大学物理化学公式集
(完整版)大学物理化学公式大全,推荐文档

g Ni i
i N i!
i N i!
波兹曼分布: Ni =
g e-i kT i
N
g e-i kT i
i
在A、B两个能级上粒子数之比: N A = g A e-A / kT
NB
g e-B / kT B
波色-爱因斯坦统计:Ni=
gi e -- i
-1
费米-狄拉克统计:Ni=
gi e -- i
+1
分子配分函数定义:q=
(T1—T2)
热机效率:η= T2-T1 T2
冷冻系数:β=-Q1/W
可逆制冷机冷冻系数:β= T1 T2-T1
焦汤系数:
μJ-T=
T p
H
=-
H pT
Cp
实际气体的ΔH和ΔU:
ΔU= U dT + U dV
T V
V T
ΔH=
H T
P
dT
+H pT来自dp化学反应的等压热效应与等容热效应的关系:Qp=QV+ΔnRT
1
热力学第一定律
功:δW=δWe+δWf
(1)膨胀功 δWe=p外dV
膨胀功为正,压缩功为负。
(2)非膨胀功δWf=xdy
非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)
=EdQ,δW(表面功)=rdA。
热 Q:体系吸热为正,放热为负。
热力学第一定律: △U=Q—W
焓 H=U+pV
vap H m RT 2
(3)外压对蒸汽压的影响:
ln
pg
p
g
=
Vm l
RT
p
e-p
g
pg是在惰性气体存在
总压为pe时的饱和蒸汽压。
(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
大学物理化学必考公式总结

物理化学期末重点复习资料热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
(完整版)大学物理化学公式大全

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
大学物理化学公式

物理化学主要公式及使用条件第一章 气体主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/( 或RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n=称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AAB /n n体积分数 /y Bm,B B *=V ϕ∑*AV y Am,A式中∑A An为混合气体总的物质的量。
Am,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AAm,A Vy 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中∑=BBm m 为混合气体的总质量,∑=BBn n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BBp p上式适用于任意气体。
对于理想气体VRT n p /B B =4. 阿马加分体积定律VRT n V /B B =*此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2mnRTnb V V an p =-+))(/(22式中a 的单位为Pa · m 6· mol -2,b 的单位为m 3· mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
大学物理化学公式总结

大学物理化学公式总结大学物理化学是自然科学中的重要分支,主要研究物质的结构、性质和变化规律。
在物理化学的学习中,公式是不可或缺的工具,能够帮助我们更好地理解和计算各种物理和化学现象。
下面我将总结一些常见的物理化学公式。
一、热力学1. 熵变公式:ΔS = S_final - S_initial2. 焓变公式:ΔH = H_final - H_initial3. 内能变化公式:ΔU = Q + W4. 等温过程熵变:ΔS = nRln(V_final/V_initial)5. 等温过程内能变化:ΔU = 0二、量子力学1. 德布罗意波长:λ = h/(mv)2. 薛定谔方程:Ĥψ = Eψ3. 单电子波函数:ψ = ψ(r,t)4. 束缚能级:E = -13.6eV/n^25. 能态数:N = 2n^2三、热力学平衡1. 平衡常数表达式:K = ([C]^c[D]^d) / ([A]^a[B]^b)2. 平衡常数和自由能变化的关系:ΔG = -RTlnK3. 反应速率表达式:v = k[A]^a[B]^b4. 阿累尼乌斯方程:ln(k2/k1) = (Ea/R)(1/T1 - 1/T2)四、电化学1. 法拉第定律:i = nFv2. 电解质浓度与导电率的关系:κ = λC3. 电解质浓度与摩尔导电率的关系:κ = λC4. 电解质摩尔导电率与离子浓度的关系:λ = κ/C五、化学动力学1. 反应速率表达式:v = k[A]^a[B]^b2. 速率常数和反应物浓度的关系:k = Ae^(-Ea/RT)3. 反应活化能:Ea = RT(ln(k/T) - ln(A))4. 反应级数:n = d(log[A])/dt = d(log[B])/dt = ...六、光化学1. 光电效应能量关系:E = hf = h(c/λ)2. 跃迁能级差:ΔE = E_final - E_initial3. 确定量子数:nλ = 2πr4. 单色光弹性散射能量变化:ΔE = 2(E_final - E_initial)以上只是其中一部分常见的物理化学公式,这些公式在研究和解决物理化学问题时起到了重要的作用,帮助我们理解和预测各种现象。
大学物理化学公式集合

