人教版数学九上《第22章 二次函数》选择题拔高题专项训练

合集下载

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)

人教版九年级上册数学第22章《二次函数》选择题专题训练(含答案)一.选择题(共38小题)1.(2020春•雨花区校级期末)关于二次函数y=﹣(x﹣2)2的图象,下列说法正确的是()A.开口向上B.最高点是(2,0)C.对称轴是直线x=﹣2D.当x>0时,y随x的增大而减小2.(2020春•雨花区校级期末)如图,抛物线y=ax2+bx+c经过点(﹣1,0),与y轴交于(0,2),抛物线的对称轴为直线x=1,则下列结论中:①a+c=b;①方程ax2+bx+c=0的解为﹣1和3;①2a+b=0;①abc<0,其中正确的结论有()A.1个B.2个C.3个D.4个3.(2020春•雨花区校级期末)抛物线y=3(x﹣2)2+1的顶点坐标是()A.(2,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)4.(2020春•岳麓区校级期末)点P1(﹣2,y1),P2(2,y2),P3(4,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y2>y1=y3C.y1=y3>y2D.y1=y2>y35.(2020春•开福区校级期末)如图所示为抛物线y=ax2+bx+c(a≠0)在坐标系中的位置,以下六个结论:①a>0;①b>0;①c>0;①b2﹣4ac>0;①a+b+c<0;①2a+b>0.其中正确的个数是()A.3B.4C.5D.66.(2020春•雨花区期末)抛物线y=5(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,3)D.(﹣2,﹣3)7.(2020春•雨花区校级期末)对于二次函数y=﹣2(x+3)2的图象,下列说法不正确的是()A.开口向下B.对称轴是直线x=﹣3C.顶点坐标为(﹣3,0)D.当x<﹣3 时,y随x的增大而减小8.(2020春•岳麓区校级期末)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;①若m为任意实数,则a+b≥am2+bm;①a﹣b+c>0;①3a+c<0;①若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为()A.2B.3C.4D.59.(2020春•天心区期末)已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C,则:①a +c =0;①无论a 取何值,此二次函数图象与x 轴必有两个交点,函数图象截x 轴所得的线段长度必大于2;①当函数在x >1时,y 随x 的增大而增大;①若a =1,则OA •OB =OC 2.以上说法正确的有( )A .1个B .2个C .3个D .4个10.(2020春•雨花区校级期末)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a +b +c >0;①对于任意实数m ,a +b ≥am 2+bm 总成立; ①关于x 的方程ax 2+bx +c =n 有两个相等的实数根;①﹣1≤a ≤−23,其中结论正确个数为( ) A .1 个 B .2 个 C .3 个 D .4 个11.(2020春•岳麓区校级期末)将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为( )A .y =(x +1)2﹣13B .y =(x ﹣5)2﹣5C .y =(x ﹣5)2﹣13D .y =(x +1)2﹣512.(2019秋•岳麓区校级期末)对于抛物线y =−13(y −5)2+3,下列说法错误的是( ) A .对称轴是直线x =5B .函数的最大值是3C .开口向下,顶点坐标(5,3)D .当x >5时,y 随x 的增大而增大13.(2020春•天心区期末)抛物线y =﹣(x ﹣1)2﹣3是由抛物线y =﹣x 2经过怎样的平移得到的( )A .先向右平移1个单位,再向上平移3个单位B .先向左平移1个单位,再向下平移3个单位C .先向右平移1个单位,再向下平移3个单位D .先向左平移1个单位,再向上平移3个单位14.(2020春•雨花区校级期末)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( )A .B .C .D .15.(2019秋•雨花区校级期末)设抛物线y =ax 2+bx +c (ab ≠0)的顶点为M ,与y 轴交于N 点,连接直线MN ,直线MN 与坐标轴所围三角形的面积记为S .下面哪个选项的抛物线满足S =1.( )A .y =﹣3(x ﹣1)2+1B .y =2(x ﹣0.5)(x +1.5)C .y =13y 2−43x +1D .y =(a 2+1)x 2﹣4x +2(a 为任意常数)16.(2019秋•浏阳市期末)抛物线y =﹣2(x +1)2﹣3的对称轴是( )A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣317.(2019秋•永定区期末)对于二次函数y =2(x ﹣1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是直线x =﹣1C .顶点坐标是(﹣1,2)D .与x 轴没有交点18.(2019秋•常德期末)二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的是( )①abc <0①b 2﹣4ac >0①2a >b①a+c>b①若点(−52,y1)、(﹣1,y2)在图象上,则y1<y2A.1个B.2个C.3个D.4个19.(2019秋•新化县期末)在平面直角坐标系中,对于二次函数y=(x﹣2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.当x<2时,y的值随x值的增大而减小,当x≥2时,y的值随x值的增大而增大20.(2019秋•赫山区期末)对于二次函数y=14x2的图象,下列结论错误的是()A.顶点为原点B.开口向上C.除顶点外图象都在x轴上方D.当x=0时,y有最大值21.(2019秋•娄星区期末)抛物线y=3(x+2)2﹣5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)22.(2019秋•醴陵市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)ac>0;(2)方程ax2+bx+c=0的两根之积小于0;(3)a+b+c<0;(4)ac+b+1<0,其中正确的个数()A.1个B.2个C.3个D.4个23.(2019秋•澧县期末)已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7)B.(2,7)C.(2,﹣9)D.(﹣2,﹣9)24.(2019秋•涟源市期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y>0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>225.(2019秋•娄星区期末)二次函数y=x2﹣6x+8的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣826.(2019秋•涟源市期末)若函数y=(3﹣m)x y2−7−x+1是二次函数,则m的值为()A.3B.﹣3C.±3D.927.(2019秋•浏阳市期末)如图,一次函数y=ax+a和二次函数y=ax2的大致图象在同一直角坐标系中的可能是()A.B.C.D.28.(2019秋•岳麓区校级期末)抛物线y=x2﹣2x+1与坐标轴交点个数为()A.无交点B.1个C.2个D.3个29.(2020春•天心区期末)把抛物线y=x2向上平移3个单位,再向右平移1个单位,则平移后抛物线的解析式为()A.y=(x+3)2+1B.y=(x+3)2﹣1C.y=(x﹣1)2+3D.y=(x+1)2+330.(2019秋•醴陵市期末)已知原点是抛物线y=(m+1)x2的最高点,则m的范围是()A.m<﹣1B.m<1C.m>﹣1D.m>﹣231.(2018秋•凤凰县期末)对于二次函数y=(x﹣1)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,3)D.与x轴有两个交点32.(2018秋•江华县期末)若关于x的一元二次方程x2+ax+b=0的两个实数根是﹣1和3,那么对二次函数y=a (x﹣1)2+4的图象和性质的描述错误的是()A.顶点坐标为(1,4)B.函数有最大值4C.对称轴为直线x=1D.开口向上33.(2018秋•炎陵县期末)对于二次函数y=x2﹣2x﹣8,下列描述错误的是()A.其图象的对称轴是直线x=1B.其图象的顶点坐标是(1,﹣9)C.当x=1时,有y最小值﹣8D.当x>1时,y随x的增大而增大34.(2018秋•炎陵县期末)如图是二次函数y=ax2+bx+c图象的一部分,直线x=﹣1是对称轴,有以下判断:①2a ﹣b=0;①b2﹣4ac>0;①方程ax2+bx+c=0的两根是2和﹣4;①若(﹣3,y1),(﹣2,y2)是抛物线上两点,则y1>y2;其中正确的个数有()A.1B.2C.3D.435.(2018秋•古丈县期末)若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(2,0),则此抛物线的对称轴是直线()A.x=﹣1B.x=−12C.x=12D.x=136.(2019春•天心区校级期末)如图,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,与y轴交于点C,则下列说法错误的是()A.AB=4B.∠OCB=45°C.当x>3 时,y>0D.当x>0 时,y随x的增大而减小37.(2019春•雨花区校级期末)要由抛物线y=2x2得到抛物线y=2(x+1)2﹣3,则抛物线y=2x2必须()A.向左平移1个单位,再向下平移3个单位B.向右平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向左平移1个单位,再向上平移3个单位38.(2018秋•武陵区校级期末)已知二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的个数有()①abc<0;①2a+b=0;①b2﹣4ac<0;①9a+3b+c<0;①3a+b<0A.2个B.3个C.4个D.5个参考答案与试题解析一.选择题(共38小题)1.【解答】解:∵二次函数y =﹣(x ﹣2)2的图象开口向下,∴对称轴是x =2,顶点坐标是(2,0),∴函数有最高点(2,0),当x >2时,y 随x 的增大而减小.说法正确的是B ,故选:B .2.【解答】解:由函数图象得,a <0,函数图象经过点(﹣1,0),(0,2),且对称轴为直线x =1,∴代入可得°{y −y +y =0−y 2y =1y =2, 解得,{ y =−23y =43y =2, ∴y =−23y 2+43y +2,①y +y =−23+2=43=y ,故①正确;①令y =0,则−23y 2+43y +2=0,解得,x 1=﹣1,x 2=3,故①正确;①∵−y 2y =1, ∴b =﹣2a ,即b +2a =0,故①正确;①∵a <0,b >0,c >0,∴abc <0,故①正确;正确的一共有4个.故选:D .3.【解答】解:∵y =3(x ﹣2)2+1,∴抛物线顶点坐标为(2,1),故选:A .4.【解答】解:∵y =﹣x 2+2x +c =﹣(x ﹣1)2+1+c ,∴图象的开口向下,对称轴是直线x =1,A (﹣2,y 1)关于对称轴的对称点为(4,y 1),∵2<4,∴y 2>y 1=y 3,故选:B .5.【解答】解:①由抛物线的开口方向向上可推出a >0,正确;①因为对称轴在y 轴右侧,对称轴为x =−y 2y >0,又因为a >0,∴b <0,错误;①由抛物线与y 轴的交点在y 轴的负半轴上,∴c >0,正确;①抛物线与x 轴有两个交点,∴b 2﹣4ac >0,正确;①由图象可知:当x =1时,y >0,∴a +b +c >0,错误;①由图象可知:对称轴x =−y 2y >0且对称轴x =−y 2y <1, ∴2a +b >0,正确;故选:B .6.【解答】解:∵抛物线y =5(x ﹣2)2﹣3,∴顶点坐标为:(2,﹣3).故选:A .7.【解答】解:二次函数y =﹣2(x +3)2的图象开口向下,顶点坐标为(﹣3,0),对称轴为直线x =﹣3,当x <﹣3时,y 随 x 的增大而增大,故A 、B 、C 正确,D 不正确,故选:D .8.【解答】解:∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =−y 2y =1,∴b =﹣2a >0,即2a +b =0,所以①正确;∵抛物线对称轴为直线x =1,∴函数的最大值为a +b +c ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线与x 轴的一个交点在(3,0)的左侧,而对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(﹣1,0)的右侧,∴当x =﹣1时,y <0,∴a ﹣b +c <0,所以①错误;∵b =﹣2a ,a ﹣b +c <0,∴a +2a +c <0,即3a +c <0,所以①正确;∵ax 12+bx 1=ax 22+bx 2,∴ax 12+bx 1﹣ax 22﹣bx 2=0,∴a (x 1+x 2)(x 1﹣x 2)+b (x 1﹣x 2)=0,∴(x 1﹣x 2)[a (x 1+x 2)+b ]=0,而x 1≠x 2,∴a (x 1+x 2)+b =0,即x 1+x 2=−y y,∵b =﹣2a , ∴x 1+x 2=2,所以①正确.综上所述,正确的有①①①①共4个.故选:C .9.【解答】解:∵二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),∴{y −y +y =2①y +y +y =−2y ,①+①得:b =﹣2,a +c =0;故①正确;∵a =﹣c∴b 2﹣4ac >0,∴无论a 取何值,此二次函数图象与x 轴必有两个交点,∵|x 1﹣x 2|=√(y 1+y 2)2−4y 1y 2=√(−y y )2−4×y y ,y y =−1,∴√(−y y )2−4×y y >2,故①正确;∵b =﹣2,∴二次函数y =ax 2+bx +c (a >0)的对称轴x =−y 2y =1y ,∴当a >0时不能判定1y ≤1,∴不能判定x >1时,y 随x 的增大而增大;故①错误;∵a =1,a +c =0,∴c =﹣1,∴OC =1,∴OC 2=1,∵二次函数为y =x 2+bx ﹣1,∴x 1•x 2=﹣1,∵|x 1•x 2|=OA •OB ,∴OA •OB =1,∴OA •OB =OC 2,故①正确.故选:C .10.【解答】解:由图象可知,当x =1时,y >0,∴a +b +c >0,所以①正确;∵抛物线的顶点坐标(1,n ),∴x =1时,二次函数值有最大值n ,∴a +b +c ≥am 2+bm +c ,即a +b ≥am 2+bm ,所以①正确;∵抛物线的顶点坐标(1,n ),∴抛物线y =ax 2+bx +c 与直线y =n 有一个交点,∴关于x 的方程ax 2+bx +c =n 有两个相等的实数根,所以①正确;∵抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∵b =﹣2a ,∴a +2a +c =0,∴c =﹣3a ,∵2≤c ≤3,∴2≤﹣3a ≤3,∴﹣1≤a ≤−23,所以①正确; 故选:D .11.【解答】解:∵y =x 2﹣4x ﹣4=(x ﹣2)2﹣8,∴将抛物线y =x 2﹣4x ﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y =(x ﹣2+3)2﹣8+3,即y =(x +1)2﹣5.故选:D .12.【解答】解:∵抛物线y =−13(y −5)2+3, ∴该抛物线的对称轴是直线x =5,故选项A 正确;函数有最大值,最大值y =3,故选项B 正确;开口向下,顶点坐标为(5,3),故选项C 正确;当x >5时,y 随x 的增大而减小,故选项D 错误;故选:D .13.【解答】解:原抛物线的顶点为(0,0),新抛物线的顶点为(1,﹣3),∴是抛物线y =﹣x 2向右平移1个单位,向下平移3个单位得到,故选:C .14.【解答】解:由一次函数解析式为:y =kx +2可知,图象应该与y 轴交在正半轴上,故A 、B 、C 错误; D 符合题意;故选:D .15.【解答】解:对于y =﹣3(x ﹣1)2+1,M (1,1),N (0,﹣2),直线MN 的解析式为y =3x ﹣2,直线MN 与x 轴的交点坐标为(23,0),此时S =12×2×23=23; 对于y =2(x ﹣0.5)(x +1.5),则y =2(x +12)2﹣2,M (−12,﹣2),N (0,−32),直线MN 的解析式为y =x −32,直线MN 与x 轴的交点坐标为(32,0),此时S =12×(−32)×32=98; 对于y =13x 2−43x +1,则y =13(x ﹣2)2−13,M (2,−13),N (0,1),直线MN 的解析式为y =−23x +1,直线MN 与x 轴的交点坐标为(32,0),此时S =12×1×32=34; 故选:D .16.【解答】解:∵抛物线y =﹣2(x +1)2﹣3,∴该抛物线的对称轴为直线x =﹣1,故选:B .17.【解答】解:二次函数y =2(x ﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x =1,抛物线与x 轴没有公共点.故选:D .18.【解答】解:A 、∵图象开口向下,∴a <0,∵与y 轴交于正半轴,∴c >0,∵对称轴在y 轴左侧,−y 2y <0,∴b <0,∴abc >0,故①错误;∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,故①正确;、∵抛物线的对称轴为直线x =−y 2y >−1,又a <0, ∴2a <b ,故①错误;∵当x =﹣1时,对应的函数值y >0,即a ﹣b +c >0,∴a +c >b ,故本①正确;∵抛物线的对称轴x =−y 2y>−1,又a <0, ∴在对称轴左侧部分,y 随x 的增大而增大, ∵−52<−1, ∴y 1<y 2,故①正确.综上所述,正确的有①①①共3个.故选:C .19.【解答】解:二次函数y =(x ﹣2)2+1,a =1>0,∴该函数的图象开口向上,对称轴为直线x =2,顶点为(2,1),当x =2时,y 有最小值1,当x ≥2时,y 的值随x 值的增大而增大,当x <2时,y 的值随x 值的增大而减小;故选项A 、B 、D 的说法正确,C 的说法错误;故选:C .20.【解答】解:根据二次函数的性质,可得:二次函数y =14x 2的图象顶点为原点,开口向上,选项A 、B 不符合题意;故除顶点外图象都在x 轴上方,选项C 不符合题意;而当x =0时,y 有最小值0,故选项D 符合题意.故选:D .21.【解答】解:由y =3(x +2)2﹣5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣5).故选:B .22.【解答】解:由函数图象知,抛物线的开口向下,与y 轴的交点在(0,1),∴a <0,c >1,则ac <0,故(1)错误;由函数图象知抛物线与x 轴的两个交点一个在y 轴的左侧、另一个在0~1之间,∴方程ax 2+bx +c =0的两根之积小于0,故(2)正确;在抛物线上,当x =1时,y =a +b +c <0,故(3)正确;∵c >1,∴ac +b +1<a +b +c <0,故(4)正确;综上,正确的结论有(2)、(3)、(4),故选:C .23.【解答】解:∵抛物线y =﹣x 2+4x +3=﹣(x ﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B .24.【解答】解:由图象可知,当y >0时,x 的取值范围是x <﹣1或x >2,故选:D .25.【解答】解:{y =y 2−6y +8y =2y +y , x 2﹣6x +8=2x +b ,整理得:x 2﹣8x +8﹣b =0,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .26.【解答】解:∵函数y =(3﹣m )x y 2−7−x +1是二次函数,∴m 2﹣7=2,且3﹣m ≠0,解得:m =﹣3.故选:B .27.【解答】解:①当a >0时,二次函数y =ax 2的开口向上,一次函数y =ax +a 的图象经过第一、二、三象限,排除A ;①当a <0时,二次函数y =ax 2的开口向下,一次函数y =ax +a 的图象经过第二、三、四象限,排除C 、D . 故选:B .28.【解答】解:当x =0时,y =1,则与y 轴的交点坐标为(0,1),当y =0时,x 2﹣2x +1=0,△=(﹣2)2﹣4×1×1=0,所以,该方程有两个相等的解,即抛物线y =x 2﹣2x +1与x 轴有1个交点.综上所述,抛物线y =x 2﹣2x +1与坐标轴的交点个数是2个.故选:C .29.【解答】解:由“上加下减”的原则可知,把抛物线y =x 2向上平移3个单位所得抛物线的解析式为:y =x 2+3; 由“左加右减”的原则可知,把抛物线y =x 2+3向右平移1个单位所得抛物线的解析式为:y =(x ﹣1)2+3. 故选:C .30.【解答】解:∵原点是抛物线y =(m +1)x 2的最高点,∴m +1<0,即m <﹣1.故选:A .31.【解答】解:∵y =(x ﹣1)2+3,∴抛物线开口向上,对称轴为x =1,顶点坐标为(1,3),故A 、B 均不正确,C 正确; 令y =0可得(x ﹣1)2+3=0,可知该方程无实数根,故抛物线与x 轴没有交点,故D 不正确; 故选:C .32.【解答】解:∵关于x 的一元二次方程x 2+ax +b =0的两个实数根是﹣1和3, ∴﹣a =﹣1+3=2,∴a =﹣2<0,∴二次函数y =a (x ﹣1)2+4的开口向下,对称轴为直线x =1,顶点坐标为(1,4),当x =1时,函数有最大值4,故A 、B 、C 叙述正确,D 错误,故选:D .33.【解答】解:∵二次函数y =x 2﹣2x ﹣8=(x ﹣1)2﹣9,∴其图象的对称轴是直线x =1,故选项A 正确;其图象的顶点坐标是(1,﹣9),故选项B 正确;当x =1时,y 取得最小值,此时y =﹣9,故选项C 错误;当x >1时,y 随x 的增大而增大,故选项D 正确;故选:C .34.【解答】解:∵抛物线的对称轴为直线x =﹣1,∴−y 2y =−1,即b =2a , ∴2a ﹣b =0,所以①正确;∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,所以①正确;∵抛物线与x 轴的一个交点坐标为(2,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一个交点坐标为(﹣4,0),∴方程ax 2+bx +c =0的两根是2和﹣4,所以①正确;∵x <﹣1时,y 随x 的增大而增大,∴y 1<y 2,所以①错误.故选:C .35.【解答】解:∵抛物线y =ax 2+bx +c 与x 轴的两个交点坐标是(﹣1,0)和(2,0), ∴抛物线的对称轴为直线x =12. 故选:C .36.【解答】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),∴AB =3﹣(﹣1)=4,当x <﹣1或x >3时,y >0,∵抛物线的对称轴为直线x =1,∴当 x <1时,y 随 x 的增大而减小;当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),∵OB=OC=3,∴△OCB为等腰直角三角形,∴∠OCB=45°.故选:D.37.【解答】解:抛物线y=2x2必须向左平移1个单位,再向下平移3个单位才得到y=2(x+1)2﹣3.故选:A.38.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,b>0,c>0,∴abc<0,故①正确;①∵对称轴y=−y2y=1,∴2a+b=0,故①正确;①∵抛物线与x轴有两个交点,∴b2﹣4ac>0,①错误;①∵抛物线与x轴的一个交点的横坐标在(﹣1,0)之间,对称轴x=1,∴抛物线与x轴的另一个交点的横坐标小于3,∴9a+3b+c<0,①正确;①∵2a+b=0,∴3a+b=2a+b+a=0+a<0,①正确.故选:C.。

