▲ .8.已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ▲ .9、已知00(,),(1,1),(5,2)A x y B C ,如果一个线性规划问题为可行域是ABC ∆边界及其内部,线性目标函数z ax by =+,在B 点处取得最小值3,在C 点处取得最大值12,则00ax by + 范围 ▲ .10、设(),()f x gx 均是定义在R 上奇函数,且当0x <时,'()()()'()0,(2)(2)0f xg x f x g x f g +<--=,则不等式()()0f x g x >的解集为 ▲ .11. 若12,x x 是方程1112()2xx-+=的两个实数解,则12x x += ▲ .12、线性目标函数z=2x -y 在线性约束条件{||1||1x y ≤≤下,取最小值的最优解是____ ▲13.若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪>⎨⎪≤⎩则yx 的取值范围是 ▲ .14.已知,,x y z 满足5000x y x x y k -+≥⎧⎪≤⎨⎪++≥⎩,且24z x y =+的最小值为6-,则常数k 的值为 ▲ .二、解答题:(请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:三角与解几 (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—三角与解几一、填空题:(本题共10个小题,每题4分,共40分)1、已知向量a 与b 的夹角为120°,且5||,2||==,则=⋅-)2( 。
2、函数1312sin)(+-=x x x f π的零点个数为 个。
3、已知函数1()11x f x x -⎧=⎨≥⎩, , <1, 则不等式(1)(1)3x f x x +⋅+≤-的解集为 。
4、设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 。
50y +-=截圆224x y +=得的劣弧所对的圆心角是 。
6、若把函数cos y x x =+的图象向右平移(0)m m >个单位后所得图象关于y 轴对称,则m 的最小值为 。
7、已知直线(14)(23)(312)0()k x k y k k R +---+=∈所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8.则椭圆C 的标准方程为 。
8、已知方程abx x x x b a x a x 则且的两根为,10,,01)2(21212<<<=+++++的取值范围 。
9、设曲线()1x y ax e =-在点()01,A x y 处的切线为1l ,曲线()1xy x e -=-在点()02,B x y 处的切线为2l ,若存在0302x ≤≤,使得12l l ⊥,则实数a 的取值范围是 。
10、已知函数())2f x x π=≤≤,则()f x 的值域为 。
二、解答题:(本题共4大题,共60分)11、在平面直角坐标系中,点21(,cos )2P θ在角α的终边上,点2(sin ,1)Q θ-在角β的终边上,且12OP OQ ⋅=- . (1)求cos 2θ; (2)求sin()αβ+的值.12、设()f x 是定义在[]1,1-上的偶函数, ()()f x g x 与图像关于直线1x =对称,且当[]2,3x ∈时,3()3(2)4(2)g x x x =---。
2011届高三数学综合检测卷及答案
Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y (第7题)2011届高三数学综合检测卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.) 1.复数ii4321+-在复平面上对应的点位于第 ▲ 象限. 2.设全集{1,3,5,7}U =,集合{1,5}M a =-,M U ⊆,{}5,7U M =ð,则实数a 的值为 ▲ .3.过点()1,0且倾斜角是直线210x y --=的倾斜角的两倍的直线方程是 ▲ . 4.若连续投掷两枚骰子分别得到的点数m 、n 作为点P 的坐标()n m 、,求点P 落在圆1622=+y x 内的概率为 ▲ .5.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为 ▲ .6.如图所示,设P 、Q 为△ABC 内的两点,且2155AP AB AC =+ , AQ =23AB+14AC ,则△ABP 的面积与△ABQ 的面积之比为 ▲ .7.下图是根据所输入的x 值计算y 值的一个算法程序,若x 依次取数1100n ⎧⎫-⎨⎬⎩⎭()n N +∈ 中的前200项,则所得y 值中的最小值为 ▲ .8.在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r ,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R = ▲ .9.若a 是12b +与12b -的等比中项,则22aba b+的最大值为 ▲ .10.空间直角坐标系中,点,3sin ),(0,3cos ,4cos )A B αββα-,则A 、B 两点间距离的最大值为 ▲ .(第6题)11请将错误的一个改正为lg ▲ = ▲ .12.如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1,l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ▲ .13.已知数列{}n a 、{}n b 都是等差数列,n n T S ,分别是它们的前n 项和,并且317++=n n T S n n ,则1612108221752b b b b a a a a ++++++= ▲ .14.已知函数)(x f 的值域为[][]0,4(2,2)x ∈-,函数()1,[2,2g x a x x =-∈-,1[2,2]x ∀∈-,总0[2,2]x ∃∈-,使得01()()g x f x =成立,则实数a 的取值范围是▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分14分)在ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知222b c a bc +=+。