物理化学公式集热力学第一定律功:δW=δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW(机械功)=fdL ,δW(电功)=EdQ ,δW(表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T)p (2)等容热容:C v =δQ v /dT = (∂U/∂T)v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V)T ](∂V/∂T)p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =(T 1—T 2) 热机效率:η= 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=焦汤系数: μJ -T ==- 实际气体的ΔH 和ΔU:ΔU=+ ΔH=+化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +RT 化学反应热效应与温度的关系:热力学第二定律Clausius 不等式:熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =klnΩ Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +VdpdF =-SdT -pdV dG =-SdT +Vdp(2)Maxwell 关系:= =-(3)热容与T 、S 、p 、V 的关系:C V =T C p =TGibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 =-单组分体系的两相平衡:(1)Clapeyron 方程式:= 式中x 代表vap ,fus ,sub 。
大学物理化学知识点归纳

第一章气体的pvT关系一、理想气体状态方程pV=(m/M)RT=nRT (1.1)或pVm=p(V/n)=RT (1.2)式中p、V、T及n的单位分别为P a 、m3、K及mol。
Vm=V/n称为气体的摩尔体积,其单位为m3·mol。
R=8.314510J·mol-1·K-1称为摩尔气体常数。
此式适用于理想,近似于地适用于低压下的真实气体。
二、理想气体混合物1.理想气体混合物的状态方程(1.3)pV=nRT=(∑BBn)RTpV=mRT/Mmix (1.4)式中Mmix为混合物的摩尔质量,其可表示为Mmix def ∑BBy M B(1.5)Mmix=m/n=∑BBm/∑BBn(1.6)式中MB为混合物中某一种组分B 的摩尔质量。
以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。
2.道尔顿定律p B =nBRT/V=yBp(1.7)P=∑BB p(1.8)理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。
而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。
以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
3.阿马加定律VB*=nBRT/p=yBV (1.9)V=∑VB* (1.10)VB*表示理想气体混合物中物质B的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。
理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。
以上两式适用于理想气体混合系统,也近似适用于低压混合系统。
三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc或tc表示。
我们将临界温度Tc时的饱和蒸气压称为临界压力,以pc表示。
在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以Vm,c表示。
大学物理化学公式大全

此方程适用于纯物质的 相和 相的两相平衡。
19.
克劳修斯-克拉佩龙方程
d ln( p /[ p]) ( vap H / RT 2 )dT ln( p2 / p1 ) ( vap H m / R)(1/ T1 1/ T2 )
式中 Q1 和 Q 2 分别为工质在循环过程中从高温热源 T1 吸收的热量和向低温热源 T2 放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一 切可逆循环过程。
2. 卡诺定理的重要结论
0, 可逆循环 Q1 / T1 Q2 / T2
0, 不可逆循环
任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义
dS δQr / T
4. 克劳修斯不等式
dS δQ / T , 不可逆
δQ / T , 可逆
5. 熵判据
S i s o S s y s S a m b 0 ,不可逆 0 ,可逆
式中 iso, sys 和 amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。 可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都 是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。
H nC p ,m d T
1
2
此式适用于理想气体单纯 pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固 体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变
U nCV ,m d T 1 此式适用于理想气体单纯 pVT 变化的一切过程。
2
5. 恒容热和恒压热
QV U
大学物理化学主要公式

大学物理化学主要公式及使用条件第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。
R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B *=V ϕ∑*AVy Am,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3) V V p p n n y ///B B B B *===式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5. 范德华方程RT b V V a p =-+))(/(m 2mnRT nb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
物理化学公式大全

1. 热力学第一定律的数学表示式W Q U +=∆或'ambδδδd δdU Q W Q p V W =+=-+系统得功为正,对环境作功为负。
上式适用于封闭体系的一切过程。
2. 焓的定义式 3. 焓变(1))(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2)2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆(d 0,'0)V W ==p Q H =∆(d 0,'0)p W ==6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4),m ,m p V C C R -=此式只适用于理想气体。
,m//p p p c C m CM==pVU H +=2,m 1d V U nC T∆=⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p TH T H T C T ∆=∆+∆⎰式中vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功(1)定义式 V p W d amb -=∂ 或 V p W d amb ∑-= (2))()(1221T T nR V V p W --=--=适用于理想气体恒压过程。
大学物理化学公式集(傅献彩南京大学第五版)培训讲学

