高中数学必做100题--数学3(8题)

合集下载

高三数学百题训练

高三数学百题训练

高三数学百题训练一、填空题1.设集合A={x |x 2-a <0},B={x |x <2},若A ∩B=A ,则实数a 的取值范围是 .2.设P={(x ,y )||x |≤1,|y |≤1},Q={(x ,y )|(x -a )2+(y -a )2=1},若P ∩Q ≠φ,则a 的取值范围是 .3. 已知集合A={x |x 2-ax +a 2-19=0},B={x |1)85(log 22=+-x x },C={x |x 2+2x -8=0},如果A ∩B φ且A ∩C=φ,则实数a 的值为 .4.定义在(-≦,+≦)上的偶函数f (x )满足:f (x +1)=-f (x ),且在[-1,0]上是增函数,下面关于f (x )的判断:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0) 其中正确的判断是 (把你认为正确的判断的序号都填上).5.设f (x )是定义在R 上的偶函数,且f (x +2)=f (x ),当0≤x ≤1时,f (x )=x ,则当5≤x ≤6时,f (x )的表达式为 .6.函数f (x )=|56|log 221+-x x 的单调递增区间为 .7.函数f (x )定义域为R ,x 、y ∈R 时恒有f (xy )=f (x )+f (y ),若f (27+)+f (27-)=2,则f (1261()1261-++f )= . 8.已知函数f (x )=x 2+l g(x +12+x ),若f (a )=M ,则f (-a )等于 .9.已知奇函数f (x )和偶函数g(x )满足f (x )+g(x )=a x -a -x +2,且g(b )=a ,则f (a )= .10.已知函数f (x )的定义域是R ,对任意x 、y ∈R ,都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2,则f (x )在[-3,3]上的最大值为 ,最小值为 .11.对于每个实数x ,设f (x )是y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,则f (x )的最大值是 .12.函数y =2log 22-x x 的最小值是 ;此时x 的值为 .13.如果函数y =x 2+ax -1在闭区间[0,3]上有最小值-2,那么a 的值是 .14.如果函数y =ax 2+2ax -1对于x ∈[1,3]上的图象都在x 轴下方,则a 的取值范围是 .15.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么|f (x +1)|<1的解集是 . 16.已知函数f (x )=l og 2(x +1),若-1<a <b <c ,且abc ≠0,则a a f )(、b b f )(、cc f )(的大小关系是 . 17.已知定义在R 上的函数y =f (x )满足下列三个条件:①对任意的x ∈R 都有f (x +4)=f (x );②对于任意的0≤1x <2x ≤2时,)()(21x f x f <;③y =f (x +2)的图象关于y 轴对称,则f (4.5),f (6.5),f (7)的大小关系是 .18.设奇函数f (x )在(0,+≦)上是增函数,若f (-2)=0,则不等式x 〃f (x )<0的解集是 . 19.已知函数f (x )=132-+x x ,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,则g(11)= . 20.设函数y =f (x )存在反函数y =g(x ),f (3)=-1,则函数y =g(x -1)的图象必经过点______. 21.已知f (x )=⎩⎨⎧≤>+--)6(3)6)(1(log 63x x x x ,若记f -1(x )为f (x )的反函数,且a =f -1(91),则f (a +4)= ___. 22.把函数y =11+x 的图象沿x 轴向右平移2个单位,再将所得图象关于y 轴对称后所得图象的解析式为 .23.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…a 2n =72,且a 1-a 2n =33,则该数列的公差d = . 24.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……,按照这种规律进行下去,6小时后细胞的存活数是 个。

高中数学-排列组合100题(附解答)

高中数学-排列组合100题(附解答)

高中数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒ (2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒2. (1)展开式中10x 项的系数为____________﹒ (2)展开式中3x 项的系数为____________﹒ (3)展开式中常数项为____________﹒3. (1)()82x y z +-展开式中332x y z 项的系数为____________﹒ (2)()532x y z -+展开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的所有自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒ 8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(注意:外套可穿也可不穿﹒)9. 已知数列n a 定义为﹐n 为正整数﹐求100a =____________﹒10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满足T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生及其太太有一天邀请邻家四对夫妇围坐一圆桌聊天﹐试求下列各情形之排列数: (1)男女间隔而坐且夫妇相邻____________﹒ (2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒ 15. 展开式中﹐各实数项和为____________﹒16. 有一数列n a 满足11a =且﹐n 为正整数﹐求____________﹒17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的所有数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(3)是5的倍数但不是7的倍数者共有____________个﹒ 20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒ 22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则 (1)50元硬币至少要1个的换法有____________种﹒ (2)不含1元硬币的换法有____________种﹒ 23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的展开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明及小美玩猜数字游戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x =≤≤為正整數正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒ (4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒ 29. ()10222x x -+除以()31x -所得的余式为____________﹒30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒32. 求()()23311x x ++++……()2031x ++展开式中12x 项系数为____________﹒33. 展开式中5x 的系数为____________﹒34. 展开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒种﹒38. 许多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒ 39.如圖,有三組平行線,每組各有三條直線,則 (1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今天小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐如果考虑上下的次序﹐则可作成____________种不同的讯号﹒ 43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒ (2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒46. 2颗苹果﹐3颗番石榴﹐4颗菠萝﹐将9颗水果任意装入4个不同的箱子﹐水果全装完每个箱子至少装一颗水果有____________种方法﹒(同种水果视为同物)47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒49. 将pallmall 的字母全取排成一列﹐相同字母不相邻的排法有____________种﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满足14a =且﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推测n a 之值(以n 表示)2. 某校从8名教师中选派4名教师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()6x y-的展开式﹒324. 试求()4x-的展开式﹒215. 从SENSE的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A到A的一笔划﹐方法各有多少种﹖(1)(2)(3)8. 设()n x y +展开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则 (1)四球恰为红﹑白二色的情形有几种? (2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃ (2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生及4位女生配成4对﹐每一对皆含一位男生及一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖ (1)(2)15. 如图﹐由A 至B 走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖16. 求()70.998之近似值﹒(至小数点后第6位)18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满足1231,2311n nn nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成绩是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则 (1)不小于60分的数有几个﹖ (2)有几个3的倍数﹖(3)改完考卷后发现由小到大排列的第12个数正是全班的平均成绩﹐请问班上的平均成绩是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满足递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项n a (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复使用 (1)可作成多少个﹖ (2)其总和若干﹖28. 妈妈桌球俱乐部拟购买8把桌球拍以供忘记携带球拍的会员使用﹐若球拍分为刀板﹐直拍及大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖(1)(2)31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复使用﹐则涂法各有多少种﹖(1)(2)32. 平面上有n个圆﹐其中任三个圆均不共点﹐此n个圆最多可将平面分割成a个区域﹐则(1)求na﹐2a﹐3a﹐4a﹒(2)写出n a的递归关系式﹒(3)求第n项n a(以n表示)﹒133. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转)(1)(2)(3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书及5本不同的中文书中﹐选取2本英文书及3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形分配﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋比赛﹐已知某班级有42位同学参赛﹐其中有34位同学参加围棋比赛﹐而两种棋赛都参加的同学有15人﹒试问此班有多少位同学参加象棋比赛?38. 求()321x x++的展开式中2x的系数﹒39. 求()322x x-+的展开式中4x的系数﹒40. 求240的正因子个数﹒41. 自甲地到乙地有电车路线1条﹐公交车路线3条﹐自乙地到丙地有电车路线2条﹐公交车路线2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地及乙地到丙地两次选择的路线中﹐电车及公交车路线各选一次﹐则有几种不同的路线安排?42. 某班举行数学测验﹐测验题分A﹐B﹐C三题﹒结果答对A题者有15人﹐答对B题者有19人﹐答对C 题者有20人﹐其中A ﹐B 两题都答对者有10人﹐B ﹐C 两题都答对者有12人﹐C ﹐A 两题都答对者有8人﹐三题都答对者有3人﹒试问A ﹐B ﹐C 三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形:設n a 是第n 圖需用到的白色地磚塊數﹒(1)寫下數列n a 的遞迴關係式﹒(2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班安排2人﹐共有几种分法?(2)若甲乙两班各安排3人﹐丙丁两班各安排1人﹐共有几种分法?46. 求满足12320003000n n n n n C C C C <++++<的正整数n ﹒47. (1)方程式9++=有多少组非负整数解﹖x y z(2)方程式9++=有多少组正整数解﹖x y z48. 旅行社安排两天一夜的渡假行程﹐其中往返渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房及小木屋2种选择﹒试问全部渡假行程﹐交通工具及住宿共有几种安排法﹖49. 老师想从10位干部中选出3人分别担任班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 如果某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑及打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲安排呢﹖一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11. (1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 266 22. (1)37;(2)18 23. 10098x -24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29.2102011x x -+ 30.780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44.(1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)﹐37a =﹐﹐510a =;(2);(3)13302. 6003. 见解析4. 见解析5. 186.(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21. 101,4949,a b ==156550c = 22.(A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31.(1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33.(1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36. (1)1680;(2)280;(3)378 37. 2338. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44. (1)15,2n n a a n -=+≥;(2)53n +;(3)478 45.(1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒2. (1)设第1r +项为10x 项﹐则()()882816222r r r r r r r C x C x x x ---⎛⎫-=- ⎪⎝⎭163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒ (2)设第1r +项为3x 项﹐则()55255102112233r rr r r r r r C x C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ (不合)﹐∴3x 项之系数为0﹒(3)设第1r +项为常数项﹐则()5535515322122rr r r r r r C x C x x x ----⎛⎫= ⎪⎝⎭ 15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒ (2)()()()()2303223235!321031902!3!x y z x y x y -=⨯-=-﹐∴系数为90-﹒ 4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒[另解]﹒5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有个﹐2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有个﹐∴所求为33420167468+-=﹒7. ﹒8. ()542160⨯⨯+=﹒9. ∵12n n a a n +=+﹐∴2121a a =+⨯3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐ ∴210010010039903a =-+=﹒10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒11. (1)﹒(2)A a B b C c D d E e1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒[另解]﹒12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒14. 任意排0-在首位7!6!5675610515904!2!4!2!22⨯⨯⨯=-=-=-=﹒15. 展开后各实数项和为24681086421010101010024681111122222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒﹐ ∴实数项和为12-﹒16. ∵∴ -()1123n n n n a a a a +-⇒-=- 而11a =﹐﹐﹐ 表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+- 111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐ ∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐∴()(){}4,4A B A B ⋃-⋂=-﹒18. 1234 32142134 32412314 34212341 4321共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒ (3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒20. ﹒21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒ 设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则﹐﹐﹐()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐﹐ ()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂ 5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1) 一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐共119753136+++++=种﹒ 二个50⇒1种﹒∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++=10220x y z ⇒++=﹐共116118++=种﹒ 23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐ ∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒(2)25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐令()222212232336x k k ==⨯⨯=⨯⨯=﹐则()()(){}22261,62,,616,⋂=⨯⨯⨯S T ∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为﹒(2)所求为﹒(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦5558332771111=+-=﹒(4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦()555833n A B C =+-⋂⋂5558332771111=+-=﹒28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦ ()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦ 故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.①B ﹑D 同﹐54143240,A B D C E⨯⨯⨯⨯= ②B ﹑D 異﹐ 54333540,A B D C E⨯⨯⨯⨯=由 可得﹐共有240540780+=种﹒31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐由A 開始朝任何方向走都有1種走法﹐走至交叉點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +展开式中15x 项系数 ∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒ 33. ()()()()1001201111kk x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x ⎡⎤----⎣⎦==--﹐ 展开式中5x 系数即为()1111x --展开式中6x 系数﹐∴所求为()61161462C --=-﹒ 34. ()()20200.9910.01=⎡+-⎤⎣⎦()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +- 10.20.0190.00114=-+-+……0.81786≈﹐∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐6!7!8!9!10!15!3!4!5!3!7!2!9!⇒+++++144=﹒ 36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n nn n S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A a Bb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒42. 选一面4⇒﹐选二面4312⇒⨯=﹐选三面43224⇒⨯⨯=﹐选四面⇒432124⨯⨯⨯=﹐由 可得﹐共可作成412242464+++=种﹒43. (1)﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭ ()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----=∴所求为72297369.+=(2)含中空:边长为31⇒﹐边长为44⇒﹐边长为56⇒﹐边长为63⇒﹐∴共14个﹐ 不含中空:()()()()625128176352418523122362,⨯+⨯+⨯+⨯+⨯+⨯+⨯+--⨯+⨯--=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒45. 只用一色:3种﹐只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯= 上下色交換用三色:红+白+黄=71 1 1 剩4∴36443!690,⨯=⨯=H C紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒47. 6A a Bb →→→坐法其他人坐法1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll 不相邻﹐可先排pmaa ﹐再安插llll ﹐ aa 排在一起时:3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒ ↑ laa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再安排4个l :p a m a △△△△△方法有545C =种﹒ 由 可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒ 二、计算题 (75小题 每小题0分 共0分) 1. ∵﹐∴﹐表示n a 为首项4﹐公差32的等差数列﹐ (1)﹐ ﹐ ﹐ ﹒(2)()()1335141222n a a n d n n =+-=+-⨯=+﹒(3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名教师中选出4名教师去4个城市研习的方式可分为甲去和甲不去两种情形:(1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名教师中选出2人去参加研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名教师中选出4名教师去参加研习﹐故选法有64C 种﹒综合这两种情形﹐从8名教师中选派4名教师的选法共有562425C C +=种﹒而选出4名教师后﹐分别安排到4个城市去研习﹐则安排的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+- ()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有种﹒综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路任意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒ (2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y⇒⋅=⋅⋅⋅⋅⋅⋅- ﹐∴8n =﹐ 代入⇒8x y =﹐由⇒﹐即得﹐4x =±﹐∴(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白(2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得解得6x =﹐2y =﹐ 因此用这样的走法共有(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒ (9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐ ∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐第二位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒ 故选(2)﹒ 14. (1)5232=﹒(2) 先往右42232⨯=﹐ 先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+- ()10111c =-=-﹐∵()1011x +展开式中才有x 项﹐∴1011101,a C ==∵()1011x +及()100101211C x x -+展开式中均有2x 项﹐∴101101214949.b C C =-= 18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐ ∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑(2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐ ∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐ ∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒→有363⨯⨯个 123⨯⨯个 113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2) 个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ 故百位数字和为()()1834592234⨯++⨯⨯=﹒由 可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍及大陆拍各1x ﹐2x ﹐3x 把﹐ 根据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为ab -的直线﹒因为斜率a b-为正值﹐所以,a b 必须异号﹐且,a b 皆不等于0﹒我们以a 的正负情形讨论如下﹕ (1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒但是当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ 当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ 当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→ 54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a = 24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=A ﹑C 异色﹐由 可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒ (3)[]354143343940⨯⨯⨯+⨯=﹒ 34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积展开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒由于上式中A 部分的各项次数均超过2次﹐因此全部展开式中2x 的系数﹐就是B 部分的展开式中的2x 系数﹒又B 部分的展开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部展开式中2x 的系数为6﹒39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积展开得()()()()()()()()()()3321123232323232012322222A B xx C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+展开式中B 部分各项次数低于4次﹐因此要计算展开式中4x 的系数只要计算A 部分各项展开式即可﹐又A 部分展开式为()()()()32132320122C x x C x x -+-()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐ 所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒ 利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒ 41. 依题意图示如下:其中实线表电车路线﹐虚线表公交车路线﹒因为电车及公交车路线各选一次﹐所以路线安排可分成以下二类: (1)先电车再公交车:利用乘法原理﹐得有122⨯=种路线﹒ (2)先公交车再电车:利用乘法原理﹐得有326⨯=种路线﹒ 由加法原理得知﹐共有268+=种路线安排﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒故三题中至少答对一题者有27人﹒ 43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ ()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发现图形每次均增 加1个黑色地砖及5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等 差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒ 45. (1)先将这8位转学生分成四堆﹐每堆2人﹐ 再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒ (2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒46. 因为01232n n n n n nn C C C C C +++++=﹐所以1230221n n nn n n nn C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐ 即200123001n <<﹐ 得11n =﹒ 47. (1)组﹒(2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种安排法﹒ 49. 10310!10987207!P ==⨯⨯=种选法﹒ 50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲安排﹒。

高三数学会考练习题及答案

高三数学会考练习题及答案

高三数学会考练习题及答案第一题:已知函数 f(x) = x^2 - 3x + 2,求函数 f(x) 的图像与 x 轴交点的坐标。

解析:当函数的图像与 x 轴交点时,即为该函数的零点,即 f(x) = 0。

将 f(x) = x^2 - 3x + 2 置零,得到方程 x^2 - 3x + 2 = 0。

使用因式分解法或配方法,将方程化为 (x - 2)(x - 1) = 0。

解得 x = 2 或 x = 1,即函数 f(x) 的图像与 x 轴交点的坐标为 (2, 0)和 (1, 0)。

答案:(2, 0) 和 (1, 0)第二题:已知等差数列 {an} 的通项公式为 an = 3n + 1,若数列的前 n 项和Sn = 70,求 n 的值。

解析:等差数列的前 n 项和公式为 Sn = (n/2)(a1 + an)。

将已知的等差数列 {an} 的通项公式 an = 3n + 1 代入,得到 Sn =(n/2)(a1 + 3n + 1)。

将 Sn = 70 代入,得到 70 = (n/2)(a1 + 3n + 1)。

化简方程,得到 140 = n(2a1 + 6n + 2)。

由于 a1 = 3(1) + 1 = 4,代入方程,得到 140 = n(2(4) + 6n + 2)。

化简方程,得到 140 = n(12n + 10)。

整理方程,得到 140 = 12n^2 + 10n。

移项得到 12n^2 + 10n - 140 = 0。

使用因式分解法或配方法,将方程化为 (2n - 7)(6n + 20) = 0。

解得 n = 7/2 或 n = -20/6,由于项数不能为负数,所以 n = 7/2。

答案:n = 7/2第三题:已知直角三角形 ABC,∠ABC = 90°,BC = 3 cm,AC = 4 cm,请计算三角形 ABC 的斜边 AB。

解析:根据勾股定理,直角三角形的斜边的长度等于两直角边的平方和的开方。

专题1 集合 跳出题海之高中数学必做黄金100题(解析版)

