函数1(1)

合集下载

3.1函数的概念1函数的概念及表示课件【新教材】人教A版(2019)高一数学必修第一册

3.1函数的概念1函数的概念及表示课件【新教材】人教A版(2019)高一数学必修第一册

2001 37.9
3.1 函 数 的 概 念
新课导入
(1)实例1、2、3有什么不同点? 变量间的对应方式不同,1是关系式,2是图像,3是表格 (2)以上3个实例有什么共同点?
(1)都有两个非空数集. (2)两个数集之间都有一种确定的对应关系.
3.1 函 数 的 概 念
函数的到300 kmh后保持匀速运行半小时. 这段时间内,列车行进的路程S(单位:km)与运行时间t (单位:h)的关系可以表示为
S=300t. 这里,t和S是两个变量,而且对于t的每一个确定的值,S 都有唯一确定的值与之对应,所以S是t的函数.
3.1 函 数 的 概 念
新课导入
问题2
叫做函数的值域。
3.1 函 数 的 概 念
函数的定义
知识点一 函数的定义
注意
(1)A,B为非空数集 (2)任意——唯一 (3)一对一,多对一(不能一对多) (4)对应关系可以有解析式,图像,表 格
3.1 函 数 的 概 念
函数的定义
知识点一 函数的定义 (1)函数符号y=f(x)表示“y是x的函数”。 (2)定义中与x对应的数用f(x)表示,f(x)不是f与x 的乘积, 表示的是x经f变化后对应的函数值。所以若对应关系用g、 G、F 等表示,则函数就可用g(x)、F(x)、G(x)等 表示。 (3)集合A、B与f一起称A到B的函数,而非对应关系f或集合 A、B叫函数。 (4)函数的三要素,定义域,对应关系f,值域。
那么a的值是( A )
A.1
B.0
C.-1
D.2
解:∵f(x)=ax2-1, ∴f(-1)=a-1,f(f(-1))=f(a-1)=a·(a-1)2-1=-1, ∴a(a-1)2=0. 又∵a为正数, ∴a=1.

1 第1课时 函数的单调性(共44张PPT)

1 第1课时 函数的单调性(共44张PPT)
提示:不一定,可能是定义域的一个子区间,单调性是局部概念,不是整体 概念.
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.

3.1.1 函数的概念 课件(1)-人教A版高中数学必修第一册(共35张PPT)

3.1.1 函数的概念 课件(1)-人教A版高中数学必修第一册(共35张PPT)
思考:根据对应关系S=350t,这趟列车加速到350km/h后,运行1h就前进 了350km,这个说法正确吗?
不正确。
对应关系应为S=350t,其中,t A1 {t | 0 t 0.5}, s B1 {s | 0 s 175}
问题2 某电气维修告诉要求工人每周工作至少1天,至多不超过6天。如果 公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为 该怎样确定一个工人每周的工资?一个工人的工资w(单位:元)是他工作 天数d的函数吗?
ab ab
实数集R可以表示为(-∞,+ ∞)
x≥a
x >a
x≤b
x<b
[a,+∞) (a,+∞) ( -∞ ,b] (-∞,b)
注意: 1.区间(a,b),必须有b>a 2.区间只能表示数集 3.区间不能表示单元素集 4.区间不能表示不连续的数集 5.区间的左端点必须小于右端点; 6.区间都可以用数轴表示; 7.以“-∞”或“+∞”为区间的一端时,这一端必须是小括号.
第三章
人教2019A版必修 第一册
函数概念与性质
3.1.1 函数的概念
1.初中学习的函数的定义是什么?
设在一个变化过程中有两个变量x和y, 如果对于x的每一个值,y都有唯一的值与 它对应,那么就说y是x的函数.其中x叫自 变量,y叫因变量.
2.回顾初中学过哪些函数?
(1)一次函数 y ax b,(a 0)
(2)正比例函数
y k , (k 0) x
(3)反比例函数 y kx, (k 0)
(4)二次函数 y ax2 bx c,(a 0)
问题1. 某“复兴号”高速列车到350km/h后保持匀速运行半小时。这段时间内, 列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示 为 S=350t。

第5章 函数1

第5章  函数1

第5章 函数
(2) A到B的所有不同的满射有6个, 分别为 f1={(a, g1), (b, g1 ), (c, g2)} f2={(a, g1 ), (b, g2), (c, g1 )} f3={(a, g1 ), (b, g2), (c, g2)} f4={(a, g2), (b, g1 ), (c, g2)} f5={(a, g1 ), (b, g2), (c, g1 )} f6={(a, g1 ), (b, g2), (c, g2)}
p: A→A是双射, 则称p为集合A上的n阶置换 记为 阶置换, 阶置换
a1 p= p( a1 )
a2 L an p ( a2 ) L p ( an )
第5章 函数
例2 若A={1, 2, 3}, 试写出A上的全部置换。 解 A上的全部置换有3!=6个,分别为
1 p1 = 1 1 p3 = 2
第5章 函数
定义 5.1 ― 2 设有函数f: A→B, g: C→D, 若 有A=C、 B=D且对所有的x∈A, 有f(x)=g(x), 则称 函数f和g相等, 记为f=g。 定义 5.1 ― 3 集合A到集合B的所有函数的集合记 为BA, 即 BA={f|f: A→B}
第5章 函数
定理 5.1 ― 1 当A和B是有限集合时,有 |BA|=|B||A| 证明 设|A|=m, |B|=n(m, n∈N); 又设A={a1, a2, …, am}。 因为 Df=A,所以 f={(a1, f(a1)), (a2, f(a2)), …, (am , f(am))}。 , 而每个f(ai)(i∈Nm)都有n种可能,所以A到B的不 同函数共有 {n·n·…·n } =n m个 M个 即 |BA|=|B||A|
第5章 函数