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T ⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=VT p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T V T S ⎪⎭⎫ ⎝⎛∂∂ C p =T pT S ⎪⎭⎫⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
大学二年级物理化学物理化学_公式大全

19. 克劳修斯-克拉佩龙方程 d ln( p /[ p]) (vapH / RT 2 )dT ln( p2 / p1) (vapHm / R)(1/ T1 1/ T2 )
此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;Vm (l) 与Vm (g) 相比可 忽略不计,在T1 T2 的温度范围内摩尔蒸发焓可视为常数。
dT
/(T2
T1)
7. 摩尔蒸发焓与温度的关系
vap Hm (T2 ) vap Hm (T1)
T2 T1
C vap p,m
dT
或
(v a Hp m/T p) v a Cp p , m
式中 vapCp,m = Cp,m (g) — Cp,m (l),上式适用于恒压蒸发过程。
8. 体积功 (1)定义式
B
B
B
式中 m mB 为混合气体的总质量, n nB 为混合气体总的物质的量。上述各
B
B
式适用于任意的气体混合物。
(3) yB nB / n pB / p VB /V 式中 pB 为气体 B,在混合的 T,V 条件下,单独存在时所产生的压力,称为 B 的分压 力。VB 为 B 气体在混合气体的 T,p 下,单独存在时所占的体积。
15. d GT ,P δWr '
此式适用恒温恒压的可逆过程。
16. 吉布斯函数判据 0, 平衡
GT,p 0,自发 只有在恒温恒压,且不做非体积功的条件下,才可用 G 作为过程的判据。
17. 热力学基本方程式 dU T d S pdV dH T dS V d p d A S dT pdV dG S dT V d p
JT 又称为焦耳-汤姆逊系数。
第三章 热力学第二定律 主要公式及使用条件
大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件1. 理想气体状态方程式nRT RT M m pV ==)/(或 RT n V p pV ==)/(m式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。
m /V V n =称为气体的摩尔体积,其单位为m 3· mol -1。
R =8.314510 J · mol -1· K -1,称为摩尔气体常数。
此式适用于理想气体,近似地适用于低压的真实气体。
2. 气体混合物 (1) 组成摩尔分数 y B (或x B ) = ∑AA B /n n体积分数 /y B m,B B*=V ϕ∑*AVy Am ,A式中∑AA n 为混合气体总的物质的量。
A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。
∑*AA m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。
(2) 摩尔质量∑∑∑===BBBB B BB mix //n M n m M y M式中 ∑=BB m m 为混合气体的总质量,∑=BB n n 为混合气体总的物质的量。
上述各式适用于任意的气体混合物。
(3)V V p p n n y ///B B B B *=== 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。
*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。
3. 道尔顿定律p B = y B p ,∑=BB p p上式适用于任意气体。
对于理想气体V RT n p /B B =4. 阿马加分体积定律V RT n V /B B =*此式只适用于理想气体。
5. 德华方程RT b V V a p =-+))(/(m 2mnRTnb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为德华常数。
大学物理化学公式总结

大学物理化学公式总结物理化学作为一门综合性的学科,涉及到丰富而复杂的理论和实验内容。
公式作为物理化学研究的重要工具,既能简化问题的处理过程,又能揭示事物背后的规律和原理。
在这篇文章中,我们将总结一些大学物理化学中常见的公式,并探索它们背后的意义和应用。
1. 经典力学公式经典力学是物理学的基础,它研究物体在力的作用下的运动规律。
在这个领域中,公式起到了关键的作用,其中最基本的公式就是牛顿第二定律:F = ma该公式表示物体的加速度(a)与作用在物体上的力(F)的关系。
通过这个公式,我们可以推导出许多与运动相关的公式,如位移-时间关系、速度-时间关系等。
2. 热力学公式热力学研究物质的热现象和能量转化规律,是理解自然界中热现象的重要工具。
其中最基本的公式是热力学第一定律,也被称为能量守恒定律:ΔU = q + W该公式表示系统的内能(U)的变化等于系统所吸收的热量(q)与对外做功(W)的和。
这个公式揭示了能量在系统中的转化关系,并为热力学研究提供了基础。
3. 电磁学公式电磁学是物理学中的重要分支,研究电、磁场的相互作用及其规律。
其中,麦克斯韦方程组是电磁学研究的核心公式,它由四个方程组成:∇·E = ρ/ε₀∇·B = 0∇×E = -∂B/∂t∇×B = μ₀J + μ₀ε₀∂E/∂t这四个方程描述了电场(E)和磁场(B)的产生和相互作用,是现代电磁学研究的基础。
它们揭示了电磁波传播的规律,为电磁学中很多应用提供了理论依据。
4. 量子力学公式量子力学作为最前沿的物理学分支,研究微观世界的行为。
其中最著名的公式是薛定谔方程:Ĥψ =Eψ这个方程描述了量子系统的波函数(ψ)和能量(E)之间的关系。
它是揭示原子、分子结构和行为的关键公式,让我们能够理解原子和分子的性质,同时也为应用于量子计算和量子通信等领域提供了基础。
总结:在这篇文章中,我们总结了大学物理化学中的一些重要公式,并探讨了它们背后的意义和应用。
物理化学公式集