专题1 集合  跳出题海之高中数学必做黄金100题(解析版)
二.考场精彩·真题回放
【2020高考全国1卷,理1】设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B. –2C.2D. 4
【答案】B
【解析】求解二次不等式x240可得:Ax|2x2,
求解一次不等式2xa0可得:Bx|xa.
2
由于ABx|2x1,故:a1,解得:a2.
【答案】D
【解析】∵A1,Bxx2mx31,AB,
∴1为方程x2mx31的解,即1m31,解得m3,故选D.
2.(2018年高考全国Ⅱ卷理数)已知集合Ax,yx2y2≤3,xZ,yZ,则A中元素的个数为
A.9B.8C.5D.4
【答案】A
【解析】x2+y2≤3,x2≤3,x C Z,x敬潃潬,湯,潬,当x敬潃潬时,y敬潃潬,湯,潬;
【答案】D
防范:一是不要忽视元
【解析】集合M中:x21,解得1x1,集合N中:ylog2x是单调递
增函数x2,所以y1即Mx1x1,Ny y1
素的互异性;二是保证运算的准确性。
A选项中,MNN,所以错误;B选项中,CRNyy1,所以
MCRNx1x1,所以错误;C选项中,MNU,所
以错误
确.故选
D
D
选项中,Mx1x
∴集合Ax|x1或x0,
∵集合B{x|ylog2(x1)},
∴集合B{x|x1},∴AB{x|x1}, 故选:A.
4.(2020·重庆高三)已知集合Ax|xx26x80,AB0,2,4,6,则集合B中必有的元素是()
A.0B.2C.4D.6
【答案】D
【解析】由xx26x80,得x0,或x=2,或x4
的集合化为最简形式再

高中数学三年必须吃透的70个必刷题

高中数学三年必须吃透的70个必刷题

高中数学是学生在数学学科中学习的重要阶段,数学知识的掌握对于学生进入大学甚至未来的职业发展都是至关重要的。

而在高中数学的学习过程中,大家必须掌握一定的数学题目,才能更好的提高自己的数学水平。

我将在本文中共享70个高中数学必刷题,希望能够帮助更多的学生在高中数学学习过程中取得更好的成绩。

一、代数部分1. 一元二次不等式2. 根据配方法求最值3. 分式方程4. 二项式定理5. 绝对值不等式6. 倍式展开与二项式系数二、函数部分7. 函数奇偶性8. 函数极值问题9. 参数方程问题10. 反函数与复合函数11. 对数函数的性质12. 求极限问题三、方程部分13. 解方程组14. 解不等式组15. 二元一次方程组16. 解三元一次方程组17. 解分式方程18. 二次方程的判别式四、几何部分19. 三角形内角和20. 三角形外角定理21. 直线与平面的交点22. 圆的切线与切点23. 直角三角形的性质24. 平行四边形的几何关系五、概率部分25. 事件的概率26. 条件概率27. 期望与方差28. 排列与组合29. 二项分布30. 正态分布的性质六、数列部分31. 数列的通项32. 数列的性质33. 数列的求和34. 数列的递推公式35. 等差数列与等比数列36. 等比中项问题七、植物生长模型37. 个体生长模型38. 种裙增长模型39. 人口增长模型40. 自然增长模型41. 对数生长模型42. 指数生长模型八、微积分部分43. 函数的极限44. 函数的连续性45. 一元函数的导数46. 函数的微分47. 函数的积分48. 微积分中的应用问题九、向量部分49. 向量的定位问题50. 向量的线性运算51. 向量的数量积52. 向量的夹角问题53. 平面向量的应用54. 空间向量的应用十、解析几何部分55. 曲线与曲面的方程56. 空间中的直线57. 空间中的平面58. 空间中的球面59. 空间中的圆锥曲线60. 空间中的二次曲面十一、复数部分61. 复数的性质62. 复数的运算63. 复数的共轭64. 复数的幂与根65. 复数的几何意义66. 复数方程问题十二、三角部分67. 弧度与角度的转换68. 三角函数的基本关系69. 三角函数的图像70. 三角函数的性质以上便是我整理的高中数学必刷题清单,希望对大家在高中数学学习中有所帮助。

高考数学必备选择题100道

高考数学必备选择题100道

高考数学必备选择题100道1. 选择题:若函数f(x) = x^2 - 2x + 1,则f(x)的定义域为()A. x ∈ RB. x ∈ (-∞, ∞)C. x ∈ [0, 1]D. x ∈ [-1, 0]2. 选择题:已知函数f(x) = 2x + 3,若f(a) = f(b),则a + b的值为()A. -1B. 0C. 1D. 23. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 34. 选择题:已知函数f(x) = ax^2 + bx + c,若f(x)的图象过点(1, 2),则c的值为()A. 2B. 1C. 0D. -15. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -26. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 17. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4C. 6D. 88. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 49. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -210. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 111. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 312. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 413. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -214. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 115. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4C. 6D. 816. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 417. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -218. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 119. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 320. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()B. 2C. 3D. 421. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -222. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 123. 选择题:若a^2 + b^2 = 25,且a - b = 2,则a + b的值为()A. 2B. 4D. 824. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 425. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -226. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 127. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 328. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 429. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -230. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 131. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 332. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 433. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1C. 2D. -234. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 135. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 336. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2D. 437. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -238. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 139. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 340. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 441. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -242. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 143. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 344. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 445. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -246. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 147. 选择题:若a^2 + b^2 = 25,且a + b = 5,则a - b的值为()A. 0B. 1C. 2D. 348. 选择题:已知函数f(x) = 2x^2 - 4x + 1,若f(x)的图象过点(2, 3),则c的值为()A. 1B. 2C. 3D. 449. 选择题:若a^2 - 2a + 1 = 0,则a的值为()A. 1B. -1C. 2D. -250. 选择题:已知函数f(x) = x^2 - 2x + 1,则f(-x)的值为()A. x^2 - 2x + 1B. -x^2 + 2x - 1C. -x^2 + 2x + 1D. x^2 + 2x - 1。

高中数学好题100题速递(含答案解析)

高中数学好题100题速递(含答案解析)

1.已知P 是ABC ∆内任一点,且满足AP xAB yAC =+u u u r u u u r u u u r,x 、y R ∈,则2y x +的取值范围是 ___ .解法一:令1x y AQ AP AB AC x y x y x y ==++++u u u r u u u r u u u r u u u r ,由系数和1x yx y x y+=++,知点Q 在线段BC 上.从而1AP x y AQ +=<u u u r u u u r .由x 、y 满足条件0,0,1,x y x y >>⎧⎨+<⎩易知2(0,2)y x +∈. 解法二:因为题目没有特别说明ABC ∆是什么三角形,所以不妨设为等腰直角三角形,则立刻变为线性规划问题了.2.在平面直角坐标系中,x 轴正半轴上有5个点, y 轴正半轴有3个点,将x 轴上这5个点和y 轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个. 答案:30个好题速递21.定义函数()[[]]f x x x =,其中[]x 表示不超过x 的最大整数,如:[1.5]1[ 1.3]2=-=-,,当*[0)()x n n N ∈∈,时,设函数()f x 的值域为A ,记集合A 中的元素个数为n a ,则式子90n a n+的最小值为 . 【答案】13.【解析】当[)0,1n ∈时,[]0x x ⎡⎤=⎣⎦,其间有1个整数;当[),1n i i ∈+,1,2,,1i n =-L 时,[]2(1)i x x i i ⎡⎤≤<+⎣⎦,其间有i 个正整数,故(1)112(1)12n n n a n -=++++-=+L ,9091122na n n n +=+-, 由912n n=得,当13n =或14时,取得最小值13. 2. 有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有 种. 答案:192种好题速递31.已知直线l ⊥平面α,垂足为O .在矩形ABCD 中,1AD =,2AB =,若点A 在l 上移动,点B 在平面α上移动,则O ,D 两点间的最大距离为 .解:设AB 的中点为E ,则E 点的轨迹是球面的一部分,1OE =,DE所以1OD OE ED ≤+当且仅当,,O E D 三点共线时等号成立.2. 将A、B、C、D四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有 种. 答案:30种1. 在平面直角坐标系xOy 中,设定点(),A a a ,P 是函数()10y x x=>图象上一动点.若点,P A 之间的最短距离为22,则满足条件的实数a 的所有值为 . 解:函数解析式(含参数)求最值问题()222222211112222AP x a a x a x a x a a x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-++-=+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦因为0x >,则12x x+≥,分两种情况: (1)当2a ≥时,2min 222AP a =-=,则10a = (2)当2a <时,2min 24222AP a a =-+=,则1a =-2. 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 种. 答案:90种好题速递51.已知,x y ∈R ,则()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为 .解: 构造函数1y x =,22y x =-,则(),x x 与2,y y ⎛⎫- ⎪⎝⎭两点分别在两个函数图象上,故所求看成两点(),x x 与2,y y ⎛⎫- ⎪⎝⎭之间的距离平方,令222080222y x m x mx m m y x =+⎧⎪⇒++=⇒∆=-=⇒=⎨=-⎪⎩,所以22y x =+是与1y x =平行的22y x=-的切线,故最小距离为2d =所以()222x y x y ⎛⎫++- ⎪⎝⎭的最小值为42. 某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有 种.答案:140种好题速递61.已知定圆12,O O 的半径分别为12,r r ,圆心距122O O =,动圆C 与圆12,O O 都相切,圆心C 的轨迹为如图所示的两条双曲线,两条双曲线的离心率分别为12,e e ,则1212e e e e +的值为( ) A .1r 和2r 中的较大者 B .1r 和2r 中的较小者 C .12r r + D .12r r -解:取12,O O 为两个焦点,即1c =若C e 与12,O O e e 同时相外切(内切),则121221CO CO R r R r r r -=--+=- 若C e 与12,O O e e 同时一个外切一个内切,则121221CO CO R r R r r r -=---=+ 因此形成了两条双曲线.此时21211212212111221122r r r r e e e e r r r r +-++=-+,不妨设21r r >,则12212e e r e e +=2.某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有 种. 答案:6种好题速递71. 已知12,F F 是双曲线()222210,0x y a b a b -=>>的左右焦点,以12F F 为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N ,且M 、N 均在第一象限,当直线1//MF ON 时,双曲线的离心率为e ,若函数()222f x x x x =+-,则()f e = .解:()222,x y c M a b by x a ⎧+=⎪⇒⎨=⎪⎩1F M b k a c =+,所以ON b k a c =+,所以ON 的方程为b y x a c=+,所以22221x y a a c a b N b y x a c ⎧-=⎪⎛⎫+⎪⇒⎨⎪=⎪+⎩又N 在圆222x y c +=上,所以222a a c c ⎛⎫⎛⎫++= 所以322220e e e +--=,所以()2222f e e e e=+-=2.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有 个. 答案:28个好题速递81. 已知ABC ∆的三边长分别为,,a b c ,其中边c 为最长边,且191a b+=,则c 的取值范围是 .解:由题意知,,a c b c ≤≤,故1919101a b c c c=+≥+=,所以10c ≥又因为a b c +>,而()1991016b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭所以16c <故综上可得1016c ≤<2. 从5名志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有 种. 解: 48种好题速递91.在平面直角坐标系xoy 中,已知点A 是半圆()224024x y x x +-=≤≤上的一个动点,点C 在线段OA 的延长线上.当20OA OC =u u u r u u u rg时,则点C 的纵坐标的取值范围是 . 解:设()22cos ,2sin A θθ+,()22cos ,2sin C λλθλθ+,1λ>,,22ππθ⎡⎤∈-⎢⎥⎣⎦由20OA OC =u u u r u u u r g 得:522cos λθ=+所以()()[]5sin 055sin 2sin 5,522cos 1cos cos 1C y θθθθθθ-=⋅⋅==∈-++--2. 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是 种. 答案:20种好题速递101.点D 是直角ABC ∆斜边AB 上一动点,3,2AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是 .解:过点'B 作'B E CD ⊥于E ,连结,BE AE , 设'BCD B CD α∠=∠=,则有'2sin ,2cos ,2B E CE ACE πααα==∠=-在AEC ∆中由余弦定理得22294cos 12cos cos 94cos 12sin cos 2AE παααααα⎛⎫=+--=+- ⎪⎝⎭在'RT AEB ∆中由勾股定理得22222''94cos 12sin cos 4sin 136sin 2AB AE B E ααααα=+=+-+=-所以当4πα=时,'AB 取得最小值为72.从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 种. 答案:45种好题速递111.已知函数()421421x x x x k f x +⋅+=++,若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,则实数k 的取值范围是 . 解:()421111421212x x x x xx k k f x +⋅+-==+++++ 令()110,13212x x g x ⎛⎤=∈ ⎥⎝⎦++ 当1k ≥时,()213k f x +<≤,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需223k +≥,所以14k ≤≤ 当1k <时,()213k f x +≤<,其中当且仅当0x =时取得等号 所以若对于任意的实数123,,x x x 均存在以()()()123,,f x f x f x 为三边长的三角形,只需2213k +⋅≥,所以112k -≤<综上可得,142k -≤≤2.在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 种.答案:55种好题速递121.已知函数()2221f x x ax a =-+-,若关于x 的不等式()()0f f x <的解集为空集,则实数a 的取值范围是 .解:()()()222111f x x ax a x a x a =-+-=---+⎡⎤⎡⎤⎣⎦⎣⎦ 所以()0f x <的解集为()1,1a a -+所以若使()()0f f x <的解集为空集就是1()1a f x a -<<+的解集为空,即min ()1f x a ≥+ 所以11a -≥+,即2a ≤-2.某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有 种.答案:31116322C C C C 种好题速递131. 已知定义在R 上的函数()f x 满足①()()20f x f x +-=;②()()20f x f x ---=;③在[]1,1-上的表达式为()[](]21,1,01,0,1x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则函数()f x 与函数()122,0log ,0xx g x x x ⎧≤⎪=⎨>⎪⎩的图象在区间[]3,3-上的交点个数为 .2. 若5(1)ax -的展开式中3x 的系数是80,则实数a 的值是 . 答案:2好题速递141.()f x 是定义在正整数集上的函数,且满足()12015f =,()()()()212f f f n n f n +++=L ,则()2015f = .解:()()()()212f f f n n f n +++=L ,()()()()()212111f f f n n f n +++-=--L 两式相减得()()()()2211f n n f n n f n =--- 所以()()111f n n f n n -=-+ 所以()()()()()()()()201520142201420132012121201512015201420131201620152014320161008f f f f f f f f =⋅⋅=⋅⋅⋅==L 2. 某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目有 种. 答案:144种好题速递151. 若,a b r r 是两个非零向量,且a b a b λ==+r r r r ,3,1λ⎡⎤∈⎢⎥⎣⎦,则b r 与a b -r r 的夹角的取值范围是 .解:令1a b ==r r ,则1a b λ+=r r设,a b θ=r r ,则由余弦定理得()22221111cos 1cos 22λπθθλ+--==-=- 又3,1λ⎡⎤∈⎢⎥⎣⎦,所以11cos ,22θ⎡⎤∈-⎢⎥⎣⎦所以2,33ππθ⎡⎤∈⎢⎥⎣⎦,所以由菱形性质得25,,36b a b ππ⎡⎤-∈⎢⎥⎣⎦r r r2. 若()11n x -的展开式中第三项系数等于6,则n = . 答案:121. 函数()22f x x x =+,集合()()(){},|2A x y f x f y =+≤,()()(){},|B x y f x f y =≤,则由A B I 的元素构成的图形的面积是 .解:()()(){}()()(){}22,|2,|114A x y f x f y x y x y =+≤=+++≤()()(){}()()(){},|,|22B x y f x f y x y x y x y =≤=-++≤画出可行域,正好拼成一个半圆,2S π=2. 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 种. 答案:1680种好题速递171. 在棱长为1的正方体1111ABCD A B C D -中,112AE AB =u u u ru u u ur ,在面ABCD 中取一个点F ,使1EF FC +u u u r u u u u r最小,则这个最小值为 .解:将正方体1111ABCD A B C D -补全成长方体,点1C 关于面ABCD 的对称点为2C ,连接2EC 交平面ABCD 于一点,即为所求点F ,使1EF FC +u u u r u u u u r最小.其最小值就是2EC .连接212,AC B C ,计算可得21213,5,2AC B C AB ===,所以12AB C ∆为直角三角形,所以214EC =2. 若()62601261mx a a x a x a x +=++++L 且123663a a a a ++++=L ,则实数m 的值为 . 答案:1或-31. 已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线分别交双曲线的两条渐近线于点,P Q .若点P 是线段1FQ 的中点,且12QF QF ⊥,则此双曲线的离心率等于 .解法一:由题意1F P b =,从而有2,a ab P c c ⎛⎫- ⎪⎝⎭,又点P 为1FQ 的中点,()1,0F c -,所以222,a ab Q c c c ⎛⎫-+ ⎪⎝⎭ 所以222ab b a c c a c ⎛⎫=-+ ⎪⎝⎭,整理得224a c =,所以2e = 解法二:由图可知,OP 是线段1F P 的垂直平分线,又OQ是12Rt F QF ∆斜边中线,所以1260FOP POQ QOF ∠=∠=∠=o ,所以2e = 解法三:设(),,0Q am bm m >,则()1,QF c am bm =---u u u r,()2,QF c am bm =--u u u u r由()()12,,0QF QF c am bm c am bm ⊥⇒-----=u u u r u u u u r,解得1m =所以(),Q a b ,,22a c b P -⎛⎫⎪⎝⎭所以22b b ac a -=-⋅,即2c a =,所以2e =2. 现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 . 答案:18好题速递191. 已知O 为坐标原点,平面向量,,OA OB OC u u u r u u u r u u u r 满足:24OA OB ==u u u r u u u r,0OA OB =u u u r u u u r g ,()()20OC OA OC OB --=u u u r u u u r u u u r u u u rg ,则对任意[]0,2θπ∈和任意满足条件的向量OC u u u r ,cos 2sin OC OA OB θθ-⋅-⋅u u u r u u u r u u u r的最大值为 .解:建立直角坐标系,设()()(),,4,0,0,2C x y A B 则由()()20OC OA OC OB --=u u u r u u u r u u u r u u u rg ,得22220x y x y +--=()()22cos 2sin 4cos 4sin OC OA OB x y θθθθ-⋅-⋅=-+-u u u r u u u r u u u r等价于圆()()22112x y -+-=上一点与圆2216x y +=上一点连线段的最大值即为224+2. 已知数列{n a }的通项公式为121n n a -=+,则01n a C +12n a C +33n a C +L +1nn na C += . 答案:23n n +好题速递201. 已知实数,,a b c 成等差数列,点()3,0P -在动直线0ax by c ++=(,a b 不同时为零)上的射影点为M ,若点N 的坐标为()2,3,则MN 的取值范围是 .解:因为实数,,a b c 成等差数列,所以2b a c =+,方程0ax by c ++=变形为2()20ax a c y c +++=,整理为()2(2)0a x y c y +++=所以2020x y y +=⎧⎨+=⎩,即12x y =⎧⎨=-⎩,因此直线0ax by c ++=过定点()1,2Q -画出图象可得90PMQ ∠=o ,25PQ =点M 在以PQ 为直径的圆上运动,线段MN 的长度满足55FN MN FN -≤≤+ 即5555MN -≤≤+2. 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是 个. 答案:48好题速递211. 已知函数是定义在R 上的偶函数,当0x ≥时,()()()2502161122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩.若关于x 的方程()()20,,f x af x b a b ++=∈⎡⎤⎣⎦R ,有且仅有6个不同实数根,则实数a 的取值范围是 .解:设()t f x =,问题等价于()20g t t at b =++=有两个实根12,t t ,12501,14t t <≤<<或1255,144t t =<<所以()()0091014504g g h a g ⎧⎪>⎪⎪≤⇒-<<-⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩或()5124591024504a g h a g ⎧<-<⎪⎪⎪>⇒-<<-⎨⎪⎛⎫⎪= ⎪⎪⎝⎭⎩综上, 5924a -<<-或914a -<<- 2.在24的展开式中,x 的幂的指数是整数的项共有 项.答案:5好题速递221. 已知椭圆221:132x y C +=的左、右焦点为12,F F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直于1l 于点P ,线段2PF 的垂直平分线与2l 的交点的轨迹为曲线2C ,若()()()11221,2,,,,A B x y C x y 是2C 上不同的点,且AB BC ⊥,则2y 的取值范围是 .解:由题意22:4C y x =设:(2)1AB l x m y =-+代入22:4C y x =,得()24840y my m -+-= 所以142y m =-,()()2144121x m m m =-+=- 设()21:(42)21BC l x y m m m =--++-代入22:4C y x =,得()2248164210y y m m m ⎡⎤+++--=⎢⎥⎣⎦所以122442y y m y m+=-+=- 所以(][)2442,610,y m m=--+∈-∞-+∞U 2. 5人排成一排照相,要求甲不排在两端,不同的排法共有________种.(用数字作答) 答案:72好题速递231. 数列{}n a 是公比为23-的等比数列,{}n b 是首项为12的等差数列.现已知99a b >且1010a b >,则以下结论中一定成立的是 .(请填上所有正确选项的序号) ①9100a a <;②100b >;③910b b >;④910a a >解:因为数列{}n a 是公比为23-的等比数列,所以该数列的奇数项与偶数项异号,即:当10a >时,2120,0k k a a -><;当10a <时,2120,0k k a a -<>;所以9100a a <是正确的; 当10a >时,100a <,又1010a b >,所以100b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >当10a <时,90a <,又99a b >,所以90b <结合数列{}n b 是首项为12的等差数列,此时数列的公差0d <,数列{}n b 是递减的. 故知:910b b >综上可知,①③一定是成立的.2. 设5nx (的展开式的各项系数之和为M , 二项式系数之和为N ,若M -N =240, 则展开式中x 3的系数为 . 答案:150好题速递241. 已知集合(){}2,|21A x y y x bx ==++,()(){},|2B x y y a x b ==+,其中0,0a b <<,且A B I 是单元素集合,则集合()()(){}22,|1x y x a y b -+-≤对应的图形的面积为 .解:()()()2221221202y x bx x b a x ab y a x b ⎧=++⎪⇒+-+-=⎨=+⎪⎩ ()()2222241201b a ab a b ∆=---=⇒+=所以由2210,0a b a b ⎧+=⎪⎨<<⎪⎩得知,圆心(),a b 对应的是四分之一单位圆弧¼MPN (红色). 此时()()(){}22,|1x y x a y b -+-≤所对应的图形是以这四分之一圆弧¼MPN上的点为圆心,以1为半径的圆面.从上到下运动的结果如图所示:是两个半圆(¼ABO 与¼ODE )加上一个四分之一圆(AOEF ),即图中被绿实线包裹的部分。