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

人教新版九年级数学上学期 第22章 二次函数 单元训练 ( 含答案)

第22章二次函数(hánshù)一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3;②y=4﹣3x+7x2;③y=﹣3x+5;④y=(2x﹣3)(3x﹣2);⑤y=ax+bx+c;⑥y=(n2+1)x2﹣2x﹣3;⑦y=m2x2+4x﹣3.A.1个B.2个C.3个D.4个2.对于抛物线y=﹣2(x+5)2+4,下列说法正确的是()A.开口向下,顶点坐标(5,4)B.开口向上,顶点坐标(5,4)C.开口向下,顶点坐标(﹣5,4)D.开口向上,顶点坐标(﹣5,4)3.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…0100400…y…2﹣22…则方程ax2+bx+4=0的根是()A.x1=x2=200 B.x1=0,x2=400C.x1=100,x2=300 D.x1=100,x2=5004.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确5.已知函数y=,当y=5时,x的值是()A.6 B.﹣C.﹣或6 D.±或66.二次函数(hánshù)y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.7.已知抛物线y=x2+bx+c的顶点坐标为(1,﹣3),则抛物线对应的函数解析式为()A.y=x2﹣2x+2 B.y=x2﹣2x﹣2 C.y=﹣x2﹣2x+1 D.y=x2﹣2x+1 8.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,则方程ax2+bx+c=0的一个解的范围是()x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04 A.﹣0.01<x<0.02 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.209.小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4 B.3.4 C.2.4 D.1.410.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是()(1)对任意实数k,函数与x轴有两个交点(2)当x≥﹣k时,函数(hánshù)y的值都随x的增大而增大(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点A.1 B.2 C.3 D.411.已知抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0)、C(﹣3,y)、D(2,y2)四点,则y1与y2的大小关系是()1A.y1<y2B.y1=y2C.y1>y2D.不能确定12.共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=a(1+x)2B.y=a(1﹣x)2C.y=(1﹣x)2+a D.y=x2+a 13.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个14.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=3x2B.y=4x2C.y=8x2D.y=9x2二.填空题(共6小题(xiǎo tí))15.二次函数y=a(x+1)(x﹣4)的对称轴是.16.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m =.17.已知直线y=x﹣3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、B两点,且对称轴方程为x=1,那么这个二次函数的解析式是.18.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.19.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.20.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P 的纵坐标为1.则关于x的方程ax2+bx+=0的解为.三.解答题(共4小题)21.已知二次函数y=﹣x2+x+(1)将y=﹣x2+x+成y=a(x﹣h)2+k的形式:(2)在坐标系中利用(lìyòng)描点法画出此抛物线x……y……(3)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.(4)将该抛物线在x上方的部分(不包含与x的交点)记为G,若直线y=x+b与G只有一个公共点,则b的取值范围是.22.如图,抛物线y=a(x﹣1)(x+3)交x轴于A、B两点,交y轴于点C,∠BAC=45°.(1)求a的值;(2)点D为第三象限内抛物线上的一点,当△DAC的面积为3时,求D点的坐标.23.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件,设衬衫的单价降x元,每天获利y 元.(1)如果商场里这批衬衫的库存只有44件,那么衬衫的单价应降多少元,才能使得这批衬衫一天内售完,且获利最大,最大利润是多少?(2)如果商场销售这批衬衫要保证(bǎozhèng)每天盈利不少于1200元,那么衬衫的单价应降多少元?24.在平面直角坐标系中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点,(1)试求抛物线的解析式.(2)记抛物线顶点为D,求△BCD的面积;(3)将直线y=﹣x向上平移b个单位,所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,请求出b的取值范围.参考答案一.选择题(共14小题(xiǎo tí))1.解:①y2=2x2﹣4x+3,不符合二次函数的定义,不是二次函数;②y=4﹣3x+7x2,是二次函数;③y=﹣3x+5,分母中含有自变量,不是二次函数;④y=(2x﹣3)(3x﹣2)=6x2﹣13x+6,是二次函数;⑤y=ax2+bx+c,含有四个自变量,不是二次函数;⑥y=(n2+1)x2﹣2x﹣3,含有两个自变量,不是二次函数;⑦y=m2x2+4x﹣3,含有两个自变量,不一定是二次函数.∴只有②④一定是二次函数.故选:B.2.解:∵抛物线y=﹣2(x+5)2+4,∴抛物线的开口方向向下,顶点坐标为(﹣5,4).故选:C.3.解:由抛物线经过点(0,2)得到c=2,因为抛物线经过点(0,2)、(400,2),所以抛物线的对称轴为直线x=200,而抛物线经过点(100,﹣2),所以抛物线经过点(300,﹣2),所以二次函数解析式为y=ax2+bx+2,方程ax2+bx+4=0变形为ax2+bx+2=﹣2,所以方程ax2+bx+4=0的根理解为函数值为﹣2所对应的自变量的值,所以方程ax2+bx+4=0的根为x1=100,x2=300.故选:C.4.解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析(jiě xī)式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.5.解:∵函数y=,∴当x≤2时,x2﹣1=5,得x1=﹣,x2=(舍去),当x>2时,x﹣1=5,得x=6,故当y=5时,x的值是或6,故选:C.6.解:由一次函数y=ax+a可知(kě zhī),一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.7.解:A、y=x2﹣2x+2=(x﹣1)2+1,顶点坐标为(1,1),不合题意;B、y=x2﹣2x﹣2=(x﹣1)2﹣3,顶点坐标为(1,﹣3),符合题意;C、y=﹣x2﹣2x+2=﹣(x+1)2+3,顶点坐标为(﹣1,3),不合题意;D、y=x2﹣2x+1=(x﹣1)2,顶点坐标为(1,0),不合题意.故选:B.8.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选:C.9.解:∵抛物线与x轴的一个交点为(﹣3.4,0),又抛物线的对称轴为:x =﹣1,∴另一个交点坐标为:(1.4,0),则方程的另一个近似根为1.4,故选:D.10.解:(1)△=b2﹣4ac=4k2﹣4k+4=(2k﹣1)2+3>0,故对任意实数k,函数与x轴有两个交点,符合题意;(2)函数的对称轴为:x=﹣=﹣k,a>1,故当x≥﹣k时,函数y的值都随x的增大而增大,符合题意;(3)函数的对称轴为:x=﹣k,则顶点坐标为:(﹣k,﹣k2+k﹣1),故顶点在抛物线:y=﹣x2﹣x﹣1上,k取不同的值时,二次函数y的顶点始终在同一条抛物线上,符合题意;(4)y=x2+2kx+k﹣1=x2+k(2x+1)﹣1,当x=﹣时,y=﹣,故对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点,符合题意;故选:D.11.解:抛物线y=ax2+bx+c(a<0)过A(﹣2,0)、B(0,0),则函数(hánshù)的对称轴为:x=﹣1,x=﹣3比x=2离对称轴近,故y>y2,1故选:C.12.解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:A.13.解:(1)当x=﹣2时,y=4a﹣2b+c<0,故①符合题意;(2)函数的对称轴为:x=﹣>﹣1,故b>2a,故②符合题意;(3)ab同号,c>0,故③不符合题意;(4)顶点纵坐标大于2,故>2,故④符合题意;故选:C.14.解:设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴=,∴EG=2x,∴由勾股定理可知:AE=x,∴AB=BC=2x,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选:C.二.填空题(共6小题(xiǎo tí))15.解:令y=a(x+1)(x﹣4)=0,解得:x=﹣1或x=4,∴y=a(x+1)(x﹣4)与x轴交与点(﹣1,0),(4,0)∴对称轴为:x==.故答案为:x=.16.解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.17.解:直线y=x﹣3中,令y=0,求得x=3;令x=0,则y=﹣3,∴A(3,0),B(0,﹣3),设二次函数(hánshù)的解析式为y=ax2+bx+c,∵二次函数的图象经过A、B两点,且对称轴方程为x=1,∴,解得,∴这个二次函数的解析式是y=x2﹣2x﹣3,故答案为y=x2﹣2x﹣3.18.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)219.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.20.解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案(dáàn)为:x=﹣3.三.解答题(共4小题)21.解:(1)y=﹣x2+x+=(x2﹣2x)+=(x2﹣2x+1﹣1)+=(x﹣1)2+=(x﹣1)2+2(2)列表得:用描点画图象得:(3)x=﹣3时,y=﹣5,x=3时,y=0当﹣3<x<1时,y随x的增大而增大,且x=1时,y=2故答案为:﹣5<y≤2(4)整理得:x2=3﹣2b当方程只有一个解时,即对应的两函数图象只有一个交点∴3﹣2b=0,解得:b=把x=﹣1,y=0代入y=x+b,得b=1把x=3,y=0代入y=x+b,得b=﹣3∴b≤﹣3时,直线(zhíxiàn)y=x+b与G没有交点;﹣3<b<1时,直线y=x+b与G有一个交点;1≤b<时,直线y=x+b与G有两个交点;b=时,直线y=x+b与G有一个交点,b>,直线y=x+b与G无交点.故答案为:﹣3<b<1或b=22.解:(1)当y=0时,a(x﹣1)(x+3)=0,解得x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∵∠BAC=45°,∴△OAC为等腰直角三角形,∴OC=OA=3,∴C(0,﹣3),把C(0,﹣3)代入y=a(x﹣1)(x+3)得﹣3=a(0﹣1)(0+3),解得a=1,∴抛物线解析式为y=(x﹣1)(x+3),即y=x2+2x﹣3;(2)在y轴取点E使S△ACE=3,过点E作AC的平行线交第三象限的抛物线于点D,如图,设E(0,t),∵×(﹣3﹣t)×3=3,解得t=﹣5,∴E(0,﹣5),易得直线AC的解析式为y=﹣x﹣3,∴直线DE的解析式为y=﹣x﹣5,解方程组得或,∴D点坐标为(﹣1,﹣4),(﹣2,﹣3).23.解:(1)y=44(40﹣x)=﹣44x+1760,∵20+2x≥44,∴x≥12,∵y随x的增大(zēnɡ dà)而减小,∴当x=12时,获利最大值1232;答:如果商场里这批衬衫的库存只有44件,那么衬衫的单价应12元,才能使得这批衬衫一天内售完,且获利最大1232元;(2)y=(20+2x)(40﹣x)=﹣2(x﹣15)2+1250,当y=1200时,1200=﹣2(x﹣15)2+1250,∴x=10或x=20,∵当x<15时,y随x的增大而增大,当x>15时,y随x的增大而减小,当10≤x≤20时,y≥1200,答:如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降不少于10元且不超过20元;24.解:(1)把B(﹣2,6),C(2,2)两点坐标代入得:,解这个方程组,得,∴抛物线的解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴顶点D(1,),∴△BCD的面积=4×﹣×3×﹣×1×﹣×4×4=3.(3)由消去y得到(dé dào)x2+x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=5,当直线y=﹣x+b经过点B时,b=3,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.内容总结(1)第22章二次函数一.选择题(共14小题)1.下列各式中,一定是二次函数的有()①y2=2x2﹣4x+3(2)(2)如果商场销售这批衬衫要保证每天盈利不少于1200元,那么衬衫的单价应降多少元。

人教版九年级数学上册 第22章 二次函数 综合测试卷(含答案)

人教版九年级数学上册  第22章  二次函数  综合测试卷(含答案)

人教版数学九年级上册第22章二次函数综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1. 抛物线y=(x-1)2+2的顶点坐标是()A.(-1,2) B.(-1,-2)C.(1,-2) D.(1,2)2. 下列对二次函数y=x2-x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的3. 下列抛物线中与x轴有两个交点的是()A.y=5x2-7x+5 B.y=16x2-24x+9C.y=2x2+3x-4 D.y=3x2-4x+24. 二次函数y=ax2+bx+c的图象如图所示,下面关于一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A.方程有两个相等的实数根C.方程有两个正的实数根D.方程没有实数根5. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m6. 如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为()A.19cm2B.16cm2C.15cm2D.12cm27. 已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是( )B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m8. 抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1.下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标为(-2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c.其中正确的有()A.5个B.4个C.3个D.2个9. 某旅社有100张床位,每床每晚收费10元时,床位可全部租出.若每床每晚收费提高2元,则减少10张床位的租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每床每晚应提高( )A.4元或6元B.4元C.6元D.8元10. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且对称轴为直线x=1,点B的坐标为(-1,0),则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的有()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(共8小题,每小题3分,共24分)11.已知抛物线y=a(x-3)2+2经过点(1,-2).a=_______;12.二次函数y=x2-2x+6有最小值,是____.13.把二次函数y=x2-12x化为形如y=(x-h)2+k的形式:________________.14.二次函数y=x2-2x-3的图象如图,当y<0时,自变量x的取值范围是_____________.15. 如图,在平面直角坐标系中,抛物线y=a(x-3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=-13x2-2于点B,则A,B两点间的距离为____.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.17.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{-2,-3}=______;若min{(x-1)2,x2}=1,则x=__________.18. 如图,假设篱笆(虚线部分)的长度为16 m,则所围成矩形ABCD的最大面积是____.三.解答题(共9小题,66分)19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.(6分) 已知某二次函数的最大值为2,图象的顶点在直线y=x+1上,并且图象经过点(2,1),求二次函数的解析式.21.(6分) 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k为常数.(1)求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;22.(6分) 某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.23.(6分) 如图,抛物线y=x2+bx+c与x轴交于A,B两点,点B的坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.24.(8分) 某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?25.(8分) )某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=-x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.(10分) 如图,在平面直角坐标系中,抛物线的顶点为A(1,﹣4),且与x轴交于B、C两点,点B的坐标为(3,0).(1)写出C点的坐标,并求出抛物线的解析式;(2)观察图象直接写出函数值为正数时,自变量的取值范围.27.(10分) 如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)足球第一次落地点C距守门员多少米?(取43=7)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取26=5)参考答案:1-5DCCBB 6-10CDBCB 11. -1 12. 513. y =(x -6)2-36 14. -1<x <3 15. 7 16. 42﹣4. 17. -3,2或-1 18. 50m 219. 解:∵抛物线y=ax 2+bx ﹣3(a ≠0)经过点(﹣1,0),(3,0),∴⎩⎪⎨⎪⎧a-b-3=0,9a +3b-3=0,, 解得,⎩⎪⎨⎪⎧a =1,b =-2,, 即a 的值是1,b 的值是﹣2.20. 解:∵函数的最大值是2,则此函数顶点的纵坐标是2, 又顶点在y =x +1上,那么顶点的横坐标是1, 设此函数的解析式是y =a(x -1)2+2, 再把(2,1)代入函数中可得a(2-1)2+2=1, 解得a =-1,故函数解析式是y =-(x -1)2+2, 即y =-x 2+2x +121. (1)证明:∵△=(k ﹣5)2﹣4(1﹣k )=k 2﹣6k+21=(k ﹣3)2+12>0,(2)解:∵二次函数y=x 2+(k ﹣5)x+1﹣k 的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k ﹣3)2+12>0,∴抛物线与x 轴有两个交点,设抛物线与x 轴的交点的横坐标分别为x 1,x 2,∴x 1+x 2=5﹣k >0,x 1•x 2=1﹣k ≥0,解得k ≤1,即k 的取值范围是k ≤1;22. 解:(1)由已知,每天安排x 人生产乙产品时,生产甲产品的有(65﹣x )人,共生产甲产品2(65﹣x )130﹣2x 件.在乙每件120元获利的基础上,增加x 人,利润减少2x 元每件,则乙产品的每件利润为120﹣2(x ﹣5)=130﹣2x .故答案为:65﹣x ;130﹣2x ;130﹣2x(2)由题意得:15×2(65﹣x )=x (130﹣2x )+550∴x 2﹣80x+700=0解得x 1=10,x 2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.23. 解:(1)把B(3,0),C(0,3)代入得⎩⎪⎨⎪⎧9+3b +c =0,c =3,得b =-4, 所以抛物线的解析式为y =x 2-4x +3(2)设P(a ,a 2-4a +3)(1<a <3),易得PF =2a ,PE =-22a 2+322a , PE +EF =2PE +PF =-2a 2+42a =-2(a -2)2+42,当a =2时,PE +EF 的最大值为4 224. 解:(1)设y 与x 之间的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧40k +b =80,50k +b =60, 解得⎩⎪⎨⎪⎧k =-2,b =160,即y 与x 之间的函数解析式是y =-2x +160 (2)由题意可得,w =(x -20)(-2x +160)=-2x 2+200x -3200,即w 与x 之间的函数解析式是w =-2x 2+200x -3200(3)∵w =-2x 2+200x -3200=-2(x -50)2+1800,20≤x ≤60,∴当20≤x ≤50时,w 随x 的增大而增大;当50≤x ≤60时,w 随x 的增大而减小;当x =50时,w 取得最大值,此时w =1800元.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是180025. 解:(1)W 1=(x -6)(-x +26)-80=-x 2+32x -236(2)由题意得:20=-x 2+32x -236.解得x =16,答:该产品第一年的售价是16元(3)由题意得:14≤x ≤16,W 2=(x -5)(-x +26)-20=-x 2+31x -150,∵抛物线的对称轴为直线x =15.5,又14≤x ≤16,∴x =14时,W 2有最小值,最小值为88,答:该公司第二年的利润W 2至少为88万元26. 解:(1)∵顶点为A (1,﹣4),且与x 轴交于B 、C 两点,点B 的坐标为(3,0), ∴点C 的坐标为(﹣1,0),设抛物线的解析式为y=a (x ﹣3)(x+1),把A (1,﹣4)代入,可得﹣4=a (1﹣3)(1+1),解得a=1,∴抛物线的解析式为y=(x﹣3)(x+1),即y=x2﹣2x﹣3;(2)由图可得,当函数值为正数时,自变量的取值范围是x<﹣1或x>3.27. 解:(1)y=-112(x-6)2+4(2)令y=0,则-112(x-6)2+4=0,解得x1=43+6≈13,x2=-43+6<0(舍去),∴足球第一次落地距守门员约13米(3)第二次足球弹出后的距离为CD,根据题意CD=EF (即相当于将抛物线AEMFC向下平移了2个单位),∴2=-112(x-6)2+4,解得x1=6-26,x2=6+26,∴CD=|x1-x2|=46≈10,∴BD=13-6+10=17(米),则他应再向前跑17米。