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数与数列(3) (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—函数与数列3一.填充题: (本题共10个小题,每题4分,共40分)1、设等差数列{}n a 的前n 项和为n S ,若41217198a a a a +++= ,则25S 的值为 。
2、函数2()f x 的定义域为 。
3、设方程2ln 72x x =-的解为0x ,则关于x 的不等式02x x -<的最大整数解为 。
4、函数)3sin 2lg(cos 21+++=x x y 的定义域是 。
5、设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 。
6、已知函数()2(0,)a f x x x a R x=+≠∈在区间[)2,+∞是增函数,则实数a 的取值范围为 。
7、函数221(1)1x x y x x -+=>-的值域是 。
8、若不等式组0,22,0,x y x y y x y a-⎧⎪+⎪⎨⎪⎪+⎩≥≤≥≤ 表示的平面区域是一个三角形及其内部,则a 的取值范围是 。
9、若关于x 的不等式23344a x xb ≤-+≤的解集恰好是[],a b ,则a b += 。
10、已知x x x f cos sin )(1+=,记'21()()f x f x =,'32()()f x f x =,…,)()('1x f x f n n -=)2*,(≥∈n N n ,则122009()()()444f f f πππ+++= 。
二.附加题: (本题共2个小题,满分10分,不计入总分)11、在计算机的算法语言中有一种函数[]x 叫做取整函数(也称高斯函数),它表示x 的整数部分,即[x ]是不超过x 的最大整数.例如:[2]2,[3.1]3,[ 2.6]3==-=-.设函数21()122x x f x =-+,则函数[()][()]y f x f x =+-的值域为 。
2011学年第二学期高三数学区期末统测试卷理科答案
即 AB 2 OM 成立 ②当切线 l 的斜率不存在时, A( 2, 2), B ( 2, 2)或A( 2, 2), B ( 2, 2) 此时 AB 2 2, OM
2 ,即 AB 2 OM 成立-------------------10 分
(3)由条件可知:两条渐近线分别为 l1 : 2 x y 0; l2 : 2 x y 0 -------------------11 分 设双曲线 C 上的点 P ( x0 , y0 ) ,
因为平面 CDE 平面 CD1O ,所以 m n 0 ,得 2 -------------------14 分
5 17 16 5 17 x 8 1 5 17 x 21.解: (1) x 2 2 x 2 --------2 分 2 2 0 x 2 0 x 2 4 x 1 2 x 3 -------------4 分 2 x 4
若 b1 b2 b3 bn0 ,则 a b1 a b2 a b3 a bn0 即对数列 bn 中的任意一项 bi (1 i n0 )
a bi b1 (n0 i )d bn0 1i bn -------------------6 分
12. 9 15.A
13.
81 2
17.C
14. 0, a b 18.D
2
2
16.B
19.解: (1)由正弦定理
c a sin C a 2a 2 5 -------------------4 分 ,得 c sin C sin A sin A
(2)由余弦定理,得 cos A
江苏省常州市四星级重点高中2011届高考冲刺数学复习单元卷:函数(1) (详细解答)
江苏省常州市中学2011高考冲刺复习单元卷—函数1一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卷相应位置上。
1、函数)34(log 1)(22-+-=x x x f 的定义域为 ▲ 。
2、设f(x)=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f[f(21)]= ▲ 。
3、已知)2(x f 的定义域为]2,0[,则)(log 2x f 的定义域为 ▲ 。
4、若0.52a =,πlog 3b =,22πlog sin5c =,则a 、b 、c 从大到小的顺序是 ▲ 。
5、若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = ▲ 。
6、若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为 ▲ 。
7、定义运算法则如下:1112322181,lg lg ,2,,412525a b a ba b a b M N -⊕=+⊗=-=⊕=则M +N = ▲ 。