人教A版高中数学必修第一册素养单元课后习题 第3章 函数的概念与性质 3.1.1 函数的概念

人教A版高中数学必修第一册素养单元课后习题 第3章 函数的概念与性质 3.1.1 函数的概念

第三章学习单元1 函数的概念及其表示3.1.1 函数的概念 A 级必备知识基础练1.下列各式中,表示y 是x 的函数的有( ) ①y=x-(x-3);②y=√x -2+√1-x ;③y={x -1,x ≤0,x +1,x ≥0.A.0个B.1个C.2个D.3个2.(多选题)下列四个图形中,可能是函数y=f(x)的图象的是( )3.下列四组函数中,是同一个函数的一组是( ) A.y=|x|,u=√v 2 B.y=√x 2,s=(√t )2 C.y=x 2-1x -1,m=n+1D.y=√x +1·√x -1,y=√x 2-1 4.函数f(x)=√x+1x -1的定义域是( )A.[-1,1)B.[-1,1)∪(1,+∞)C.[-1,+∞)D.(1,+∞) 5.设f(x)=1+2x -1,x≠±1,则f(-x)等于( )A.f(x)B.-f(x)C.-1f (x )D.1f (x )6.若(a,3a-1]为一确定区间,则实数a 的取值范围是 .7.(1)函数y=2x+1,x ∈(-1,1]的值域是 .(用区间表示) (2)函数y=x 2+x+2,x ∈R 的值域是 .(用区间表示)8.已知函数f(x)=x 2x 2+1. (1)求f(1),f(2)+f 12的值;(2)证明:f(x)+f 1x等于定值.B 级关键能力提升练9.下列关于x,y 的关系式中,y 可以表示为x 的函数关系式的是( ) A.x 2+y 2=1 B.|x|+|y|=1 C.x 3+y 2=1D.x 2+y 3=110.若函数f(x)=ax 2-1,a 为正实数,且f(f(-1))=-1,则a 的值是 .11.已知函数f(x)=x 2-2x,x ∈[0,b],且该函数的值域为[-1,3],则b 的值为 . 12.函数y=1x 2+x+1的值域为 .参考答案学习单元1 函数的概念及其表示3.1.1 函数的概念1.B 对于①,y=x-(x-3),x 的取值范围为R,化简解析式为y=3,每个x 的值按对应法则都有唯一实数3与之对应,属于多对一,故①是函数;对于②,由y=√x -2+√1-x ,可知{x -2≥0,1-x ≥0,无解,故②不是函数;对于③,由y={x -1,x ≤0,x +1,x ≥0,可知当x=0时,y 有两个值-1,1与之对应,故③不是函数.2.AD 在A,D 中,对于x 的取值范围内的每一个x 都有唯一的y 与之对应,满足函数关系;在B,C 中,存在一个x 有两个y 与之对应的情况,不满足函数关系.3.A 对于A,y=|x|和u=√v 2=|v|的定义域都是R,对应关系也相同,因此是同一个函数;对于B,y=√x 2的定义域为R,s=(√t )2的定义域为{t|t≥0},两函数定义域不同,因此不是同一个函数;对于C,y=x 2-1x -1的定义域为{=n+1的定义域为R,两函数定义域不同,因此不是同一个函数;对于D,y=√x +1·√x -1的定义域为{x|x≥1},y=√x 2-1的定义域为{x|x≤-1,或x≥1},定义域不同,不是同一个函数.故选A. 4.B 由{x +1≥0,x -1≠0,解得x≥-1,且x≠1.5.D f(x)=1+2x -1=x+1x -1,x≠±1,则f(-x)=-x+1-x -1=x -1x+1=1f (x ),故选D.6.12,+∞ 由题意,得3a-1>a,解得a>12.7.(1)(-1,3] (2)74,+∞ (1)∵-1<x≤1,∴-2<2x≤2.∴-1<2x+1≤3.∴函数的值域为(-1,3]. (2)∵x 2+x+2=(x +12)2+74≥74,∴函数的值域为[74,+∞).8.(1)解f(1)=1212+1=12,f(2)=2222+1=45,f12=(12) 2(12) 2+1=15,所以f(2)+f12=45+15=1.(2)证明f1x=(1x ) 2(1x) 2+1=1x 2+1,所以f(x)+f 1x=x 2x 2+1+1x 2+1=1,为定值.9.D 根据函数的定义,函数关系中任意一个x 都有唯一的y 对应,选项A,B,C 中满足关于x,y 的关系式中,存在一个x 有两个y 与之对应,不能构成函数关系,选项D 中满足关于x,y 的关系式中的任意一个x 都有唯一的y 对应,能构成函数关系.故选D.10.1 ∵f(-1)=a·(-1)2-1=a-1,f(f(-1))=a·(a -1)2-1=a 3-2a 2+a-1=-1. ∴a 3-2a 2+a=0,∴a=1或a=0(舍去).故a=1.11.3 作出函数f(x)=x 2-2x(x≥0)的图象如图所示.由图象结合值域为[-1,3]可知,区间右端点b 必为函数最大值3的对应点的横坐标.所以f(b)=3,即b 2-2b=3,解得b=-1或b=3.又b>0,所以b=3.12.0,43 ∵x 2+x+1=x+122+34≥34,∴0<1x 2+x+1≤43.∴值域为0,43.。

高中数学经典例题100道

高中数学经典例题100道

高中数学经典例题100道(共44页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠ (4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆ [ ]分析 作出4图形.答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B .答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素.∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意. 例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a+3},求a 的值.S 这个集合是集合A 与集合S A 的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去. 在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是( ). A .过直线外一点作与该直线垂直的直线 B .过直线外一点与该直线平行的平面 C .过平面外一点与平面平行的直线 D .过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A .过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B .过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C .过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D .过一点作已知平面的垂线是有且仅有一条.假设空间点A 、平面α,过点A 有两条直线AB 、AC 都垂直于α,由于AB 、AC 为相交直线,不妨设AB 、AC 所确定的平面为β,α与β的交线为l ,则必有l AB ⊥,l AC ⊥,又由于AB 、AC 、l 都在平面β内,这样在β内经过A 点就有两条直线和直线l 垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D .说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D .说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥,∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =. 又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=, a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC ,∴BC SA ⊥.∵ 90=∠B ,即BC AB ⊥,A SA BA = ,∴⊥BC 平面SAB .∵⊂AN 平面SAB .∴AN BC ⊥.又∵SB AN ⊥,B BC SB = ,∴⊥AN 平面SBC .∵⊂SC 平面SBC ,∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN .∵⊂MN 平面AMN .∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC .∴MN 为AM 在平面SBC 内的射影.∵SC AM ⊥,∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=.分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD .∵α⊥AH ,∴AD 在平面α内射影为HD .∵HD BC ⊥,α⊂BC ,∴AD BC ⊥.在Rt △ABH 中有:BA BH =θcos ① 在Rt △BHD 中有:BHBD =αcos ② 在Rt △ABD 中有:BA BD =βcos ③ 由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点.∵EF BD //,⊄BD 平面GFE ,∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离.∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥.∵C AC GC = ,∴⊥EF 平面GCH .∵⊂OK 平面GCH ,∴OK EF ⊥.又∵GH OK ⊥,H EF GH = ,∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离.∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK . 说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB交FE的延长线于M,连结GM,作MEBP⊥于P,作BH⊥于H,可得⊥BN//交MG于N,连结PN,再作PNCGBH平面GFE,BH长即为B点到平面EFG的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7如图所示,直角ABCSA==.SB∆所在平面外一点S,且SC(1)求证:点S与斜边AC中点D的连线SD⊥面ABC;(2)若直角边BCBA=,求证:BD⊥面SAC.分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直.证明:(1)在等腰SACSD⊥.∆中,D为AC中点,∴AC取AB中点E,连DE、SE.∵BCBC⊥,∴ABED//,ABDE⊥.又ABAB⊥.SE⊥,∴AB⊥面SED,∴SD∴SD⊥面ABC(AB、AC是面ABC内两相交直线).(2)∵BCBA=,∴ACBD⊥.又∵SD⊥面ABC,∴BDSD⊥.∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n .∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥.由作图知m 、n 为α内两条相交直线.∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥.证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥. 解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB . ∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形. ∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形. 综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥. 由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角. 作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM , ∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算. 典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒∠90ACB,S为平面ACB外一点,=∠60SCA,求SC与平面ACB所成角.SCB=︒=∠典型例题十五例15判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A垂直于直线a的所有直线都在过点A垂直于α的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a , 同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b a b a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交,则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a aa a ab a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵.典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a ,设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得.典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用. 证明:连结11C A ,由于11//C A AC ,AC EF ⊥, ∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = , ∴D C A EF 11平面⊥. ① ∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂, ∴111C A BB ⊥.∵四边形1111D C B A 为正方形, ∴1111D B C A ⊥,1111B BB D B = , ∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥. 同理11BD DC ⊥,1111C C A DC = , ∴D C A BD 111平面⊥. ② 由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长.解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===, ∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心. ∵PA 、PB 、PC 两两垂直,∴a CA BC AB 2===,ABC ∆为正三角形, ∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距的有关方法求解.解:如图,∵BC C B //11,且1111BCD A C B 平面⊄,11BCD A BC 平面⊂, ∴1111//BCD A C B 平面.从而点1B 到平面11BCD A 的距离即为所求. 过点1B 作B A E B 11⊥于E ,∵11ABB A BC 平面⊥,且B B AA E B 111平面⊂, ∴E B BC 1⊥. 又B B A BC =1 , ∴111BCD A E B 平面⊥. 即线段E B 1的长即为所求,。

高考数学 数列 专题复习100题(含答案详解)

高考数学 数列 专题复习100题(含答案详解)

【高考专题】2018年高考数学数列专题复习100题1.已知等差数列{a}与等比数列{b n}满足,,,且{a n}的公差比{b n}的公比n小1.(1)求{a n}与{b n}的通项公式;(2)设数列{c n}满足,求数列{c n}的前项和.2.已知数列的前项和为,且满足;数列的前项和为,且满足,.(1)求数列、的通项公式;(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.3.已知公差不为0的等差数列{a}的首项为,且成等比数列.n(1)求数列{a n}的通项公式;(2)对,试比较与的大小.4.已知数列{a}的前n项和为,且.n(1)求数列{a n}的通项公式;(2)定义,其中为实数的整数部分,为的小数部分,且,记,求数列{c n}的前n项和.5.已知数列{a}是递增的等比数列,且n(1)求数列{a n}的通项公式;(2)设为数列{a n}的前n项和,,求数列的前n项和。

6.知数列{a}的前n项和为,且满足,数列{b n}为等差数列,且满足n.(I)求数列{a n},{b n}的通项公式;(II)令,关于k的不等式的解集为M,求所有的和S.7.设数列{a}的前n项和为S n,已知a1=1,a2=2,且a n+2=3S n- S n+1,n∈N*.n(Ⅰ)证明:a n+2=3a n(Ⅱ)求S n8.等差数列{}中,(I)求{}的通项公式;(II)设=[],求数列{}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=29.已知数列{a}满足:.(1)设,n(1)证明是等比数列;(2)求数列的通项公式;(3)记,问是否存在正整数,使得?若存在,求出的最小值;若不存在,请说明理由.10.已知数列{a}的前项和为,且,.n(1)证明:数列是等比数列;(2)设,求数列的前项和.11.等差数列{a}中,a2=4,a4+a7=15.n(1)求数列{a n}的通项公式;(2)设b n=2a n-2+n,求b1+b2+b3+…+b10的值.12.已知各项都为正数的数列满足,. (I)求;(II)求的通项公式.13.设数列{a}的前项和为,.已知,,,且当时,n.(1)求a4的值;(2)证明:为等比数列;(3)求数列{a n}的通项公式.14.各项均为正数的数列{a}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数的图象n上,且.(1)求数列{a n}的通项公式及前n项和S n;(2)已知数列{b n}满足b n=4﹣n,设其前n项和为T n,若存在正整数k,使不等式T n>k有解,且(n∈N*)恒成立,求k的值.15.已知等差数列{a}的前n项和为Sn,等比数列{b n}的前n项和为Tn,a1=-1,b1=1,.n(1)若,求{b n}的通项公式;(2)若T=21,求S1.16.已知数列{}的首项为1,为数列{}的前n项和,,其中q>0,. (I)若成等差数列,求a n的通项公式;(ii)设双曲线的离心率为,且,证明:.17.已知数列{a}与{b n}满足,,,且.n(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,为数列的前项和,求.18.已知是各项均为正数的等比数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)为各项非零的等差数列,其前n项和S n,已知,求数列的前n项和.19.设数列满足,;数列的前项和为,且.(Ⅰ)求数列和的通项公式;(Ⅱ)把数列和的公共项从小到大排成新数列,试写出,,并证明为等比数列.20.设正项数列的前项和,且满足.(Ⅰ)计算的值,猜想的通项公式,并证明你的结论;(Ⅱ)设是数列的前项和,证明:.21.S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4s n +3.(Ⅰ)求{a n }的通项公式: (Ⅱ)设11+=n n n a a b ,求数列b n }的前n 项和.22.已知数列{a n }的前n 项和为S n ,且满足a n =2S n +1(n ∈N*). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若b n =(2n ﹣1)•a n ,求数列{b n }的前n 项和T n .23.设等差数列{a}的前n项和为S n,且S4=4S2,a2n=2a n+1.n(1) 求数列{a n}的通项公式;(2)若数列{b n}满足,n∈N*,求{b n}的前n项和T n.24.在等差数列{a}中,,,n(Ⅰ)该数列前多少项的和最大?最大和是多少?(Ⅱ)求数列前项和.25.已知数列{a}是首项为1的单调递增的等比数列,且满足a3, a4,a5成等差数列.n(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列{}的前n项和S n,求证:S n<3.26.已知数列满足:,。