人教版 九年级数学上册 第22章 二次函数 综合训练(含答案)

人教版 九年级数学上册 第22章 二次函数 综合训练(含答案)

人教版九年级数学上册第22章二次函数综合训练(含答案)一、选择题(本大题共8道小题)1. 抛物线y=-x2+4x-4与坐标轴的交点个数为()A.0 B.1 C.2 D.32. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-23. 在平面直角坐标系中,二次函数y=a(x-h)2的图象可能是()4. 已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>05. 下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206. 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是()A.y=(x-4)2-6 B.y=(x-1)2-3C.y=(x-2)2-2 D.y=(x-4)2-27. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+4二、填空题(本大题共8道小题)9. 已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________.(只需写一个)10. 抛物线y=12(x+3)2-2是由抛物线y=12x2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.11. 如图所示,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点的坐标为(3,0),那么它对应的函数解析式是______________.12. 某学习小组为了探究函数y=x2-|x|的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.13. 已知二次函数y=2(x+1)2+1,且-2≤x≤1,则函数y的最小值是________,最大值是________.14. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)15. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.16. 在平面直角坐标系中,抛物线y=x2如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……依次进行下去,则点A2019的坐标为________.三、解答题(本大题共5道小题)17. 已知二次函数y=-2x2,y=-2(x-2)2,y=-2(x-2)2+2,请回答下列问题:(1)写出抛物线y=-2(x-2)2+2的顶点坐标、开口方向和对称轴;(2)将抛物线y=-2x2分别通过怎样的平移可以得到抛物线y=-2(x-2)2和y=-2(x-2)2+2?(3)如果要得到抛物线y=-2(x-2020)2-2021,应将y=-2(x-2)2怎样平移?18. 已知抛物线与x 轴的交点是A (-1,0),B (2,0),且抛物线最高点的纵坐标是92,求该抛物线的解析式.19. 已知二次函数y =12x 2-2x -1.(1)求该二次函数图象的顶点坐标和对称轴;(2)通过列表、描点、连线,在图中画出该函数的图象; (3)求该二次函数图象与坐标轴的交点坐标.20. 如图,已知二次函数y =x 2+ax +3的图象经过点P (-2,3).(1)求a 的值和图象的顶点坐标. (2)点Q (m ,n )在该二次函数的图象上: ①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.21. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A、B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.人教版九年级数学上册第22章二次函数综合训练(含答案)-讲评卷一、选择题(本大题共8道小题)1. 抛物线y=-x2+4x-4与坐标轴的交点个数为()A.0 B.1 C.2 D.3【答案】C[解析] 当x=0时,y=-x2+4x-4=-4,则抛物线与y轴的交点坐标为(0,-4);当y=0时,-x2+4x-4=0,解得x1=x2=2,则抛物线与x轴的交点坐标为(2,0),所以抛物线与坐标轴有2个交点.故选C.2. 已知抛物线y=ax2+bx+c经过(1,0),(2,0),(3,4)三点,则该抛物线的解析式为()A.y=x2-3x+2 B.y=2x2-6x+4C.y=2x2+6x-4 D.y=x2-3x-2【答案】B[解析] 把(1,0),(2,0),(3,4)分别代入y =ax 2+bx +c ,得⎩⎨⎧a +b +c =0,4a +2b +c =0,9a +3b +c =4,解得⎩⎨⎧a =2,b =-6,c =4,所以y =2x 2-6x +4.故选B.3. 在平面直角坐标系中,二次函数y =a (x -h )2 的图象可能是( )【答案】D4. 已知抛物线y =ax 2(a >0)过A (-2,y 1),B (1,y 2)两点,则下列关系式一定正确的是( ) A .y 1>0>y 2 B .y 2>0>y 1 C .y 1>y 2>0D .y 2>y 1>0【答案】C[解析] ∵y =ax 2(a >0),∴抛物线的开口向上,对称轴为y 轴,当x=0时,函数取得最小值,最小值是0.∵A(-2,y 1)在对称轴的左侧,B(1,y 2)在对称轴的右侧,点A 到对称轴的距离大于点B 到对称轴的距离,∴y 1>y 2>0.故选C.5. 下面的表格列出了函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的x 与y 的部分对应值,那么方程ax 2+bx +c =0的一个根x 的取值范围是( )A.6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.20【答案】C[解析] 由表格中的数据,得在6.17<x <6.20范围内,y 随x 的增大而增大,当x =6.18时,y =-0.01,当x =6.19时,y =0.02,故方程ax 2+bx +c =0的一个根x 的取值范围是6.18<x <6.19.6. 将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2D .y =(x -4)2-2【答案】D[解析] y =x 2-6x +5=(x -3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y =(x -3-1)2-4+2,即y =(x -4)2-2.7. 已知抛物线y =2x 2+bx +c 的顶点坐标是(-1,-2),则b 与c 的值分别为()A .-1,-2B .4,-2C .-4,0D .4,0【答案】D8. 若抛物线y =x 2-2x +3不动,将平面直角坐标系........xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为( )A. y =(x -2)2+3B. y =(x -2)2+5C. y =x 2-1D. y =x 2+4【答案】C 【解析】由抛物线y =x 2-2x +3得y =(x -1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y =(x -1+1)2+2-3=x 2-1. 二、填空题(本大题共8道小题)9. 已知一个二次函数的图象开口向上,顶点坐标为(0,-1),那么这个二次函数的解析式可以是__________.(只需写一个)【答案】答案不唯一,如y =2x 2-1 [解析] ∵顶点坐标为(0,-1),∴该抛物线的解析式为y =ax 2-1. 又∵二次函数的图象开口向上, ∴a >0,∴这个二次函数的解析式可以是y =2x 2-1.10. 抛物线y =12(x +3)2-2是由抛物线y =12x 2先向________(填“左”或“右”)平移________个单位长度,再向________(填“上”或“下”)平移________个单位长度得到的.【答案】左3 下 2 [解析] 抛物线y =12x 2的顶点坐标为(0,0),而抛物线y=12(x +3)2-2的顶点坐标为(-3,-2),所以把抛物线y =12x 2先向左平移3个单位长度,再向下平移2个单位长度,就得到抛物线y =12(x +3)2-2.11. 如图所示,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点的坐标为(3,0),那么它对应的函数解析式是______________.【答案】y =-x 2+2x +3[解析] ∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴b2=1, 解得b =2.∵抛物线y =-x 2+2x +c 与x 轴的一个交点的坐标为(3,0),∴0=-9+6+c ,解得c =3.故抛物线的函数解析式为y =-x 2+2x +3.12. 某学习小组为了探究函数y =x 2-|x |的图象与性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m =________.【答案】0.75 【解析】根据表格可得该图象关于y 轴对称,故当x =1.5和x =-1.5时,y 的值相等.∴m =0.75.13. 已知二次函数y =2(x +1)2+1,且-2≤x ≤1,则函数y 的最小值是________,最大值是________.【答案】19 [解析] 当x =1时,有最大值9,当x =-1时,有最小值1.14. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y (件)与售价x (元/件)的关系满足y =-2x +400;(2)工商部门限制售价x 满足70≤x ≤150(计算月利润时不考虑其他成本). 给出下列结论:①这种文化衫的月销量最小为100件; ②这种文化衫的月销量最大为260件; ③销售这种文化衫的月利润最小为2600元; ④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)【答案】①②③[解析] 由题意知,当70≤x≤150时,y=-2x+400,∵-2<0,∴y随x的增大而减小,∴当x=150时,y取得最小值,最小值为100,故①正确;当x=70时,y取得最大值,最大值为260,故②正确;设销售这种文化衫的月利润为W元,则W=(x-60)(-2x+400)=-2(x-130)2+9800,∵70≤x≤150,∴当x=70时,W取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x=130时,W取得最大值,最大值为9800,故④错误.故答案为①②③.15. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.【答案】75[解析] 设与墙垂直的一边的长为x m,则与墙平行的一边的长为27-(3x-1)+2=(30-3x)m.因此饲养室总占地面积S=x(30-3x)=-3x2+30x,∴当x=-302×(-3)=5时,S最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m2.16. 在平面直角坐标系中,抛物线y=x2如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……依次进行下去,则点A2019的坐标为________.【答案】(-1010,10102)[解析] 由点A的坐标可得直线OA的解析式为y=x.由AA 1∥x 轴可得A 1(-1,1),又因为A 1A 2∥OA ,可得直线A 1A 2的解析式为y =x +2,进而得其与抛物线的交点A 2的坐标为(2,4),依次类推得A 3(-2,4),A 4(3,9),A 5(-3,9),…,A 2019(-2019+12,10102),即A 2019(-1010,10102). 三、解答题(本大题共5道小题)17. 已知二次函数y =-2x 2,y =-2(x -2)2,y =-2(x -2)2+2,请回答下列问题:(1)写出抛物线y =-2(x -2)2+2的顶点坐标、开口方向和对称轴;(2)将抛物线y =-2x 2分别通过怎样的平移可以得到抛物线y =-2(x -2)2和y =-2(x -2)2+2?(3)如果要得到抛物线y =-2(x -2020)2-2021,应将y =-2(x -2)2怎样平移?【答案】解:(1)抛物线y =-2(x -2)2+2的顶点坐标为(2,2),开口向下,对称轴为直线x =2.(2)y =-2x 2的顶点坐标为(0,0),y =-2(x -2)2的顶点坐标为(2,0),y =-2(x -2)2+2的顶点坐标为(2,2),所以抛物线y =-2x 2向右平移2个单位长度得到抛物线y =-2(x -2)2,抛物线y =-2x 2向右平移2个单位长度,再向上平移2个单位长度得到抛物线y =-2(x -2)2+2(平移方法不唯一). (3)∵抛物线y =-2(x -2020)2-2021的顶点坐标为(2020,-2021),∴应将y =-2(x -2)2向右平移2018个单位长度,再向下平移2021个单位长度(平移方法不唯一).18. 已知抛物线与x 轴的交点是A (-1,0),B (2,0),且抛物线最高点的纵坐标是92,求该抛物线的解析式.【答案】解:依题意设抛物线的解析式为y =a(x +1)(x -2),即y =ax 2-ax -2a. ∵抛物线最高点的纵坐标是92,∴4a (-2a )-(-a )24a =92,解得a =-2.∴抛物线的解析式为y =-2x 2+2x +4.19. 已知二次函数y =12x 2-2x -1.(1)求该二次函数图象的顶点坐标和对称轴;(2)通过列表、描点、连线,在图中画出该函数的图象;(3)求该二次函数图象与坐标轴的交点坐标.【答案】解:(1)y=12x2-2x-1=12x2-2x+2-3=12(x2-4x+4)-3=12(x-2)2-3,∴该二次函数图象的顶点坐标为(2,-3),对称轴为直线x=2.(2)列表:(3)令y=0,则12x2-2x-1=0,解得x1=2+6,x2=2-6,∴函数图象与x轴的交点坐标为(2+6,0),(2-6,0).令x=0,则y=12×02-2×0-1=-1,∴函数图象与y轴的交点坐标为(0,-1).综上,该二次函数图象与坐标轴的交点坐标为(2+6,0),(2-6,0),(0,-1).20. 如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数的图象上:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.【答案】解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴图象的顶点坐标为(-1,2).(2)①当m =2时,n =11.②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <11.21. 如图,二次函数y =ax 2+bx 的图象经过点A (2,4)与B (6,0).(1)求a ,b 的值;(2)点C 是该二次函数图象上A 、B 两点之间的一动点,横坐标为x (2<x <6).写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.【答案】 解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0).∴⎩⎨⎧4a +2b =436a +6b =0,解得⎩⎪⎨⎪⎧a =-12b =3.(4分) (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD·AD =12×2×4=4,S △ACD =12AD·CE =12×4×(x -2)=2x -4,S △BCD =12BD·CF =12×4×(-12x 2+3x)=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x.∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6).(10分)∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)解图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12, 设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D ,∴C(x ,-12x 2+3x),D(x ,-x +6),∴S △ABC =S △ADC +S △BDC =12·CD·(x -2)+12·CD·(6-x)=12·CD·4=2CD ,其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6,∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.解图②解法二:∵点C 在抛物线y =-12x 2+3x 上,∴点C(x ,-12x 2+3x),如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.解图③。

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)

人教版九年级数学上册第22章二次函数训练题(一)(含答案)一.选择题1.下列函数中属于二次函数的是()A.y=x B.y=2x2﹣1C.y=D.y=x2++12.关于二次函数y=﹣2(x+1)2+5,下列说法正确的是()A.最小值为5B.最大值为1C.最大值为﹣1D.最大值为53.已知关于x的二次函数y=﹣(x﹣m)2+2,当x>1时,y随x的增大而减小,则实数m的取值范围是()A.m≤0B.0<m≤1C.m≤1D.m≥14.二次函数y=ax2+bx+c的图象如右图所示,若M=5a+4c,N=a+b+c,则()A.M>0,N>0B.M>0,N<0C.M<0,N>0D.M<,N<05.如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c <0;③5a+4c<0;④4ac﹣b2>0;⑤若P(﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1B.2C.3D.46.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8B.﹣2C.0D.67.函数y=ax2﹣a与y=ax﹣a(a≠0)在同一坐标系中的图象可能是()A.B.C.D.8.对于二次函数y=ax2﹣(2a﹣1)x+a﹣1(a≠0),有下列结论:①其图象与x轴一定相交;②其图象与直线y =x﹣1有且只有一个公共点;③无论a取何值,抛物线的顶点始终在同一条直线上;④无论a取何值,函数图象都经过同一个点.其中正确结论的个数是()A.1B.2C.3D.49.已知抛物线y=ax2﹣2ax+b(a>0)的图象上三个点的坐标分别为A(﹣1,y1),B(2,y2),C(4,y3),则y1,y2,y3的大小关系为()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y110.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此变换进行下去,若点P(21,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.3二.填空题11.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(x1,0),(x2,0),则x1+x2=.12.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.13.如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3;⑥3a+2c<0.其中不正确的有.14.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.15.二次函数y=ax2+bx+1(a≠0)的图象与x轴有两个交点A,B,顶点为C.若△ABC恰好是等边三角形,则代数式b2﹣2(2a﹣5)=.三.解答题16.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标为P(h,k),h≠0.(1)若该函数图象过点(2,1),(5,7),h=3.①求该函数解析式;②t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,则t的值为;(2)若点P在函数y=x2﹣3x+c的图象上,且≤a≤2,求h的最大值.17.已知二次函数的解析式是y=x2﹣2x﹣3.(1)把它变形为y=a(x﹣h)2+k的形式:;(2)它的顶点坐标是;当x时,y随x的增大而减小.(3)在坐标系中利用描点法画出此抛物线;x……y……(4)结合图象回答:当﹣2<x<2时,函数值y的取值范围是.18.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价是多少元?(2)若该型号自行车的进价不变,按标价出售,该店平均每月可售出60辆;若每辆自行车每降价50元,每月可多售出10辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?19.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{﹣1,2,3}==;min{﹣1,2,3}=﹣1,…解决下列问题:(1)填空:如果min{2,2x+2,4﹣2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x﹣y}=min{2x+y+2,x+2y,+2x﹣y},则x+y(3)在同一直角坐标系中作出函数y=x+1,y=(x﹣1)2,y=2﹣x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x﹣1)2,2﹣x}的最大值为.20.在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,y随x的增大而增大,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,点M在直线y=﹣2x﹣3上,请验证点N也在y=﹣2x﹣3上并求a的值.参考答案一.选择题1.解:A、y=x是正比例函数,故本选项不符合题意;B、y=2x2﹣1是二次函数,故本选项符合题意;C、y=不是二次函数,故本选项不符合题意;D、y=x2++1不是二次函数,故本选项不符合题意.故选:B.2.解:∵二次函数y=﹣2(x+1)2+5,可得函数开口向下,∴函数有最大值,∴当x=﹣1时,函数有最大值5,故选:D.3.解:∵函数的对称轴为x=m,又∵二次函数开口向下,∴在对称轴的右侧y随x的增大而减小,∵x>1时,y随x的增大而减小,∴m≤1.故选:C.4.解:∵当x=2.5时,y=a+b+c>0,∴25a+10b+4c>0,∵﹣=1,∴b=﹣2a,∴25a﹣20a+4c>0,即5a+4c>0,∴M>0,∵当x=1时,y=a+b+c>0,∴N>0,故选:A.5.解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c=0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x=时,y<0,即a+b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C.6.解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.7.解:①当a>0时,二次函数y=ax2﹣a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y=ax ﹣a(a≠0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y=ax2﹣a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax﹣a(a≠0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.8.解:①当y=0,ax2﹣(2a﹣1)x+a﹣1=0,解得x1=1,x2=,则二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故①正确,符合题意;②由题意得:ax2﹣(2a﹣1)x+a﹣1=x﹣1,化简得:x2﹣2x+1=0,△=22﹣4=0,故抛物线图象与直线y=x﹣1有且只有一个公共点,故②正确,符合题意;③该抛物线对称轴为x=1﹣,顶点的纵坐标为y=,则y=(1﹣)﹣,即无论a取何值,抛物线的顶点始终在直线y=x﹣上,所以③正确,符合题意;④由①知,二次函数y=ax2﹣(2a﹣1)x+a﹣1的图象与x轴的交点坐标为(1,0)、(,0),故无论a取何值,函数图象都经过同一个点(1,0),故④正确,符合题意.故选:D.9.解:y=ax2﹣2ax+b(a>0),对称轴是直线x=﹣=1,即二次函数的开口向上,对称轴是直线x=1,即在对称轴的右侧y随x的增大而增大,A点关于直线x=1的对称点是D(3,y1),∵2<3<4,∴y3>y1>y2,故选:A.10.解:∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4,∴OA1=A1A2=A2A3=A3A4=4,∵点P(21,m)在这种连续变换的图象上,∴x=21和x=1时的函数值互为相反数,∴﹣m=﹣1×(1﹣4)=3,∴m=﹣3,故选:C.二.填空题(共5小题)11.解:由韦达定理得:x1+x2=﹣=2,故答案为2.12.解:当y=0时,x2﹣3x+2=0,解得x1=1,x2=2,所以二次函数y=x2﹣3x+2x的图象与x轴的交点坐标是(1,0),(2,0).故答案为(1,0)、(2,0).13.解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(﹣1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(﹣1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x>1时,y随x值的增大而增大,说法④正确;⑤∵抛物线与x轴交于(﹣1,0)、(3,0)两点,且图象开口向上,∴当y<0时,﹣1<x<3,说法⑤错误;⑥∵当x=﹣1时,y=0,∴a﹣b+c=0,∴抛物线的对称轴为直线x=1=﹣,∴b=﹣2a,∴3a+c=0,∵c<0,∴3a+2c<0,说法⑥正确.故答案为⑤.14.解:地面,墙面所在直线为x轴,y轴建立平面直角坐标系,设抛物线解析式:y=a(x﹣1)2+,把点A(0,5)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣1(舍去),x2=3.∴OB=3(m).故答案为3.15.解:如图,过C作CE⊥AB于E.当△ABC等边三角形时,CE=AC•sin60°=AC=AB,令y=ax2+bx+1=0,解得x=,则AB==,而CE=﹣,即==×,∵b2﹣4a>0,故b2﹣4a=12.则b2﹣2(2a﹣5)=b2﹣4a+10=22,故答案是22.三.解答题(共5小题)16.解:(1)①设解析式为y=a(x﹣h)2+k,将(2,1),(5,7),h=3代入,得解得a=2,k=﹣1,所以,解析式为y=2(x﹣3)2﹣1,即y=2x2﹣12x+17,②把y=1代入y=2x2﹣12x+17求得x=2或4,把y=﹣1代入y=2x2﹣12x+17求得x=3,∵t≤x0≤t+1,函数图象上点Q(x0,y0)到x轴的距离最小值为1,∴t=1或t=4,故答案为t=1或t=4.(2)设解析式为y=a(x﹣h)2+k,由y=ax2+bx+c(a≠0)知图象过(0,c),∴c=ah2+k.∵点P在函数y=x2﹣3x+c的图象上,∴k=h2﹣3h+c,∴h2﹣3h+ah2=0,∵h≠0,∴,∵,h随a的增大而减小,∴当时,h的值最大,h的最大值为2.17.解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4,故答案为y=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4),当x<1时,y随x的增大而减小.故答案为(1,﹣4),<1;(3)列表:x…﹣10123…y…0﹣3﹣4﹣30…描点,连线画出函数图象如图:(3)当﹣2<x<2时,函数值y的取值范围是﹣4≤y<5,故答案为﹣4≤y<5.18.解:(1)设进价为x元,则由题意得:(1500×0.9﹣x)×8=(1500﹣100﹣x)×7,解得:x=1000,∴改型号自行车进价1000元;(2)设自行车降价x元,获利为y元,则:==,∴对称轴:x=100,∵,∴当x=100时,=32000,答:降价100元时每月利润最大,最大利润为32000元.19.解:(1)由min{2,2x+2,4﹣2x}=2,得,即0≤x≤1,故答案为:0≤x≤1;(2)①∵M{2,x+1,2x}=min{2,x+1,2x},∴,解得:,∴x=1;②证明:由M{a,b,c}=min{a,b,c},可令=a,即b+c=2a;又∵,解之得:a+c≤2b,a+b≤2c;把b+c=2a代入a+c≤2b可得c≤b;把b+c=2a代入a+b≤2c可得b≤c;∴b=c;将b=c代入b+c=2a得c=a;∴a=b=c,故答案为:a=b=c;③据②可得,解之得y=﹣1,x=﹣3,∴x+y=﹣4,故答案为:=﹣4;(3)作出图象,由图可知min{x+1,(x﹣1)2,2﹣x}的最大值为1,故答案为:1.20.解:(1)令x=0,则c=﹣4,将点B(2,0)代入y=ax2+bx+c可得4a+2b﹣4=0,∴2a+b=2;(2)当a>0时,∵A(0,﹣4)和B(2,0),∴对称轴x=﹣=﹣=1﹣≤0,∴0<a≤1;当a<0时,对称轴x=1﹣≥2,∴﹣1≤a<0;综上所述:﹣1≤a≤1且a≠0;(3)①当m=n时,M(p,m),N(﹣2﹣p,n)关于对称轴对称,∴对称轴x=1﹣=﹣1,∴a=;②将点N(﹣2﹣p,n)代入y=﹣2x﹣3,∴n=4+2p﹣3=1+2p,∴N点在y=﹣2x﹣3上,联立y=﹣2x﹣3与y=ax2+(2﹣2a)x﹣4有两个不同的实数根,∴ax2+(4﹣2a)x﹣1=0,∵p+(﹣2﹣p)=,∴a=1.。