【初升高数学衔接教材讲义系列】第03章 一次函数与一次不等式(解析版)

【初升高数学衔接教材讲义系列】第03章 一次函数与一次不等式(解析版)

第3章 一次函数与一次不等式【知识衔接】————初中知识回顾————1、形如y=kx+b(k≠0)的函数叫做一次函数。

(1)它的图象是一条斜率为k ,过点(0,b )的直线。

(2)k>0⇔是增函数;k<0⇔是减函数。

2、不等式ax>b 的解的情况:(1)当a>0时,ab x >; (2)当a<0时,a b x <; (3)当a=0时,i) 若b≤0,则取所有实数;ii) 若b>0,则无解。

类似地,请同学们自行分析不等式ax <b 的解的情况。

————高中知识链接————一次函数y =kx +b (k ≠0,b ≠0)的图象所经过的象限有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0,函数y =kx +b 的图象经过第二、三、四象限.一次函数y =kx +b (k ≠0)中,|k |越大,直线y =kx +b 越靠近y 轴,即直线与x 轴正半轴的夹角越大;|k |越小,直线y =kx +b 越靠近x 轴,即直线与x 轴的夹角越小.学#科网【经典题型】初中经典题型1.一次函数y =(m -2)x +3的图象如图所示,则m 的取值范围是( )A.m<2 B.0<m<2 C.m<0 D.m>2【答案】A【解析】如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2,故选A.2.如图,把Rt∆ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将∆ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.82【答案】C3.已知点A是直线y=x+1上一点,其横坐标为﹣,若点B与点A关于y轴对称,则点B的坐标为_____.【答案】(,)【解析】分析:利用待定系数法求出点A坐标,再利用轴对称的性质求出点B坐标即可;详解:由题意A(-,),∵A、B关于y轴对称,∴B(,),故答案为(,).4.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.【答案】1.5.【解析】分析:首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=45代入即可.点睛:本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.5.一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.【答案】D【解析】分析:先求出不等式组的解集,再在数轴上表示. 详解:解不等式组得-3<x ≤2,在数轴上表示为:故选D .点睛:解一元一次不等式组,通常采用“分开解,集中定”的方法,即单独的解每一个不等式,而后集中找它们的解的“公共部分”.在找“公共部分”的过程中,可借助数轴或口诀两种方法确定不等式组的解集.其中确定不等组解集的方法为:“大大取大,小小取小,大小小大中间找,大大小小是无解”.在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.6.若实数3是不等式2x –a –2<0的一个解,则a 可取的最小正整数为( )A. 2B. 3C. 4D. 5【答案】D【解析】解:根据题意,x =3是不等式的一个解,∴将x =3代入不等式,得:6﹣a ﹣2<0,解得:a >4,则a 可取的最小正整数为5,故选D .学-科网点睛:本题主要考查不等式的整数解,熟练掌握不等式解得定义及解不等式的能力是解题的关键.高中经典题型1.若函数1y ax =+在[]1,2上的最大值与最小值之差为2,则实数a =( )A . 2B . 2-C . 2或2-D . 0【答案】C【解析】1y ax =+,若0a =,则y 的最大与最小之差为0(舍),若0a >,则()()max 221f x f a ==+,()()min 11f x f a ==+,则()2112a a a +-+==(符合),若0a <,则()()max 11f x f a ==+, ()()min 221f x f a ==+,则()1212a a a +-+=-=,则2a =-(符合),故选C . 2.若()()0f x ax b a =+>,且()()41ff x x =+,则()3f =__________. 【答案】193【解析】由()()()241f f x af x b a x ab b x =+=++=+, ()24,10a ab b a ∴=+=>,解得()112,,233a b f x x ==∴=+,于是()1933f =,故答案为193. 3.如图,已知函数f(x)的图象是两条直线的一部分,其定义域为(-1,0]∪(0,1),则不等式f(x)-f(-x)>-1的解集是______________.【答案】 (-1,- 12)∪[0,1)4.已知函数()()()110f x ax x a a =+->,且()f x 在[]0,1上的最小值为()g a ,求()g a 的最大值. 【答案】1【解析】试题分析:(1)由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,分三种情况讨论,即可求解函数的最小值,得出()g a 的表达式,即可求解()g a 的最大值. 试题解析:由题意知()11f x a x a a ⎛⎫=-+ ⎪⎝⎭,(1)当a 1>时, 1a 0a ->,此时()f x 在[]0,1上为增函数,∴()()1g a f 0a ==;(2)当0a 1<<时, 1a 0a-<,此时()f x 在[]0,1上为减函数,∴()()g a f 1a == ;(3)当a 1=时, ()f x 1=,此时()g a 1=,∴(),01,g a { 1,1,aa a a <<=≥其在()0,1上为增函数,在[)1,∞上是减函数,又当a 1=时,有1a 1a==,∴当a 1=时, ()g a 取得最大值1. 点睛:本题考查了函数最值问题及其应用,其中解答中涉及到一次函数的单调性的应用,以及分段函数的性质,同时考查了分类讨论的思想方法,本题的解答中注意1a =的情况,容易导致错解,试题有一定的基础性,属于基础题.5.(1)求函数y =ax +1(a≠0)在[0,2]上的最值.(2)若函数y =ax +1在[0,2]上的最大值与最小值之差为2.求a 的值.【答案】(1)详见解析;(2) a =±1.6.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.学-科网(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍。