高中数学《数列》100题(问题+答案)

高中数学《数列》100题(问题+答案)

数列一、单选题1.在ABC 中,AB,45C =︒,O 是ABC 的外心,若OC AB CA CB ⋅+⋅的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =()A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-2.将等比数列{}n b 按原顺序分成1项,2项,4项,…,12n -项的各组,再将公差为2的等差数列{}n a 的各项依次插入各组之间,得到新数列{}n c :1b ,1a ,2b ,3b ,2a ,4b ,5b ,6b ,7b ,3a ,…,新数列{}n c 的前n 项和为n S .若11c =,22c =,3134S =,则S 200=()A .3841117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦B .3861113032⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦C .3861117232⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦D .38411302⎛⎫- ⎪⎝⎭3.在ABC 中,AB =,45C =︒,O 是ABC 的外心,若21OC AC ⋅-的最大值是m ,数列{}n a 中,11a =,12n n a ma +=+,则{}n a 的通项公式为n a =().A .1231n -⋅-B .1322n -⋅-C .32n -D .1544n -⋅-4.设数列{}n a 的通项公式为()()()*121cos 1N 2nn n a n n π=--⋅+∈,其前n 项和为n S ,则120S =()A .60-B .120-C .180D .2405.已知等差数列{}n a 的前n 项和为n S ,满足190S >,200S <,若数列{}n a 满足10m m a a +⋅<,则m =()A .9B .10C .19D .206.已知数列{}n a 的首项11a =,函数()()41cos 221n n f x x a x a +=+-+有唯一零点,则通项n a =()A .13n -B .12n -C .21n -D .32n -7.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项8.已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a使得14a =,则122n m n+++的最小值为()A.118+B .2615C .74D .28159.设数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,则下列说法正确的是()A .202120221a a ⋅<B .202120221a a ⋅>C.2022a <-D.2022a >10.数列{}n a 满足11a =,且对于任意的*N n ∈都有11n n a a a n +=++,则122015111a a a +++= ()A .10071008B .20151008C .1007504D .2015201611.在数列{}n a 中,12a =,22a =且21(1)(N )nn n a a n ++-=+-∈,100S =()A .0B .1300C .2600D .265012.童谣是一种民间文学,因为常取材于现实生活,语言幽默风趣、朗朗上口而使少年儿童易于接受,从而成为了重要的传统教育方式.有一首童谣中唱到:“玲珑塔上琉璃灯,沙弥点灯向上行.首层掌灯共三盏,明灯层层更倍增(意为:每上一层,灯的数量增加一倍).小僧掌灯到塔顶,心中默数灯几重.玲珑塔上灯火数,三百八十一盏明.灯映湖心点点红,但问塔顶几盏灯?”童谣中的玲珑塔的顶层灯的盏数为()A .96B .144C .192D .23113.已知无穷等比数列{}n a 中12a =,22a <,它的前n 项和为n S ,则下列命题正确的是()A .数列{}n S 是递增数列B .数列{}n S 是递减数列C .数列{}n S 存在最小项D .数列{}n S 存在最大项14.已知等差数列{}n a 中,前4项为1,3,5,7,则数列{}n a 前10项的和10S =()A .100B .23C .21D .1715.已知等差数列{}n a 中,其前5项的和525S =,等比数列{}n b 中,1132,8,b b ==则37a b =()A .54-或54B .54-C .45D .5416.在等比数列{}n a 中,已知对*n N ∈有1221n n a a a ++⋯+=-,那么22212n a a a ++⋯+=()A .2(21)n -B .21(21)3n -C .41n -D .1(41)3n-17.设等比数列{}n a 的各项均为正数,已知237881a a a a =,则267a a a +的最小值为()AB.C.D.18.已知等差数列{}n a 满足13512a a a ++=,10111224a a a ++=,则{}n a 的前13项的和为()A .12B .36C .78D .15619.设()n a Ω表示落在区间[],n n a 内的偶数个数.在等比数列{}n a n -中,14a =,211a =,则()4a Ω=()A .21B .20C .41D .4020.已知数列1,12-,14,18-,….则该数列的第10项为()A .1512-B .1512C .11024-D .1102421.有一个非常有趣的数列1⎧⎫⎨⎬⎩⎭n 叫做调和数列,此数列的前n 项和已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式.某数学探究小组为了探究调和数列的性质,仿照“杨辉三角”.将1,12,13,14, (1),…作为第一行,相邻两个数相减得到第二行,依次类推,得到如图所示的三角形差数列,则第2行的前100项和为()A .100101B .99100C .99200D .5010122.等差数列{}n a 的前n 项和为n S ,若1a ,2020a 满足12020OA a OB a OC =+,其中A 为OBC边BC 上任意一点,则2020S =().A .2020B .1010C .1020D .223.一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图,根据前三个点阵图形的规律,第四个点阵表示的三角形数是()A .1B .6C .10D .2024.数列{}n a 的前4项为:1111,,,25811,则它的一个通项公式是()A .121n -B .121n +C .131n -D .131n +25.已知数列1,3-,5,7-,9,…,则该数列的第10项为()A .21-B .19-C .19D .2126.在等差数列{}n a 中,若47101102a a a ++=,则311a a +=()A .2B .4C .6D .827.等差数列{}n a 中,若14a =,公差2d =,则5a =()A .10B .12C .14D .22二、多选题28.在平面四边形ABCD 中,ABD △的面积是BCD △面积的2倍,又数列{}n a 满足12a =,当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,设{}n a 的前n 项和为n S ,则()A .{}n a 为等比数列B .2n n a ⎧⎫⎨⎬⎩⎭为递减数列C .{}n a 为等差数列D .()152210n n S n +=--29.已知数列{}n a 的前n 项和为n S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为*,n T n N ∈,则下列选项正确的为()A .数列{1}n a +是等差数列B .数列{1}n a +是等比数列C .数列{}n a 的通项公式为21nn a =-D .1n T <30.已知等差数列{}n a 的前n 项和为n S ,公差为d ,若10911S S S <<,则()A .0d >B .10a >C .200S <D .210S >31.记n S 为等差数列{}n a 的前n 项和,已知342,14a S ==,则()A .{}n a 是递增数列B .18a =C .523S a a =D .n S 的最小值为332.已知数列{}n a 中,13a =,()1*11N n na n a +=∈-,下列选项中能使3n a =的n 有()A .22B .24C .26D .2833.对任意数列{}n a ,下列说法一定正确的是()A .若数列{}n a 是等差数列,则数列{2}n a 是等比数列B .若数列{}n a 是等差数列,则数列{2}n a 是等差数列C .若数列{}n a 是等比数列,则数列{lg |}|n a 是等比数列D .若数列{}n a 是等比数列,则数列{lg |}|n a 是等差数列三、填空题34.在数列{}n a 及{}n b 中,1n n n a a b +=++,1n n n b a b +=+,11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2018项和为_________35.已知数列{}n a 的通项为21n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥且12b a =,则123...n b b b b ++++=________.36.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一个数列:1,1,2,3,5,8,13,21,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列称为“斐波那契数列”,记为{}n F .利用下图所揭示的{}n F 的性质,则在等式()222220221220212022m F F F F F F -++⋅⋅⋅+=⋅中,m =______.37.将公差不为零的等差数列1a ,2a ,3a 调整顺序后构成一个新的等比数列i a ,j a ,k a ,其中{,,}{1,2,3}i j k =,试写出一个调整顺序后成等比数列的数列公比:_____.(写出一个即可).38.已知()f x 为R 上单调递增的奇函数,在数列{}n a 中,120a =,对任意正整数n ,()()130n n f a f a ++-=,则数列{}n a 的前n 项和n S 的最大值为___________.39.给定正整数n 和正数b ,对于满足条件211n a a b +-=的所有无穷等差数列{}n a ,当1n a +=________时,1221n n n y a a a +++=+++ 取得最大值.40.在我国南宋数学家杨辉所著作的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律,下面的数字三角形可以看做当n 依次取0、1、2、3、L 时()na b +展开式的二项式系数,相邻两斜线间各数的和组成数列{}n a ,例11a =,211a =+,312a =+,L ,设数列{}n a 的前n 项和为n S .若20243a m =+,则2022S =___________.41.已知数列{}n a 的前n 项和343n n nS -=,记n b =,则数列{}n b 的前n 项和n T =_______.42.现有一根长为81米的圆柱形铁棒,第1天截取铁棒长度的13,从第2天开始每天截取前一天剩下长度的13,则第5天截取的长度是______米.43.已知数列{}n a 满足112,,n n a a a n +==-则求100a =___________44.已知等差数列的前n 项和为n S ,且13140,0S S ><,则使n S 取得最大值的n 为__________.45.在等差数列{}n a 中,710132a a =+,则该数列的前7项和为_________.46.已知等比数列{}n a 的前n 项和为n S ,公比1q >,且21a +为1a 与3a 的等差中项,314S =.若数列{}n b 满足2log n n b a =,其前n 项和为n T ,则n T =_________.47.已知数列{}n a 是递增数列,且满足121n n a a +=+,且1a 的取值范围是___________.48.已知等比数列{}n a 的公比为2,前n 项和为n S ,则lim nn nS a →∞=__________.49.已知数列{}n a 的首项12a =,且对任意的*n N ∈,都有122nn n a a a +=+,则lim n n a →+∞=______.50.数列{}n a 满足12a =,2111a a =-,若对于大于2的正整数n ,111n n a a -=-,则102a =__________.51.若n a 为()1nx +的二项展开式中2x 项的系数,则2limnn a n →+∞=_________.52.联合国教科文组织将3月14日确定为“国际数学日”,是因为3.14是圆周率数值最接近的数字.我国数学家刘徽首创割圆术,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.步骤是:第1步,计算圆内接正六边形的周长;第2步,计算圆内接正12边形的周长;第3步,计算圆内接正24边形的周长;以此类推,第6步,需要计算的是正______边形的周长.53.已知数列{}n a 满足11n nna a +=+,且46a =,则1a =___________.54.已知无穷数列{}n a 满足12a =,25a =,318a =,写出{}n a 的一个通项公式:______.(不能写成分段函数的形式)55.数列{}n a 的前几项和为n S ,且111,2n n a a a +==,则,4S =__________.56.若等差数列{}n a 满足202220221a a a =+=,则1a 的值为___________.57.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为__________.58.已知数列{}n a 中,11a =,13n n a a +=-,则5S =_________四、解答题59.已知正项数列{}n a 的前n 项和为n S 满足12311111n n S S S S n +++⋯+=+,*N n ∈.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22na nb =,记n T 为数列{}n b 的前n 项和,()x Ω表示x 除以3的余数,求()21n T +Ω.60.已知等比数列{}n a 的各项均为正数,52a ,4a ,64a 成等差数列,且满足2434a a =,数列{}n S 的前n 项之积为n b ,且121n nS b +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设21n n n n n b a d b b ++⋅=⋅,若数列{}n d 的前n 项和n M ,证明:71303n M ≤<.61.若有穷数列A :1a ,2a ,…,()*,3n a n n ∈≥N ,满足()1121,2,,2i i i i a a a a i n +++-≤-=- ,则称数列A 为M 数列.(1)判断下列数列是否为M 数列,并说明理由;①1,2,4,3②4,2,8,1(2)已知M 数列A :1a ,2a ,…,9a ,其中14a =,27a =,求349a a a +++ 的最小值.(3)已知M 数列A 是1,2,…,n 的一个排列.若1112n k k k a a n -+=-=+∑,求n 的所有取值.62.已知数列{}n a 的前n 项和为n S ,且211122n S n n =++,*N n ∈.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11223113322n n n b b b a a a ++++⋅⋅⋅+=⨯-,*N n ∈,求数列{}n b 的前n 项和n T .63.已知数列{}n a 满足12a =,{}n a 的前n 项和为n S ,()()121n n a S n n ++=++∈N ,令1n n b a =+.(1)求证:{}n b 是等比数列;(2)记数列{}n nb 的前n 项和为n T ,求n T ;(3)求证:123111156n a a a a ++++<L .64.对于有限数列()12:3n A a a a n ≥ ,,,,如果()12121ni a a a a i n n +++<=- ,,,,则称数列A 具有性质P .(1)判断数列1:2323A ,,,和2:3456A ,,,是否具有性质P ,并说明理由;(2)求证:若数列12:n A a a a ,,,具有性质P ,则对任意互不相等的{}12i j k n ∈ ,,,,,,有i j k a a a +>;(3)设数列122022:A a a a ,,,具有性质P ,每一项均为整数,()1122021i i a a i +≠= ,,,,求122022a a a +++ 的最小值.65.已知数列{}n a 满足11a =,1,,2,.n n n a n a a n +⎧=⎨⎩为奇数为偶数(1)令2n n b a =,求1b ,2b 及{}n b 的通项公式;(2)求数列{}n a 的前2n 项和2n S .66.已知集合(Z 是整数集,m 是大于3的正整数).若含有m 项的数列{}n a 满足:任意的,i j M ∈,都有i a M ∈,且当i j ≠时有i j a a ≠,当i m <时有12i i a a +-=或13i i a a +-=,则称该数列为P 数列.(1)写出所有满足5m =且11a =的P 数列;(2)若数列{}n a 为P 数列,证明:{}n a 不可能是等差数列;(3)已知含有100项的P 数列{}n a 满足5105100,,,,,(1,2,3,,20)k a a a a k = 是公差为(0)d d >等差数列,求d 所有可能的值67.设数列{}n a 的前n 项和n S 满足121n n S S n +-=+(N n *∈),且11a =.(1)求证:数列{}1n a +是等比数列;(2)若()22log 1nn n b a =⋅+,求数列{}n b 的前n 项和nT 68.设数列{}n a 的前n 项和为n S ,已知13n n a a +=,且3431S S +=.(1)求{}n a 的通项公式;(2)设()()311log 3n n n b a n a =++,求数列{}n b 的前n 项和n T.69.(1)已知数列{}n a 是正项数列,12a =,且2211122n n n n n n a a a a a a +++-+=+.求数列{}n a 的通项公式;(2)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-.求数列{}n a 的通项公式.70.已知数列{}n a 和{}n b 的通项公式:21n a n =-,2n n b =(1)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(2)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .71.已知公差不为零的等差数列{}n a 的前n 项和为n S ,12a =,且1a ,2a ,4a 成等比数列.(1)求数列{}n a 的通项公式;(2)若11n n b S +=,数列{}n b 的前n 项和为n T ,证明:12n T <.72.设正项数列{}n a 的前n 项和为n S ,且()()647n n n S a a =-+.(1)求{}n a 的通项公式;(2)设1133nn nn n n a a b a a ++-=⋅,求数列{}n b 的前n 项和n T .73.已知数列{}{},n n a b 满足111a b ==.数列{}n n a b +是公差为q 的等差数列,数列{}n n a b 是公比为q 的等比数列,,n n a b n *≥∈N .(1)若1q =,求数列{}n a 的通项公式;(2)若01q <<,证明:12231,1n n qa b a b a b n q*++++<∈-N .74.已知数列{an }对任意的n ∈N *都满足312233333n n a a a a n ++++= .(1)求数列{an }的通项公式;(2)令bn =3413431log log n n a a -+,求数列{bn }的前n 项和为Tn .75.已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23333123123()n n a a a a a a a a ++++=++++ .(1)写出数列的前三项(请写出所有可能的结果);(2)是否存在满足条件的无穷数列{}n a ,使得20172016a =-?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;(3)记n a 的所有取值构成的集合为n A ,求集合n A 中所有元素之和.(结论不要求证明)76.已知数列{}n a 是等差数列,{}n b 是等比数列,且22b =,34b =,11a b =,851a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,求n S .77.设各项均不等于零的数列{}n a 的前n 项和为n S ,已知1114,42n n n a S a a a +=+=.(1)求23,a a 的值,并求数列{}n a 的通项公式;(2)证明:1211121n nS S S a +++<- .78.已知{}n a 是等差数列,{}n b 是等比数列,且22b =,516b =,112a b =,34a b =.(1)求{}n a 、{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n S .79.已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =;数列{}n b 满足11222n n b b b ++++=- .(1)求数列{}n a 和{}n b 的通项公式;(2)记tan()n n n c b a π=⋅,求数列{}n c 的前3n 项和.80.已知数列{an }的前n 项和为n S ,*1(N )22n n a n S -∈=,数列{bn }满足b 1=1,点P(bn ,bn +1)在直线x ﹣y +2=0上.(1)求数列{an },{bn }的通项公式;(2)令n n n c a b =⋅,求数列{}n c 的前n 项和Tn ;(3)若0λ>,求对所有的正整数n 都有222nnb k a λλ-+>成立的k 的取值范围.81.已知等比数列{}n a 的公比1q >,且45656a a a ++=,54a +是4a ,6a 的等差中项.(1)求数列{}n a 的通项公式;(2)数列{}1n n a a λ+-的前n 项和为n S ,若()*21n n S n =-∈N ,求实数λ的值.82.已知数列{}n a 的前n 项和为n S ,若n n S na =,且246601860S S S S ++++= ,求1a .83.已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:()221n n n S S S n N *++<∈;(3)对任意的正整数n ,设()21132,,,,n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.84.在数列{}n a 中,()*112,21n n a a a n n +==-+∈N ,数列{}n a 的前n 项和为n S .(1)证明:数列{}n a n -是等比数列,并求数列{}n a 的通项公式;(2)求n S .85.设数列{}n a 的前n 项和为n S ,若对任意的正整数n ,都有23n n S a n =-.(1)求{}n a 的通项公式;(2)求数列{(1)}n n a +⋅的前n 项和n T .86.已知数列{}n a 是等差数列,{}n b 是等比数列,且111a b ==,322b b =,441a b +=.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n a c b ++=,数列{}n c 的前n 项和为n S ,若不等式12n n nS λ-<+对任意的n *∈N 恒成立,求实数λ的取值范围.87.甲、乙两人同时分别入职,A B 两家公司,两家公司的基础工资标准分别为:A 公司第一年月基础工资数为3700元,以后每年月基础工资比上一年月基础工资增加300元;B 公司第一年月基础工资数为4000元,以后每年月基础工资都是上一年的月基础工资的1.05倍.(1)分别求甲、乙两人工作满10年的基础工资收入总量(精确到1元)(2)设甲、乙两人入职第n 年的月基础工资分别为n a 、n b 元,记n n n c a b =-,讨论数列{}n c 的单调性,指出哪年起到哪年止相同年份甲的月基础工资高于乙的月基础工资,并说明理由.88.已知各项均不相等的等差数列{}n a 的前4项和为10,且124,,a a a 是等比数列{}n b 的前3项.(1)求,n n a b ;(2)设22121n n n n n c b a a ++=+⋅,求{}n c 的前n 项和n S .89.