8、设10<<a ,函数2()log (22)x xa f x a a =--,则使()0f x <的x 取值范围是 ▲ 。
9、设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是 ▲ 。
10、设方程2ln 72x x =-的解为0x ,则关于x 的不等式02x x -<的最大整数解为 ▲ 。
11、若关于x 的不等式22x x t <--至少有一个负数解,则实数t 的取值范围是 ▲ 。
12、设(32()log f x x x =++,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的▲ 条件。
2011年全国高考数学试卷(含标准答案)
2011年普通高等学校招生全国统一考试(全国卷)数学本试卷共4页,三大题21小题。
满分150分,考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。
2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。
3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内,答在试题卷上无效。
4. 考试结束,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是满足题目要求的。
1.复数1z i =+,z 为z 的共轭复数,则1z z z --= (A) -2i (B) -i (C) i (D) 2i2. 函数()20y x x =≥的反函数为(A)()24xy x R =∈ (B)()204xy x =≥(C)()24y xx R =∈ (D)()240y xx =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是 (A) 1a b >+ (B) 1a b >- (C)22a b > (D) 33a b >4.设n S 为等差数列{}n a 的前n 项和,若11a =,公差22,24k k d S S +=-=,则k= (A) 8 (B) 7 (C) 6 (D) 55.设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A)13(B) 3 (C) 6 (D) 96.已知直二面角l αβ--,点,,A AC l C α∈⊥为垂足,,,B BD l D β∈⊥为垂足,若2,1A B A C B D ===,则D 到平面ABC 的距离等于(A) 22(B) 33(C) 63(D) 17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有(A) 4种 (B) 10种 (C) 18种 (D) 20种8.曲线21x y e =+在点()0,2处的切线与直线0y =和y x =围成的三角形的面积为 (A)13(B)12(C)23(D) 19.设()f x 是周期为2的奇函数,当01x ≤≤时,()()21f x x x =-,则52f ⎛⎫-= ⎪⎝⎭(A) 12-(B) 14-(C)14(D)1210.已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A 、B 两点,则cos A F B ∠= (A)45(B)35(C) 35-(D) 45-11.已知平面α截一球面得圆M ,过圆心M 且与α成60 二面角的平面β截该球面得圆N ,若该球面的半径为4.圆M 的面积为4π,则圆N 的面积为 (A) 7π (B) 9π (C) 11π (D) 13π12. 设向量,,a b c 满足11,,,602a b a b a c b c ===---=,则c 的最大值等于(A) 2 (B) 3 (C) 2 (D) 1二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写. 13. ()201x-的二项展开式中,x 的系数与9x 的系数之差为 .14. 已知,2παπ⎛⎫∈⎪⎝⎭,5sin 5α=,则tan 2α= . 15. 已知12F F 、分别为双曲线22:1927xyC -=的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F A F ∠的角平分线,则 2AF = .16. 已知点E 、F 分别在正方体1111ABC D A B C D - 的棱11BB C C 、上,且12B E E B =,12C F FC =,则面AEF 与面ABC 所成的二面角的正切值等于 .三、解答题:本大题共6小题,共70分。
全国2011年高考全国数学试卷及答案
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (C ) -20 (B ) 20 (D )40(9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
2011年高考数学真题(全国Ⅱ.理)含详解
绝密★启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题上作答无效........。