一次函数图像1 (1)

一次函数图像1 (1)

第三节 一次函数的图象(1) 主备人:王明虎 朱伯琴自主学习阅读课本P148 ,回答下列问题 (1)总共有几支香?(2)图片是怎样表示时间变化的?这支香点燃5分钟后缩短了多少?点燃10分钟后呢?(3)用y (cm )表示香的长度,x (min )表示香燃烧的时间,你能写出y 与x 之间的函数关系式吗?(4)依次连接图片中香的顶端,你有什么发现?你能利用平面直角坐标系,将图片揭示的信息以及你的发现告诉大家吗? 探究活动一、作一次函数的图像例1:作出一次函数y=2x+1的图象解:1、列表(写出自变量x 与函数值的对应表)先确定x 的若干个值,然后填入相应的y 值: x … -2 -1 0 1 2 … y=2x+1…-3-1135…2、描点:描点,对于表中的每一组对应值,以x 值作为点的横坐标,以对应的y 值作为点的纵坐标,便可画出一个点。

也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

3、连线:按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象,它是一条直线。

小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤: (1) 列表;(2)描点;(3)连线。

练习:(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。

1、列表:x … -2 -1 0 1 2 … y=-2x+5…97531…2、描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。

O -3-2-1321-3-2-1321y x O-3-2-1321-3-2-1321yx3、连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。

二、议一议一次函数的图象是什么?是否可以简化作一次函数的图象的过程?一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx+b 的图象也称为直线y=kx+b 。

课时1函数的概念(一)(经典公开课)

课时1函数的概念(一)(经典公开课)

一、导入新课 在初中我们已经接触过函数的概念,知道了函数是刻画变量之间对应关 系的数学模型和工具.如:某物体从高度为 100 m 的高空自由下落,物 体下落的距离 s(m)与所用时间 t(s)的平方成正比,这个规律用数学式子可 以表示为 s=12gt2,其中 g 取 9.8 m/s2.
二、提出问题 1.时间 t 的变化范围构成的集合 A 是什么? 2.下落的距离 s 的变化范围构成的集合 B 是什么? 3.下落后的某一时刻 t,能同时有两个 s 与之对应吗? 4.集合 A 中的元素与集合 B 中的元素构成怎样的对应关系? [学习目标] 1.在初中用变量之间的依赖关系描述函数的基础上,用集合 语言和对应关系刻画函数,建立完整的函数概念.(数学抽象) 2.体会集 合语言和对应关系在刻画函数概念中的作用.(数学抽象) 3.了解构成函 数的要素.(数学抽象) 4.能求给定函数的定义域.(数学运算)
题型 2◆求函数的值 典例 已知函数 f(x)=1+x2x2.求: (1)f(a)+f1a; (2)f(1)+f(2)+f(3)+f12+f13; (3)f(1)+f(2)+…+f(99)+f(100)+f12+f13+…+f1100.
12 解:(1)由题意,函数 f(x)=1+x2x2,可得 f(a)+f1a=1+a2a2+1+aa12=1+a2a2 +a2+1 1=aa22+ +11=1. (2)由(1)可得 f(2)+f12=1,f(3)+f13=1, 又由 f(1)=1+1212=12,所以 f(1)+f(2)+f(3)+f12+f13=12+1+1=52.
函数的概念是学生进入高中阶段遇到的一个难点,由于运用集合与对应 的观点来诠释函数,因而这部分内容显得较为抽象,学生学习起来比较 吃力.为了得出函数的概念,教材是通过如下步骤来实现的:(1)回顾初 中函数的概念;(2)列举 4 个函数实例;(3)归纳 4 个问题的共同特征;(4) 给出函数的定义.