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案

人教版初中数学九年级上册第22章《二次函数》章节测试题含答案

y
A DP C
பைடு நூலகம்
BO
x
二、填空题
9. (2019 湖北荆州)二次函数 y=﹣2x2﹣4x+5 的最大值是

10.(2019 四川凉山)当 0≤x≤3 时,直线 y=a 与抛物线 y=(x-l)2-3 有交点,则 a 的取值范
围是

11.(2019 四川达州)如图,抛物线 y x2 2x m 1(m 为常数)交 y 轴于点 A,与 x
m 0 , n 0 ,求 m , n 的值.
17.(2019 湖北荆门)为落实“精准扶贫”精神,市农科院专家指导李大爷利用坡前空地种 植优质草莓.根据场调查,在草莓上市销售的 30 天中,其销售价格 m(元/公斤)与第 x 天
之间满足 m

ᇛh, (x 为正整数),销售量 n(公斤)与第 x 天之间的
A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:
①abc>0,
②3a+c<0,
③a(m﹣1)+2b>0,
④a=﹣1 时,存在点 P 使△PAB 为直角三角形.
其中正确结论的序号为

三、解答题
15. (2019 北京市)在平面直角坐标系 xOy 中,抛物线 y = ax2 + bx - 1 与 y 轴交于点 A,将 a
且 x1 x2 1,则 y1 与 y2 的大小关系是()
A. y1 y2
B. y1 y2
C. y1 y2
D. y1 y2
6. 如图,抛物线 y=ax2+bx+c ( a 0 )过点(1,0)和点(0,-2),且顶点在第三象限,
设 P=a-b+c,则 P 的取值范围是( )

人教版 九年级数学上册 第22章 二次函数 综合训练

人教版 九年级数学上册 第22章 二次函数 综合训练

7. 如图,二次函数 y=ax2+bx+c(a>0)的图象与 x 轴交于两点(x1,0),(2,0),其中 0<x1 <1.有下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ba+ba<-4.正确的个数 是( )
A.1
B.2
C.3
D.4
8. 关于二次函数 y = ax2 − 4ax − 5(a 0) 的三个结论:①对任意实数 m,都有
人教版 九年级数学 第 22 章 二次函数 综合训

一、选择题 1. 抛物线 y=x2+2x+3 的对称轴是( ) A. 直线 x=1 B. 直线 x=-1 C. 直线 x=-2
D. 直线 x=2
2. 某同学在用描点画二次函数 y=ax2+bx+c 图象时,列出了下面的表格:
x … -2 -1 0 1 2 … y … -11 -2 1 -2 -5 … 由于粗心,他算错了其中一个 y 值,则这个错误的数值是( ) A. -11 B. -2 C. 1 D. -5
21. 已知抛物线 y=a(x+2)2 过点(1,-3). (1)求抛物线对应的函数解析式; (2)指出抛物线的对称轴、顶点坐标; (3)当 x 取何值时,y 随 x 的增大而增大?
22. (2019·山西)综合与探究 如图,抛物线 y = ax2 + bx + 6 经过点 A(–2,0),B(4,0)两点,与 y 轴交于点 C, 点 D 是抛物线上一个动点,设点 D 的横坐标为 m(1 m 4) .连接 AC,BC,DB, DC.
15. 2018·湖州 如图,在平面直角坐标系 xOy 中,已知抛物线 y=ax2+bx(a>0)的 顶点为 C,与 x 轴的正半轴交于点 A,它的对称轴与抛物线 y=ax2(a>0)交于点

人教版九年级上册数学 第22章 二次函数 最值问题专题训练

人教版九年级上册数学   第22章   二次函数    最值问题专题训练

人教版九年级上册数学第22章二次函数最值问题专题训练一.选择题(共10小题)1.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值 B.当x=﹣1时,函数有最大值C.当x=2时,函数有最小值D.当x=﹣2时,函数有最小值2.已知二次函数y=x2+4x+3,当t≤x≤t+1时函数的最小值为0,则t的值为()A.﹣1、﹣4 B.﹣2、﹣3C.﹣1、﹣2、﹣3 D.﹣1、﹣2、﹣3、﹣43.当a,b为实数,二次函数y=a(x﹣1)2+b的最小值为﹣1时有()A.a<b B.a=b C.a>b D.a≥b4.已知二次函数y=﹣(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为()A.3﹣或1+B.3﹣或3+C.3+或1﹣D.1﹣或1+5.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或﹣C.2或﹣D.2或﹣或﹣6.如图,在边长为1的菱形ABCD中,∠ABC=120°,P是边AB上的动点,过点P作PQ⊥AB交射线AD于点Q,连接CP,CQ,则△CPQ面积的最大值是()A.B.C.D.7.下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n为实数,且n>1,则x =2+n时的函数值大于x=n时的函数值;③若n>2,且n是整数,当n≤x≤n+1时,y的整数值有(2n ﹣2)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④8.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.3或5 B.﹣1或1 C.﹣1或5 D.3或19.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A.有最大值 2,无最小值 B.有最大值 2,有最小值 1.5C.有最大值 1.5,有最小值﹣2.5 D.有最大值 2,有最小值﹣2.510.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共5小题)11.二次函数y=(x﹣1)2﹣5的最小值是.12.若定义一种新运算:a⊗b=,例如:4⊗1=4×1=4;5⊗4=10﹣4﹣2=4.则函数y =(﹣x+3)⊗(x+1)的最大值是.13.在平面直角坐标系xOy中,设点P的坐标为(n﹣1,3n+2),点Q是抛物线y=﹣x2+x+1上一点,则P,Q两点间距离的最小值为.14.已知:点A(m,n)在函数y=(x﹣k)2+k(k≠0)的图象上,也在函数y=(x+k)2﹣k的图象上,则m+n的最小整数值是.15.如图,矩形ABCD中,AB=2cm,AD=5cm,动点P从点A出发,以1cm/s的速度沿AD向终点D移动,设移动时间为t(s).连接PC,以PC为一边作正方形PCEF,连接DE、DF,则△DEF面积最小值为.三.解答题(共5小题)16.如图,Rt△ABC中,∠C=90°,AC=BC=8,DE=2,线段DE在AC边上运动(端点D从点A开始),速度为每秒1个单位,当端点E到达点C时运动停止.F为DE中点,MF⊥DE交AB于点M,MN∥AC交BC 于点N,连接DM、ME、EN.(1)求证:四边形MFCN是矩形;(2)设运动时间为t(s),四边形DENM的面积为S,求S关于t的函数解析式;当S取最大值时,求t 的值.17.我们知道,三条边都相等的三角形叫等边三角形.类似地,我们把弧长等于半径的扇形称为“等边扇形”.琪琪准备将一根长为120cm的铁丝剪成两段,并把每一段铁丝围成一个“等边扇形”.(1)琪琪想使这两个“等边扇形”的面积之和等于625cm2,他该怎么剪?(2)这两个“等边扇形”的面积之和能否取得最小值?若能,请求出这个最小值;若不能,请说明理由.18.如图,在平面直角坐标系中,直线y=﹣x﹣3与抛物线y=x2+mx+n相交于A、B两个不同的点,其中点A在x轴上.(1)n=(用含m的代数式表示);(2)若点B为该抛物线的顶点,求m、n的值;(3)①设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;②若﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m的值.19.如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(2)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C 重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.20.如图,在矩形ABCD中,AB=9,AD=3,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.(1)求∠CPQ的度数;(2)当x取何值时,点R落在矩形ABCD的AB边上?(3)求y与x之间的函数关系式;(4)①当x取何值时,重叠部分的面积最大,并求出这个最大值;②当x取何值时,重叠部分的面积等于矩形面积的?。

人教版数学九年级(上) 第22章 二次函数 经典习题练习卷(含答案)

人教版数学九年级(上) 第22章 二次函数 经典习题练习卷(含答案)

第22章二次函数经典习题练习卷一.选择题(共12小题)1.已知关于x的一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与坐标轴的交点个数是()A.0个B.个C.2个D.3个2.关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小3.已知抛物线y=ax2+bx+c的图象如图所示,则()A.a>0,b>0 B.abc<0 C.a﹣b<0 D.2a+b>0 4.为了备战2019奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图所示),则下列结论正确的是()①a<﹣;②﹣<a<0;③a﹣b+c>0;④0<b<﹣12a.A.①③B.①④C.②③D.②④5.若一次函数y=kx+b的图象经过点(n,1)和(﹣1,n)(n>1),则二次函数y=a(x+b)2+k的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是()①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根A.0个B.1个C.2个D.3个7.二次函数y=ax2+(2a﹣1)x+a+的图象与x轴有两个交点,则a 应为()A.a>B.a<且a≠0 C.0<a<D.以上都不对8.已知函数y=ax和y=a(x+m)2+n,且a>0,m<0,n<0,则这两个函数图象在同一坐标系内的大致图象是()A.B.C.D.9.已知一元二次方程ax2+bx+c=0两根为x1,x2,x2+x1=﹣,x2.x1=.如果抛物线y=ax2+bx+c经过点(1,2),若abc=4,且a≥b≥c,则|a|+|b|+|c|的最小值为()A.5 B.6 C.7 D.810.一位篮球运动员跳起投篮,球沿抛物线y=ax2+bx+c运行,图象如图所示,有下列结论;①a<﹣②﹣<a<0③a+b+c<0④0<b<﹣4a,其中正确的是()A.①②B.②④C.①④D.③④11.已知关于x的不等式组无解,则二次函数y=(2﹣a)x2﹣x+的图象与x轴()A.没有交点B.相交于两点C.相交于一点D.相交于一点或没有交点12.如图,函数y=ax2+bx+c的图象过点(﹣1,0)和(m,0),请思考下列判断:①abc<0;②4a+c<2b;③=1﹣;④am2+(2a+b)m+a+b+c<0;⑤|am+a|=正确的是()A.①③⑤B.①②③④⑤C.①③④D.①②③⑤二.填空题(共6小题)13.若实数a、b满足a+b2=2,则a2+5b2的最小值为.14.飞机着陆后滑行的距离s(单位:m)关于滑行时间t(单位:s)的函数解析式是S=26t﹣t2,则飞机着陆滑行到停止,最后6s滑行的路程m15.已知当x1=a,x2=b,x3=c时,二次函数y=x2﹣tx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数t的取值范围是[来16.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣1,2),下列结论:①abc>0;②a+b+c>0;③2a+b<0;④b<﹣1;⑤b2﹣4ac<8a,正确的结论是(只填序号)17.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论:①关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;②abc>0;③a+b=c﹣b;④y c;⑤a+4b=3c中正确的有(填写正确的序号)18.如图,正方形OABC和矩形CDEF在平面直角坐标系中,CD=2DE,点O、C、F在y轴上,点A在x轴上,O为坐标原点,点M为线段OC的中点,若抛物线y=ax2+b经过M、B、E三点,则的值等于.三.解答题(共5小题)19.已知二次函数y=﹣x﹣3.(1)用配方法求函数图象顶点坐标、对称轴,并写出图象的开口方向;(2)在所给网格中建立平面直角坐标系井直接画出此函数的图象.20.已知二次函数的图象与x轴交于A(﹣2,0)、B(4,0)两点,且函数经过点(3,10).(1)求二次函数的解析式;(2)设这个二次函数的顶点为P,求△ABP的面积;(3)当x为何值时,y≤0.(请直接写出结果)21.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0)、C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)设点M(3,n),求使MN+MD取最小值时n的值.22.某公司生产某种产品的成本是200元/件,售价是250元/件,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费用x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足二次函数关系:y=﹣0.001x2+0.06x+1.(1)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润S(万元)与广告费用x(万元)的函数关系式(无需自变量的取值范围);(2)如果公司年投入的广告费不低于10万元且不高于50万元,求年利润S的最大值;(3)若公司希望年利润在776万元到908万元之间(含端点),请从节约支出的角度直接写出广告费x的取值范围.[来源:学,科,网] 23.对于直线l1:y=ax+b(a<0,b>0),有如下定义:我们把直线l2:y=﹣称为它的“姊线”,若l1与x、y轴分别相交于A、B 两点,l2与x、y轴分别相交于C、D两点,我们把经过点A、B、C的抛物线C叫做l1的“母线”.(1)若意线l1:y=ax+b(a<0,b>0)的“母线”为C:y=﹣﹣x+4,求a、b的值;(2)如图,若l1:y=mx+1(m<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM,若OM=,求出l1的“姊线”l2与“母线”C表示的函数解析式;(3)将l1:y=﹣3x+3的“姊线”绕着D点旋转得到新的直线l3:y=kx+n,若点P(x,y1)与点Q(x,y2)分别是“母线”C与直线l3上的点,当0≤x≤1时,|y1﹣y2|≤3,求k的取值范围.参考答案[来源:学*科*网Z*X*X*K]一.选择题1.B.2.D.3.D.4.B.5.C.6.B.7.B.8.B.9.B.10.C.11.B.12.B.二.填空题13.4.14.18.15.t<16.①.17.①③④.18.[来源:]三.解答题19.解:(1)∵y=﹣x﹣3=,∴该函数图象的顶点坐标为(2,﹣4),对称轴是直线x=2,图象的开口向上;(2)y=﹣x﹣3=(x2﹣4x﹣12)=,∴当x=6时,y=0,当x=﹣2时,y=0,∴该函数过点(﹣2,0),(6,0),(2,﹣4),函数图象如右图所示.20.解:(1)设抛物线解析式为y=a(x+2)(x﹣4),把(3,10)代入得a×5×(﹣1)=10,解得a=﹣2,所以抛物线解析式为y=﹣2(x+2)(x﹣4),即y=﹣2x2+4x+16;(2)∵y=﹣2x2+4x+16=﹣2(x﹣1)2+18,∴顶点P的坐标为(1,18),∴△ABP的面积=×(4+2)×18=54;(3)x≤﹣2或x≥4.21.解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=2,c=3.∴抛物线的解析式为y═﹣x2+2x+3.设直线AC的解析式为y=kx+b.∵将点A和点C的坐标代入得,解得k=1,b=1.∴直线AC的解析式为y=x+1.(2)如图,设点P(m,﹣m2+2m+3),∴Q(m,m+1),∴PQ=(﹣m2+2m+3)﹣(m+1)=﹣m2+m+2=﹣(m﹣)2+,∴S△APC=PQ×|x C﹣x A|=[﹣(m﹣)2+]×3=﹣(m﹣)2+,∴当m=时,S△APC最大=,y=﹣m2+2m+3=,∴P(,);(3)如图1所示,过点N与直线x=3的对称点N′,连接DN′,交直线x=3与点M.∵当x=0时y═3,∴N(0,3).∵点N与点N′关于x=3对称,∴N′(6,3).∵y═﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4).设DN的解析式为y=kx+b.将点N′与点D的坐标代入得:,解得:k=﹣,b=.∴直线DN′的解析式为y=﹣x+.当x=3时,n=+=.22.解:(1)S=(250﹣200)•10y﹣x=﹣x2+29x+500,答:年利润S(万元)与广告费用x(万元)的函数关系式S═﹣x2+29x+500,(2)∵S=﹣(x﹣29)2+920.5(10≤x≤50),∴当10≤x<29时,S随着x的增大而增大当29<x≤50时,S随着x的增大而减小当S=29时,S有最大值为920.5.年利润S的最大920.5.(3)若公司希望年利润在776万元到908万元之间,即:776≤s≤908,则:776≤﹣x2+29x+500≤908,由于x<29时,S随着x的增大而增大,而最大利润是920.5,所以,x<29,解上述不等式得:12≤x≤24.答:从节约支出的角度直接写出广告费x的取值范围为12≤x≤24.23.解:(1)对于抛物线y=﹣﹣x+4,令x=0,得到y=4,∴B(0,4),令y=0,得到﹣﹣x+4=0,解得x=﹣4或2,∴A(2,0),C(﹣4,0),∵y=ax+b经过A、B,解得.(2)如答图2所示,连接OG、OH.∵点G、H为斜边中点,∴OG=AB,OH=CD.由题意,l1的“姊线”l2为y=﹣(x+1)可得:B(0,1),A(﹣,0),D(﹣1,0),C(0,﹣),∴OA=OC,OB=OD,∵∠AOB=∠COD,∴△AOB≌△COD,∴AB=CD,∠ABO=∠CDO,∴OG=OH,∵OG=GB,OH=HC,∴∠GOB=∠ABO,∠HOC=∠OCD,∵∠ODC+∠OCD=90°,∴∠ABO+∠OCD=90°,∴∠GOB+∠GOC=90°,∴∠HOG=90°∴OG⊥OH,∴△OGH为等腰直角三角形.∵点M为GH中点,∴△OMG为等腰直角三角形,∴OG=OM=,∴AB=2OG=,∴OA==,∴A(,0),∴C(0,),D(﹣1,0).∴l1的“姊线”l2为y=x+,“母线”C表示的函数的解析式为y=﹣3x2﹣2x+1.(3)l1:y=﹣3x+3的“姊线”的解析式为y=x+1,“母线”C的解析式为y=﹣x2﹣2x+3,∴直线l3:y=kx+1,∵当0≤x≤1时,|y1﹣y2|≤3,不妨设x=1,则y1=0,y2=k+1,由题意k+1=±3,解得k=2或﹣4,∴满足条件的k是取值范围为:﹣4≤k≤2.第11页/共11页。