3.第I 卷共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数z =1+,z 为z 的共轭复数,则z z -z -1=(A )-2 (B )- (C ) (D )2(2)函数y =x ≥0)的反函数为(A )y =24x (x ∈R ) (B )y =24x (x ≥0) (C )y =24x (x ∈R ) (D )y =24x (x ≥0)(3)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )a >b +1 (B )a >b -1 (C )2a >2b (D )3a >3b(4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差d = 2, 224k k S S +-=,则k =(A ) 8 (B) 7 (C) 6 (D) 5(5) 设函数()()cos 0f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13 (B )3 (C )6 (D )9 (6)已知直二面角α –ι- β, 点A ∈α ,AC ⊥ ι ,C 为垂足,B ∈β,BD ⊥ ι,D 为垂足,若AB=2,AC=BD=1,则D 到平面ABC 的距离等于( )(A )3(B (C) (D) 1 (7) 某中学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )(A )4种 (B) 10种 (C) 18种 (D)20种(8)曲线21x y e -=+在点(0,2)处的切线与直线0y =和y x =围成的三角形的面积为(A )13 (B )12 (C )23 (D )1(9)设()f x 是周期为2的奇函数,当01x ≤≤时,()f x 2(1)x x =-,则5()2f -= (A )12- (B )14- (C )14 (D )12(10)已知抛物线C:2y =4x 的焦点为F ,直线y=2x-4与C 交于A,B 两点,则cos(A) 54 (B)53 (C).—53 (D) —54(11)已知平面α截一球面得圆M,过圆心M 且与 成60 二面角的平面β截该球面得N 。
2011届高三数学下册高考冲刺检测试题22
2010年高考数学最后冲刺必读题解析(22)(20)(本题满分14分)数列{}n a 中,11a =,当2n ≥时,其前n 项的和n S 满足()12-=n n n S a S .(Ⅰ)证明:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)设22+=n nn S S log b ,数列{}n b 的前n 项和为n T ,求满足6≥n T 的最小正整数n . (20)解(Ⅰ)()12-=n n n S a S()21()(1)2n n n n S S S S n -∴=--≥11,n n n n S S S S --∴=-即1111,n n S S --= 1n S ⎧⎫∴⎨⎬⎩⎭是1为首项,1为公差的等差数列. ………………………………7分(Ⅱ)由(Ⅰ)知212,log n n n S b n n+=∴=, ()()221234562log log 6,12342n n n n T n +++⎛⎫∴=⨯⨯⨯⨯⨯=≥ ⎪⎝⎭ 128)1)(2(≥++∴n n n N +∈ 10≥∴n ,所以满足6≥n T 的最小正整数为10. ………………………………14分(21)(本题满分15分)已知函数()().a x x x h ,x ln x x f +-=-=222(Ⅰ)求函数()x f 的极值;(Ⅱ)设函数()()(),x h x f x k -=若函数()x k 在[]31,上恰有两个不同零点,求实数 a 的取值范围.(21)解: (Ⅰ)xx x f 22)('-= ,令'()0,01f x x x =>∴=所以)(x f 的极小值为1,无极大值. ……………………………………7分 (Ⅱ)12)(ln 2)()()('+-=∴-+-=-=xx k a x x x h x f x k ,若2,0)('==x x k 则 当[)1,2x ∈时,()'0f x <;当(]2,3x ∈时,()'0f x >.故()k x 在[)1,2x ∈上递减,在(]2,3x ∈上递增. ……………………………10分(1)0,1,(2)0,22ln 2,22ln 232ln 3.(3)0,32ln 3,k a k a a k a ≥≤⎧⎧⎪⎪∴<∴>-∴-<≤-⎨⎨⎪⎪≥≤-⎩⎩所以实数 a 的取值范围是(]22ln 2,32ln3-- ………………………………15分(22)(本题满分15分)已知曲线C 上的动点(),P x y 满足到点()1,0F 的距离比到直线:2l y =-的距离小1.(Ⅰ)求曲线C 的方程;(Ⅱ)动点E 在直线l 上,过点E 分别作曲线C 的切线,EA EB ,切点为A 、B .(ⅰ)求证:直线AB 恒过一定点,并求出该定点的坐标;(ⅱ)在直线l 上是否存在一点E ,使得ABM ∆为等边三角形(M 点也在直线l上)?若存在,求出点E 坐标,若不存在,请说明理由.(22)解:(Ⅰ) 曲线C 的方程 y x 42= …………………………………………5分(Ⅱ)(ⅰ)设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a aAB y x a ∴-+=-直线的方程为()22ay x AB =+∴即过定点0,2 ………………………………10分 (ⅱ)由(ⅰ)知AB 中点)24,(2+a a N ,22a AB y x =+直线的方程为 当0a ≠时,则AB 的中垂线方程为)(2242a x a a y --=+- AB ∴的中垂线与直线2-=y 的交点312(,2)4a aM +-322222221241()(2)(8)(4)4216a a a MN a a a ++∴=-+--=++)8)(4(4)(4122212212++=-++=a a x x x x a AB若ABM ∆为等边三角形,则MN =),8)(4(43)4()8(16122222++=++∴a a a a 解得,2,42±=∴=a a 此时(2,2)E ±-, 当0a =时,经检验不存在满足条件的点E综上可得:满足条件的点E 存在,坐标为(2,2)E ±-. ……………………15分19.