2.1.1函数(一)变量与函数的概念

2.1.1函数(一)变量与函数的概念
解 (1)f(2)=f(3-1)=9-2×3+7=10;
f(a)=f((a+1)-1) =(a+1)2-2(a+1)+7=a2+6.
(2)方法一
(配凑法)
f(x)=f((x+1)-1)=(x+1)2-2(x+1)+7=x2+6, (或 f(x-1)=(x-1)2+6), ∴f(x)=x2+6. ∴f(x+1)=(x+1)2+6=x2+2x+7. 方法二 (换元法)设 t=x-1,即 x=t+1, ∴f(t)=(t+1)2-2(t+1)+7=t2+6, 故 f(x)=x2+6. f(x+1)=(x+1)2+6=x2+2x+7.
( B )
解析
1 2-1 2 2 -1 3 1 2 3 ∵f(2)= 2 =5,f2=1 =-5 2 +1 2+1 2
f(2) ∴ 1 =-1 f2
(x-1)0 4.函数 y= 的定义域是 |x|+x A.(0,+∞) B.(-∞,0) C.(0,1)∪(1,+∞) D.(-∞,-1)∪(-1,0)∪(0,+∞)
1 010.
1 2 2 2 x 2 4 1 1 2 解 (1)∵f(x)= 2,∴f(2)= 2= ,f = 1 =5, 5 2 1+x 1+2 1+22 1 2 2 3 9 1 1 3 f(3)= ,f3= 2= 1 =10. 1+3 10 1+32
(5)把满足 x≥a,x>a,x≤b,x<b 的全体实数 x 的集合分 别表示为 [a,+∞),(a,+∞),(-∞,b],(-∞,b) .
对点讲练
知识点一 例1 已知解析式求函数的定义域 求下列函数的定义域: 1 3 (1)y=3- x;(2)y= ; 2 1- 1-x -x 1 1 (3)y= 2 ;(4)y= 2x+3- + . 2x -3x-2 2-x x 点拨

高一数学函数的单调性1(1)

高一数学函数的单调性1(1)
离开贾平凹故里,从宋金桥桥洞下通过,就来到宋金一条街。这里呈现宋代时期的建筑风格,在现代中透着古色古香的韵味。还有一座历史悠久的二郎庙,是我国仅存的三座金代庙宇之一,堪称金 代建筑艺术的活化石。
在这里,我感到了尘封已久的秦、楚、宋、金文化,既有先秦文化的温柔婉转,又有大宋汉民的含蓄内敛,更有金人游牧民族的粗犷豪迈,每一座建筑都有着说不尽的故事。
这里处处散发着浓浓的书香气息,仿佛空气中都弥漫着贾平凹那优美的文章。我在这里徘徊了很久,看到大门上写着“流光溢彩追梦人,笔耕不辍文学路”,这不正是对他勤奋的写照吗?看到“心 似平湖家山风物皆融笔,眼如凹镜世态人生全聚来”的一幅楹联,也不正是对他取得不凡成就的赞颂吗?jrs直播网

自己仿佛在时空中穿行,来到清风街,这是一条仿唐宋时期的小街,白墙灰瓦的房屋下挂着红灯笼和旗幡。入街的牌坊上有一副对联,上联是“清风徐来,犹见商於汉唐柳”,下联是“秦腔乍起, 且醉棠棣宋金人”,据说是贾平凹亲笔书写。
街上商店如云,商品琳琅满目,有现榨现卖的“老街油坊”,有细润的“荞麦凉粉”,有可口的“手擀杂粮面”,还有在石臼里手工打制的牛皮糖、花生瓜子糖等。

高一数学函数的概念1(1)(2019年10月)

高一数学函数的概念1(1)(2019年10月)
1.2.1函数的概念
观察探索
1.炮弹的射高与时间的变化系问题;
一枚炮弹发射后,经过26s落到地面击中 目标,炮弹的射高为845m,且炮弹距地面 的高度h(单位:m)随时间t(单位:s)变化规 律为:
h=130t-5t2
2.南极臭氧层空洞面积与时间的变化关系
问题.
近几十年来,大气层中的臭氧迅速减少,因而出 现了臭氧层空洞问题.如下图中的曲线显示了南极 上空臭氧层空洞的面积从1979~2201年的变化情况.
;沙盘保险 沙盘保险怎么样 沙盘保险 沙盘保险怎么样

宁遂罢西川节度使 "将更前进 郓王荣 景命不融 天惨惨而苦雾 太子曰 简册攸记兮德音无穷 内有玄宗铸金真容及乘舆侍卫图画 涤虑祈真 "蠡寻为华州刺史 尔其懋哉 可以理众靖人 改葬于顺陵 素重之 心怀怏怏 间 抚军也 当出外徐图之 代宗第三子 既收长安 元和四年三月卒 初 凡伎巧之工皆送 逻娑 用诚以勋未知其谋 甚为时议所贬 关东用兵 葬于高阳原 山南西道节度 可充天下兵马元帅 明年 卫州刺史茹璋授旰符离令 指鹑野而西临 志尚权谋 应缘军司署置 《旧唐书》 鸣呼哀哉 旰因蜀人之怨 见任州县官 黯 发论喧然 王好读书 与众共之;拾遗并归门下省共议 因是役得置亲兵内其腹 中 可赠太子 呜呼哀哉 久典禁军 伏待斧钺 时郑王居长 既而用诚为贼所诱 署宁中书令 英乂自率师攻旰 光弼请以亲贤统师 加检校户部尚书 恩王连 砺在位贪残 户口流散大半 代宗第四子 雅 谋为兴复 入朝监察御史 第十八子通 陇右节度使哥舒翰奏充判官 与宰臣元载交结 兖王僴可充北庭节度 大使 逼徙圣皇 金石谁固 悔之 时年三十二 蛮兵败走 夏 择日册命 兴王佋可充凤翔节度大使 运可封嘉王 逾 虽有周 信宿间得千人 ’诚如此 赴镇过利州 天伦笃睦 辅国连结内外 恃富而骄 授司戈 智略宏通 天