人教版数学九上《第22章 二次函数》选择题拔高题专项训练

人教版数学九上《第22章 二次函数》选择题拔高题专项训练

人教版九年级(上)《二次函数》一.选择题(共50小题)1.关于x的二次函数y=﹣2x2+4x+m2+2m,下列说法正确的是()A.该二次函数的图象与x轴始终有两个交点B.当x>0时,y随x的增大而增大C.当该二次函数的图象经过原点时,m=﹣2D.该二次函数的顶点的纵坐标无最小值2.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c(a≠0)与直线l相交于点A,B,与y轴交于点C(0,﹣2),且∠ACB为直角,则当y<0时,自变量x的取值范围是()A.﹣4<x<4B.x>4C.x<﹣4D.﹣2<x<43.已知二次函数y=x2+(a+2)x+a(a为常数)的图象顶点为P(m,n),下列说法正确的是()A.点P可以在任意一个象限内B.点P只能在第四象限C.n可以等于﹣D.n≤﹣14.已知抛物线y=a(x﹣h)2﹣7,点A(1,﹣5)、B(7,﹣5)、C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定5.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a≤﹣,其中结论正确个数为()A.1 个B.2 个C.3 个D.4 个6.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确有()A.1个B.2个C.3个D.4个7.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)9.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.410.如图,二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④11.抛物线y=x2+bx+3的对称轴是直线x=1,若关于x的一元二次方程x2+bx+3﹣m=0(m 为实数)在﹣1<x<2的范围内有实数根,则m的取值范围为()A.2≤m<6B.m≥2C.6<m<11D.2≤m<1112.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C 在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2019C.2019≤t≤2020D.2020≤t≤202113.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②当x<0时,y随x的增大而增大;③3a+c>0;④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.4个B.3个C.2个D.1个14.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.给出下列结论:①abc>0,②a﹣b+c<0,③2a+b <0,④1<a+b+2c<2,⑤4a+b<﹣2.其中正确结论的个数是()A.1个B.2个C.3个D.4个15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A.①②④⑤B.①②④C.①④⑤D.③④⑤16.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5 B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点17.已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为()A.0B.﹣1C.﹣D.﹣18.使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,且使得关于x的分式方程有整数解的整数a的和为()A.1B.﹣2C.8D.1019.抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧.下列结论:①abc<0;②方程ax2+(b﹣1)x+c=0有两个不等的实数根;③﹣2<a﹣b<2.其中,正确结论的个数是()A.0B.1C.2D.320.已知抛物线y=ax2+bx+c交x轴于点B(1,0)和点A,交y轴负半轴于点C,且AO =2CO.有下列结论:①2b+2c=﹣1;②a=;③>0;④4ac+2b+1=0.其中,正确结论的个数是()A.1B.2C.3D.421.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤22.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),对称轴为直线x=1.现有四个结论:①abc>0;②4ac﹣8a>b2;③﹣<a<﹣;④b>c.其中正确的结论有()A.1个B.2个C.3个D.4个23.如图,顶点坐标为(1,n)的抛物线y=ax2+bx+c经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),则下列结论:①3a+b>0;②﹣1≤a≤;③对于任意实数m,a+b≥m(am+b)总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个24.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.225.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个27.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小28.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或429.已知二次函数y=﹣x2+x+6及一次函数y=2x﹣m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图象(如图所示),当直线y=2x﹣m与新函数图象有4个交点时,m的取值范围是()A.﹣4<m<6B.﹣<m<﹣4C.6<m<D.﹣<m<6 30.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤1 31.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的序号是()A.①②④B.①③④C.①③⑤D.①②③⑤32.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),与y轴的交点为C,已知﹣2≤c≤﹣1,顶点坐标为(1,n),则下列结论正确的是()A.a+b>0B.C.对于任意实数m,不等式a+b>am2+bm恒成立D.关于x的方程ax2+bx+c=n+1没有实数根33.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,随着x的增大而减小.下列结论:①a﹣b+c=0;②若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2:③a(m﹣1)+b=0;④若c≤﹣1,则b2﹣4ac≤4a.其中正确的个数是()A.1个B.2个C.3个D.4个34.若抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为3++.其中错误的是()A.①③B.②C.②④D.③④35.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是()A.当m=2时,函数图象的顶点坐标为()B.当m>1时,函数图象截x轴所得的线段长大于3C.当m<0时,函数在x<时,y随x的增大而增大D.不论m取何值,函数图象经过两个定点36.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1637.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关38.已知A(﹣3,y1),B(﹣,y2),C(1,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 39.如果我们把函数y=ax2+b|x|+c称为二次函数y=ax2+bx+c的“镜子函数”,那么对于二次函数C1:y=x2﹣2x﹣3的“镜子函数”C2:y=x2﹣2|x|﹣3,下列说法:①C2的图象关于y轴对称;②C2有最小值,最小值为﹣4;③当方程x2﹣2|x|﹣3=m有两个不相等的实数根时,m>﹣3;④直线y=x+b与C2的图象有三个交点时,﹣≤b≤﹣3中,正确的有()A.1个B.2个C.3个D.4个40.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其图象如图所示:①a>b>c;②4a﹣2b+c<0;③b2﹣4ac<0;④3b+2c>0;⑤m(am+b)+b>a(m是任意实数),其中正确的个数是()A.3个B.2个C.1个D.0个41.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个42.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0;②a﹣b+c<0;③4ac<b2;④2a+b>0;⑤当x>0时,y随x的增大而减小,其中正确的说法个数有()A.1个B.2个C.3个D.4个43.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有()A.②③④B.①③⑤C.②④⑤D.①③④44.已知二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),若MN的长不小于2,则a的取值范围是()A.a≥B.0<a≤C.﹣≤a<0D.a≤﹣45.已知二次函数y=a(x+1)(x﹣m)(a为非零常数,1<m<2),当x<﹣1时,y随x 的增大而增大,说法正确的是()A.若图象经过点(0,1),则﹣<a<0B.若x>﹣时,则y随x的增大而增大C.若(﹣2020,y1),(2020,y2)是函数图象上的两点,则y1<y2D.若图象上两点(,y1),(+n,y2)对一切正数n,总有y1>y2,则≤m<2 46.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(0,2),且关于直线x=﹣1对称,(x1,0)是抛物线与x轴的一个交点,有下列结论,其中结论错误的是()A.方程ax2+bx+c=2的一个根是x=﹣2B.若x1=2,则抛物线与x轴的另一个交点为(﹣4,0)C.若m=4时,方程ax2+bx+c=m有两个相等的实数根,则a=﹣2D.若≤x≤0时,2≤y≤3,则a=47.如图,抛物线y=x2﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.B.C.3D.248.如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④49.如图,抛物线y=x2﹣x﹣2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,AD与y轴相交于点E,过点E的直线MN平行于x轴,与抛物线相交于M,N两点,则线段MN的长为()A.B.C.2D.250.如图抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(不包含端点),则下列结论:①a+b>0;②﹣1≤a≤﹣;③若点(﹣2,y1),(,y2),(2,y3)在此抛物线上,则y1<y2<<y3;④当﹣1<x<3时,总有ax2+bx+c>0;⑤关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.正确的是()A.①②④⑤B.①②③④C.①④⑤D.②③⑤参考答案与试题解析一.选择题(共50小题)1.关于x的二次函数y=﹣2x2+4x+m2+2m,下列说法正确的是()A.该二次函数的图象与x轴始终有两个交点B.当x>0时,y随x的增大而增大C.当该二次函数的图象经过原点时,m=﹣2D.该二次函数的顶点的纵坐标无最小值【解答】解:A.由题意得:△=42﹣4×(﹣2)×(m2+2m)=8(m+1)2+8>0,故该二次函数的图象与x轴始终有两个交点,故A正确,符合题意;B.函数的对称轴为x=﹣=﹣=1,故当x>1时,y随x的增大而增大,故B错误,不符合题意;C.当该二次函数的图象经过原点时,即x=0时,y=﹣2x2+4x+m2+2m=m2+2m=0,解得:m=0或﹣2,故C错误,不符合题意;D.函数的对称轴为x=1,此时y=m2+2m+2=(m+1)2+1≥1,故顶点的纵坐标最小值为1,故D错误,不符合题意.故选:A.2.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c(a≠0)与直线l相交于点A,B,与y轴交于点C(0,﹣2),且∠ACB为直角,则当y<0时,自变量x的取值范围是()A.﹣4<x<4B.x>4C.x<﹣4D.﹣2<x<4【解答】解:∠ACB为直角,则△ABC为等腰直角三角形,∵C(0,﹣2),则抛物线的表达式为:y=ax2﹣2;则CD=6﹣(﹣2)=8,则点B(8,6),将点B的坐标代入抛物线表达式并解得:a=,故抛物线的表达式为:y=x2﹣2,令y=0,则x=±4,故y<0时,﹣4<x<4,故选:A.3.已知二次函数y=x2+(a+2)x+a(a为常数)的图象顶点为P(m,n),下列说法正确的是()A.点P可以在任意一个象限内B.点P只能在第四象限C.n可以等于﹣D.n≤﹣1【解答】解:二次函数y=x2+(a+2)x+a(a为常数)的图象顶点P(m,n),∴,,∵a2≥0,∴a2+4≥4,∴,故选:D.4.已知抛物线y=a(x﹣h)2﹣7,点A(1,﹣5)、B(7,﹣5)、C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【解答】解:∵点A(1,﹣5)、B(7,﹣5)均在此抛物线上,∴h==4,∴抛物线的顶点坐标为(4,﹣7),∴a>0,开口向上,∵C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,∴y1>y2,故选:B.5.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a≤﹣,其中结论正确个数为()A.1 个B.2 个C.3 个D.4 个【解答】解:由图象可知,当x=1时,y>0,∴a+b+c>0,所以①正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以②正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n有一个交点,∴关于x的方程ax2+bx+c=n有两个相等的实数根,所以③正确;∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,∵b=﹣2a,∴a+2a+c=0,∴c=﹣3a,∵2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以④正确;故选:D.6.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确有()A.1个B.2个C.3个D.4个【解答】解:将A(﹣1,0),B(m,0),C(﹣2,n)代入解析式y=ax2+bx+c,∴对称轴x==﹣,∴﹣=m﹣1,∴1﹣=m,∵1<m<3,∴1<1﹣<3,∴﹣2<ab<0,∵n<0,点C在第三象限,∴a<0,∴b>0,∵a﹣b+c=0,∴c=b﹣a>0①abc<0;所以①错误;②由①知,b=a+c,∵当x=3时,y<0,∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,所以②正确;③∵﹣=m﹣1,∴a(m﹣1)=﹣b,∴a(m﹣1)+2b=﹣b+2b=b>0,所以③正确;④a=﹣1时,y=﹣x2+bx+c=﹣(x﹣)2++b﹣a=﹣(x﹣)2++b+1,∴P(,b+1+),若△P AB为直角三角形,则点P在对称轴上,则△P AB为等腰直角三角形,∴点P的纵坐标等于P点的横坐标+1,∴b+1+=+1,∴b=﹣2,∵b>0,∴不存在点P使△P AB为直角三角形.所以④错误;故正确有②③.故选:B.7.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵抛物线y=﹣x2+mx+2m=﹣(x﹣)2++2m,当x<1时,y随x的增大而增大,∴该抛物线的对称轴是直线x=,开口向下,∴≥1,即m≥2,∴+2m>0,∴该抛物线的顶点(,+2m)在第一象限,故选:A.8.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.9.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.4【解答】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,即﹣=1,所以b=﹣2a,所以b+2a=0,所以②正确;③因为b=﹣2a,由4a+b2<4ac,得4a+4a2<4ac,∵a<0,∴c<1+a,根据抛物线与y轴的交点,c<2,所以③错误;④当x=﹣1时,y<0,即a﹣b+c<0,因为b=﹣2a,所以3a+c<0,所以④正确.所以正确的是②④2个.故选:B.10.如图,二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④【解答】解:①∵二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),∴对称轴为:x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,所以①正确;②观察函数图象可知:当﹣1≤x≤3时,y≥0,所以②错误;③∵抛物线开口向下,当x>1,x1<x2时,y随x的增大而减小,∴y1>y2;当x<1,x1<x2时,y随x的增大而增大,∴y1<y2;∴③错误;④当x=﹣1时,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,∴④正确.所以正确的有①④.故选:B.11.抛物线y=x2+bx+3的对称轴是直线x=1,若关于x的一元二次方程x2+bx+3﹣m=0(m 为实数)在﹣1<x<2的范围内有实数根,则m的取值范围为()A.2≤m<6B.m≥2C.6<m<11D.2≤m<11【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当x=1时,y最小值=2,当x=﹣1时,y最大值=6.∴当﹣1<x<2时,y的取值范围是2≤y<6,当y=m时,m=x2﹣2x+3,即x2+bx+3﹣m=0,∵关于x的一元二次方程x2+bx+3﹣m=0(m为实数)在﹣1<x<2的范围内有实数根,∴m的取值范围是2≤m<6,故选:A.12.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C 在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2019C.2019≤t≤2020D.2020≤t≤2021【解答】解:由题意方程组只有一组实数解,消去y得ax2+(b﹣1)x+1=0,由题意得△=0,∴(b﹣1)2﹣4a=0,∴4a=(b﹣1)2,即a=,∴方程ax2+(b﹣1)x+1=0可以化为,即(b﹣1)2x2+4(b﹣1)x+4=0,∴x1=x2=,∴C(,),∵点C在第一象限,∴1﹣b>0,∵2≤[C]≤4,∴2≤≤4,∴1≤≤2,解得:﹣1≤b≤0,∵t=2b2﹣4a+2020,∴t=2b2﹣(b﹣1)2+2020=b2+2b+2019=(b+1)2+2018,∵﹣1≤b≤0,∴t随b的增大而增大,∵b=﹣1时,t=2018,t=0时,t=2019,∴2018≤t≤2019.故选:B.13.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②当x<0时,y随x的增大而增大;③3a+c>0;④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.4个B.3个C.2个D.1个【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=﹣,即a=b,因此b<0,与y的交点在正半轴,c>0,所以abc>0,因此①正确;∵a<0,对称轴为x=﹣,∴当x<﹣时,y随x的增大而增大,因此②不正确;由对称性可知,抛物线与x轴的两个交点为(﹣3,0)(2,0),∴4a+2b+c=0,又∵a=b,∴6a+c=0,∵a<0,∴3a+c>0,因此③正确;∵抛物线与x轴的两个交点为(﹣3,0)(2,0),∴m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,实际上就是当y=﹣3时,函数y=a(x+3)(x﹣2)相应的自变量x的值为m、n;,根据图象可知,m<﹣3且n>2,因此④正确;综上所述,正确的结论有:①③④,故选:B.14.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.给出下列结论:①abc>0,②a﹣b+c<0,③2a+b <0,④1<a+b+2c<2,⑤4a+b<﹣2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向下,a<0,对称轴在y轴的右侧,a、b异号,因此b>0,与y轴的交点在正半轴,c>0,所以abc<0,故①错误;当x=﹣1时,y=a﹣b+c<0,因此②正确;对称轴在0~1之间,于是有0<﹣<1,又a<0,所以2a+b<0,故③正确;当x=1时,y=a+b+c=2,又c>1,所以a+b+2c>3,故④不正确;当x=2时,y=4a+2b+c<0,又因为a+b+c=2,即b+c=2﹣a,所以4a+b+(2﹣a)<0,也就是3a+b<﹣2,而a<0,因此4a+b<﹣2,⑤正确;综上所述,正确的结论有:②③⑤,故选:C.15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A.①②④⑤B.①②④C.①④⑤D.③④⑤【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x=,且经过点(2,0),∴抛物线与x轴的另一个交点为(﹣1,0),∴=﹣1×2=﹣2,∴c=﹣2a,∴﹣2b+c=2a﹣2a=0所以②正确;③∵抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;④∵点(﹣,y1)离对称轴要比点(,y2)离对称轴远,∴y1<y2,所以④正确;⑤∵抛物线的对称轴x=,∴当x=时,y有最大值,∴a+b+c>am2+bm+c(其中m≠).∵a=﹣b,∴b>m(am+b)(其中m≠),所以⑤正确.所以其中说法正确的是①②④⑤.故选:A.16.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5 B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点【解答】解:A、将二次函数向上平移10个单位,再向左平移2个单位后,表达式为:,若过点(4,5),则,解得:a=﹣5,故选项正确;B、∵,开口向上,∴当x=12 时,y有最小值a﹣9,故选项正确;C、当x=2时,y=a+16,最小值为a﹣9,a+16﹣(a﹣9)=25,即x=2对应的函数值比最小值大25,故选项错误;D、△=,当a<0时,9﹣a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,故选:C.17.已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为()A.0B.﹣1C.﹣D.﹣【解答】解:∵二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,可知二次函数图象的对称轴为直线x=0,即y轴,则,解得:a=﹣2,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0为﹣4x2+1=0,则两根之积为,故选:D.18.使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,且使得关于x的分式方程有整数解的整数a的和为()A.1B.﹣2C.8D.10【解答】解:解分式方程可得x=﹣,且x≠1,∵分式方程有整数解,∴a=﹣1,0,2,3,5,∵二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,∴x=﹣≥0,解得a≥2,∴a能取的整数为2,3,5;∴所有整数a值的和为10,故选:D.19.抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧.下列结论:①abc<0;②方程ax2+(b﹣1)x+c=0有两个不等的实数根;③﹣2<a﹣b<2.其中,正确结论的个数是()A.0B.1C.2D.3【解答】解:①∵过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧,∴抛物线开口向上,c=﹣2,∴a>0,b>0,∴abc<0,结论①正确;②作直线y=x,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+(b﹣1)x+c=0有两个不相等的实数根,结论②正确;③∵抛物线经过点A(1,0),且抛物线的对称轴在y轴的左侧.∴当x=﹣1时y=a﹣b+c<0,∴a﹣b<﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,﹣2),∴c=﹣2,∴a﹣b<2.∵当x=1时,y=0,即a+b+c=0,∴b=﹣a﹣c,∴a﹣b=2a+c.∵a>0,∴a﹣b>c=﹣2,∴﹣2<a+b<2,结论③正确.故选:D.20.已知抛物线y=ax2+bx+c交x轴于点B(1,0)和点A,交y轴负半轴于点C,且AO =2CO.有下列结论:①2b+2c=﹣1;②a=;③>0;④4ac+2b+1=0.其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:由抛物线的位置可知,a>0,b>0,c<0,因此<0,故③不正确;抛物线y=ax2+bx+c过点B(1,0),因此有a+b+c=0,抛物线与y轴的交点C(0,c),∵OA=2OC,∴点A(2c,0),代入抛物线关系式得,4ac2+2bc+c=0,即4ac+2b+1=0,因此④正确;∵点A(2c,0),B(1,0),∴对称轴x=﹣=,即4ac+2a+2b=0,所以﹣2a+1=0,解得a=,因此②正确;∵a+b+c=0,a=,∴b+c=﹣,即2b+2c=﹣1,因此①正确;综上所述,正确的有:①②④,故选:C.21.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.22.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),对称轴为直线x=1.现有四个结论:①abc>0;②4ac﹣8a>b2;③﹣<a<﹣;④b>c.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1.与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),∴a﹣b+c=0,﹣=1,即2a+b=0,1<c<2,与x轴的另一个交点为(3,0),抛物线开口向下,a<0,对称轴为x=1=﹣,b>0,∴abc<0,因此①不正确;∵抛物线的顶点纵坐标大于2,即>2,又a<0,∴4ac﹣b2<8a,即:4ac﹣8a<b2,因此②不正确;∵a﹣b+c=0,2a+b=0,1<c<2,∴1<﹣3a<2,∴﹣<x<﹣,因此③正确;∵a﹣b+c=0,2a+b=0,∴﹣b﹣b+c=0,即﹣3b+2c=0,又1<c<2,∴﹣3b+3c>0,∴b<c,因此④不正确;综上所述,正确的有:③,故选:A.23.如图,顶点坐标为(1,n)的抛物线y=ax2+bx+c经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),则下列结论:①3a+b>0;②﹣1≤a≤;③对于任意实数m,a+b≥m(am+b)总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【解答】解:∵抛物线y=ax2+bx+c的顶点坐标为(1,n),经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),∴a﹣b+c=0,与x轴的另一个交点(3,0),﹣=1,即2a+b=0,2≤c≤3,∵2a+b=0,a<0,∴3a+b<0,因此①不正确;∵a﹣b+c=0,2a+b=0,2≤c≤3,∴2≤﹣3a≤3,即,﹣1≤a≤;因此②正确;∵当x=1时,y=a+b+c的值最大,因此③正确;∵抛物线与x轴有两个不同的交点,∴结论④正确;综上所述,正确的有②③④,故选:C.24.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.2【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即,∴,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在上,y随x的增大而增大,在上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;若抛物线对称轴为直线x=3,则,即b=﹣6a,则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=,则,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,﹣2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.故选:B.25.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,∵c<0,∴abc>0,故①正确;②∵对称轴x=﹣=1,∴2a+b=0;③∵2a+b=0,∴a=﹣b,∵当x=﹣1时,y=a﹣b+c>0,∴﹣b﹣b+c>0,∴3b﹣2c<0,故③正确;④根据图象知,当x=1时,y有最小值;当m为实数时,有am2+bm+c≥a+b+c,所以am2+bm≥a+b(m为实数).故④正确.本题正确的结论有:①②③④,4个;故选:D.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.27.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小【解答】解:∵抛物线的对称轴为直线x=1,a<0,∴点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c=0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=﹣2时,y=ax2+bx+c=﹣2,由图象得:纵坐标为﹣2的点有2个,∴方程ax2+bx+c=﹣2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.28.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.29.已知二次函数y=﹣x2+x+6及一次函数y=2x﹣m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图象(如图所示),当直线y=2x﹣m与新函数图象有4个交点时,m的取值范围是()A.﹣4<m<6B.﹣<m<﹣4C.6<m<D.﹣<m<6【解答】解:令y=﹣x2+x+6=0,则x=﹣2或3,即抛物线与x轴交点的坐标为(﹣2,0)、(3,0),二次函数在x轴上方的图象沿x轴翻折到x轴下方,根据点的对称性,两个图象关于x 轴对称,则新图象的表达式为:﹣y′=﹣x2+x+6,即y′=x2﹣x﹣6,如下图,当直线位于直线a、b的位置时,直线y=2x﹣m与新函数图象有3个交点,处于a、b之间时,有4个交点,当直线处于直线a的位置时,将(3,0)代入y=2x﹣m并解得:m=6;当直线处于直线b的位置,即直线与y′=x2﹣x﹣6只有一个交点,联立两个函数表达式并整理得:x2﹣3x+m﹣6=0,则△=(﹣3)2﹣4(m﹣6)=0,解得:m=;故选:C.30.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤1【解答】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知≤a≤3,故选:A.31.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的序号是()A.①②④B.①③④C.①③⑤D.①②③⑤【解答】解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;。