治理垃圾是改善环境的重要举措.A 地在未进行垃圾分类前每年需要焚烧垃圾量为200万吨,当地政府从2020年开始推进垃圾分类工作,通过对分类垃圾进行环保处理等一系列措施,预计从2020年开始的连续5年,每年需要焚烧垃圾量比上一年减少20万吨,从第6年开始,每年需要焚烧垃圾量为上一年的75%(记2020年为第1年).(1)写出A 地每年需要焚烧垃圾量与治理年数()*n n N∈的表达式;(2)设n A 为从2020年开始n 年内需要焚烧垃圾量的年平均值....,证明数列{}n A 为递减数列.90.已知{}n a 是公差不为0的等差数列,{}n b 是等比数列111a b ==,22a b =,3342a b a +=.(1)求{}n a 和{}n b 的通项公式;(2)记,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .91.已知{}n a 是递增的等差数列,13a =,且13a ,4a ,1a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:11156n T ≤<.92.设等差数列{}n a 的前n 项和为n S ,且126a =-,1215S S =.(1)求{}n a 的通项公式;(2)求数列{}2nn a -的前n 项和n T .93.设数列{}n a 是等比数列,其前n 项和为n S .(1)从下面两个条件中任选一个作为已知条件,求{}n a 的通项公式;①{}11,2n a S =-是等比数列;②233421,61S a S a =+=+.(2)在(1)的条件下,若31n n b a -=,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别作答,按第一个解答计分.94.已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=.(1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.95.已知数列{}n a 的通项公式为2n a n n λ=+,若数列{}n a 为递增数列,求λ的取值范围.96.设{}{}n n a b 、是两个数列,()()12122n n n n M A a B n n -⎛⎫⎪⎝⎭,,,,,为直角坐标平面上的点.对*N n n n M A B ∈,、、三点共线.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:1122212log n nn na b a b a b c a a a +++=+++ ,其中{}n c 是第三项为8,公比为4的等比数列.求证:点列()()()11221,2,,n n P b P b P n b 、、、在同一条直线上;(3)记数列{}{}n n a b 、的前m 项和分别为m A 和m B ,对任意自然数n ,是否总存在与n 相关的自然数m ,使得n m n m a B b A =若存在,求出m 与n 的关系,若不存在,请说明理由.97.已知等差数列{}n a 满足:47a =,1019a =,其前n 项和为.n S (1)求数列{}n a 的通项公式n a 及n S ;(2)若n b ={}n b 的前n 项和n T .98.在等差数列{}n a 中,已知1210a a +=,34530a a a ++=.(1)求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n S .五、双空题99.“一尺之棰,日取其半,万世不竭”出自我国古代典籍《庄子·天下》,其中蕴含着等比数列的相关知识.已知长度为4的线段AB ,取AB 的中点C ,以AC 为边作等边三角形(如图①),该等边三角形的面积为1S ,在图①中取CB 的中点1C ,以1CC 为边作等边三角形(如图②),图②中所有的等边三角形的面积之和为2S ,以此类推,则3S =___________;1nii iS==∑___________.100.已知[]x 表示不超过x 的最大整数,例如:[]2.32=,[]1.72-=-.在数列{}n a 中,[]lg n a n =,记n S 为数列{}n a 的前n 项和,则2022a =______;2022S =______.参考答案:1.A 【解析】【分析】先由正弦定理得到2sin b B =,02b <≤2211122a b =+-,由向量数量积的几何意义,得22122b AC OC AC =⋅= ,22122CB OC CB a ⋅=-=- ,进而计算出3m =,再使用构造法求解通项公式【详解】设BC a =,AC b =,AB c =,则在ABC 中,由正弦定理sin sin c bC B=及c 45C =︒,得2sin b B =,∵0180B ︒<<︒,∴0sin 1B <≤,∴02b <≤.在ABC 中,由余弦定理及2222cos c a b ab C =+-及c =45C =︒,2211122a b =+-.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得22122b AC OC AC =⋅=,22122CBOC CB a ⋅=-=- ,()OC AB CA CB OC AC CB CA CB OC AC OC CB CA CB⋅+⋅=⋅++⋅=⋅+⋅+⋅ 222222211111111222222b a b a a b b =-+=-++-=-.∵02b <≤,∴2113b -<-≤,所以OC AB CA CB ⋅+⋅的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 【点睛】构造法求解数列的通项公式,是经常考查的知识点,要结合递推数列的结构特点,选择合适的方法进行构造,常见的构造类型有()11n n a pa q p +=+≠和()11nn n a pa q p +=+≠等.2.A 【解析】【分析】由已知求得等比数列的首项和公比,以及等差数列的首项,再求得数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,运用分组求和的方法可求得答案.【详解】解:由已知得11b =,12a =,2331214b c S c c ==--=,等比数列{}n b 的公比14q =.令21122221nn n T -=++++=- ,则663T =,7127T =,8255T =所以数列{}n c 的前200项中含有数列{}n a 的前7项,含有数列{}n b 的前193项,故()()20012181292S b b b a a a =+++++++ 1933841176112472172123214⎛⎫- ⎪⎡⎤⨯⎛⎫⎝⎭=++⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-⨯.故选:A .3.A 【解析】【分析】设AC b =,AB c =,由正余弦定理可得2sin b B =,结合三角形外心性质、向量数量积的几何意义求得21OC AC ⋅-的最大值为3,进而可得()1131n n a a ++=+,利用等比数列的定义写出通项公式.【详解】设AC b =,AB c =,在ABC 中,由sin sin c bC B=及c =45C =︒,得2sin b B =,∵0180B ︒<<︒,则0sin 1B <≤,∴02b <≤.因为O 是ABC 的外心,所以O 在线段AC ,CB 上的射影为相应线段的中点,由向量数量积的几何意义,得222111OC AC AC b ⋅-=-=- ,而2113b -<-≤,所以21OC AC ⋅-的最大值为3.即3m =.由132n n a a +=+,得()1131n n a a ++=+.所以数列{}1n a +是首项112a +=,公比为3的等比数列.所以1123n n a -+=⨯,即1231n n a -=⨯-.故选:A 4.D 【解析】【分析】分别取43n k =-,42k -,41k -和4k ,*k N ∈,可验证出43424148k k k k a a a a ---+++=,利用周期性可验算得到结果.【详解】当43n k =-,*N k ∈时,cos 02n π=,431k a -=;当42n k =-,*N k ∈时,1os 2c n π=-,()()4224211186k a k k -=⨯--⨯-+=-+⎡⎤⎣⎦;当41n k =-,*N k ∈时,cos 02n π=,411k a -=;当4n k =,*N k ∈时,cos12n π=,424118k a k k =⨯-+=.()4342414186188k k k k a a a a k k ---∴+++=+-+++=,12012082404S ∴=⨯=.故选:D 5.B 【解析】【分析】根据给定条件,利用等差数列的前n 项和结合等差数列性质,求出异号的相邻两项即可作答.【详解】等差数列{}n a 的前n 项和为n S ,则1191910191902a a S a +=⨯=>,有100a >,1202010112010()02a a S a a +=⨯=+<,有11100a a <-<,显然数列{}n a 是递减的,且10110a a ⋅<,因10m m a a +⋅<,所以10m =.故选:B 6.C 【解析】【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a .【详解】()()()()()()4411cos 221cos 221n n n n f x x a x a x a x a f x ++-=-+--+=+-+= ,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C.【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列.7.B 【解析】【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.8.B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m n m n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B 9.A 【解析】【分析】根据()2*1n n na S n N a +=∈求出1a 的值,判断数列{}2n S 是等差数列,求出n S 的通项公式,再求出n a ,然后逐个分析判断即可【详解】因为数列{}n a 的前n 项和为n S ,满足()2*12n n na S n N a +=∈,所以当1n =时,()211*112a S n N a +=∈,解得11a =或11a =-,当2n ≥时,()2111112n n n n n n n n n a S a S S a a S S --+==+=-+-,整理得2211n n S S --=,所以数列{}2nS 是以1为公差的等差数列,当11a =±时,21(1)n S n n =+-=,所以=n S 或n S=所以1-=-=n n n a S S 11a =满足此式,或1n n n a S S -=-=11a =-满足此式,所以2022a =或2022a =,所以CD 错误,当=n a20212022a a ⋅=1<,当n a =20212022a a ⋅=1<,所以A 正确,B 错误,故选:A 10.B 【解析】【分析】先利用累加法求得数列{}n a 的通项公式,再利用裂项相消法去求122015111a a a +++ 的值.【详解】由11a =,11n n a a a n +=++,可得11n n a a n +-=+则2n ≥时,()()11232211()()n n n n n a a a a a a a a a a ---=-+-++-+-+ ()1321(1)2nn n n =+-++++=+ 又11122a ==⨯,则数列{}n a 的通项公式为(1)2n n a n =+则()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭则122015111a a a +++ 1111111201522112232015201620161008⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎣=⎭⎦ 故选:B 11.D 【解析】【分析】分n 为奇数和n 为偶数两种情况讨论,再利用分组求和法及等差数列前n 项和的公式,即可得出答案.【详解】解:当n 为奇数时,20n n a a +-=,所以数列{}n a 的奇数项是以0为公差的等差数列,当n 为偶数时,22n n a a +-=,所以数列{}n a 的偶数项是以2为公差的等差数列,所以2,,n n a n n ⎧=⎨⎩为奇数为偶数,所以()()10050210025024610010026502S +=⨯+++++=+=L .故选:D.12.C 【解析】【分析】由条件可得玲珑塔的灯盏数从首层到顶层为等比数列,由条件列方程求玲珑塔的顶层灯的盏数.【详解】由题意可得玲珑塔的灯盏数从首层到顶层为等比数列,设其首层为1a ,公比q ,顶层为n a ,前n 项和为n S 由已知可得13a =,2q =,381n S =,由等比数列的前n 项和公式可得132********n nn a a q a a q --==-=--,所以192n a =.故玲珑塔的顶层灯的盏数为192,故选:C.13.C 【解析】【分析】对AB ,举公比为负数的反例判断即可对CD ,设等比数列{}n a 公比为q ,分0q >和0q <两种情况讨论,再得出结论即可【详解】对AB ,当公比为12-时,2311,,2a a =-=此时12332,1,2S S S ===,此时{}n S 既不是递增也不是递减数列;对CD ,设等比数列{}n a 公比为q ,当0q >时,因为22a <,故22q <,故01q <<,此时()2122111n nn q q S qq q-==----,易得n S 随n 的增大而增大,故{}n S 存在最小项1S ,不存在最大项;当0q <时,因为22a <,故22q -<,故10q -<<,2211nn q S q q =---,因为1q <,故当n 为偶数时,2211nn q S q q =---,随着n 的增大而增大,此时222111nn q S q q q =-<---无最大值,当2n =时有最小值222S q =+;当n 为奇数时,2211nn q S q q=+--,随着n 的增大而减小,故222111nn q S q q q=+>---无最小值,有最大值12S =.综上,当0q <时,因为22221q q +<<-,故当2n =时有最小值222S q =+,当1n =时有最大值12S =综上所述,数列{}n S 存在最小项,不一定有最大项,故C 正确;D 错误故选:C 14.A 【解析】【分析】先求出公差,再由等差数列求和公式求解即可.【详解】设公差为d ,则312d =-=,则1010910121002S ⨯=⨯+=.故选:A.15.D 【解析】【分析】由等差数列求和公式求出35a =,由等比数列通项公式基本量计算得到公比,进而求出6714b b q ==,从而求出结果.【详解】由题意得:()155355252a a S a +===,解得:35a =,设等比数列{}n b 的公比是q ,因为1132,8b b ==,所以1228q =,解得:124q =,显然60q >,所以62q =,所以6714b b q ==,所以3754a b =故选:D 16.D 【解析】【分析】利用“1n =时,11a S =;当2n时,1n n n a S S -=-”即可得到n a ,进而得到数列2{}n a 是等比数列,求出公比和首项,再利用等比数列的前n 项和公式即可得出.【详解】设等比数列{}n a 的公比为q ,1221n n n S a a a =++⋯+=- ,∴当2n 时,1112121n n n S a a a ---=++⋯+=-,111222n n n n n n a S S ---∴=-=-=.∴2122221(2)4(2)n n n n a a ---==,当1n =时,11211a =-=,21221a a +=-,解得22a =,22214a a =.也符合2214n n a a -=,∴数列2{}n a 是等比数列,首项为1,公比为4.∴22212411(41)413n n na a a -++⋯+==--.故选:D 17.C 【解析】【分析】设等比数列{}n a 的公比为(0)q q >,根据题意得到2673339q a a qa +=+,结合基本不等式,即可求解.【详解】设等比数列{}n a 的公比为(0)q q >,因为23784581a a a a a ==,所以53a =,又因为235553326739,a a a a a q a q q q q===⋅=,所以3267339q a a q a +=+≥=当且仅当3339q q =时,即613q =时,等号成立,所以267a a a +的最小值为.故选:C.18.C 【解析】【分析】利用已知等式可求得等差数列的公差d 和首项1a ,由等差数列求和公式可求得结果.【详解】设等差数列{}n a 公差为d ,13512a a a ++= ,10111224a a a ++=,()1011121352412a a a a a a d ∴++-++==,解得:12d =,135********a a a a d a ∴++=+=+=,解得:13a =,{}n a ∴的前13项的和为11312131213397824a d ⨯⨯+=+=.故选:C.19.C 【解析】【分析】设{}n a n -的公比为q ,根据1a 和2a 求出q ,从而得n a 和4a ,再根据()n a Ω的定义可求出结果.【详解】设{}n a n -的公比为q ,则2121123141a q a --===--,所以111(1)(41)33n n n n a n a q---=-⋅=-⋅=,则3n n a n =+,所以445438a =+=.所以落在区间[]4,85内的偶数共有41个,故()441a Ω=.故选:C 20.A 【解析】【分析】根据规律可得数列通项,再求其中的项即可.【详解】通过观察可知该数列的通项公式为()1112n n n a +--=,所以()11109112512a -==-.故选:A 21.A 【解析】【分析】利用裂项相消法求和即可;【详解】解:由题可知,第2行的前100项和10011111261210012010S +++++⨯= 1111111100122334100101101=-+-+-++-= .故选:A 22.B 【解析】【分析】根据三点共线可得120201a a +=,结合等差数列的前n 项和公式求解.∵,,A B C 三点共线且12020OA a OB a OC =+,则120201a a +=∴()120202020202010102a a S +==故选:B .23.C 【解析】【分析】根据规律求得正确答案.【详解】根据规律可知,第四个点阵表示的三角形数为:123410+++=.故选:C 24.C 【解析】【分析】根据规律可得结果.【详解】将1111,,,25811可以写成1111,,,311321331341⨯-⨯-⨯-⨯-,所以{}n a 的通项公式为131n -;故选:C 25.B 【解析】【分析】由数列的前几项可得数列的一个通项公式,再代入计算可得;【详解】解:依题意可得该数列的通项公式可以为()()1121n n a n +=-⋅-,所以1019a =-.故选:B 26.D 【解析】根据等差数列的下标和性质即可解出.【详解】因为4710771110222a a a a a +=+=+,解得:74a =,所以311728a a a +==.故选:D .27.B 【解析】【分析】根据等差数列的性质直接计算即可.【详解】由等差数列的性质可知:51444212a a d =+=+⨯=;故选:B.28.BD 【解析】【分析】连AC 交BD 于E ,根据面积关系推出2AE EC =,根据平面向量知识推出BE = 1233BA BC +,结合()()1122n n n n BD a BA a BC --=-++ ,推出1122(2)n n n n a a --+=-,11222nn n n a a ---=-,求出232nn a n =-+,(23)2n n a n =-+⋅,根据等比数列的定义可判断A ;根据等差数列的定义可判断C ,根据数列的单调性可判断B ;利用错位相减法求出n S ,可判断D.【详解】如图,连AC 交BD 于E ,则1sin 21sin 2ABD BD AE AEB S S BD EC CED ⋅⋅=⋅⋅△△BCD ÐÐ=2AEEC=,即2AE EC =,所以2AE EC =,所以()2BE BA BC BE -=- ,所以BE = 1233BA BC +,设BD tBE =(1)t >,因为当2n ≥时,恒有()()1122n nn n BD a BA a BC --=-++ ,所以()()111122n nn n BE a BA a BC t t--=-++ ,()()1111231223n n n na t a t--⎧-=⎪⎪⎨⎪+=⎪⎩,所以当2n ≥时,恒有1122(2)n n n n a a --+=-,所以11222n n n n a a --=-,即11222n n n n a a ---=-,又12a =,所以112a =,所以12(1)232nn a n n =--=-+,所以(23)2n n a n =-+⋅,因为11(21)242(23)223n n n n a n n a n n ++-+⋅-+==-+⋅-+不是常数,所以{}n a 不为等比数列,故A 不正确;因为11(21)(23)2022n n n n a a n n ++-=-+--+=-<,即1122n n n n a a ++<,所以2n n a ⎧⎫⎨⎬⎩⎭为递减数列,故B 正确;因为1n n a a +-=1(21)2(23)2n n n n +-+⋅--+⋅=(21)2n n --⋅不是常数,所以{}n a 不为等差数列,故C 不正确;因为12312(1)2(3)2(23)2nn S n =⨯+-⋅+-⋅++-+⋅ ,所以2341212(1)2(3)2(23)2n n S n +=⨯+-⋅+-⋅++-+⋅ ,所以12341122(2222)(23)2n n n S n +-=⨯-++++--+⋅ ,所以114(12)22(23)212n n n S n -+--=-⨯--+⋅-110(52)2n n +=--⋅,所以1(52)210n n S n +=-⋅-,故D 正确.故选:BD 29.BCD【解析】【分析】由题知121n n a a +=+,进而得数列{1}n a +是首项为2,公比为2的等比数列,再结合通项公式和裂项求和求解即可.【详解】由121n n n S S a +=++得1121n n n n a S S a ++=-=+,即121n n a a +=+所以112(1)n n a a ++=+,由111S a ==,所以数列{1}n a +是首项为2,公比为2的等比数列,故A 错误,B 正确;所以12nn a +=,即21n n a =-,故C 正确;又1112211(21)(21)2121n n n n n n n n a a +++==-----,所以22311111111111212*********n n n n T ++=-+-+⋯+-=-<------,故D 正确.故选:BCD 30.AD 【解析】【分析】对AB ,根据通项n a 与n S 的关系可得100a <,110a >即可判断;对CD ,根据等差数列前n 项和的公式,结合等差数列的性质判断即可【详解】因为109S S <,1011S S <,所以109100S S a -=<,1110110a S S =>-,故等差数列首项为负,公差为正,所以0d >,10a <,故A 正确,B 错误;由911S S <,可知11910110S S a a -=+>,所以()()20120101110100S a a a a =+=+>,故C 错误;因为110a >,所以2111210S a =>,故D 正确.故选:AD 31.BCD 【解析】【分析】设等差数列{}n a 的公差为d ,再根据n S 与n a 的公式可得d ,进而求得n S 与n a 的通项公式,再逐个判定即可【详解】设等差数列{}n a 的公差为d ,则11224614a d a d +=⎧⎨+=⎩,解得183a d =⎧⎨=-⎩,故311n a n =-+,()()311819232n n n S n n ==-+-.故{}n a 是递减数列,A 错误;18a =,B 正确;()535191250S -⨯==,235210a a =⨯=,故C 正确;()1932n n n S =-,当1,2,3...6n =时,()1932n n n S -=,因为函数()193y x x =-的对称轴为196x =,开口向下,故当6n =时,n S 取得最小值()66193632S -⨯==;当7,8,9...n =时,()3192n n n S -=,函数()319y x x =-的对称轴为196x =,开口向上,故当7n =时,nS 取得最小值()77371972S ⨯-==,综上有n S 的最小值为3,故D 正确;故选:BCD 32.AD 【解析】【分析】由递推公式可得数列为周期数列,即得答案.【详解】解:因为13a =,()1*11N n na n a +=∈-,所以23412,,323a a a =-==,所以数列{}n a 是周期为3的数列,所以132(N )n a a n *-=∈,故122283a a a ===.故选:AD.33.AD 【解析】【分析】根据等差数列和等比数列的定义逐一判断可得选项.【详解】。