(本小题满分12分)已知函数bx axx f +=2)(,在1=x 处取得极值为. (Ⅰ)求函数)(x f 的解析式;(Ⅱ)若函数)(x f 在区间(,21)m m +上为增函数,求实数的取值范围; (Ⅲ)若00(,)P x y 为b x ax x f +=2)(图象上的任意一点,直线l 与bx axx f +=2)(的图象相切于点,求直线l 的斜率的取值范围.19.解:(Ⅰ)已知函数b x ax x f +=2)(,222)()2()()('b x x ax b x a x f +-+=∴ …………1分 又函数)(x f 在1=x 处取得极值2,⎩⎨⎧==∴2)1(0)1('f f …………2分即⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=-+142102)1(b a b a a b a 14)(2+=∴x x x f …………………4分 (Ⅱ)222222)1(44)1()2(4)1(4)('+-=+-+=x x x x x x x f 由0)('>x f ,得0442>-x ,即11<<-x所以14)(2+=x xx f 的单调增区间为(-1,1) ………………… 6分因函数)(x f 在(m ,2m +1)上单调递增,则有⎪⎩⎪⎨⎧>+≤+-≥m m m m 121121, …………7分解得01≤<-m 即]01(,-∈m 时,函数)(x f 在(m ,2m +1)上为增函数 ………8分 (Ⅲ)2222)1()2(4)1(4)('14)(+-+=∴+=x x x x x f x xx f 直线l 的斜率22020200)1(8)1(4)('+-+==x x x x f k …………9分 即k ]11)1(2[420220+-+=x x 令]10(1120,,∈=+t t x , …………10分 则]10()2(42,,∈-=t t t k]421[,-∈∴k 即直线l 的斜率k 的取值范围是]421[,- ……………12分20.(本小题满分12分)已知C B A ,,均在椭圆)1(1:222>=+a y ax M 上,直线AB 、AC分别过椭圆的左右焦点1F 、2F ,当120AC F F ⋅= 时,有21219AF AF AF =⋅. (Ⅰ)求椭圆M 的方程;(Ⅱ)设是椭圆M 上的任一点,EF 为圆()12:22=-+y x N 的任一条直径,求⋅的最大值.20.解:(Ⅰ)因为120AC F F ⋅= ,所以有12AC FF ⊥所以12AF F ∆为直角三角形;1122cos AFF AF AF ∴∠=…………………………2分 则有22212121221199cos 9AF AF AF AF F AF AF AF AF ⋅=∠=== 所以,123AF AF =…………………………3分a 2=+,123,22a aAF AF ∴== ………………………4分 在12AF F ∆中有2221212AF AF F F =+ 即)1(4223222-+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛a a a ,解得22=a 所求椭圆M 方程为1222=+y x …………………………6分 (Ⅱ)()()NP NF NP NE PF PE -⋅-=⋅()()()1222-=--=-⋅--=NP NFNP NP NF NP NF从而将求PF PE ⋅的最大值转化为求2的最大值 …………………8分是椭圆M 上的任一点,设()00,y x P ,则有122020=+y x 即202022y x -=又()2,0N ,所以()()22220002210NP x y y =+-=-++ ………………10分而[]1,10-∈y ,所以当01y =-时,2取最大值9故⋅的最大值为8 ……………………12分21.(本小题满分12分)已知函数()(01)1xf x x x=<<-的反函数为1()f x -,数列{}n a 和{}n b 满足:112a =,11()n n a f a -+=,函数1()y f x -=的图象在点()1,()()n f n n N -*∈处的切线在轴上的截距为n b .(1)求数列{n a }的通项公式;(2)若数列2{}n n n b a a λ-的项仅5255b a a λ-最小,求的取值范围; (3)令函数2121()[()()]1x g x f x f x x --=+⋅+,01x <<,数列{}n x 满足:112x =,01n x <<,且1()n n x g x +=,其中n N *∈.证明:2223212112231()()()516n n n n x x x x x x x x x x x x ++---+++< . 21. 【解析】(1)令1xy x=-,解得1y x y =+,由01x <<,解得0y >,∴函数()f x 的反函数1()(0)1x f x x x-=>+,则11()1n n nn a a f a a -+==+,得1111n n a a +-=. 