最新人教版初中九年级上册数学第22章《二次函数》习题含答案

最新人教版初中九年级上册数学第22章《二次函数》习题含答案

九年级数学上册第22章《二次函数》同步练习一、选择题3,便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关 系满足y=-2(x-20):+1558,由于某种原因,价格只能15WxW22,那么一周可获得最大利润是( ) A. 20 B. 1508 C. 1550 D. 15584 .下列四个函数图象中,当x>0时,y 随x 的增大而增大的是()5 .抛物线产卡向下平移一个单位得到抛物线()A. y= (x+1) :B. y= (x - 1) :C. y=x c +lD. y=x :- 16 .已知二次函数厂ax 二+bx+c 的图像如图,则下列结论:①ac>0②a-b+c=0③xVO 时,y <0; ④ax'+ bx + c=0 (aWO )有两个不小于的实数根。

其中错误的结论有() • • (B )(3X4) (C )①③ (D )②④1.抛物线y = 2x?-5x + 6的对称轴是()(A )①②7.二次函数y=mx、x-2m (m是非0常数)的图象与工轴的交点个数为(8.若二次函数yr~-6x+c 的图象过A (T, %), B (2, yQ, C(3 + JJ, %),则y” y::, %的大小关系是( )A. %>%>%B. yi>ys>ycC.D. y5>3r i>y:9. x'+y=3,当-1W X W2时,y的最小值是( )A. -1B. 2C. —D. 3410.抛物线尸a (x-h)ak向左平移2个单位,再向下平移3个单位得到yr,+l,则h、k的值是( )A. h二一2, k 二一2C.h=b k=4 二、填空题B. h=2, k=4 D.h=2, k=-2A.0个B.1个C.2个D.1个或2个11.将抛物线厂必先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为12.如图是二次函数v二ax,bx+c (aWO)图象的一部分,x= - 1是对称轴,有下列判断:①b - 2a=0:3②4a - 2b+c<0:③a - b+c= - 9a:④若(-3,):),( — , y2 )是抛物线上两点,则> y2»其2中正确的序号是.13.已知抛物线厂x-x-1与x轴的一个交点为(a, 0),那么代数式£-a+2014的值为.14.抛物线y= - x=+4x - 1的顶点坐标为.15.已知A ( - 2,力)、B (0, %)、C (1, %)三点都在抛物线产kx'+Zkx+k'+k (k<0)的图象上,则yi、y:、ys的大小关系是.16. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=-5 (t-1) :+6,则小球距离地面的最大高度是.17.设抛物线y=-x、2x+3的顶点为E,与y轴交于点C, EF_Lx轴于点,若点0)是x轴上的动点,且满足以MC为直径的圆与线段EF有公共点,则实数m的取值范围是.18.若二次函数y=ax'+bx+c (a<0)的对称轴为直线x=T,图象经过点(1, 0),有下列结论:①abc<0:②2a-b=0:③a+b+c>0:④b'>5ac,则以上结论一定正确的个数是3三、计算题19.如图,己知抛物线),=一'/+法+。

人教版九年级数学上册 第22 章 二次函数 单元练习 含答案

人教版九年级数学上册 第22 章 二次函数 单元练习 含答案

第22 章二次函数一.选择题(共10小题)1.下列函数中,属于二次函数的是()A.y=2x﹣1 B.y=x2+C.y=x2(x+3)D.y=x(x+1)2.抛物线y=﹣(x﹣1)(x﹣2)的顶点坐标是()A.(1,2)B.(﹣1,2)C.(,)D.()3.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.4.已知当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,则k 的取值范围为()A.k=﹣1 B.k≥﹣1 C.k≤﹣1 D.k≤15.已知(1,y1),(2,y2),(3,y3)是抛物线y=﹣2x2+6x+c上的点,则()A.y1<y2<y3B.y1>y2>y3C.y1=y2<y3D.y1=y2>y36.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.1 B.2 C.1或2 D.0或37.将二次函数y=x2﹣4x+5化为y=(x﹣h)2+k的形式,结果为()A.y=(x﹣2)2+1 B.y=(x+2)2+1 C.y=(x﹣4)2+1 D.y=(x+4)2+1 8.把抛物线y=2(x+4)2﹣2绕原点旋转180°后所得的图象的关系式为()A.y=2(x+4)2+2 B.y=﹣2(x﹣4)2+2C.y=﹣2(x+4)2﹣2 D.y=2(x﹣4)2﹣29.抛物线的顶点坐标为M(﹣2,1),且经过原点,则该抛物线对应的函数表达式为()A.y=(x﹣2)2+1 B.y=﹣(x+2)2+1C.y=(x+2)2+1 D.y=(x+2)2+110.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论:①a﹣b+c<0;②2a+b+c>0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共5小题)11.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为.12.抛物线的部分图象如图所示,则当y>0时,x的取值范围是.13.关于x的二次三项式ax2+bx+c,满足下表中的对应关系:x…﹣5 ﹣4 ﹣2 ﹣1 0 1 2 4 5 …ax2+bx+c…9 6 ﹣4 ﹣6 ﹣9 ﹣6 ﹣4 6 9 …则一元二次方程ax2+bx+c=0的两个整数根分别是和.14.我县在治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为20m的正方形ABCD,改建的绿地是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE.如果设BE的长为x(单位:m),绿地AEFG的面积为y(单位:m2),那么y与x的函数的解析式为,绿地AEFG的最大面积为m2.15.已知:如图,在平面直角坐标系中,抛物线y=ax2+x的对称轴为直线x=2,顶点为A.点P为抛物线对称轴上一点,连结OA、OP.当OA⊥OP时,P点坐标为.三.解答题(共2小题)16.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y2=﹣x+m与二次函数y1=ax2+bx﹣3图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y2>y1时,自变量x的取值范围.(3)说出所求的抛物线y1=ax2+bx﹣3可由抛物线y=x2如何平移得到?17.商场购进一批儿童智力玩具,调查发现:该玩具的月销售量y(个)与销售单价x(元)之间满足一次函数关系,下表是销售单价与月销售量、月销售利润的对应值分别如下:月销售单价x(元/个)30 35 40 45 月销售量y(个)230 180 130 m月销售利润w(元)2300 2700 2600 2000(1)直接写出y与x的函数关系式;(2)根据以上信息填空:①m=;该商场购进玩具单价元/个;②求w与x的函数关系式,并求出当销售单价x定为多少时,月销售利润最大?(3)由于生产玩具成本增加,商场购进玩具单价提高n元/个(0<n≤7,n为整数),商场规定每件玩具售价不能低于40元/个,该商场在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2340元,则n的值是.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、y=2x﹣1是一次函数,不是二次函数,故本选项错误;B、y=x2+的右边是分式,不是二次函数,故本选项错误;C、y=x2(x+3)中自变量x的最高指数是3,不是二次函数,故本选项错误;D、y=x(x+1)符合二次函数的定义,故本选项正确;故选:D.2.【解答】解:∵y=﹣(x﹣1)(x﹣2)=﹣(x﹣)2+,∴顶点坐标是(,).故选:D.3.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选:A.4.【解答】解:抛物线的对称轴为:x=﹣=﹣k,∵抛物线开口向上,∴x≥﹣k时,函数值y随x的增大而增大,又∵当x≥1时,关于x的二次函数y=x2+2kx+1的函数值y随x的增大而增大,∴﹣k≤1,解得:k≥﹣1,故选:B.5.【解答】解:∵抛物线y=﹣2x2+6x+c的对称轴为直线x=﹣=,且a=﹣2<0,∴离对称轴水平距离越小,函数值越大,∵﹣1=2﹣<3﹣,∴y1=y2>y3,故选:D.6.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故选:D.7.【解答】解:y=x2﹣4x+5=(x﹣2)2+1,故选:A.8.【解答】解:由抛物线y=2(x+4)2﹣2可知,抛物线的顶点坐标是(﹣4,﹣2),其关于原点对称的坐标为(4,2)故绕原点旋转180°后得到的图象为:y=﹣2(x﹣4)2+2,故选:B.9.【解答】解:由抛物线的顶点坐标为(﹣2,1)可设解析式为y=a(x+2)2+1,将点(0,0)代入,得:4a+1=0,解得:a=﹣,所以抛物线解析式为y=﹣(x+2)2+1,故选:B.10.【解答】解:∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以①正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.二.填空题(共5小题)11.【解答】解:设y=a(x﹣20)2+16,因为抛物线过(0,0),所以代入得:400a+16=0,解得a=﹣,故此抛物线的函数关系式为:y=﹣(x﹣20)2+16.故答案为:y=﹣(x﹣20)2+16.12.【解答】解:由图可得,该抛物线的对称轴是直线x=1,与x轴的一个交点为(﹣1,0),则该抛物线与x轴的另一个交点为(3,0),故当y>0时,x的取值范围是﹣1<x<3,故答案为:﹣1<x<3.13.【解答】解:函数的图象如图所示:∴抛物线和x轴的交点坐标为(﹣3,0)和(3,0),∴一元二次方程ax2+bx+c=0的两个整数根分别是3和﹣3,故答案为:3,﹣3.14.【解答】解:设BE的长为x,绿地AEFG的面积为y,由图形可得:y=﹣2x2+20x+400(0<x<20),解析式变形为:y=﹣2(x﹣5)2+450,所以当x=5时,y有最大值是450,故答案为:y=﹣2x2+20x+400(0<x<20),450.15.【解答】解:∵抛物线y=ax2+x的对称轴为直线x=2,∴﹣=2,∴a=﹣,∴抛物线的表达式为:y=﹣x2+x,∴顶点A的坐标为(2,1),设对称轴与x轴的交点为E.如图,在直角三角形AOE和直角三角形POE中,tan∠OAE=,tan∠EOP=,∵OA⊥OP,∴∠OAE=∠EOP,∴=,∵AE=1,OE=2,∴=,解得PE=4,∴P(2,﹣4),故答案为:(2,﹣4).三.解答题(共2小题)16.【解答】解:(1)把A(﹣1,0)代入y2=﹣x+m得:0=﹣(﹣1)+m,∴m=﹣1.把A(﹣1,0)、B(2,﹣3)两点代入y1=ax2+bx﹣3得:,解得:,∴y1=x2﹣2x﹣3;(2)∵y1=x2﹣2x﹣3=(x+1)(x﹣3),抛物线开口向上,∴A(﹣1,0),B(2,﹣3)∴当y2>y1时,﹣1<x<2;(3)∵抛物线y1=x2﹣2x﹣3=(x﹣1)2﹣4,∴所求抛物线可由抛物线y=x2向下平移4个单位,再向右平移1个单位而得到.17.【解答】解:(1)设y=kx+b(k≠0),由题意得:,解得:,∴y与x的函数关系式为:y=﹣10x+530;故答案为:y=﹣10x+530;(2)①当x=45时,m=﹣45×10+530=80,该商场购进玩具单价为:30﹣(2300÷230)=20(元),故答案为:80;20.②由题意得:w=(x﹣20)•y,=(x﹣20)(﹣10x+530),=﹣10x2+730x﹣10600,=﹣10(x﹣36.5)2+2722.5,∵﹣10<0,∴当x=36.5时,y有最大值2772.5,∴w与x的函数关系式为w=﹣10x2+730x﹣10600,当销售单价x定为36.5元时,月销售利润最大,最大利润是2722.5元.(3)由题意得:2340=(﹣10x+530)(x﹣20﹣n)=﹣10(x﹣53)(x﹣20﹣n),函数的对称轴为:x==,∵0<n≤7,n为整数,∴20+n<53,且20<20+n≤27,∴≤40,∵﹣10<0,∴在对称轴的右侧,w随x的增大而减小,∵x≥40,则函数在x=40处取得最大值,将x=40代入函数表达式得:2340=(﹣10x+530)(x﹣20﹣n),解得:n=2.故答案为:2.。

人教版九年级数学上册 第22章 二次函数 综合测试卷 (含答案)

人教版九年级数学上册  第22章   二次函数    综合测试卷  (含答案)