焦汤系数: μ
J-T=
H pT T =- Cp p H
H Δ H= dT + T P
实际气体的Δ H和Δ U:
U U Δ U= dT + dV T V V T
B
RT
p外Δ V p外Δ V
C C
p
dT dT
Qp-pΔ V
Qp
p
C
V
dT
C
p
dT
CV (T1-T2)
溶液-多组分体系体系热力学在溶液中的应用 n 溶液组成的表示法:(1)物质的量分数: x B= B (2)质量摩 n
p1 V1-p 2 V2 -1
0
C
C
V
dT
C
C
p
dT
尔浓度: mB=
1
热力学第一定律 功:δ W=δ W e+δ Wf (1)膨胀功 δ W e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δ W f=xdy 非膨胀功为广义力乘以广义位移。 如δ W (机械功) =fdL, δ W(电功)=EdQ,δ W(表面功)=rdA。 热 Q:体系吸热为正,放热为负。 热力学第一定律: △U=Q—W 焓 H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容 C=δ Q/dT (1)等压热容:Cp=δ Qp/dT= (∂H/∂T)p (2)等容热容:Cv=δ Qv/dT= (∂U/∂T)v 常温下单原子分子:Cv,m=Cv,mt=3R/2 常温下双原子分子:Cv,m=Cv,mt+Cv,mr=5R/2 等压热容与等容热容之差: (1)任意体系 Cp —Cv=[p+(∂U/∂V)T](∂V/∂T)p (2)理想气体 Cp —Cv=nR 理想气体绝热可逆过程方程: pVγ =常数 TVγ -1=常数 p1-γ Tγ =常数 γ =Cp/ Cv 理想气体绝热功:W=Cv(T1—T2)= 理想气体多方可逆过程:W= 热机效率:η =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电解质溶液法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=∞∞+Λm ,m λ=()FU U FU ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。
近似:+∞+≈,m ,m λλ +∞+≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液)离子迁移数:t B =I I B=Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell lR K Aρρ== cell 1K R kR ρ==科尔劳乌施经验式:Λm =()c 1m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞+--+=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =()mm m 2m c c ΛΛΛΛ∞∞Φ-平均质量摩尔浓度:±m =()v1v v m m --++平均活度系数:±γ=()1v v --+γγ+ 平均活度:±a =()v1v v a a --++=m mγ±±Φ 电解质B 的活度:a B =va ±=vm m ⎪⎭⎫ ⎝⎛Φ±±γ+v v v B +a a a a ±--== m +=v +m B m -=v -m B ()1v v vB m v vm +±+--=离子强度:I =∑i2i i z m 21德拜-休克尔公式:lg ±γ=-A|z +z --|I可逆电池的电动势及其应用(Δr G )T,p =-W f,max (Δr G m )T,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hHE =E φ-dDc C hHg G a a a a ln zF RT 标准电动势E φ与平衡常数K φ的关系:E φ=φlnK zFRT还原电极电势的计算公式:ϕ=氧化态还原态-a a lnzF RT φϕ 计算电池反应的有关热力学函数变化值:m r S ∆=p T E zF ⎪⎭⎫⎝⎛∂∂m r H ∆=-zEF +p T E zFT ⎪⎭⎫ ⎝⎛∂∂ Q R =T m r S ∆=pT E zFT ⎪⎭⎫⎝⎛∂∂zF ⎪⎪⎭⎫ ⎝⎛∆⎪⎪⎭⎫ ⎝⎛21m r 1122T 1T 1H T E T E -=- zF ⎰⎪⎭⎫ ⎝⎛T2E2E 11T E d =dT T H 21T T 2mr ⎰∆ 电极书面表示所采用的规则:负极写在左方,进行氧化反应(是阳极),正极写在右方,进行还原反应(是阴极) 电动势测定的应用:(1) 求热力学函数变量Δr G m 、Δr G m Φ、m r H ∆、m r S ∆及电池的可逆热效应Q R 等。