1{}na ∴是以2为首项,l 为公差的等差数列,故11n a n =+. ……3分(2)∵1()(0)1x f x x x-=>+,∴121[()](1)f x x -'=+, ∴1()y f x -=在点1(,())n f n -处的切线方程为21()1(1)n y x n n n -=-++, 令0x =, 得22(1)n n b n =+,∴2222(1)()24n n n b n n n a a λλλλλ-=-+=---, ∵仅当5n =时取得最小值,∴4.5 5.52λ<<,解之911λ<<,∴的取值范围为(9,11). ……7分(3)2121()[()()]1x g x f x f x x --=+⋅+22212[]1111x x x x x x x x -=+⋅=+-++,(0,1)x ∈. 则121(1)1nn n n n n x x x x x x ++-=-⋅+,因01n x <<,则1n n x x +>,显然12112n n x x x +>>>>.121111(1)2144121n n n n n n nn x x x x x x x x ++-=-⋅≤⋅<=+++-+∴211111111()1111()()())n n n n n n n n n n n n n n n n x x x x x x x x x x x x x x x x ++++++++--=-=--<- ∴2222311212231()()()n n n n x x x x x x x x x x x x ++---+++ 12231111111[()()()]n n x x x x x x +<-+-++-111111())n n x x x ++-=- ∵111,2n n x x x +=>,∴1112n x +<<, ∴1112n x +<<,∴11021n x +<-<∴2223212112231131()()()152)816n n n n n x x x x x x x x x x x x x ++++---+++-<<= . ……12分18.(本小题满分16分)已知在△ABC 中,点A 、B 的坐标分别为)0,2(-和)0,2(,点C 在x 轴上方. (Ⅰ)若点C 的坐标为)3,2(,求以A 、B 为焦点且经过点C 的椭圆的方程; (Ⅱ)若∠45=ACB ,求△ABC 的外接圆的方程; (Ⅲ)若在给定直线y x t =+上任取一点P ,从点P 向(Ⅱ)中圆引一条切线,切点为Q .问是否存在一个定点M ,恒有PM PQ =?请说明理由.19.(本小题满分16分)设等比数列{}n a 的首项为12a =,公比为q (q 为正整数),且满足33a 是18a 与5a 的等差中项;数列{}n b 满足232()02n n n t b n b -++=(*,t R n N ∈∈). (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)试确定t 的值,使得数列{}n b 为等差数列;(Ⅲ)当{}n b 为等差数列时,对每个正整数k ,在k a 与1k a +之间插入k b 个2,得到一个新数列{}n c . 设n T 是数列{}n c 的前n 项和,试求满足12m m T c +=的所有正整数m .20.(本小题满分16分)设函数2()f x x =,()ln (0)g x a x bx a =+>.(Ⅰ)若(1)(1),'(1)'(1)f g f g ==,求()()()F x f x g x =-的极小值;(Ⅱ)在(Ⅰ)的条件下,是否存在实常数k 和m ,使得()f x kx m ≥+和()g x kx m ≤+?若存在,求出k 和m 的值.若不存在,说明理由.(Ⅲ)设()()2()G x f x g x =+-有两个零点12,x x ,且102,,x x x 成等差数列,试探究0'()G x 值的符号.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学最后冲刺必读题解析(21)20.(本小题满分12分)已知等比数列}{n a 中,432,,a a a 分别是某等差数列的第5项、第3项、第2项,且,211=a 公比.1≠q (1)求数列}{n a 的通项公式;(2)已知数列}{n b 满足n n n S a b ,log 221=是数列}{n b 的前n 项和,求证:当.1,5<≥n n S a n 时20.解:(1)由已知得).(24332a a a a -=- 从而得01322=+-q q解得121==q q 或(舍去) …………4分 所以.)21(4na =…………6分(2)由于.2)1(),1(2)21(log 221nn n n nn n n S a n n S n b +=+=⋅== 因此所证不等式等价于:.)5()1(2≥+>n n n n①当n=5时,因为左边=32,右边=30,所以不等式成立;②假设)5(≥=k k n 时不等式成立,即),1(2+>k k k两边同乘以2得).2)(1(21++>+k k k这说明当n=k+1时也不等式成立。
由①②知,当)1(25+>≥n n n n时成立。
因此,当1,5<≥n n S a n 时成立。
…………12分21.(本小题满分12分)已知函数)('),(4)(23x f R a ax x x f ∈-+-=是)(x f 的导函数。
(1)当a=2时,对于任意的)(')(],1,1[],1,1[n f m f n m +-∈-∈求的最小值; (2)若存在),0(0+∞∈x ,使,0)(0>x f 求a 的取值范围。
21.解:(1)由题意知.43)(',42)(223x x x f x x x f +-=-+-=令.340,0)('或得==x x f当x 在[-1,1]上变化时,)(),('x f x f 随x 的变化情况如下表:)(],1,1[m f m -∈∴对于的最小值为,4)0(-=fx x x f 43)('2+-= 的对称轴为,22=x 且抛物线开口向下)('],1,1[n f n -∈∴对于的最小值为.7)1('-=-f)(')(n f m f +∴的最小值为-11。