人教版数学九年级上册第22章二次函数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)2.我市某镇的一种特产由于运输的原因,长期只能在当地销售,当地政府对该特产的销售投资与收益的关系为每投入x万元,可获得利润P=-1100(x-60)2+41(万元),每年最多可投入100万元的销售投资,则5年所获得利润的最大值是().A.200万元B.202万元C.205万元D.210万元3.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣254.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0 D.a﹣b+c=05.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6C.1或3 D.4或66. 已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y 轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3. 其中,正确结论的个数为()A.0 B.1C.2 D.37. 有一座抛物线形的立交桥拱,这个桥拱的最大高度为16 m,跨度为40 m,现把它的图形放在坐标系中(如图).若在离跨度中心M点5 m处垂直竖立一根铁柱支撑拱顶,则这根铁柱的长为()A.10m B.15mC.20m D.40m8. 对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限C.第三象限 D.第四象限9. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个10. 如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2C.3 D.4第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11. 抛物线y=2(x+2)2+4的顶点坐标为.12. 若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.14. 已知二次函数y=x2,当x>0时,y随x的增大而(填“增大”或“减小”).15. 若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.16. 如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s 的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别同时出发,当四边形APQC的面积为最小时,运动时间t为____s.17. 某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足y甲=-x2+10x,y乙=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为____万元.18. 如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2,若y1≠y2,取y1和y2中较小值为M;若y1=y2,记M=y1=y2.①当x>2时,M=y2;②当x<0时,M随x的增大而增大;③使得M大于4的x的值不存在;④若M=2,则x=1.上述结论正确的是(填写所有正确结论的序号).三.解答题(共7小题,66分)19.(6分) 已知抛物线y=-12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;(2)将抛物线y=-12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.20.(6分)已知抛物线在x轴上截得的线段长是4,对称轴是x=-1,且过点(-2,-6),求该抛物线的解析式.21.(6分) 某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.22.(6分) 已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点.(1)求m的取值范围;(2)当函数图象与x轴的两交点的横坐标的倒数和等于-4时,求m的值.23.(6分) 为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?24.(8分) 某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?25.(8分)用19 m 长的铝合金条制成如图所示的矩形窗框,CD 长表示窗框的宽,EF =0.5 m(铝合金条的宽度忽略不计).(1)求窗框的透光面积S(m 2)与窗框的宽x(m)之间的函数解析式; (2)如何设计才能使窗框的透光面积最大?最大透光面积是多少? (3)当窗框的透光面积不小于10 m 2时,直接写出x 的取值范围.26.(10分) 如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y =-16x 2+bx +c 表示,且抛物线上的点C 到墙面OB 的水平距离为3 m 时,到地面OA 的距离为172m.(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m ,宽为4 m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m ,那么两排灯的水平距离最小是多少米?27.(10分) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线与x轴交于A,B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;参考答案:1-5ACBDB 6-10CBCCB11. (﹣2,4) 12. ﹣1 13. 150 14. 增大 15. m >9 16. 2 17. 46 18. ②③19. 解:(1)把(1,0),(0,32)代入抛物线解析式, 得:⎩⎨⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32,则抛物线解析式为y =-12x 2-x +32(2)抛物线解析式为y =-12x 2-x +32=-12(x +1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y =-12x 220. 解:∵抛物线的对称轴为x =-1,在x 轴上截得的线段长为4,∴抛物线与x 轴的交点坐标为(-3,0),(1,0), 设抛物线解析式为y =a(x +3)(x -1), 把(-2,-6)代入得: a·(-2+3)·(-2-1)=-6, 解得a =2,所以抛物线解析式为y =2(x +3)(x -1), 即y =2x 2+4x -621. 解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;y=(x ﹣40)[200﹣10(x ﹣50)] =﹣10x 2+1100x ﹣28000 =﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.22. 解:(1)当m +6=0,即m =-6时,函数解析式为y =-14x -5,此一次函数与x 轴有一个交点; 当m +6≠0,即m≠-6时,函数为二次函数, 当Δ≥0时,抛物线与x 轴有交点, 即4(m -1)2-4(m +6)(m +1)≥0, 解得m≤-59.综上所述,m 的取值范围为m≤-59(2)设函数图象与x 轴的两交点的横坐标分别为a ,b , 则a +b =-2(m -1)m +6,ab =m +1m +6,∵1a +1b =-4,∴a +b ab =-4, ∴-2(m -1)m +1=-4,解得m =-3,∴经检验m =-3是方程的解.当m =-3时,m +6≠0,且Δ>0,符合题意, ∴m 的值为-323. 解:(1)设y 与x 之间的函数关系式为y=kx+b ,⎩⎪⎨⎪⎧70k +b =75,80k +b =70,,得⎩⎪⎨⎪⎧k =0.5, b =110,, 即y 与x 之间的函数关系式是y=﹣0.5x+110; (2)设合作社每天获得的利润为w 元,w=x (﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x 2+120x ﹣2200=﹣0.5(x ﹣120)2+5000, ∵60≤x ≤150,∴当x=120时,w 取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.24. 解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,解得⎩⎪⎨⎪⎧k =-80,b =560, 则y 与x 之间的函数关系式为y =-80x +560(2)由题意,得(x -3)(-80x +560)-80=160,整理,得x 2-10x +24=0,解得x 1=4,x 2=6.∵3.5≤x ≤5.5,∴x =4.答:如果每天获得160元的利润,销售单价为4元(3)由题意得:w =(x -3)(-80x +560)-80=-80x 2+800x -1760=-80(x -5)2+240,∵3.5≤x ≤5.5,∴当x =5时,w 有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元25. 解:(1)由题意可知AF =BE =CD =x m ,AB =EF =0.5 m ,BC =GH =DE ,∴AC =0.5+19-3x -13=(6.5-x)m ,∴S =AC ·CD =(6.5-x)·x ,即S =-x 2+6.5x(0<x<6)(2)∵S =-x 2+6.5x =-(x -134)2+16916, ∴当x =134时,S 最大值=16916, 即当CD =AC =134 m 时,窗框的透光面积最大,最大透光面积是16916m 2 (3)52≤x ≤4 26. 解:(1)y =-16x 2+2x +4,即y =-16(x -6)2+10, ∴拱顶D 到地面OA 的距离为10 m(2)由题意得货运汽车最外侧与地面OA 的交点为(2,0)或(10,0), 当x =2或x =10时,y =223>6,所以这辆货车能安全通过(3)令y =8,则-16(x -6)2+10=8, 解得x 1=6+23,x 2=6-23,则x 1-x 2=43,所以两排灯的水平距离最小是4 3 m27. 解:(1)依题意得⎩⎪⎨⎪⎧-b 2a =-1,a +b +c =0,c =3,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3,∴抛物线解析式为y =-x 2-2x +3,∵对称轴为直线x =-1,且抛物线经过A(1,0),∴B(-3,0).把B(-3,0),C(0,3)分别代入直线y =mx +n ,得⎩⎪⎨⎪⎧-3m +n =0,n =3, 解得⎩⎪⎨⎪⎧m =1,n =3, ∴直线BC 的解析式为y =x +3(2)设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小, 把x =-1代入直线y =x +3得,y =2,∴M(-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(-1,2)。

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故答案为:2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故答案为:﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故答案为:2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。