(2) 求氧化还原反应的热力学平衡常数K Φ值:K Φ=⎪⎪⎭⎫ ⎝⎛ΦRT F zE exp E Φ=ΦΦ左右-ϕϕ E =反应物生成物-a a ln zF RT lnK zF RT Φ(3) 求难溶盐的溶度积K sp 、水的离子积K w 及弱酸弱碱的电离常数等。
(4) 求电解质溶液的平均活度系数±γ和电极的Φϕ值。
(5) 从液接电势求离子的迁移数。
Pt,H 2(p)|HCl(m)|HCl(m ’)| H 2(p),Pt 1-1价型:E j =()()'m mln F RT 1t 2'm m ln F RT t t -=-+-+ E =E c +E j =m'm ln F RT t 2+高价型:M z+A z -(m 1)|M z +A z -(m 2) E j =21m m ln F RT z t z t ⎪⎪⎭⎫ ⎝⎛++---(6) 利用醌氢醌电极或玻璃电极测定溶液的pH电解与极化作用E 分解=E 可逆+ΔE 不可逆+IR ΔE 不可逆=η阴+η阳η阴=(φ可逆-φ不可逆)阴 η阳=(φ不可逆-φ可逆)阳 φ阳,析出=φ阳,可逆+η阳 φ阴,析出=φ阴,可逆-η阴 η=a +blnjE (实际分解)=E (理论分解)+η(阴)+η(阳)+IR对电解池,由于超电势的存在,总是使外加电压增加而多消耗电能;对原电池,由于超电势的存在,使电池电动势变小而降低了对外作功的能力。
在阴极上,(还原)电势愈正者,其氧化态愈先还原而析出;同理,在阳机上,则(还原)电势愈负者其还原态愈先氧化而析出。
(需外加电压小)化学反应动力学半衰期法计算反应级数:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛a a lg t t lg 1n '2121’+=42k k T10T ~=+ B RT E lnk +=-a ⎪⎭⎫ ⎝⎛RT E Aexp k a -= 2a RT E dT dlnk = dT dlnk RT E 2a = 2121a12t t ln T 1T 1RE k k ln=-=⎪⎪⎭⎫ ⎝⎛ k p =k c (RT )1-n E a -E a ’=Q 化学反应动力学基础二:Z AB =πμπRT8VN V N d B A 2AB=[][]B A RT8Ld 22AB πμπ μ=BA BA M M M M +若体系只有一种分子:Z AA =A 2A 2AA M RT 8V N d 22ππ⎪⎭⎫ ⎝⎛=[]2A22AAA M RT L d 2ππ 碰撞参数:b =d AB sin θ碰撞截面:()⎪⎪⎭⎫ ⎝⎛=2AB 2r 22r rd b 1sin 1u 21-=-‘εθμε反应截面:⎪⎪⎭⎫⎝⎛rc 2AB 2r r 1d b εεππσ-== k SCT (T )=⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛RT E exp RT 8L d T k exp Tk 8d C 2AB B C B 2AB-=-πμπεπμπ k SCT (T )=⎪⎭⎫ ⎝⎛RT E exp M RT L d2C A 2AA-ππ ()⎪⎪⎭⎫⎝⎛∆⎪⎪⎭⎫ ⎝⎛∆Φ≠Φ≠ΦRT H exp R S exp c h T k k mr mr n 1B -=-=()⎪⎪⎭⎫⎝⎛∆Φ≠ΦRT G exp c h T k mr n 1B -- 几个能量之间的关系:E a =E c +RT/2=E 0+mRT =RT 1H B B m r ⎪⎭⎫ ⎝⎛∆∑≠Φ≠γ-+式中∑≠BB γ是反应物形成活化络合物时气态物质的代数和,对凝聚相反应,∑≠BBγ=0。