…………6分(2))32(3)('a x x x f --= ①若0)(',0,0<>≤x f x a 时当[)+∞∴,0)(在x f 上单调递减,又.4)(,0,4)0(-<>-=x f x f 时则当.0)(,0,000>>≤∴x f x a 使不存在时当②若,0)(',320,0><<>x f ax a 时则当 当.0)(',32<>x f ax 时 从而⎥⎦⎤ ⎝⎛32,0)(在x f 上单调递增,在⎪⎭⎫⎢⎣⎡+∞,32a 上单调递减,.494278)32()(,),0(23max-+-==+∞∈∴a a a f x f x 时当根据题意,.3,27,0427433>>>-a a a 解得即综上,a 的取值范围是).,3(+∞ …………12分22.(本小题满分14分)已知椭圆)0(1:2222>>=+b a by a x C 的离心率为,22其左、右焦点分别为21,F F ,点P 是坐标平面内一点,且43,27||21=⋅=PF PF OP (O 为坐标原点)。
(1)求椭圆C 的方程;(2)过点)31,0(-S 且斜率为k 的动直线l 交椭圆于A 、B 两点,在y 轴上是否存在定点M ,使以AB 为直径的圆恒过这个点?若存在,求出M 的坐标和MAB ∆面积的最大值;若不存在,说明理由。
22.解:(1)设),0,(),0,(),,(2100c F c F y x P -则由;4727||2020=+=y x OP 得 由4321=⋅PF PF 得,43),(),(0000=--⋅---y x c y x c 即.4322020=-+c y x所以c=1…………2分 又因为.1,2,2222===b a a c 所以…………3分因此所求椭圆的方程为:.1222=+y x …………4分(2)动直线l 的方程为:,31-=kx y 由⎪⎪⎩⎪⎪⎨⎧=+-=,12,3122y x kx y 得.091643)12(22=--+kx x k 设).,(),,(2211y x B y x A 则.)12(916,)12(34221221+-=+=+k x x k k x x …………6分假设在y 上存在定点M (0,m ),满足题设,则)12(9)1569()1(189132)12(34)31()12(9)1(169132))(31()1()3131()31)(31()())(().,(),,(222222222212122212221221212121212211+-++-=+++++-++-=+++++-+=+-+----+=++-+=--+=⋅-=-=k m m k m m m k k m k k k m m x x m k x x k m kx kx m kx kx x x m y y m y y x x m y m y x x MB MA m y x m y x由假设得对于任意的0=⋅⋅∈R k 恒成立,即⎪⎩⎪⎨⎧=-+=-,0159,0122m m m 解得m=1。
因此,在y 轴上存在定点M ,使得以AB 为直径的圆恒过这个点, 点M 的坐标为(0,1) …………10分 这时,点M 到AB 的距离.))(1(||13422122x x k AB k d -+=⋅+=.)12(4998)12(964)1(216324)(32)(32||21222222221221221++=+++=-+=-==∆k k k k k x x x x x x d AB S MAB设,122t k =+则,212-=t k 得[)(].1,01,,1∈+∞∈tt所以.916])291(481[2198)1(21)1(299822≤--=-=∆t t t S MAB 当且仅当11=t时,上式等号成立。
因此,MAB ∆面积的最大值是.916 …………14分20.(本小题满分12分)已知各项均为正数的数列}{n a 的前n 项和n S 满足),2)(1(6,11++=>n n n a a S S 且.*N n ∈(1)求数列}{n a 的通项公式; (2)设数列n b n n T a b n记满足,1)12(}{=-为数列}{n b 的前n 项和,求证:).3(log 122+<+n n a T20.(1)当n=1时,有).2)(1(6111++=a a a解得.2),,1(11111=>==a S a a 或舍去矛盾与 …………1分当2≥n 时,有⎩⎨⎧++=++=---)2)(1(6),2)(1(6111n n n n n n a a S a a S 两式相减得.0)3)((),(36111212=--+-+-=----n n n n n n n n n a a a a a a a a a 即…………3分 由题设.3,03,0111=-=-->+---n n n n n n a a a a a a 即从而故数列}{n a 是首项为2,公差为3的等差数列.133)1(2-=⋅-+=n n a n ……5分 (2)由.133log ,1)12)(13(,1)12(2-==--=-n nb n a n b b n n n得…………6分 ).133895623(log 221-⨯⨯⨯⨯=+++=n nb b b T n n而)23(log 1)133895623(log 2)3(log 12222+<+-⨯⨯⨯⨯⇔+<+n n na T n n 223)133895623(2+<-⨯⨯⨯⨯⇔n n n123)133895623(22<+-⨯⨯⨯⨯⇔n n n …………8分 令.23)133895623(22+-⨯⨯⨯⨯=n n n c n则.1102199189)23)(53()33(2)1(3)23()2333(22221<++++=+++=+++++=+n n n n n n n n n n n c c nn而}{,,01n n n n c c c c <>+所以是单调递减数列.