人教版数学九年级 上册:第22章 《二次函数》专题练习【解析版】

人教版数学九年级 上册:第22章 《二次函数》专题练习【解析版】

人教版数学九年级上册第22章《二次函数》专题练习一.选择题1.下列函数中是二次函数的是()A.y=B.y=(x+3)2﹣x2C.y=D.y=x(x﹣1)2.抛物线的对称轴为直线x=3,y的最大值为﹣5,且与y=x2的图象开口大小相同.则这条抛物线解析式为()A.y=﹣(x+3)2+5 B.y=﹣(x﹣3)2﹣5C.y=(x+3)2+5 D.y=(x﹣3)2﹣53.已知抛物线的顶点坐标是(2,1),且抛物线的图象经过(3,0)点,则这条抛物线的解析式是()A.y=﹣x2﹣4x﹣3 B.y=﹣x2﹣4x+3 C.y=x2﹣4x﹣3 D.y=﹣x2+4x﹣3 4.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)5.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)6.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣27.已知抛物线y=x2﹣8x+c的顶点在x轴上,则c等于()A.4 B.8 C.﹣4 D.168.二次函数y=(2x﹣1)2+2的顶点的坐标是()A.(1,2)B.(1,﹣2)C.(,2)D.(﹣,﹣2)9.已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0 10.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤二.填空题11.已知抛物线y=x2+mx+9的顶点在x轴上,则m的值为.12.如图所示是某斜拉索大桥,主索塔呈抛物线,主索塔底部在水面部分的宽度AB=50米,主索塔的最高点E距水面的垂直距离为100米,桥面CD距水面的咨度为36米,则桥的宽度CD米.13.与抛物线y=(x﹣1)2+3关于原点对称的抛物线的解析式为.14.若二次函数y=x2﹣2ax﹣1(a为常数)的图象在﹣2≤x≤5的部分与x轴有两个公共点,则a的取值范围是.15.在△ABC中,∠A,∠B所对的边分别为a,b,∠C=50°.若二次函数y=(a+b)x2+(a+b)x﹣(a﹣b)的最小值为﹣,则∠A=度.16.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是m.17.如图,一抛物线与x轴相交于A,B两点,其顶点P在折线段CD﹣DE上移动,已知点C,D,E的坐标分别为(﹣2,8),(8,8),(8,2),若点B横坐标的最小值为0,则点A横坐标的最大值为.三.解答题18.已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)若m=1,a=﹣1,求该二次函数的解析式;(2)求证:am+b=0;(3)若该二次函数的最大值为﹣,当x=1时,y≥3a,求a的取值范围.19.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元/台)满足函数关系y A=﹣x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=﹣x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?20.如图①,已知抛物线y=﹣x2+bx+c与x轴交于点A、B(3,0),与y轴交于点C(0,3),直线l经过B、C两点.抛物线的顶点为D.(1)求抛物线和直线l的解析式;(2)判断△BCD的形状并说明理由.(3)如图②,若点E是线段BC上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF交线段BC于点G,当△ECG是直角三角形时,求点E的坐标.21.如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0)两点,点C为抛物线与y 轴的交点.(1)求此抛物线的解析式;(2)P是x轴上方抛物线上的一个动点,过P作PM⊥x轴,垂足为M,问:是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上找一点D,过点D作x轴的垂线,交AC于点E,是否存在这样的点D,使DE最长,若存在,求出点D的坐标,以及此时DE的长,若不存在,请说明理由.22.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.(1)求抛物线L和L′的表达式;(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.23.已知抛物线y=﹣x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.参考答案一.选择题1.解:二次函数的解析式为y=ax2+bx+c(a≠0),y=x(x﹣1)=x2﹣x,故选:D.2.解:设抛物线解析式为y=a(x﹣3)2﹣5,因为所求抛物线与y=x2的图象开口大小相同,而y的最大值为﹣5,所以a=﹣,所以这条抛物线解析式为y=﹣(x﹣3)2﹣5.故选:B.3.解:设抛物线的解析式为y=a(x﹣2)2+1,把(3,0)代入得a×(3﹣2)2+1=0,解得a=﹣1,所以抛物线的解析式为y=﹣(x﹣2)2+1=﹣x2+4x﹣3.故选:D.4.解:y=x2﹣6x+4=(x﹣3)2﹣5,故抛物线y=x2﹣6x+4的顶点坐标是:(3,﹣5).故选:C.5.解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.6.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.7.解:根据题意,得=0,解得c=16.故选:D.8.解:由y=(2x﹣1)2+2=4(x﹣)2+2,可知抛物线顶点坐标为(,2).故选:C.9.解:当a>0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴上方,它们的横坐标分别为m、n,∴m<x1<x2<n;当a<0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴下方,它们的横坐标分别为m、n,∴m<x1<x2<n.故选:B.10.解:①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级(上)《二次函数》一.选择题(共50小题)1.关于x的二次函数y=﹣2x2+4x+m2+2m,下列说法正确的是()A.该二次函数的图象与x轴始终有两个交点B.当x>0时,y随x的增大而增大C.当该二次函数的图象经过原点时,m=﹣2D.该二次函数的顶点的纵坐标无最小值2.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c(a≠0)与直线l相交于点A,B,与y轴交于点C(0,﹣2),且∠ACB为直角,则当y<0时,自变量x的取值范围是()A.﹣4<x<4B.x>4C.x<﹣4D.﹣2<x<43.已知二次函数y=x2+(a+2)x+a(a为常数)的图象顶点为P(m,n),下列说法正确的是()A.点P可以在任意一个象限内B.点P只能在第四象限C.n可以等于﹣D.n≤﹣14.已知抛物线y=a(x﹣h)2﹣7,点A(1,﹣5)、B(7,﹣5)、C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定5.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a≤﹣,其中结论正确个数为()A.1 个B.2 个C.3 个D.4 个6.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确有()A.1个B.2个C.3个D.4个7.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)9.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.410.如图,二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④11.抛物线y=x2+bx+3的对称轴是直线x=1,若关于x的一元二次方程x2+bx+3﹣m=0(m 为实数)在﹣1<x<2的范围内有实数根,则m的取值范围为()A.2≤m<6B.m≥2C.6<m<11D.2≤m<1112.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C 在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2019C.2019≤t≤2020D.2020≤t≤202113.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②当x<0时,y随x的增大而增大;③3a+c>0;④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.4个B.3个C.2个D.1个14.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.给出下列结论:①abc>0,②a﹣b+c<0,③2a+b <0,④1<a+b+2c<2,⑤4a+b<﹣2.其中正确结论的个数是()A.1个B.2个C.3个D.4个15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A.①②④⑤B.①②④C.①④⑤D.③④⑤16.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5 B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点17.已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为()A.0B.﹣1C.﹣D.﹣18.使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,且使得关于x的分式方程有整数解的整数a的和为()A.1B.﹣2C.8D.1019.抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧.下列结论:①abc<0;②方程ax2+(b﹣1)x+c=0有两个不等的实数根;③﹣2<a﹣b<2.其中,正确结论的个数是()A.0B.1C.2D.320.已知抛物线y=ax2+bx+c交x轴于点B(1,0)和点A,交y轴负半轴于点C,且AO =2CO.有下列结论:①2b+2c=﹣1;②a=;③>0;④4ac+2b+1=0.其中,正确结论的个数是()A.1B.2C.3D.421.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤22.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),对称轴为直线x=1.现有四个结论:①abc>0;②4ac﹣8a>b2;③﹣<a<﹣;④b>c.其中正确的结论有()A.1个B.2个C.3个D.4个23.如图,顶点坐标为(1,n)的抛物线y=ax2+bx+c经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),则下列结论:①3a+b>0;②﹣1≤a≤;③对于任意实数m,a+b≥m(am+b)总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个24.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.225.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个27.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小28.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或429.已知二次函数y=﹣x2+x+6及一次函数y=2x﹣m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图象(如图所示),当直线y=2x﹣m与新函数图象有4个交点时,m的取值范围是()A.﹣4<m<6B.﹣<m<﹣4C.6<m<D.﹣<m<6 30.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤1 31.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的序号是()A.①②④B.①③④C.①③⑤D.①②③⑤32.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),与y轴的交点为C,已知﹣2≤c≤﹣1,顶点坐标为(1,n),则下列结论正确的是()A.a+b>0B.C.对于任意实数m,不等式a+b>am2+bm恒成立D.关于x的方程ax2+bx+c=n+1没有实数根33.抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,随着x的增大而减小.下列结论:①a﹣b+c=0;②若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2:③a(m﹣1)+b=0;④若c≤﹣1,则b2﹣4ac≤4a.其中正确的个数是()A.1个B.2个C.3个D.4个34.若抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为3++.其中错误的是()A.①③B.②C.②④D.③④35.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,m+1,﹣2m]的函数的一些结论,其中不正确的是()A.当m=2时,函数图象的顶点坐标为()B.当m>1时,函数图象截x轴所得的线段长大于3C.当m<0时,函数在x<时,y随x的增大而增大D.不论m取何值,函数图象经过两个定点36.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1637.二次函数y=x2+px+q,当0≤x≤1时,此函数最大值与最小值的差()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关38.已知A(﹣3,y1),B(﹣,y2),C(1,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 39.如果我们把函数y=ax2+b|x|+c称为二次函数y=ax2+bx+c的“镜子函数”,那么对于二次函数C1:y=x2﹣2x﹣3的“镜子函数”C2:y=x2﹣2|x|﹣3,下列说法:①C2的图象关于y轴对称;②C2有最小值,最小值为﹣4;③当方程x2﹣2|x|﹣3=m有两个不相等的实数根时,m>﹣3;④直线y=x+b与C2的图象有三个交点时,﹣≤b≤﹣3中,正确的有()A.1个B.2个C.3个D.4个40.抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其图象如图所示:①a>b>c;②4a﹣2b+c<0;③b2﹣4ac<0;④3b+2c>0;⑤m(am+b)+b>a(m是任意实数),其中正确的个数是()A.3个B.2个C.1个D.0个41.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是﹣1≤x<3;④方程ax2+bx+c﹣3=0有两个不相等的实数根;⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个42.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0;②a﹣b+c<0;③4ac<b2;④2a+b>0;⑤当x>0时,y随x的增大而减小,其中正确的说法个数有()A.1个B.2个C.3个D.4个43.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x2<1,有下列结论:①b2﹣4ac>0;②4a﹣2b+c>﹣1;③﹣3<x1<﹣2;④当m为任意实数时,a﹣b≤am2+bm;⑤3a+c=0.其中,正确的结论有()A.②③④B.①③⑤C.②④⑤D.①③④44.已知二次函数y=ax2+2ax+3a﹣2(a是常数,且a≠0)的图象过点M(x1,﹣1),N(x2,﹣1),若MN的长不小于2,则a的取值范围是()A.a≥B.0<a≤C.﹣≤a<0D.a≤﹣45.已知二次函数y=a(x+1)(x﹣m)(a为非零常数,1<m<2),当x<﹣1时,y随x 的增大而增大,说法正确的是()A.若图象经过点(0,1),则﹣<a<0B.若x>﹣时,则y随x的增大而增大C.若(﹣2020,y1),(2020,y2)是函数图象上的两点,则y1<y2D.若图象上两点(,y1),(+n,y2)对一切正数n,总有y1>y2,则≤m<2 46.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(0,2),且关于直线x=﹣1对称,(x1,0)是抛物线与x轴的一个交点,有下列结论,其中结论错误的是()A.方程ax2+bx+c=2的一个根是x=﹣2B.若x1=2,则抛物线与x轴的另一个交点为(﹣4,0)C.若m=4时,方程ax2+bx+c=m有两个相等的实数根,则a=﹣2D.若≤x≤0时,2≤y≤3,则a=47.如图,抛物线y=x2﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.B.C.3D.248.如图,抛物线G:y1=a(x+1)2+2与H:y2=﹣(x﹣2)2﹣1交于点B(1,﹣2),且分别与y轴交于点D、E.过点B作x轴的平行线,交抛物线于点A、C,则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是()A.①③④B.①②④C.②③④D.①②③④49.如图,抛物线y=x2﹣x﹣2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,AD与y轴相交于点E,过点E的直线MN平行于x轴,与抛物线相交于M,N两点,则线段MN的长为()A.B.C.2D.250.如图抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(不包含端点),则下列结论:①a+b>0;②﹣1≤a≤﹣;③若点(﹣2,y1),(,y2),(2,y3)在此抛物线上,则y1<y2<<y3;④当﹣1<x<3时,总有ax2+bx+c>0;⑤关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.正确的是()A.①②④⑤B.①②③④C.①④⑤D.②③⑤参考答案与试题解析一.选择题(共50小题)1.关于x的二次函数y=﹣2x2+4x+m2+2m,下列说法正确的是()A.该二次函数的图象与x轴始终有两个交点B.当x>0时,y随x的增大而增大C.当该二次函数的图象经过原点时,m=﹣2D.该二次函数的顶点的纵坐标无最小值【解答】解:A.由题意得:△=42﹣4×(﹣2)×(m2+2m)=8(m+1)2+8>0,故该二次函数的图象与x轴始终有两个交点,故A正确,符合题意;B.函数的对称轴为x=﹣=﹣=1,故当x>1时,y随x的增大而增大,故B错误,不符合题意;C.当该二次函数的图象经过原点时,即x=0时,y=﹣2x2+4x+m2+2m=m2+2m=0,解得:m=0或﹣2,故C错误,不符合题意;D.函数的对称轴为x=1,此时y=m2+2m+2=(m+1)2+1≥1,故顶点的纵坐标最小值为1,故D错误,不符合题意.故选:A.2.已知直线l经过点(0,6)且平行于x轴,抛物线y=ax2+c(a≠0)与直线l相交于点A,B,与y轴交于点C(0,﹣2),且∠ACB为直角,则当y<0时,自变量x的取值范围是()A.﹣4<x<4B.x>4C.x<﹣4D.﹣2<x<4【解答】解:∠ACB为直角,则△ABC为等腰直角三角形,∵C(0,﹣2),则抛物线的表达式为:y=ax2﹣2;则CD=6﹣(﹣2)=8,则点B(8,6),将点B的坐标代入抛物线表达式并解得:a=,故抛物线的表达式为:y=x2﹣2,令y=0,则x=±4,故y<0时,﹣4<x<4,故选:A.3.已知二次函数y=x2+(a+2)x+a(a为常数)的图象顶点为P(m,n),下列说法正确的是()A.点P可以在任意一个象限内B.点P只能在第四象限C.n可以等于﹣D.n≤﹣1【解答】解:二次函数y=x2+(a+2)x+a(a为常数)的图象顶点P(m,n),∴,,∵a2≥0,∴a2+4≥4,∴,故选:D.4.已知抛物线y=a(x﹣h)2﹣7,点A(1,﹣5)、B(7,﹣5)、C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定【解答】解:∵点A(1,﹣5)、B(7,﹣5)均在此抛物线上,∴h==4,∴抛物线的顶点坐标为(4,﹣7),∴a>0,开口向上,∵C(m,y1)、D(n,y2)均在此抛物线上,且|m﹣h|>|n﹣h|,∴y1>y2,故选:B.5.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a≤﹣,其中结论正确个数为()A.1 个B.2 个C.3 个D.4 个【解答】解:由图象可知,当x=1时,y>0,∴a+b+c>0,所以①正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以②正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n有一个交点,∴关于x的方程ax2+bx+c=n有两个相等的实数根,所以③正确;∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,∵b=﹣2a,∴a+2a+c=0,∴c=﹣3a,∵2≤c≤3,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以④正确;故选:D.6.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确有()A.1个B.2个C.3个D.4个【解答】解:将A(﹣1,0),B(m,0),C(﹣2,n)代入解析式y=ax2+bx+c,∴对称轴x==﹣,∴﹣=m﹣1,∴1﹣=m,∵1<m<3,∴1<1﹣<3,∴﹣2<ab<0,∵n<0,点C在第三象限,∴a<0,∴b>0,∵a﹣b+c=0,∴c=b﹣a>0①abc<0;所以①错误;②由①知,b=a+c,∵当x=3时,y<0,∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,所以②正确;③∵﹣=m﹣1,∴a(m﹣1)=﹣b,∴a(m﹣1)+2b=﹣b+2b=b>0,所以③正确;④a=﹣1时,y=﹣x2+bx+c=﹣(x﹣)2++b﹣a=﹣(x﹣)2++b+1,∴P(,b+1+),若△P AB为直角三角形,则点P在对称轴上,则△P AB为等腰直角三角形,∴点P的纵坐标等于P点的横坐标+1,∴b+1+=+1,∴b=﹣2,∵b>0,∴不存在点P使△P AB为直角三角形.所以④错误;故正确有②③.故选:B.7.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵抛物线y=﹣x2+mx+2m=﹣(x﹣)2++2m,当x<1时,y随x的增大而增大,∴该抛物线的对称轴是直线x=,开口向下,∴≥1,即m≥2,∴+2m>0,∴该抛物线的顶点(,+2m)在第一象限,故选:A.8.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【解答】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.9.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:①abc>0,②2a+b=0,③4a+b2<4ac,④3a+c<0.正确的个数是()A.1B.2C.3D.4【解答】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,即﹣=1,所以b=﹣2a,所以b+2a=0,所以②正确;③因为b=﹣2a,由4a+b2<4ac,得4a+4a2<4ac,∵a<0,∴c<1+a,根据抛物线与y轴的交点,c<2,所以③错误;④当x=﹣1时,y<0,即a﹣b+c<0,因为b=﹣2a,所以3a+c<0,所以④正确.所以正确的是②④2个.故选:B.10.如图,二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),下列结论:①2a+b=0;②当﹣1≤x≤3时,y<0;③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2;④3a+c=0,正确的有()A.①②④B.①④C.①②③D.①③④【解答】解:①∵二次函数y=ax2+bx+c(a,b,c都为常数,a≠0)的图象与x轴相交于点A(﹣1,0)和B(3,0),∴对称轴为:x=1,∴﹣=1,∴b=﹣2a,∴2a+b=0,所以①正确;②观察函数图象可知:当﹣1≤x≤3时,y≥0,所以②错误;③∵抛物线开口向下,当x>1,x1<x2时,y随x的增大而减小,∴y1>y2;当x<1,x1<x2时,y随x的增大而增大,∴y1<y2;∴③错误;④当x=﹣1时,y=0,∴a﹣b+c=0,∵b=﹣2a,∴3a+c=0,∴④正确.所以正确的有①④.故选:B.11.抛物线y=x2+bx+3的对称轴是直线x=1,若关于x的一元二次方程x2+bx+3﹣m=0(m 为实数)在﹣1<x<2的范围内有实数根,则m的取值范围为()A.2≤m<6B.m≥2C.6<m<11D.2≤m<11【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当x=1时,y最小值=2,当x=﹣1时,y最大值=6.∴当﹣1<x<2时,y的取值范围是2≤y<6,当y=m时,m=x2﹣2x+3,即x2+bx+3﹣m=0,∵关于x的一元二次方程x2+bx+3﹣m=0(m为实数)在﹣1<x<2的范围内有实数根,∴m的取值范围是2≤m<6,故选:A.12.定义:在平面直角坐标系中,点P(x,y)的横、纵坐标的绝对值之和叫做点P(x,y)的勾股值,记[P]=|x|+|y|.若抛物线y=ax2+bx+1与直线y=x只有一个交点C,已知点C 在第一象限,且2≤[C]≤4,令t=2b2﹣4a+2020,则t的取值范围为()A.2017≤t≤2018B.2018≤t≤2019C.2019≤t≤2020D.2020≤t≤2021【解答】解:由题意方程组只有一组实数解,消去y得ax2+(b﹣1)x+1=0,由题意得△=0,∴(b﹣1)2﹣4a=0,∴4a=(b﹣1)2,即a=,∴方程ax2+(b﹣1)x+1=0可以化为,即(b﹣1)2x2+4(b﹣1)x+4=0,∴x1=x2=,∴C(,),∵点C在第一象限,∴1﹣b>0,∵2≤[C]≤4,∴2≤≤4,∴1≤≤2,解得:﹣1≤b≤0,∵t=2b2﹣4a+2020,∴t=2b2﹣(b﹣1)2+2020=b2+2b+2019=(b+1)2+2018,∵﹣1≤b≤0,∴t随b的增大而增大,∵b=﹣1时,t=2018,t=0时,t=2019,∴2018≤t≤2019.故选:B.13.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x=﹣,结合图象分析下列结论:①abc>0;②当x<0时,y随x的增大而增大;③3a+c>0;④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2,其中正确的结论有()A.4个B.3个C.2个D.1个【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=﹣,即a=b,因此b<0,与y的交点在正半轴,c>0,所以abc>0,因此①正确;∵a<0,对称轴为x=﹣,∴当x<﹣时,y随x的增大而增大,因此②不正确;由对称性可知,抛物线与x轴的两个交点为(﹣3,0)(2,0),∴4a+2b+c=0,又∵a=b,∴6a+c=0,∵a<0,∴3a+c>0,因此③正确;∵抛物线与x轴的两个交点为(﹣3,0)(2,0),∴m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,实际上就是当y=﹣3时,函数y=a(x+3)(x﹣2)相应的自变量x的值为m、n;,根据图象可知,m<﹣3且n>2,因此④正确;综上所述,正确的结论有:①③④,故选:B.14.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.给出下列结论:①abc>0,②a﹣b+c<0,③2a+b <0,④1<a+b+2c<2,⑤4a+b<﹣2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向下,a<0,对称轴在y轴的右侧,a、b异号,因此b>0,与y轴的交点在正半轴,c>0,所以abc<0,故①错误;当x=﹣1时,y=a﹣b+c<0,因此②正确;对称轴在0~1之间,于是有0<﹣<1,又a<0,所以2a+b<0,故③正确;当x=1时,y=a+b+c=2,又c>1,所以a+b+2c>3,故④不正确;当x=2时,y=4a+2b+c<0,又因为a+b+c=2,即b+c=2﹣a,所以4a+b+(2﹣a)<0,也就是3a+b<﹣2,而a<0,因此4a+b<﹣2,⑤正确;综上所述,正确的结论有:②③⑤,故选:C.15.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是()A.①②④⑤B.①②④C.①④⑤D.③④⑤【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x=,且经过点(2,0),∴抛物线与x轴的另一个交点为(﹣1,0),∴=﹣1×2=﹣2,∴c=﹣2a,∴﹣2b+c=2a﹣2a=0所以②正确;③∵抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;④∵点(﹣,y1)离对称轴要比点(,y2)离对称轴远,∴y1<y2,所以④正确;⑤∵抛物线的对称轴x=,∴当x=时,y有最大值,∴a+b+c>am2+bm+c(其中m≠).∵a=﹣b,∴b>m(am+b)(其中m≠),所以⑤正确.所以其中说法正确的是①②④⑤.故选:A.16.关于二次函数y=x2﹣6x+a+27,下列说法错误的是()A.若将图象向上平移10个单位,再向左平移2个单位后过点(4,5),则a=﹣5 B.当x=12时,y有最小值a﹣9C.x=2对应的函数值比最小值大7D.当a<0时,图象与x轴有两个不同的交点【解答】解:A、将二次函数向上平移10个单位,再向左平移2个单位后,表达式为:,若过点(4,5),则,解得:a=﹣5,故选项正确;B、∵,开口向上,∴当x=12 时,y有最小值a﹣9,故选项正确;C、当x=2时,y=a+16,最小值为a﹣9,a+16﹣(a﹣9)=25,即x=2对应的函数值比最小值大25,故选项错误;D、△=,当a<0时,9﹣a>0,即方程有两个不同的实数根,即二次函数图象与x轴有两个不同的交点,故选项正确,故选:C.17.已知二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0的两根之积为()A.0B.﹣1C.﹣D.﹣【解答】解:∵二次函数y=(a﹣2)x2﹣(a+2)x+1,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,可知二次函数图象的对称轴为直线x=0,即y轴,则,解得:a=﹣2,则关于x的一元二次方程(a﹣2)x2﹣(a+2)x+1=0为﹣4x2+1=0,则两根之积为,故选:D.18.使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,且使得关于x的分式方程有整数解的整数a的和为()A.1B.﹣2C.8D.10【解答】解:解分式方程可得x=﹣,且x≠1,∵分式方程有整数解,∴a=﹣1,0,2,3,5,∵二次函数y=﹣x2+(a﹣2)x﹣3在y轴左侧y随x的增大而增大,∴x=﹣≥0,解得a≥2,∴a能取的整数为2,3,5;∴所有整数a值的和为10,故选:D.19.抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧.下列结论:①abc<0;②方程ax2+(b﹣1)x+c=0有两个不等的实数根;③﹣2<a﹣b<2.其中,正确结论的个数是()A.0B.1C.2D.3【解答】解:①∵过点A(1,0)和点B(0,﹣2),且抛物线的对称轴在y轴的左侧,∴抛物线开口向上,c=﹣2,∴a>0,b>0,∴abc<0,结论①正确;②作直线y=x,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+(b﹣1)x+c=0有两个不相等的实数根,结论②正确;③∵抛物线经过点A(1,0),且抛物线的对称轴在y轴的左侧.∴当x=﹣1时y=a﹣b+c<0,∴a﹣b<﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,﹣2),∴c=﹣2,∴a﹣b<2.∵当x=1时,y=0,即a+b+c=0,∴b=﹣a﹣c,∴a﹣b=2a+c.∵a>0,∴a﹣b>c=﹣2,∴﹣2<a+b<2,结论③正确.故选:D.20.已知抛物线y=ax2+bx+c交x轴于点B(1,0)和点A,交y轴负半轴于点C,且AO =2CO.有下列结论:①2b+2c=﹣1;②a=;③>0;④4ac+2b+1=0.其中,正确结论的个数是()A.1B.2C.3D.4【解答】解:由抛物线的位置可知,a>0,b>0,c<0,因此<0,故③不正确;抛物线y=ax2+bx+c过点B(1,0),因此有a+b+c=0,抛物线与y轴的交点C(0,c),∵OA=2OC,∴点A(2c,0),代入抛物线关系式得,4ac2+2bc+c=0,即4ac+2b+1=0,因此④正确;∵点A(2c,0),B(1,0),∴对称轴x=﹣=,即4ac+2a+2b=0,所以﹣2a+1=0,解得a=,因此②正确;∵a+b+c=0,a=,∴b+c=﹣,即2b+2c=﹣1,因此①正确;综上所述,正确的有:①②④,故选:C.21.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.22.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),对称轴为直线x=1.现有四个结论:①abc>0;②4ac﹣8a>b2;③﹣<a<﹣;④b>c.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1.与y轴交于点B,且点B在两点(0,1)和(0,2)之间(不包括这两点),∴a﹣b+c=0,﹣=1,即2a+b=0,1<c<2,与x轴的另一个交点为(3,0),抛物线开口向下,a<0,对称轴为x=1=﹣,b>0,∴abc<0,因此①不正确;∵抛物线的顶点纵坐标大于2,即>2,又a<0,∴4ac﹣b2<8a,即:4ac﹣8a<b2,因此②不正确;∵a﹣b+c=0,2a+b=0,1<c<2,∴1<﹣3a<2,∴﹣<x<﹣,因此③正确;∵a﹣b+c=0,2a+b=0,∴﹣b﹣b+c=0,即﹣3b+2c=0,又1<c<2,∴﹣3b+3c>0,∴b<c,因此④不正确;综上所述,正确的有:③,故选:A.23.如图,顶点坐标为(1,n)的抛物线y=ax2+bx+c经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),则下列结论:①3a+b>0;②﹣1≤a≤;③对于任意实数m,a+b≥m(am+b)总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【解答】解:∵抛物线y=ax2+bx+c的顶点坐标为(1,n),经过点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(含端点),∴a﹣b+c=0,与x轴的另一个交点(3,0),﹣=1,即2a+b=0,2≤c≤3,∵2a+b=0,a<0,∴3a+b<0,因此①不正确;∵a﹣b+c=0,2a+b=0,2≤c≤3,∴2≤﹣3a≤3,即,﹣1≤a≤;因此②正确;∵当x=1时,y=a+b+c的值最大,因此③正确;∵抛物线与x轴有两个不同的交点,∴结论④正确;综上所述,正确的有②③④,故选:C.24.如图,抛物线y=ax2+bx+c与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点B(4,0),则下列结论中,正确的个数是()①abc>0;②4a+b>0;③M(x1,y1)与N(x2,y2)是抛物线上两点,若0<x1<x2,则y1>y2;④若抛物线的对称轴是直线x=3,m为任意实数,则a(m﹣3)(m+3)≤b(3﹣m);⑤若AB≥3,则4b+3c>0.A.5B.4C.3D.2【解答】解:如图,抛物线开口向下,与y轴交于负半轴,对称轴在y轴右侧,∴a<0,c<0,,∴b>0,∴abc>0,故①正确;如图,∵抛物线过点B(4,0),点A在x轴正半轴,∴对称轴在直线x=2右侧,即,∴,又a<0,∴4a+b>0,故②正确;∵M(x1,y1)与N(x2,y2)是抛物线上两点,0<x1<x2,可得:抛物线y=ax2+bx+c在上,y随x的增大而增大,在上,y随x的增大而减小,∴y1>y2不一定成立,故③错误;若抛物线对称轴为直线x=3,则,即b=﹣6a,则a(m﹣3)(m+3)﹣b(3﹣m)=a(m﹣3)2≤0,∴a(m﹣3)(m+3)≤b(3﹣m),故④正确;∵AB≥3,则点A的横坐标大于0或小于等于1,当x=1时,代入,y=a+b+c≥0,当x=4时,16a+4b+c=0,∴a=,则,整理得:4b+5c≥0,则4b+3c≥﹣2c,又c<0,﹣2c>0,∴4b+3c>0,故⑤正确,故正确的有4个.故选:B.25.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,∵c<0,∴abc>0,故①正确;②∵对称轴x=﹣=1,∴2a+b=0;③∵2a+b=0,∴a=﹣b,∵当x=﹣1时,y=a﹣b+c>0,∴﹣b﹣b+c>0,∴3b﹣2c<0,故③正确;④根据图象知,当x=1时,y有最小值;当m为实数时,有am2+bm+c≥a+b+c,所以am2+bm≥a+b(m为实数).故④正确.本题正确的结论有:①②③④,4个;故选:D.26.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x轴有两个不同交点,因此关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④,故选:C.27.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(﹣2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=﹣2有两个不相等的实数根D.当x≥0时,y随x的增大而减小【解答】解:∵抛物线的对称轴为直线x=1,a<0,∴点(﹣1,0)关于直线x=1的对称点为(3,0),则抛物线与x轴的另一个交点坐标为(3,0),点(﹣2,y1)与(4,y1)是对称点,∵当x>1时,函数y随x增大而减小,故A选项不符合题意;把点(﹣1,0),(3,0)代入y=ax2+bx+c得:a﹣b+c=0①,9a+3b+c=0②,①×3+②得:12a+4c=0,∴3a+c=0,故B选项不符合题意;当y=﹣2时,y=ax2+bx+c=﹣2,由图象得:纵坐标为﹣2的点有2个,∴方程ax2+bx+c=﹣2有两个不相等的实数根,故C选项不符合题意;∵二次函数图象的对称轴为x=1,a<0,∴当x≤1时,y随x的增大而增大;当x≥1时,y随x的增大而减小;故D选项符合题意;故选:D.28.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.29.已知二次函数y=﹣x2+x+6及一次函数y=2x﹣m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数的图象(如图所示),当直线y=2x﹣m与新函数图象有4个交点时,m的取值范围是()A.﹣4<m<6B.﹣<m<﹣4C.6<m<D.﹣<m<6【解答】解:令y=﹣x2+x+6=0,则x=﹣2或3,即抛物线与x轴交点的坐标为(﹣2,0)、(3,0),二次函数在x轴上方的图象沿x轴翻折到x轴下方,根据点的对称性,两个图象关于x 轴对称,则新图象的表达式为:﹣y′=﹣x2+x+6,即y′=x2﹣x﹣6,如下图,当直线位于直线a、b的位置时,直线y=2x﹣m与新函数图象有3个交点,处于a、b之间时,有4个交点,当直线处于直线a的位置时,将(3,0)代入y=2x﹣m并解得:m=6;当直线处于直线b的位置,即直线与y′=x2﹣x﹣6只有一个交点,联立两个函数表达式并整理得:x2﹣3x+m﹣6=0,则△=(﹣3)2﹣4(m﹣6)=0,解得:m=;故选:C.30.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线y =ax2的图象与正方形有公共点,则实数a的取值范围是()A.≤a≤3B.≤a≤1C.≤a≤3D.≤a≤1【解答】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知≤a≤3,故选:A.31.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的序号是()A.①②④B.①③④C.①③⑤D.①②③⑤【解答】解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;。

相关文档
最新文档