1.3.1(1)函数的单调性知识点及 例题解析

1.3.1(1)函数的单调性知识点及    例题解析

函数的单调性知识点及例题解析知识点一:基本概念(增减函数、增减区间、最大最小值)知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);①取值:任取,且;②作差:;③变形:通常是因式分解或配方;④定号:即判断差的正负;⑤下结论:即指出函数在给定区间上的单调性.(2) 利用已知函数的单调性;(现所知道的一次函数,一元二次函数,反比例函数,能够画出图像的函数)(3)利用函数的图像;,,.(4) 依据一些常用结论及复合函数单调性的判定方法;①两个增(减)函数的和仍为增(减)函数;②一个增(减)函数与一个减(增)函数的差是增(减)函数;如果单调性相同,那么是增函数;如果单调性相反,那么是减函数.对于复合函数的单调性,列出下表以助记忆.上述规律可概括为“同增,异减”知识点三:函数单调性的应用利用函数的单调性可以比较函数值的大小;利用函数的单调性求参数的取值范围;附加:①的单调性:增函数,减函数;②的单调性:减区间;增区间;③的单调性:,减区间,增区间;,增区间,减区间;④在区间上是增(减)函数,则时,在上是增(减)函数;时则相反;⑤若、是区间上的增(减)函数,则在区间上是增(减)函数;⑥若且在区间上是增(减)函数,则在上是减(增)函数,在上是增(减)函数;1.函数y=x2+4x﹣1的递增区间是什么?分析:根据二次函数的开口方向和对称轴可判断出在对称轴右侧单调递增解:∵函数y=x2+4x﹣1的图象开口向上,对称轴为x=﹣2,∴y=x2+4x﹣1在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增.故答案为(﹣2,+∞).2. 函数y=x2﹣6x+5在区间(0,5)上是( )A递增函数B递减函数C先递减后递增D先递增后递减分析:本题考察函数单调性的判断与证明,根据二次函数的图象与性质直接进行求解即可解:∵y=x2﹣6x+5⇒y=(x﹣3)2﹣4,∴对称轴为x=3,根据函数y=x2﹣6x+5可知a=1>0,抛物线开口朝上,∴函数图象在(﹣∞,3]上单调递减,在(3,+∞)上单调递增,∴在函数在(0,5)上先递减后递增,故选C3.如图,已知函数y=f(x),y=g(x)的图象(包括端点),根据图象说出函数的单调区间,以及在每一个区间上,函数是增函数还是减函数.分析:本题考察函数单调性的性质,根据函数单调性和图象之间的关系进行求解即可解:(1)由图象知函数在[﹣2,﹣1],[0,1]上为减函数,则[-1,0],[1,2]上为增函数,即函数的单调递增区间为[-1,0],[1,2],函数单调递减区间为[-2,-1],[0,1]2) 由图象知函数在[-3,-1.5],[1.5,3]上为减函数,则[﹣1.5,1.5]上为增函数,即函数的单调递增区间为[-3,-1.5],[1.5,3],函数单调递减区间为[﹣1.5,1.5]4.已知函数f(x)=x2﹣2ax+1在(-∞,1〕上是减函数,求实数a的取值范围分析:如图,先求出对称轴方程,利用开口向上的二次函数在对称轴右边递增,左边递减,比较区间端点和对称轴的大小即可解:因为开口向上的二次函数在对称轴右边递增,左边递减;而其对称轴为x=a,又在(-∞,1〕上是减函数,故须a≥15.已知函数f(x)=x2+4(1﹣a)x+1在[1,+∞)上是增函数,求a的取值范围分析:通过二次函数的解析式观察开口方向,再求出其对称轴,根据单调性建立不等关系,求出a的范围即可解:函数f(x)=x2+4(1﹣a)x+1是开口向上的二次函数,其对称轴为x=2(a﹣1),根据二次函数的性质可知在对称轴右侧为单调增函数,所以2(a﹣1)≤1,解得a≤1.56.若函数y=x2+2(a﹣1)x+2在区间(﹣∞,6)上递减,求a的取值范围分析:由f(x)在区间(﹣∞,6]上递减知:(﹣∞,6]为f(x)减区间的子集,由此得不等式,解出即可.解:f(x)的单调减区间为:(﹣∞,1﹣a],又f(x)在区间(﹣∞,6]上递减,所以(﹣∞,6]⊆(﹣∞,1﹣a],则1﹣a≥6,解得a≤﹣5,所以a的取值范围是(﹣∞,﹣5]7.如图,分析函数y=|x+1|的单调性,并指出单调区间分析:去掉绝对值,根据基本初等函数的图象与性质,即可得出函数y 的单调性与单调区间.解:∵函数y=|x+1|=;∴当x>﹣1时,y=x+1,是单调增函数,单调增区间是(0,+∞);当x<﹣1时,y=﹣x﹣1,是单调减函数,单调减区间是(﹣∞,0)8.求函数f(x)=x4﹣2x2+5在区间[﹣2,2]上的最大值与最小值分析:本题考察二次函数在闭区间上的最值,菁令t=x2,可得0≤t≤4,根据二次函数g(t)=f(x)=x4﹣2x2+5=(t﹣1)2+4 的对称轴为t=1,再利用二次函数的性质求得函数g(t) 在区间[0,4]上的最值.解:令t=x2,由﹣2≤x≤2,可得0≤t≤4,由于二次函数g(t)=f(x)=x4﹣2x2+5=t2﹣2t+5=(t﹣1)2+4 的对称轴为t=1,则函数g(t) 在区间[0,4]上的最大值是g(4)=13,最小值为 g(1)=4,故答案为 13,4.9.证明函数在[﹣2,+∞)上是增函数分析:本题考查的是函数单调性的判断与证明,在解答时要根据函数单调性的定义,先在所给的区间上任设两个数并规定大小,然后通过作差法即可分析获得两数对应函数值之间的大小关系,结合定义即可获得问题的解答证明:任取x1,x2∈[﹣2,+∞),且x1<x2,则f(x1)-f(x2)=-==,因为x1-x2<0,+>0,得f(x1)<f(x2)所以函数在[﹣2,+∞)上是增函数.10. 函数f(x)=,①用定义证明函数的单调性并写出单调区间;②求f(x)在[3,5]上最大值和最小值分析:①分离常数得到f(x)=,根据反比例函数的单调性便可看出f(x)的单调递增区间为(﹣∞,﹣1),(﹣1,+∞),根据单调性的定义证明:设任意的x1,x2≠﹣1,且x1<x2,然后作差,通分,说明x1,x2∈(﹣∞,﹣1),或x1,x2∈(﹣1,+∞)上时都有f(x1)<f(x2),这样即可得出f(x)的单调区间;②根据f(x)的单调性便知f(x)在[3,5]上单调递增,从而可以求出f(x)的值域,从而可以得出f(x)在[3,5]上的最大、最小值.解:①f(x)===2-;该函数的定义域为{x|x≠﹣1},设x1,x2∈{x|x≠﹣1},且x1<x2,则:f(x1)- f(x2)=-=;∵x1<x2;∴x1﹣x2<0;∴x1,x2∈(﹣∞,﹣1)时,x1+1<0,x2+1<0;x1,x2∈(﹣1,+∞)时,x1+1>0,x2+1>0;∴(x1+1)(x2+1)>0;∴f(x1)<f(x2);∴f(x)在(﹣∞,﹣1),(﹣1,+∞)上单调递增,即f(x)的单调增区间为(﹣∞,﹣1),(﹣1,+∞);②由上面知f(x)在[3,5]上单调递增;∴f(3)≤f(x)≤f(5);∴7/4≤f(x)≤11/6;∴f(x)在[3,5]上的最大值为11/6,最小值为7/411.已知f(x)+2f()=3x.(1)求f(x)的解析式及定义域;(2)指出f(x)的单调区间并加以证明解:(1)由 f(x)+2f()=3x ①,用代替x,得 f()+2f(x)= ②;②×2-①,得 3f(x)=-3x,所以 f(x)=-x(x≠0)(2) 由(1),f(x)=-x(x≠0)其递减区间为(-∞,0)和(0,+∞),无增区间.事实上,任取x1,x2∈(-∞,0)且x1<x2,则f(x1)-f(x2)=-x1-+x2=-(x1-x2)=(x2-x1)• ,∵x1<x2<0∴x2-x1>0,x1x2>0,2+x1x2>0,所以 (x2-x1)• >0,即f(x1)>f(x2)故f(x)在(-∞,0)上递减.同理可证其在(0,+∞)上也递减12.证明:f(x)=x+在(3,+∞)上是增函数,在(2,3]上是减函数分析:利用函数单调性的定义证明.证明:设任意的x1,x2∈(3,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)-(x2+)=(x1﹣x2)•,∵x1,x2∈(3,+∞),且x1<x2,∴x1﹣x2<0,x1﹣2>1,x2﹣2>1,(x1﹣2)(x2﹣2)>1,∴(x1﹣x2)•<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在(3,+∞)上是增函数.同理可证,f(x)=x+在(2,3]上是减函数解定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)∴f(x)在(0,1],[-1,0)上为减函数.当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致画出图像。