…………10分所以,.123)133895623(2.1109213)23(2221<+-⨯⨯⨯⨯=<=+⨯=≤n n n c c c n n 所以 从而)3(log 122+<+n n a T 成立.…………12分21.(本题满分12分)已知函数.1ln )(),()(-=∈=x x g R a ax x f (1)若函数x x f xx g x h 2)(21)()(--+=存在单调递减区间,求a 的取值范围; (2)当a>0时,试讨论这两个函数图象的交点个数. 21.(1).21)('),0(22ln )(2--=>--=ax xx h x x x a x x h 若使)(x h 存在单调递减区间,则),0(021)('+∞<--=在ax xx h 上有解.……1分而当x x a x ax ax x x 2121021,02->⇔->⇔<-->时问题转化为),0(212+∞->在x x a 上有解,故a 大于函数),0(212+∞-在x x上的最小值.………………3分又),0(21,1)11(21222+∞---=-在x xx x x 上的最小值为-1,所以a>1.……4分 (2)令).0(1ln )()()(>+-=-=a x ax x g x f x F函数1ln )()(-==x x g ax x f 与的交点个数即为函数)(x F 的零点的个数.……5分).0(1)('>-=x x a x F令,01)('=-=x a x F 解得.1ax =随着x 的变化,)(),('x F x F 的变化情况如下表:…………7分①当)(,,0ln 2)1(2x F e a a a F 时即->>+=恒大于0,函数)(x F 无零点.……8分②当,,0ln 2)1(2时即-==+=e a a aF 由上表,函数)(x F 有且仅有一个零点. (9)分③,0,0ln 2)1(2时即-<<<+=e a a a F 显然a11<)1,0()(.0)1()1(,01)1(ax F a F F a F 在又所以<⋅>+=内单调递减,所以)1,0()(ax F 在内有且仅有一个零点…………10分当.1)(ln)(,1+=>xe x F a x xa 时 由指数函数)1()(>=a x a e e y 与幂函数x y =增长速度的快慢,知存在,10ax >使得.1)(0>x e x a从而.0111ln 1)(ln )(000>=+>+=x e x F x a因而.0)()1(0<⋅x F aF又),1()(+∞ax F 在内单调递增,⎪⎭⎫⎢⎣⎡+∞,1)(a x F 在上的图象是连续不断的曲线, 所以),1()(+∞ax F 在内有且仅有一个零点. …………11分因此,)(,02x F e a 时-<<有且仅有两个零点.综上,)()(,2x g x f e a 与时->的图象无交点;当)()(,2x g x f e a 与时-=的图象有且仅有一个交点;)()(,02x g x f e a 与时-<<的图像有且仅有两个交点.……12分 22.(本题满分14分)抛物线D 以双曲线188:22=-x y C 的焦点)0(),,0(>c c F 为焦点. (1)求抛物线D 的标准方程;(2)过直线1:-=x y l 上的动点P 作抛物线D 的两条切线,切点为A ,B .求证:直线AB 过定点Q ,并求出Q 的坐标; (3)在(2)的条件下,若直线PQ 交抛物线D 于M ,N 两点,求证:|PM|·|QN|=|QM|·|PN| 22.解:(1)由题意,.21,4181812==+=c c 所以)21,0(F ,抛物线D 的标准方程为.22y x =…………3分(2)设),1,(),,(),,(002211-x x P y x B y x A由121|'.',2x y x y y x x x ====因此得抛物线D 在点A 处的切线方程为.),(11111y x x y x x x y y -=-=-即…………4分而A 点处的切线过点,1),1,(101000y x x x x x P -=--所以 即.01)1(101=-+-y x x 同理,.01)1(202=-+-y x x可见,点A ,B 在直线01)1(0=-+-y x x 上. 令1,01,01===-=-y x y x 解得 所以,直线AB 过定点Q (1,1)…………6分(3)设),,(),,(),1,(443300y x N y x M x x P -直线PQ 的方程为.1112,1)1(11)1(00000-+--=+----=x x x x y x x x y 即由,,,211122000y y x x x x x y 消去⎪⎩⎪⎨⎧=-+--= 得.0121)2(20002=-----x x x x x由韦达定理,.12,1)2(20430043--=--=+x x x x x x x…………9分而||||||||||||||||QN QM PN PM PN QM QN PM =⇔⋅=⋅)(02)()(2)1)(()1)((1104304343304403430403*=++-+-⇔--=--⇔--=--⇔x x x x x x x x x x x x x x x x x x x x…………12分将12,1)2(20430043--=--=+x x x x x x x 代入方程(*)的左边,得 (*)的左边000000021)2(21)2(214x x x x x x x +--------= 1224242400200200--++-+--=x x x x x x=0.因而有|PM|·|QN|=|QM|·|PN|.…………14分。