高中数学必做100题--数学全文

高中数学必做100题--数学全文

高中数学必做100题—必修部分(说明:《必修1》共精选16题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修1》精选) 1. 试选择适当的方法表示下列集合:(1)函数22y x x =-+的函数值的集合; (2)3y x =-与35y x =-+的图象的交点集合.2. 已知集合{|37}A x x =≤<,{|510}B x x =<<,求()R C A B ,()R C A B ,()R C A B ,()R A C B .(◎P 14 10)3. 设全集*{|9}U x N x =∈<,{1,2,3}A =,{3,4,5,6}B =. 求()U C A B ,()U C A B ,()()U U C A C B ,()()U U C A C B . 由上面的练习,你能得出什么结论?请结合Venn 图进行分析. (◎P 12 例8改编) 4. 设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (◎P 14 B 4改编)(1)求A B ,A B ; (2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()()A B P A B 刎,写出所有可能的P . 5. 已知函数3()41x f x x -=+.(1)求()f x 的定义域与值域(用区间表示);(2)求证()f x 在1(,)4-+∞上递减. 6. 已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨+<⎩,求(1)f 、(3)f -、(1)f a +的值.(◎P 49 B4)7. 已知函数2()2f x x x =-+. (☆P 16 8题)(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值. 8. 已知函数()log (1),()log (1)a a f x x g x x =+=-其中(01)a a >≠且. (◎P 84 4)(1)求函数()()f x g x +的定义域; (2)判断()()f x g x +的奇偶性,并说明理由; (3)求使()()0f x g x ->成立的x 的集合.9. 已知函数2()(0,0)1bxf x b a ax =≠>+. (☆P 37 例2) (1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.10. 对于函数2()()21x f x a a R =-∈+.(1)探索函数()f x 的单调性;(2)是否存在实数a 使得()f x 为奇函数. (◎P 91 B3)11. (1)已知函数()f x 图象是连续的,有如下表格,判断函数在哪几个区间上有零点. (☆P 40 8)(2)已知二次方程的两个根分别属于(-1,0)和(0,2),求m 的取值范围. (☆P 40 9)4913. 家用冰箱使用的氟化物的释放破坏了大气上层臭氧层. 臭氧含量Q 呈指数函数型变化,满足关系式4000t Q Q e-=,其中0Q 是臭氧的初始量. (1)随时间的增加,臭氧的含量是增加还是减少? (2)多少年以后将会有一半的臭氧消失? (参考数据:ln20.695≈) (☆P 44 9)14. 某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了以后估计每个月的产量,以这三个月的产品数据为依据. 用一个函数模拟产品的月产量y 与月份数x 的关系,模拟函数可选用二次函数2()f x px qx r =++(其中,,p q r 为常数,且0p ≠)或指数型函数()x g x a b c =⋅+(其中,,a b c 为常数),已知4月份该产品产量为1.37万件,请问用上述哪个函数模拟较好?说明理由.(☆P 51 例2)15. 如图,OAB ∆是边长为2的正三角形,记OAB ∆位于直线(0)x t t =>左侧的图形的面积为()f t . 试求函数()f t 的解析式,并画出函数()y f t =的图象. (◎P 126 B2)16. 某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式y =f (t); (2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?(☆P 45 例3)(说明:《必修2》共精选16题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修2》精选) 1. 在圆锥底面半径为1 cm ,cm ,其中有一个内接正方体,求这个内接正方体的棱长.(☆P 3 例3)2. 如图(单位:cm ),求图中阴影部分绕AB 旋转一周所形成的几何体的表面积和体积. (☆P 15 例2)3. 直角三角形三边长分别是3cm 、4cm 、5cm ,绕三边旋转一周分别形成三个几何体. 想象并说出三个几何体的结构,画出它们的三视图,求出它们的表面积和体积. (◎P 36 10)4. 已知空间四边形ABCD 中,E 、H 分别是AB 、AD 的中点,F 、G 分别是BC 、CD 上的点,且23CF CG CB CD ==. 求证:(1)E 、F 、G 、H 四点共面;(2)三条直线EF 、GH 、AC 交于一点. (☆P 21 例3)5. 如图,α∥β∥γ,直线a 与b 分别交α,β,γ于点,,A B C 和点,,D E F ,求证:AB DEBC EF=. (◎P 63 B3) 6. 如图,在正方体ABCD -A 1B 1C 1D 1中. (◎P 79 B2) 求证:(1)B 1D ⊥平面A 1C 1B ;(2)B 1D 与平面A 1C 1B 的交点设为O ,则点O 是△A 1C 1B 的垂心.7.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (1)求证:AC PB ⊥; (2)求证://PB 平面AEC ;(3)求二面角E AC B --的大小. (☆P 38 9)8. 已知(1,1)A -,(2,2)B ,(3,0)C ,求点D 的坐标,使直线CD ⊥AB ,且CB ∥AD .(◎P 90 8)9. 求过点(2,3)P ,并且在两轴上的截距相等的直线方程. (◎P 100 9)10. 三角形的三个顶点是A (4,0)、B (6,7)、C (0,3). (◎P 101 B1) (1)求BC 边上的高所在直线的方程; (2)求BC 边上的中线所在直线的方程;(3)求BC 边的垂直平分线的方程.A BCD E FGH0.01频率组距11. 在x 轴上求一点P ,使以点(1,2)A 、(3,4)B 和点P 为顶点的三角形的面积为10. (◎P 110 B5) 12. 过点(3,0)P 有一条直线l ,它夹在两条直线1:220l x y --=与2:30l x y ++=之间的线段恰被点P 平分,求直线l 的方程. (◎P 115 B8)13. ABC ∆的三个顶点的坐标分别是(5,1)A 、(7,3)B -、(2,8)C -,求它的外接圆的方程.(◎P 119 例2) 14. 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点轨迹方程. (◎P 122 例5)15. 过点(3,3)M --的直线l 被圆224210x y y ++-=所截得的弦长为求直线l 方程. (◎P 127 例2) 16. 求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程. (◎P 132 4)(说明:《必修3》共精选8题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修3》精选) 1. 设计一个算法求22221299100++⋅⋅⋅++的值,并画出程序框图. (◎P 20 2) 2.(1400 h 以内的在总体中占的比例;(4)估计电子元件寿命在400 h 以上的在总体中占的比例.3. 甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm): (☆P 17 例3)甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?4. (☆P 22 8)(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221,ni i i nii x y nx yb a y bx xnx==-==--∑∑)5. 在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率; (2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.6. (2008年韶关模拟)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60…[]90,100后画出如下部分频率分布直方图. 观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(3)估计这次考试的及格率(60分及以上为及格)和平均分; (3)从成绩是80分以上(包括80分)的学生中选两人,求他们选在同一组的概率.7.(08(1)求x 的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245, z ≥245,求初三年级中女生比男生多的概率.8.(09年广东卷.文)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图. (1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率(说明:《必修4》共精选16题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修4》精选) 1. 已知角α的终边经过P (4,-3).(1)求2sin α-cos α的值; (2)求角α的终边与单位圆的交点P 的坐标. 2. 已知1sin()2πα+=-,计算: (◎P 29 B2) (1)sin(5)πα-; (2)sin()2πα+; (3)3cos()2πα-; (4)tan()2πα-.3. 求函数tan()23y x ππ=+的定义域、周期和单调区间. (◎P 44 例2)4. 已知tan α=13-,计算: (◎P 71 4)(1)sin 2cos 5cos sin αααα+-; (2)212sin cos cos ααα+. 5. 画函数y =3sin(2x +3π),x ∈R 简图,并说明此函数图象怎样由sin y x =变换而来. (☆P 15 例1)6. 某正弦交流电的电压v (单位V )随时间t (单位:s )变化的函数关系是 (◎P 58 4改编)),[0,)6v t t ππ=-∈+∞.(1)求该正弦交流电电压v 的周期、频率、振幅; (2)当1600t =,160时,求瞬时电压v ;(3)将此电压v 加在激发电压、熄灭电压均为84V 的霓虹灯的两端,求在半个周期内霓虹灯管点亮的时间?(说明:加在霓虹灯管两端电压大于84V 时灯管才发光. 1.4)7. 平面上三个力1F 、2F 、3F 作用于一点且处于平衡状态,1||1F N =,26||2F N +=,1F 与2F 的夹角为45︒,求:(1)3F 的大小; (2)3F 与1F 夹角的大小. (◎P 113 4) 8. 已知4,3a b ==,(23)(2)61a b a b -+=,(1)求a 与b 的夹角θ;(2)若(1,2)c =,且a c ⊥,试求a .9. 已知1tan 7α=,1tan 3β=,求tan(2)αβ+的值. (◎P 138 17) 10. 已知3cos()45πα-=,512sin()413πβ+=-,3(,)44ππα∈,(0,)4πβ∈,求sin()αβ+的值. (◎P 146 2)11. (1)已知1cos()5αβ+=,3cos()5αβ-=,求tan tan αβ的值; (◎P 146 7)(2)已知1cos cos 2αβ+=,1sin sin 3αβ+=,求cos()αβ-的值. (◎P 147 B2) 12. 已知函数22(sin cos )2cos y x x x =++. (◎P 147 9)(1)求它的递减区间; (2)求它的最大值和最小值.13. 已知函数44()cos 2sin cos sin f x x x x x =--. (◎P 147 10)(1)求()f x 的最小正周期; (2)当[0,]2x π∈时,求()f x 的最小值以及取得最小值时x 的集合.14. 已知函数()sin()sin()cos 66f x x x x a ππ=++-++的最大值为1. (◎P 147 12) (1)求常数a 的值; (2)求使()0f x ≥成立的x 的取值集合.15.(2009年广东卷.理16)已知向量(sin ,2)a θ=-与(1,cos )b θ=互相垂直,其中(0,)2πθ∈.(1)求sin θ和cos θ的值; (2)若sin()2πθϕϕ-=<<,求cos ϕ的值. 16. 已知33(cos ,sin ),(cos ,sin )2222x x a x x b ==-,且[0,]2x π∈.(1)求 a b 及a b +; (2)求函数()sin fx a b a b x =-+的最小值.(说明:《必修5》共精选16题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修5》精选)1. 在△ABC 中,已知a =,b ,B =45︒ ,求A 、C 及c . (☆P 4 8)2. 在△ABC 中,若cos cos a Ab B =,判断△ABC 的形状. (☆P 6 3) 3. 在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,且a 2+b 2=c 2ab . (1)求C ; (2)若tan 2tan B a cC c-=,求A . (☆P 6 8) 4. 如图,我炮兵阵地位于A 处,两观察所分别设于C ,D ,已知△ACD 为边长等于a 的正三角形.当目标出现于B 时,测得∠CDB =45°,∠BCD =75°,试求炮击目标的距离AB . (☆P 8 8)5. 如图,一架直升飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔10千米,速度为180千米/小时,飞行员先看到山顶的俯角为30︒,经过2分钟后又看到山顶的俯角为75,求山顶的海拔高度. (☆P 9 例2)6. 已知数列{}n a 的第1项是1,第2项是2,以后各项由12(2)n n n a a a n --=+>给出.(1)写出这个数列的前5项; (2)利用上面的数列{}n a ,通过公式1n n na b a +=构造一个新的数列{}n b ,试写出数列{}n b 的前5项. (◎P 34 B3)7. 已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?(◎P 44 例3)8.(09年福建卷.文17)等比数列{}n a 中,已知142,16a a ==. (☆P 38 8)A CDB(1)求数列{}n a 的通项公式;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S .9. 若一等比数列前5项的和等于10,前10项的和等于50,那么它的前15项的和等于多少?(◎P 58 2)10. 已知数列{}n a 的前n 项和为n S ,*1(1)()3n n S a n N =-∈. (☆P 32 9)(1)求12,;a a (2)求证:数列{}n a 是等比数列.11. 已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集是B . (☆P 42 9)(1)求A B ;(2)若不等式20x ax b ++<的解集是,A B 求20ax x b ++<的解集. 12. 某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏. 为了使这批台灯每天获得400元以上的销售收入,应怎样制定这批台灯的销售价格? (◎P 81 6)13. 电视台应某企业之约播放两套连续剧. 其中,连续剧甲每次播放时间为80 min ,广告时间为1 min ,收视观众为60万;连续剧乙每次播放时间为40 min ,广告时间为1 min ,收视观众为20万. 已知此企业与电视台达成协议,要求电视台每周至少播放6 min 广告,而电视台每周播放连续剧的时间不能超过320分钟. 问两套连续剧各播多少次,才能获得最高的收视率? (◎P 93 3) 14. 已知,x y 为正数. (☆P 52 8)(1)若191x y+=,求2x y +的最小值;(2)若22x y +=. 15. 某工厂要建造一个长方体无盖贮水池,其容积为4800 m 3,深为3 m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少元?(◎P 99 例2) 16. 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:2920(0)31600vy v v v =>++.(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少? (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?(说明:《选修1-1》共精选12题,每题12分,“◎”为教材精选,“☆”为《精讲精练.选修1-1》精选) 1. 已知4:223x p --≤≤ , 22:210(0)q x x m m -+-≤>, 若q p ⌝⌝是的必要不充分条件,求实数m 的取值范围. (☆P 6 9)2. 点(,)M x y 与定点(4,0)F 的距离和它到直线25:4l x =的距离的比是常数45,求M 的轨迹.(◎P 41 例6)3. 双曲线的离心率等于2,且与椭圆22194x y +=有公共焦点,求此双曲线的方程. (◎P 68 4)4. 倾斜角4π的直线l 过抛物线24y x =焦点,且与抛物线相交于A 、B 两点,求线段AB 长. (◎P 61 例4) 5. 当α从0︒到180︒变化时,方程22cos 1x y α+=表示的曲线的形状怎样变换?(◎P 68 5)6. 一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米. (1)建立如图所示的平面直角坐标系xoy ,试求拱桥所在抛物线的方程; (2)若一竹排上有一4米宽6米高的大木箱,问此木排能否安全通过此桥?7. 已知椭圆C 的焦点分别为F 1(-0)和F 2(,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点. 求:(1)线段AB 的中点坐标; (2)弦AB 的长.8. 在抛物线24y x =上求一点P ,使得点P 到直线:40l x y -+=的距离最短, 并求最短距离.9. 点M 是椭圆2216436x y +=上的一点,F 1、F 2是左右焦点,∠F 1MF 2=60º,求△F 1MF 2的面积.10. (06年江苏卷)已知三点P (5,2)、1F (-6,0)、2F (6,0). (☆P 21 例4)(1)求以1F 、2F 为焦点且过点P 的椭圆的标准方程;(2)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。