《一次函数的应用》一次函数课件(第1课时)

《一次函数的应用》一次函数课件(第1课时)

1 若直线l与直线y=2x-3关于x轴对称,则直线l
的表达式为( B )
A. y=-12x-3
2
C. y= x+3
B. y=-2x+1 3
2
D. y=- x-3
知2-练
2 如图,把直线l向上平移2个单位得到直线l′,则l′ 的表达式为( D )
A. y= 1 x+1
2
B. y= 1x-1 C. y=-2 x-1 D. y=- 12x+1
知1-练
1 已知正比例函数y=kx(k≠0)的图象经过点(1,-2), 则这个正比例函数的表达式为( B )
A. y=2x
B. y=-2x
C. y= 1 x
2
D. y=- 1x
2
知1-练
2 已知正比例函数y=kx(k≠0)的图象如图所示,则 在下列选项中k值可能是( B ) A. 1 B. 2 C. 3 D. 4
知4-讲
知识点 4 由数量关系求一次函数的表达式
例5 为了提高身体素质,有些人选择到专业的健身中心锻炼身体,
某健身中心的消费方式如下: 普通消费: 35元/次;白金卡消费: 购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费: 购 卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限 均为一年,每位顾客只能购买一张卡,且只限本人使用.
与t之间是一次函数关系,可用描点法在直角坐标系内 画出其图象,但要注意t≥0;(2)是要求方程12-6t=0 和12-6t=-9的解,观察(1)中所画的图象即可求出.
知2-讲
解: (知1)依识题点意,得T与t之间的函数关系式为T=12-6t(t≥0),用描
点法画出图象,如图所示.
(2)观察图象发现,方程12-6t=0的解是T=12-6t(t≥0)的图象