对气相反应也可表示为:E a =nRT H m r +Φ≠∆ (式中n 为气相反应的系数之和) 原盐效应:I A z z 2k klgB A 0=界面现象γ与T 的关系:B B ,,A ,,T A S n V n V T ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂γ=- BB ,p ,A ,p ,T A S n n T ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫⎝⎛∂∂γ=-两边均乘以T ,0T <⎪⎭⎫⎝⎛∂∂γ,即γ的值将随温度升高而下降,所以若以绝热方式扩大表面积,体系的温度必将下降。
杨-拉普拉斯公式:p s ⎪⎪⎭⎫ ⎝⎛‘’+=21R 1R 1γ ‘’21R R 为曲率半径,若为球面’‘’==R R R 21 p s =R 2γ,平面∞→‘’21R R p s 0→。
液滴愈小,所受附加压力愈大;液滴呈凹形,R ‘为负值,p s 为负值,即凹形面下液体所受压力比平面下要小。
毛细管:p s =R 2γ=Δρgh Δρgh =R cos 2θγ(R 为毛细管半径)开尔文公式:p 0和p 分别为平面与小液滴时所受的压力()’‘==R M 2R l V 2p pRTln m gργγ⎪⎪⎭⎫ ⎝⎛ 对于液滴(凸面R ‘>0),半径愈小,蒸汽压愈大。
对于蒸汽泡(凹面R ‘<0),半径愈小,蒸汽压愈小。
两个不同液滴的蒸汽压:⎪⎪⎭⎫⎝⎛’‘-=1212R 1R 1M 2p p RTln ργ ‘=RM2RT 1c c ln0ργ 溶液越稀,颗粒越大。
液体的铺展:213132,,,+γγγ>非表面活性物质使表面张力升高,表面活性物质使表面张力降低。
吉不斯吸附公式:222da d RT a γ=-Γ 2Γ为表面超额若0da d <γ,2Γ>0,正吸附;0da d >γ,2Γ<0,负吸附。
表面活性物质的横截面积:A m =21L Γ 粘附功:g s g l l s Wa G γγγ∆---=-=+- W a 值愈大,液体愈容易润湿固体,液固界面愈牢。
内聚功:g l Wc G γ∆-=-=2 浸湿功:i g s l s W G γγ∆--=-=- 铺展系数:g s g l l s G δγγγ∆---=-=-- 0δ≥,液体可在固体表面自动铺展。
接触角:s g l sl gcos γγθγ----=Langmuir 等温式:map V1ap V θ==+ θ:表面被覆盖的百分数。
m m p 1pV V a V =+ 离解为两个分子:11221122a p 1a p θ=+ 混合吸附:A A 'A B ap 1ap a p θ=++ 'BB 'A Ba p 1ap a p θ=++ 即:i i i ii ia p 1a p θ∑1=+BET 公式:()()mS S CpV V p p p 1C 1p ⎡⎤⎢⎥⎣⎦=-+-弗伦德利希等温式:1nq kp = 乔姆金吸附等温式:()0RTln A p θα=吸附剂的总表面积:S =A m Ln n =V m /22400cm 3mol -1 气固相表面催化反应速率:单分子反应:2A AA Ak a p r 1a p =+(产物吸附很弱)2A AA AB Bk a p r 1a p a p =++(产物也能吸附) 双分子反应:()2A B A BA B 2A AB B k a a p p r k 1a p a p θθ2==++(AB 都吸附)2A A BB A A A B B k a p p r k p 1a p a p θ2==++(AB 均吸附,但吸附的B 不与吸附的A 反应)2A A BA Ak a p p r 1a p =+(B 不吸附)胶体分散体系和大分子溶液布朗运动公式:x =(D 为扩散系数)球形粒子的扩散系数:RT 1D L 6rπη=渗透压:nRT cRT V∏== 渗透力:F =()21A ART c c ∏=- 扩散力=-F 沉降平衡时粒子随高度分布公式:()()32211N 4RT lnr gL x x N 3πρρ粒子介质=--- 瑞利公式:222222124221224A V n n I n n πγλ⎛⎫⎪⎝⎭-=+2ξ电势 表面电势0ϕξ> Stern 电势δϕξ≥ 电解质浓度增加ξ电势减小。