高中数学必做100题

高中数学必做100题

必修1P(1)1.试选择适当的方法表示下列集合:(1)函数的函数值的集合;(2)与的图象的交点集合.参考答案:(1)……(3分),……(5分)故所求集合为.……(6分)(2)联立,……(8分)解得,……(10分)故所求集合为.……(12分)2.已知集合,,求、、、.参考答案:,……(3分),……(6分),……(9分).……(12分)3.设全集,,.(1)求,,,;参考答案:,……(1分),……(2分),……(3分).……(4分)(2)求,,,;解:,……(5分),……(6分),……(7分). ……(8分)(3)由上面的练习,你能得出什么结论?请结合Venn图进行分析. 解:,……(9分). ……(10分)Venn图略. ……(12分)4.设集合,.(1)求,;(2)若,求实数a的值;(3)若,则的真子集共有_____个, 集合P满足条件,写出所有可能的集合P. 参考答案:(1))①当时,,,故,;……(2分)②当时,,,故,;……(4分)③当且时,,,故,. ……(6分)(2):由(1)知,若,则或4. ……(8分)(3)若,则,,故,此时的真子集有7个. ……(10分)又,满足条件的所有集合有、. ……(12分)5.已知函数.(1)求的定义域与值域(用区间表示)(2)求证在上递减. 参考答案:(1)要使函数有意义,则,解得. ……(2分)所以原函数的定义域是.……(3分),……(5分)所以值域为.……(6分)(2)在区间上任取,且,则……(8分),……(9分)又,,……(10分),……(11分)函数在上递减. ……(12分)6.已知函数,求、、的值.详解:,……(3分),……(6分).……(12分)7.已知函数.(1)证明在上是减函数;(2)当时,求的最大值和最小值.参考答案:(1)证明:在区间上任取,且,则有……(1分),……(3分)∵,,……(4分)∴即……(5分)∴,所以在上是减函数.……(6分)(2)由(1)知在区间上单调递减,所以……(12分)8.已知函数其中.(1)求函数的定义域;(2)判断的奇偶性,并说明理由;(3)求使成立的的集合.参考答案:(1).若要上式有意义,则,即. ……(3分)所以所求定义域为……(4分)(2)设,则.……(7分)所以是偶函数. ……(8分)(3),即,.当时,上述不等式等价于,解得.……(10分)当时,原不等式等价于,解得.……(12分)综上所述, 当时,原不等式的解集为;当时,原不等式的解集为.9.已知函数.(1)判断的奇偶性;(2)若,求a,b的值.参考答案:(1)定义域为R,,故是奇函数. ……(6分)(2)由,则.……(8分)又log3 (4a-b)=1,即4a-b=3. ……(10分)由,解得a=1,b=1. ……(12分)10.对于函数. (1)探索函数的单调性;(2)是否存在实数a使得为奇函数.参考答案:(1) 的定义域为R, 设,则=,……(3分), ,……(5分)即,所以不论为何实数总为增函数. ……(6分)(2)假设存在实数a使为奇函数, ……(7分)即,……(9分)解得: ……(12分)11.(1)已知函数图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x-2 -1.5 -1 -0.5 0 0.5 1 1.5 2f (x) -3.51 1.02 2.37 1.56 -0.381.232.773.454.89(2)已知二次方程的两个根分别属于(-1,0)和(0,2),求的取值范围.参考答案:(1)由,,,……(3分)得到函数在(-2,-1.5)、(-0.5,0)、(0,0.5)内有零点. ……(6分)(2)设=,则=0的两个根分别属于(-1,0)和(1,2).所以,……(8分)即,……(10分)∴.……(12分)12.某商场经销一批进货单价为40元的商品,销售单价与日均销售量的关系如下表:销售单价/元50 51 52 53 54 55 56日均销售量/个48 46 44 42 40 38 36为了获取最大利润,售价定为多少时较为合理?参考答案:由题可知,销售单价增加1元,日均销售量就减少2个.设销售单价定为x元,则每个利润为(x-40)元,日均销量为个. 由于,且,得.……(3分)则日均销售利润为,.……(8分)易知,当,y有最大值. ……(11分)所以,为了获取最大利润,售价定为57元时较为合理. ……(12分)13.家用冰箱使用的氟化物的释放破坏了大气上层臭氧层. 臭氧含量Q呈指数函数型变化,满足关系式,其中是臭氧的初始量. (1)随时间的增加,臭氧的含量是增加还是减少?(2)多少年以后将会有一半的臭氧消失?参考答案:(1)∵,,,∴为减函数. ……(3分)∴随时间的增加,臭氧的含量是减少. ……(6分)(2)设x年以后将会有一半的臭氧消失,则,即,……(8分)两边去自然对数,,……(10分)解得.……(11分)∴287年以后将会有一半的臭氧消失. ……(12分)14.某工厂今年1月、2月、3月生产某种产品分别为1万件、1.2万件、1.3万件,为了以后估计每个月的产量,以这三个月的产品数据为依据. 用一个函数模拟产品的月产量与月份数的关系,模拟函数可选用二次函数(其中为常数,且)或指数型函数(其中为常数),已知4月份该产品的产量为1.37万件,请问用上述哪个函数作为模拟函数较好?并说明理由.参考答案:当选用二次函数的模型时,∵,由,有,解得,……(4分)∴.……(5分)当选用指数型函数的模型时,∵由有,解得,……(9分)∴.……(10分)根据4月份的实际产量可知,选用作模拟函数较好. ……(12分)15.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为. 试求函数的解析式,并画出函数的图象.参考答案:(1)当时,如图,设直线与分别交于、两点,则,又,,……(4分)(2)当时,如图,设直线与分别交于、两点,则,又,……(8分)(3)当时,. ……(10分)……(12分)16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?参考答案:(1)当0≤t≤1时,y=4t;……(2分)当t≥1时,,此时在曲线上,∴,这时. ……(5分)所以.……(6分)(2)∵,……(8分)解得,……(10分)∴.……(11分)∴服药一次治疗疾病有效的时间为个小时. ……(12分)必修2P(1)1.圆锥底面半径为1 cm,高为cm,其中有一个内接正方体,求这个内接正方体的棱长.参考答案:过圆锥的顶点S和正方体底面的一条对角线CD作圆锥的截面,得圆锥的轴截面SEF,正方体对角面CDD1C1,如图所示. …………………2分设正方体棱长为x,则CC1 =x,C1D1。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

高中数学必做100道题

高中数学必做100道题

高中数学必做100道题在高中数学学习过程中,数学题的练习是非常重要的一部分,可以帮助学生巩固知识、提高解题能力。

下面我为大家整理了一份高中数学必做的100道题,希望可以帮助大家更好地备考。

1. 计算:$3 \times 4 =$?2. 计算:$2^3 =$?3. 计算:$5 \times 6 - 2 =$?4. 计算:$\frac{1}{2} + \frac{1}{3} =$?5. 求下列代数式的值:$a = 3, b = 5$,计算 $2a + b = $?6. 求下列代数式的值:$x = 4, y = 2$,计算 $x^2 - y^2 = $?7. 求下列代数式的值:$m = 6, n = 3$,计算 $mn - 2m =$?8. 求下列代数式的值:$c = 8, d = 4$,计算 $cd + c =$?9. 求下列方程的解:$2x + 5 = 11$。

10. 求下列方程的解:$3y - 4 = 8$。

11. 求下列方程的解:$4z = 16$。

12. 求下列方程的解:$5w + 6 = 21$。

13. 简化下列分式:$\frac{8}{12}$。

14. 简化下列分式:$\frac{15}{20}$。

15. 简化下列分式:$\frac{18}{27}$。

16. 简化下列分式:$\frac{24}{36}$。

17. 求下列等式的值:$3a - 2 = 7$。

18. 求下列等式的值:$4b + 5 = 13$。

19. 求下列等式的值:$5c \div 2 = 10$。

20. 求下列等式的值:$6d \times 3 = 24$。

21. 计算三角形的面积:底边长为 5,高为 4。

22. 计算三角形的周长:边长分别为 3,4,5。

23. 计算正方形的面积:边长为 6。

24. 计算正方形的周长:边长为 8。

25. 解方程 $2x + 3 = 11 - x$。

26. 解方程 $3y + 5 = 2y - 1$。

高中数学:100道经典例题(附答案),逢考必有,吃透期末稳上140

高中数学:100道经典例题(附答案),逢考必有,吃透期末稳上140

高中数学:100道经典例题(附答案),逢考必有,吃透期末
稳上140
高中数学是一门抽象性和逻辑性极强的科目,学好数学对作为高中生的我们学科能力的发展及综合素质的提升也有着重要的影响。

数学可以说是高中学习阶段中难度较大的一门学科,怎样学好数学成为了很多同学日夜思考的问题。

其实数学的学习并不是无迹可寻的,我们在面对不理想的成绩和难以理解的问题时要注重自己情绪的调节,别给自己太大压力,以免丧失学习数学的信心,才能够掌握最佳的学习方法。