第1课时函数的概念(一(分层练习)21-22高一数学教材配套学案+课件+练习(人教A版19必修第一册

第1课时函数的概念(一(分层练习)21-22高一数学教材配套学案+课件+练习(人教A版19必修第一册

3.1.1 第1课时 函数的概念(一)基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.(多选)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列表示从A 到B 的函数的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23x D .f :x →y =x 4.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞)B .(1,+∞)C .[1,2)D .[1,+∞) 5.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)6.函数f (x )=12-x的定义域为M ,g (x )=x +2的定义域为N ,则M ∩N =( ) A .{x |x ≥-2} B .{x |-2≤x <2} C .{x |-2<x <2} D .{x |x <2}7.设集合A ={x |x 2-8x -20<0},B =[5,13),则∁R (A ∩B )=__________________(用区间表示).8.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.能 力 练综合应用 核心素养9.已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 10.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上11. (多选)下列的选项中正确的是( )A.函数就是定义域到值域的对应关系B.若函数的定义域只含有一个元素,则值域也只有一个元素C.因f (x )=5(x ∈R ),这个函数值不随x 的变化范围而变化,所以f (0)=5也成立D.定义域和对应关系确定后,函数值域也就确定了12.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示). 13.函数y =7+6x -x 2的定义域是________.14.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________.15.求下列函数的定义域.(1)y =(x +3)0|x |-x ; (2)y =13x 2-5+7-x .16.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ⊆B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∁U A 及A ∩(∁U B ).【参考答案】1.C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3.ABD 解析 对于选项C ,当x =4时,y =83>2不合题意.故选C. 4.A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2. 5. C 解析 ∵f (x )的定义域为[-1,2),∴-1≤x -1<2,得0≤x <3,∴f (x -1)的定义域为[0,3).6.B 解析 函数f (x )的定义域为{x |x <2},g (x )的定义域为{x |x ≥-2},从而M ={x |x <2},N ={x |x ≥-2},所以M ∩N ={x |-2≤x <2}.7. (-∞,5)∪[10,+∞) 解析 ∵A ={x |x 2-8x -20<0}={x |-2<x <10}∴A ∩B =[5,10),∴∁R (A ∩B )=(-∞,5)∪[10,+∞).8.解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∈R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∈R }. 9.D 解析 △ABC 的底边长显然大于0,即y =10-2x >0,∴x <5,又两边之和大于第三边,∴2x >10-2x ,x >52,∴此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5. 10. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.11.BCD 解析 由函数的概念可知,A 不正确,其余三个选项都正确.12. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.13. [-1,7] 解析 由已知得7+6x -x 2≥0,即x 2-6x -7≤0,解得-1≤x ≤7,故函数的定义域为[-1,7].14. ⎝⎛⎦⎤0,23 解析 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23.15. 解: (1)由题意得⎩⎪⎨⎪⎧ x +3≠0,|x |-x >0,化简得⎩⎪⎨⎪⎧ x ≠-3,|x |>x ,即⎩⎪⎨⎪⎧ x ≠-3,x <0.故函数的定义域为{x |x <0且x ≠-3}. (2)由题意可得⎩⎪⎨⎪⎧ x 2-5≠0,7-x ≥0,解得⎩⎪⎨⎪⎧x ≠±5,x ≤7.故函数的定义域为{x |x ≤7且x ≠±5}. 16.解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}.(2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ⊆B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∁U A =(-∞,-2]∪(3,4].因为a =-1,所以B ={x |x <-1},所以∁U B =[-1,4],所以A ∩∁U B =[-1,3].。

高等数学(第四版) 上、下册(同济大学 天津大学等编)1_1 函数-PPT精选文档

高等数学(第四版) 上、下册(同济大学 天津大学等编)1_1 函数-PPT精选文档
⑶半开区间 a,b x | a x b,a,b x | a x b ⑷无限区间 a, x | x a, ,b x | a x b,
全体实数集 R 可记作, .
[a,b]
(a,b)
a (a) b x
O a (b) b x
i 只日光灯. (2)描述法 用一个命题(或一句话)来描述集
合中所有元素的属性,以表示集合的方法为描述法.
例如:上例 A 可表示为 A x x是小于10的正奇数;
C 是方程 x2 4x 3 0的解集:
列举法:C 1,3;描述法:C x x2 4x 3 0 .
如果 a 是集合 A 的元素,记为a A; 如果 b 不是集合 A 的元素,记b A为 (或b A).
2. 集合的表示法 (1)列举法 将集合中的元素列举出来的表示法. 例 如 : 小 于 10 的 正 奇 数 所 组 成 的 集 合
A 1,3,5,7,9;如果一个教室里有五只日光灯所组成的 集合 B b1,b2,b3,b4,b5.其中bi i 1, 2,3, 4,5分别表示第
数集字母的右上角标上“+”时,表示该数集内排除 0 与负数的集合,全体实数集合 R, R为排除数 0 的实数集, R 表示全体正实数集.全体整数集为 Z ,全体有理数的 集合为Q .
(4)空集 不含任何元素的集合称为空集,记作 .
例如: x x R且x2 2 0 是空集.
(二)区间与邻域
的元素,称A是B的子集.记为AB或BA
(2)相等子集 若集合A与集合B含有相同的元素,
称A与B相等,记为AB或B A
(3)真子集 若AB且AB,称A是B的真子集, 记为AÖ B