误所在,还能根据错题进行整个重点环节的系统复习,为我们备战高考提供有利条件。

高中数学经典例题100道

高中数学经典例题100道

例1 判定以下关系是否正确 (1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形. 答 选C .说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.答 选B .说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ]A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p=________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ]A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性典型例题一例1下列图形中,满足唯一性的是().A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线分析:本题考查的是空间线线关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条.D.过一点作已知平面的垂线是有且仅有一条.假设空间点A、平面α,过点A有两条直线AB、AC都垂直于α,由于AB、AC为相交直线,不妨设AB、AC所确定的平面为β,α与β的交线为l,则必有lAC⊥,又由于AB、AC、l都在平面β内,AB⊥,l这样在β内经过A点就有两条直线和直线l垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系;(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性. 故选D . 说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如在正方体1111D C B A ABCD -中,F E 、分别为棱1AA 和1BB 上的点,G 为棱BC 上的点,且1BB EF ⊥,EG FC ⊥1,求FG D 1∠.典型例题三例3 如图,在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD .分析:本题考查的是线面垂直的判定方法.根据线面垂直的判定方法,要证明⊥OE 平面1ACD ,只要在平面1ACD 内找两条相交直线与OE 垂直.证明:连结D B 1、D A 1、BD ,在△BD B 1中, ∵O E 、分别是B B 1和DB 的中点, ∴D B EO 1//. ∵⊥11A B 面D D AA 11,∴1DA 为1DB 在面D D AA 11内的射影. 又∵D A AD 11⊥, ∴11DB AD ⊥.同理可证,C D D B 11⊥.又∵111D CD AD = ,1AD 、⊂C D 1面1ACD , ∴⊥D B 1平面1ACD . ∵EO D B //1, ∴⊥EO 平面1ACD .另证:连结CE AE 、,O D 1,设正方体1DB 的棱长为a ,易证CE AE =.又∵OC AO =, ∴AC OE ⊥.在正方体1DB 中易求出:a a a DO DD O D 2622222211=⎪⎪⎭⎫ ⎝⎛+=+=,a a a OB BE OE 232222222=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=,()a a a E B B D E D 232222212111=⎪⎭⎫⎝⎛+=+=.∵21221E D OE O D =+, ∴OE O D ⊥1.∵O AC O D = 1,O D 1、⊂AC 平面1ACD , ∴⊥OE 平面1ACD .说明:要证线面垂直可找线线垂直,这是立体几何证明线面垂直时常用的转化方法.在证明线线垂直时既要注意三垂线定理及其逆定理的应用,也要注意有时是从数量关系方面找垂直,即勾股定理或余弦定理的应用.典型例题四例4 如图,在△ABC 中,90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥.分析:本题考查的仍是线面垂直的判定和性质定理,以及线线垂直和线面垂直相互转化思想.欲证MN SC ⊥,可证⊥SC 面AMN ,为此须证AN SC ⊥,进而可转化为证明⊥AN 平面SBC ,而已知SB AN ⊥,所以只要证BC AN ⊥即可.由于图中线线垂直、线面垂直关系较多,所以本题也可以利用三垂线定理和逆定理来证线线垂直.证明:∵⊥SA 面ABC ,⊂BC 平面ABC , ∴BC SA ⊥.∵90=∠B ,即BC AB ⊥,A SA BA = , ∴⊥BC 平面SAB . ∵⊂AN 平面SAB . ∴AN BC ⊥.又∵SB AN ⊥,B BC SB = , ∴⊥AN 平面SBC . ∵⊂SC 平面SBC , ∴SC AN ⊥,又∵SC AM ⊥,A AN AM = ,∴⊥SC 平面AMN . ∵⊂MN 平面AMN . ∴MN SC ⊥.另证:由上面可证⊥AN 平面SBC . ∴MN 为AM 在平面SBC 内的射影. ∵SC AM ⊥, ∴SC MN ⊥.说明:在上面的证题过程中我们可以看出,证明线线垂直常转化为证明线面垂直,而证明线面垂直又转化为证明线线垂直.立体几何中的证明常常是在这种相互转化的过程中实现的.本题若改为下题,想想如何证:已知⊥SA ⊙O 所在平面,AB 为⊙O 的直径,C 为⊙O 上任意一点(C 与B A 、不重合).过点A 作SB 的垂面交SB 、SC 于点N M 、,求证:SC AN ⊥.典型例题五例5 如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ⋅=. 分析:本题考查的是线面角的定义和计算.要证明三个角余弦值之间关系,可考虑构造直角三角形,在直角三角形中求出三个角的余弦值,再代入验证证明,其中构造直角三角形则需要用三垂线定理或逆定理.证明:过H 点作HD 垂直BC 于D 点,连AD . ∵α⊥AH ,∴AD 在平面α内射影为HD . ∵HD BC ⊥,α⊂BC , ∴AD BC ⊥.在Rt △ABH 中有:BA BH=θcos ① 在Rt △BHD 中有:BH BD=αcos ②在Rt △ABD 中有:BABD=βcos ③由①、②、③可得:αθβcos cos cos ⋅=.说明:由此题结论易知:斜线与平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.若平面的斜线与平面所成角为θ,则斜线与平面内其它直线所成角β的范围为⎥⎦⎤⎢⎣⎡2πθ,.典型例题六例6 如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离.分析:此题是1991年高考题,考查了直线与直线、直线与平面等位置关系以及逻辑推理和空间想像能力.本题是求平面外一点到平面的距离,可用转移法将该点到平面的距离转化为求另一点到该平面的距离.为此要寻找过点B 与平面GEF 平行的直线,因为与平面平行的直线上所有点到平面的距离相等.证明:连结AC BD 、,EF 和BD 分别交AC 于O H 、,连GH ,作GH OK ⊥于K .∵ABCD 为正方形,F E 、分别为AD AB 、的中点,∴BD EF //,H 为AO 中点. ∵EF BD //,⊄BD 平面GFE , ∴//BD 平面GFE .∴BD 与平面GFE 的距离就是O 点到平面EFG 的距离. ∵AC BD ⊥,∴AC EF ⊥.∵⊥GC 面ABCD ,∴EF GC ⊥. ∵C AC GC = ,∴⊥EF 平面GCH . ∵⊂OK 平面GCH , ∴OK EF ⊥.又∵GH OK ⊥,H EF GH = , ∴⊥OK 平面GEF .即OK 长就是点B 到平面GEF 的距离. ∵正方形边长为4,2=CG , ∴24=AC ,2=HO ,23=HC .在Rt △HCG 中,2222=+=CG HC HG .在Rt △GCH 中,11112=⋅=HG GC HO OK .说明:求点到平面的距离常用三种方法:一是直接法.由该点向平面引垂线,直接计算垂线段的长.用此法的关键在于准确找到垂足位置.如本题可用下列证法:延长CB 交FE 的延长线于M ,连结GM ,作ME BP ⊥于P ,作CG BN //交MG 于N ,连结PN ,再作PN BH ⊥于H ,可得⊥BH 平面GFE ,BH 长即为B 点到平面EFG 的距离.二是转移法.将该点到平面的距离转化为直线到平面的距离.三是体积法.已知棱锥的体积和底面的面积.求顶点到底面的距离,可逆用体积公式.典型例题七例7 如图所示,直角ABC ∆所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .分析:由等腰三角形底边上的中线得到线线垂直,从而得到线面垂直. 证明:(1)在等腰SAC ∆中,D 为AC 中点,∴AC SD ⊥. 取AB 中点E ,连DE 、SE .∵BC ED //,AB BC ⊥,∴AB DE ⊥.又AB SE ⊥,∴AB ⊥面SED ,∴SD AB ⊥.∴SD ⊥面ABC (AB 、AC 是面ABC 内两相交直线). (2)∵BC BA =,∴AC BD ⊥. 又∵SD ⊥面ABC ,∴BD SD ⊥. ∵D AC SD = ,∴BD ⊥面SAC .说明:证明线面垂直的关键在于寻找直线与平面内的两条相交直线垂直.寻找途径可由等腰三角形底边上的中线与底边垂直,可由勾股定理进行计算,可由线面垂直得线线垂直等.典型例题八例8 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 已知:b a //,α⊥a .求证:α⊥b .分析:由线面垂直的判定定理知,只需在α内找到两条相交直线与b 垂直即可.证明:如图所示,在平面α内作两条相交直线m 、n . ∵α⊥a ,∴m a ⊥,n a ⊥.又∵a b //,从而有m b ⊥,n b ⊥. 由作图知m 、n 为α内两条相交直线. ∴α⊥b .说明:本题的结论可以作为判定线面垂直的依据,即当要证的直线与平面的垂直关系不明确或不易证出时,可以考虑证明与已知直线平行的直线与平面垂直.典型例题九例9 如图所示,已知平面α 平面β=EF ,A 为α、β外一点,α⊥AB 于B ,β⊥AC 于C ,α⊥CD 于D .证明:EF BD ⊥.分析:先证A 、B 、C 、D 四点共面,再证明EF ⊥平面ABCD ,从而得到EF BD ⊥. 证明:∵α⊥AB ,α⊥CD ,∴CD AB //.∴A 、B 、C 、D 四点共面.∵α⊥AB ,β⊥AC ,EF =βα ,∴EF AB ⊥,EF AC ⊥.又A AC AB = ,∴EF ⊥平面ABCD .∴BD EF ⊥.说明:与线面平行和线线平行交替使用一样,线面垂直和线线垂直也常互为条件和结论.即要证线面垂直,先找线线垂直;要证线线垂直,先找线面垂直.本题证明“A 、B 、C 、D 四点共面”非常重要,仅由EF ⊥平面ABC ,就断定BD EF ⊥,则证明是无效的.典型例题十例10 平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.(1)求证:SB NH ⊥;(2)这个图形中有多少个线面垂直关系?(3)这个图形中有多少个直角三角形?(4)这个图形中有多少对相互垂直的直线?分析:注意利用直线与直线、直线与平面垂直的有关知识进行判断.(1)证明:连AM 、BM .如上图所示,∵AB 为已知圆的直径,∴BM AM ⊥.∵SA ⊥平面α,α⊂BM ,∴MB SA ⊥.∵A SA AM = ,∴BM ⊥平面SAM .∵AN ⊂平面SAM ,∴AN BM ⊥.∵SM AN ⊥于N ,M SM BM = ,∴AN ⊥平面SMB .∵SB AH ⊥于H ,且NH 是AH 在平面SMB 的射影,∴SB NH ⊥.解(2):由(1)知,SA ⊥平面AMB ,BM ⊥平面SAM ,AN ⊥平面SMB .∵AH SB ⊥且HN SB ⊥,∴SB ⊥平面ANH ,∴图中共有4个线面垂直关系.(3)∵SA ⊥平面AMB ,∴SAB ∆、SAM ∆均为直角三角形.∵BM ⊥平面SAM ,∴BAM ∆、BMS ∆均为直角三角形.∵AN ⊥平面SMB ,∴ANS ∆、ANM ∆、ANH ∆均为直角三角形.∵SB ⊥平面ANH ,∴SHA ∆、BHA ∆、SHN ∆、BHN ∆均为直角三角形.综上,图中共有11个直角三角形.(4)由SA ⊥平面AMB 知,AM SA ⊥,AB SA ⊥,BM SA ⊥.由BM ⊥平面SAM 知,AM BM ⊥,SM BM ⊥,AN BM ⊥.由AN ⊥平面SMB 知,SM AN ⊥,SB AN ⊥,NH AN ⊥.由SB ⊥平面ANH 知,AH SB ⊥,HN SB ⊥.综上,图中共有11对互相垂直的直线.说明:为了保证(2)(3)(4)答案不出错,首先应找准(2)的答案,由“线⊥面”可得到“线⊥面内线”,当“线⊥面内线”且相交时,可得到直角三角形;当“线⊥面内线”且不相交时,可得到异面且垂直的一对直线.典型例题十一例11 如图所示,︒=∠90BAC .在平面α内,PA 是α的斜线,︒=∠=∠60PAC PAB .求PA 与平面α所成的角.分析:求PA 与平面α所成角,关键是确定PA 在平面α上射影AO 的位置.由PAC PAB ∠=∠,可考虑通过构造直角三角形,通过全等三角形来确定AO 位置,构造直角三角形则需用三垂线定理.解:如图所示,过P 作α⊥PO 于O .连结AO ,则AO 为AP 在面α上的射影,PAO ∠为PA 与平面α所成的角.作AC OM ⊥,由三重线定理可得AC PM ⊥.作AB ON ⊥,同理可得AB PN ⊥.由PAC PAB ∠=∠,︒=∠=∠90PNA PMA ,PA PA =,可得PMA ∆≌PNA ∆,∴PN PM =.∵OM 、ON 分别为PM 、PN 在α内射影,∴ON OM =.所以点O 在BAC ∠的平分线上.设a PA =,又︒=∠60PAM ,∴a AM 21=,︒=∠45OAM ,∴a AM AO 222==. 在POA ∆中,22cos ==∠PA AO PAO , ∴︒=∠45PAO ,即PA 与α所成角为︒45.说明:(1)本题在得出PA 在面α上的射影为BAC ∠的平分线后,可由公式βαθcos cos cos ⋅=来计算PA 与平面α所成的角,此时︒==∠60θPAC ,α=∠PAO ,︒==∠45βCAO .(2)由PA 与平面α上射影为BAC ∠平分线还可推出下面结论:四面体ABC P -中,若PAC PAB ∠=∠,PBC PBA ∠=∠,则点A 在面ABC 上的射影为ABC ∆的内心.典型例题十二例12 如图所示,在平面β内有ABC ∆,在平面β外有点S ,斜线AC SA ⊥,BC SB ⊥,且斜线SA 、SB 分别与平面β所成的角相等,设点S 与平面β的距离为cm 4,BC AC ⊥,且cm AB 6=.求点S 与直线AB 的距离.分析:由点S 向平面β引垂线,考查垂足D 的位置,连DB 、DA ,推得AC DA ⊥,BC DB ⊥,又︒=∠90ACB ,故A 、B 、C 、D 为矩形的四个顶点.解:作SD ⊥平面β,垂足为D ,连DA 、DB .∵AC SA ⊥,BC DB ⊥,∴由三垂线定理的逆定理,有:AC DA ⊥,BC DB ⊥,又BC AC ⊥,∴ACBD 为矩形.又∵SB SA =,∴DB DA =,∴ACBD 为正方形,∴AB 、CD 互相垂直平分.设O 为AB 、CD 的交点,连结SO ,根据三垂线定理,有AB SO ⊥,则SO 为S 到AB 的距离.在SOD Rt ∆中,cm SD 4=,cm AB DO 321==, ∴cm SO 5=.因此,点S 到AB 的距离为cm 5.说明:由本例可得到点到直线距离的作法:(1)若点、直线在确定平面内,可直接由点向直线引垂线,这点和垂足的距离即为所求.(2)若点在直线所在平面外,可由三垂线定理确定:由这点向平面引垂线得垂足,由垂足引直线的垂线得斜足,则这点与斜足的距离为点到直线的距离.(3)处理距离问题的基本步骤是:作、证、算,即作出符合要求的辅助线,然后证明所作距离符合定义,再通过解直角三角形进行计算.典型例题十三例13 如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥.分析:本题考查线面垂直的判定与性质定理,以及线线垂直和线面垂直相互转化的思想.由于图形的对称性,所以两个结论只需证一个即可.欲证SB AE ⊥,可证⊥AE 平面SBC ,为此须证BC AE ⊥、SC AE ⊥,进而转化证明⊥BC 平面SAB 、⊥SC 平面AEFG .证明:∵SA ⊥平面ABCD ,⊂BC 平面ABCD ,∴BC SA ⊥.又∵ABCD 为正方形,∴AB BC ⊥.∴⊥BC 平面ASB .∵⊂AE 平面ASB ,∴AE BC ⊥.又∵⊥SC 平面AEFG ,∴AE SC ⊥.∴⊥AE 平面SBC .又∵⊂SB 平面SBC ,∴SB AE ⊥,同理可证SD AG ⊥.说明:(1)证明线线垂直,常用的方法有:同一平面内线线垂直、线面垂直的性质定理,三垂线定理与它的逆定理,以及与两条平行线中一条垂直就与另一条垂直.(2)本题的证明过程中反复交替使用“线线垂直”与“线面垂直”的相互联系,充分体现了数学化思想的优越性.典型例题十四例14 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.已知:BAC ∠在平面α内,点α∉P ,AB PE ⊥,AC PF ⊥,α⊥PO ,垂足分别是E 、F 、O ,PF PE =.求证:CAO BAO ∠=∠.证明:∵α⊥PO ,∴OE 为PE 在α内的射影.∵PE AB ⊥,α平面⊂AB ,∴OE AB ⊥.同理可证:OF AC ⊥.又∵α⊥PO ,PF PE =,OF OE =,∴CAO BAO ∠=∠.说明:本题是一个较为典型的题目,与此题类似的有下面命题:从一个角的顶点引这个角所在平面的斜射线,使斜射线和这个角两边的夹角相等,则斜射线在平面内的射影,是这个角的平分线所在的直线.由此结论和上一个例题很容易求解下面这道题:已知︒=∠90ACB ,S 为平面ACB 外一点,︒=∠=∠60SCB SCA ,求SC 与平面ACB 所成角.典型例题十五例15 判断题:正确的在括号内打“√”号,不正确的打“×”号.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( )(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( )(3)垂直于三角形两边的直线必垂直于第三边.( )(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( )(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( )解:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行 ②异面,因此应打“×”号(2)该命题的关键是这无数条直线具有怎样的位置关系.①若为平行,则该命题应打“×”号;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内无这数条线的位置关系,则该命题应打“×”号.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”号.(5)三条共点直线两两垂直,设为a ,b ,c 且a ,b ,c 共点于O ,∵b a ⊥,c a ⊥,0=c b ,且b ,c 确定一平面,设为α,则α⊥a ,同理可知b 垂直于由a ,c 确定的平面,c 垂直于由了确定的平面,∴该命题应打“√”号.说明:本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.典型例题十六例16 如图,已知空间四边形ABCD 的边AC BC =,BD AD =,引CD BE ⊥,E 为垂足,作BE AH ⊥于H ,求证:BCD AH 平面⊥.分析:若证BCD AH 平面⊥,只须利用直线和平面垂直的判定定理,证AH 垂直平面BCD 中两条相交直线即可.证明:取AB 中点F ,连CF 、DF ,∵BC AC =,∴AB CF ⊥.又∵BD AD =,∴AB DF ⊥,∴CDF AB 平面⊥,又CDF CD 平面⊂,∴AB CD ⊥又BE CD ⊥,∴ABE CD 平面⊥,AH CD ⊥,又BE AH ⊥,∴BCD AH 平面⊥.典型例题十七例17 如果平面α与α外一条直线a 都垂直b ,那么α//a .已知:直线α⊄a ,b a 直线⊥,α⊥b .求证:α//a .分析:若证线面平行,只须设法在平面α内找到一条直线'a ,使得'//a a ,由线面平行判定定理得证.证明:(1)如图,若a 与b 相交,则由a 、b 确定平面β,设'a =αβ .αααβαα////,,'''''a a a a a a b a a b ab a b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎭⎪⎬⎫⊂⊥⊥⇒⎭⎬⎫⊂⊥又∵. (2)如图,若a 与b 不相交, 则在a 上任取一点A ,过A 作b b //',a 、'b 确定平面β,设'a =αβ .αααβααα////,,////'''''''''''a a a a a a a b a b a b b b a b a b b b b ⇒⎪⎭⎪⎬⎫⊄⊂⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥⊥⇒⎪⎭⎪⎬⎫⊂⊥⇒⎭⎬⎫⊥又又∵又∵. 典型例题十八例18 如图,已知在ABC ∆中,︒=∠60BAC ,线段ABC AD 平面⊥,DBC AH 平面⊥,H 为垂足.求证:H 不可能是DBC ∆的垂心.分析:根据本题所证结论,可采用反证法予以证明.证明:如图所示,假设H 是DBC ∆的垂心,则DC BH ⊥.∵DBC AH 平面⊥,∴AH DC ⊥,∴ABH DC 平面⊥,∴DC AB ⊥.又∵ABC DA 平面⊥,∴DA AB ⊥,∴DAC AB 平面⊥,∴AC AB ⊥,这与已知︒=∠60BAC 矛盾,∴假设不成立,故H 不可能是DBC ∆的垂心.说明:本题只要满足︒≠∠90BAC ,此题的结论总成立.不妨给予证明.典型例题十九例19 在空间,下列哪些命题是正确的( ).①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A .仅②不正确B .仅①、④正确C .仅①正确D .四个命题都正确分析:①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α内两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.∴应选B .典型例题二十例20 设a ,b 为异面直线,AB 为它们的公垂线(1)若a ,b 都平行于平面α,则α⊥AB ;(2)若a ,b 分别垂直于平面α、β,且c =βα ,则c AB //.分析:依据直线和平面垂直的判定定理证明α⊥AB ;证明线与线的平行,由于此时垂直的关系较多,因此可以考虑利用线面垂直的性质证明c AB //.图1 图2 证明:(1)如图1,在α内任取一点P ,设直线a 与点P 确定的平面与平面α的交线为'a , 设直线b 与点P 确定的平面与平面α的交线为'b∵α//a ,α//b ,∴'//a a ,'//b b又∵a AB ⊥,b AB ⊥,∴'a AB ⊥,'b AB ⊥,∴α⊥AB .(2)如图2,过B 作α⊥'BB ,则a BB //',则'BB AB ⊥又∵b AB ⊥,∴AB 垂直于由b 和'BB 确定的平面.∵β⊥b ,∴c b ⊥,α⊥'BB ,∴c BB ⊥'.∴c 也垂直于由'BB 和b 确定的平面.故AB c //.说明:由第(2)问的证明可以看出:利用线面垂直的性质证明线与线的平行,其关键是构造出平面,使所证线皆与该平面垂直.如题中,通过作出辅助线'BB ,构造出平面,即由相交直线b 与'BB 确定的平面.然后借助于题目中的其他垂直关系证得. 典型例题二十一例21 如图,在正方体1111D C B A ABCD -中,EF 为异面直线D A 1与AC 的公垂线,求证:1//BD EF .分析:证明1//BD EF ,构造与EF 、1BD 都垂直的平面是关键.由于EF 是AC 和D A 1的公垂线,这一条件对构造线面垂直十分有用.证明:连结11C A ,由于11//C A AC ,AC EF ⊥,∴11C A EF ⊥.又D A EF 1⊥,1111A C A D A = ,∴D C A EF 11平面⊥. ①∵11111D C B A BB 平面⊥,111111D C B A C A 平面⊂,∴111C A BB ⊥.∵四边形1111D C B A 为正方形,∴1111D B C A ⊥,1111B BB D B = ,∴D D BB C A 1111平面⊥,而D D BB BD 111平面⊂,∴111BD C A ⊥.同理11BD DC ⊥,1111C C A DC = ,∴D C A BD 111平面⊥. ②由①、②可知:1//BD EF .典型例题二十二例22 如图,已知P 为ABC ∆外一点,PA 、PB 、PC 两两垂直,a PC PB PA ===,求P 点到平面ABC 的距离.分析:欲求点到平面的距离,可先过点作平面的垂线,进一步求出垂线段的长. 解:过P 作ABC PO 平面⊥于O 点,连AO 、BO 、CO , ∴AO PO ⊥,BO PO ⊥,CO PO ⊥ ∵a PC PB PA ===,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OC OB OA ==, ∴O 为ABC ∆的外心.∵PA 、PB 、PC 两两垂直, ∴a CA BC AB 2===,ABC ∆为正三角形,∴a AB AO 3633==,∴a AO PA PO 3322=-=. 因此点P 到平面ABC 的距离a 33. 说明:(1)求点到平面距离的基本程序是:首先找到或作出要求的距离;然后使所求距离在某一个三角形中;最后在三角形中根据三角形的边角关系求出距离.(2)求距离问题转化到解三角形有关问题后,在三角形中求距离常常用到勾股定理、正弦定理、余弦定理及有关三角函数知识.(3)点到平面距离是立体几何中一个重要内容,高考命题中出现较多,应充分注意,除了上面提到方法之外,还有其他一些方法,比如以后学习的等积法,希望同学们在学习过程不断总结.典型例题二十三例23 如图,已知在长方体1111D C B A ABCD -中,棱51=AA ,12=AB ,求直线11C B 和平面11BCD A 的距离.分析:求线面距离,其基本方法是在线上选一点,作出点面距,距离然后根据求点面距。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。

高中数学必做100题--数学3(8题)

高中数学必做100题--数学3(8题)

高中数学必做100题—必修3
班级: 姓名:
(说明:《必修3》部分共精选8题,“◎”表示教材精选,“☆”表示《精讲精练.必修3》精 选)
1. 设计一个算法求的值,并画出程序框图. (◎P20 2)(12分) 开始 解:

是 S=i^2 i=i+1 输出s 结束
2. 对某电子元件进行寿命追踪调查,情况如下.
解:(1) , .-----4分
(2)初三年级人数为y+z=2000-(373+377+380+370)=500,
现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数
为:
(名).----------8分
(3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为
(y,z);
Hale Waihona Puke 由(2)知 ,且,基本事件空间包含的基本事件有:
(245,255)、(246,254)、(247,253)、……(255,245)共11
个.
事件A包含的基本事件有:
(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共
5个.
.---------12分
8.(09年广东卷.文)随机抽取某中学甲乙两班各10名同学,测量他们的 身高(单位:cm),获得身高数据的茎叶图如图. (1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差; (3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学, 求身高为176 cm的同学被抽中的概率.(12分)
30
(1)列出频率分布表;(2)画出频率分布直方图;(3)估计元件寿
命在100~400 h以内的在总体中占的比例;(4)估计电子元件寿命在

高三数学必考试卷

高三数学必考试卷

一、选择题(每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且f(1) = 3,f(2) = 7,则a 的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 02. 已知等差数列{an}的前n项和为Sn,若a1 = 3,S5 = 50,则第10项a10的值为()A. 19B. 20C. 21D. 223. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,cosA=1/3,则sinB的值为()A. 2√2/3B. √2/3C. √6/3D. √2/64. 若复数z满足|z-1| + |z+1| = 4,则复数z的几何意义是()A. 复平面内到点(1,0)和(-1,0)的距离之和为4B. 复平面内到点(1,0)和(-1,0)的距离之差为4C. 复平面内到点(1,0)和(-1,0)的距离之积为4D. 复平面内到点(1,0)和(-1,0)的距离之比为45. 下列函数中,在其定义域内单调递减的是()A. y = x^2B. y = 2^xC. y = log2xD. y = -x^36. 若向量a = (1, -2),向量b = (2, 3),则向量a与向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/57. 已知函数f(x) = x^3 - 3x + 2,若f(x)在x=1处的切线斜率为k,则k的值为()A. 2B. -2C. 1D. -18. 若等比数列{an}的首项a1 = 2,公比q = 1/2,则该数列的前10项和S10等于()A. 1024B. 512C. 256D. 1289. 在等差数列{an}中,若a1 = 3,d = 2,则第n项an的值为()A. 2n + 1B. 2n + 3C. 2n - 1D. 2n - 310. 若复数z满足|z-1| = |z+1|,则复数z的实部等于()A. 0B. 1C. -1D. 无法确定二、填空题(每小题5分,共25分)11. 已知函数f(x) = 2x - 3,若f(x)在x=2处的导数值为f'(2)= ,则f'(2)的值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必做100题—必修3
时量:60分钟 班级: 姓名: 计分:
(说明:《必修3》共精选8题,每题12分,“◎”为教材精选,“☆”为《精讲精练.必修3》精选) 1. 设计一个算法求22221299100++⋅⋅⋅++的值,并画出程序框图. (◎P 2)
2.
(1400 h 以内的在总体中占的
3. 甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下(单位:cm ): (☆P 17 例3)
甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 4.
(☆P 22 8)
(1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:12
2
,n
i i i n
i
x y nx y
b a y bx x
nx
=-==--∑∑)
5. 在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. (1)若抽奖规则是从一个装有6个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率; (2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比
6. (2008年韶关模拟)某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)40,50,[)50,60…[]90,100后画出如下部分频率分布直方图. 观察图形的信息,回答下列问题: (1)求第四小组的频率,并补全这个频率分布直方图;
(3)估计这次考试的及格率(60分及以上为及格)和平均分;
7.(08
(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
8.(09年广东卷.文)随机抽取某中学甲乙两班各10名同学,测量他们的身
高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身
高为176 cm的同学被抽中的概率.。

相关文档
最新文档