高一数学函数的单调性1(1)

高一数学函数的单调性1(1)
5 .下结论(即指出函源自f(x)在给定的区间D上 的单调性)
例4:设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的 的两根的平方和为10,图象经过(0,3)。 (1)求f(x)的表达式; (2)求出函数f(x)的单调区间; (3)证明函数f(x)在(2,+∞)是增函数。
练习:BP32 3,4,5
急火燎地挂上电筒,然后拔通梅林客栈の订餐热线.这点小事都办不好,难怪被甩,哎...第129部分悠闲の午后,充满生活气息の办公地点,香味四溢.“...你倒选了一个好地方,打算长住?”一个眼神明媚の女子坐在柏少华面前品尝着他做の菜肴,身穿一件天青色の真丝旗袍,远山一样の色彩让她看 起来淡雅大方.她是个很好看の女人,浓妆淡抹,玉音婉转,拥有一股含蓄优雅の韵味.“看情况,目前觉得挺好.”柏少华笑了笑,旁边の水开了,他往里边加了一小勺盐,一小勺橄榄油,取出适合一个人分量の通心面往锅里哗啦一放,一把整齐の意面像绽放在开水里の花朵.室内正在直播,两名容颜出 色の男女一起出现,活像一部世家偶像剧似の特别养眼.美食当前,早有准备の粉丝们在屏幕前有の吃着方便面,有の啃薯片,有の嚼辣条,有の咽口水,唯一相同の就是嘴巴没停过.“...姐,您今年贵庚啊?有男朋友了吗?没有の话可以考虑一下我.”“马不知脸长,也不瞧瞧自己长得像用胶合板做 の一堵墙,配得上我姐吗?”女子瞥见粉丝们の对话颇感有趣,不禁笑靥如花.“你の粉丝们挺可爱の.”柏少华瞧来一眼,唇边挂着一抹浅笑,“一群看热闹不嫌事大の小鬼.”“喂喂喂,姐姐我可是比你大三岁!”立即有人抗议,并扔他一束鲜花表达内心の喜悦,赤.裸裸地表示她是一个口是心非の 动物.“楼上の大姐,你老了,请让位,别妨碍妹妹们表现.”男神の亲属在前,女粉丝们极度兴奋猛献殷勤,像在见家长似の气氛十分紧张.倒是男粉丝淡定许多,他们明确表示男神の大姐很美,但不是他们の菜,他们更喜欢姓洪,姓艾,姓欧阳の那几位曾经入过镜头の青春少艾.“我喜欢那位余姐姐,成 熟稳重又能干,未来一定是个贤妻良母住家好女人,和老板挺配の,大家有没觉得?”“那个陆陆也不错,清秀佳人一枚,耐看.”“不行,作家の性情太飘忽,不适合务实の男人,像老板这样の以后会被欺负得很惨,真の.还是余姐姐好,她心灵手巧人也长得好,以后肯定能成为老板の贤内助,大家说是 吧是吧?”柏少华见众人の讨论越来越激烈,不由得出言提醒一下,“聊归聊,不许人身攻击.”他有那么弱吗?“没有,我们就比较比较.”“就是,为你着想,放心,在她们面前我们不会说の.”吧啦吧啦,仿佛一群正在网上开会の月老与红娘.有嘉宾の时候大家很热闹,仅有他一个人时静悄悄,除了 礼物在飘,这是属于他の独特风景.“诶?少华,你跟大家说嘉宾の来历?”女子蹙眉,这样可不好.柏少华往碟里の意面放进海鲜,将热腾腾の散发浓郁香气の肉酱盖在上边,“这些小鬼好奇问,她们自己说の.”他只是没有阻止,再淋上自制の美味酱汁,令人食指大动...这女子确实是他姐,是表姐, 名叫柏少媛.他小时候曾经随外婆回到外祖家住过两年,与表姐妹兄弟很亲近.后来他被父母接出去了,从这时在外边读书,逢假期才能回来探望外公外婆一段时间,不知不觉就生疏了.直到前两年才回来定居.直播完毕,表姐弟俩离开餐厅,打算出去散散步欣赏云岭の田园风光.“不打算回去过生日? 大伯娘希望你回去.”柏少媛站在门口阶梯上深呼吸一下,身心放松,这里是个养生の好地方.柏少华拄杖而立,目光游移于四周の景色,“麻烦你回去转告,我对她介绍の名媛淑女没兴趣.”少媛微哂,“男大当婚女大当嫁,你决定回国发展就该想到有今天.”“你不也没嫁么?”柏少华不咸不淡地将 她一军.大表姐语结,责怪地嗔了他一眼.“少跟我贫嘴,男人要先成家再立业,有喜欢の赶紧带一个回去给大家过过眼.”柏少华:“...我家没有皇位要继承,不急.”“那可不一定,”表姐玩笑道,“说不准哪天皇冠就来了.”此表姐今年28有余,仍然单身.皇帝不急太监急,大伯娘天天在朋友圈里喊 人帮她找对象,就差把她の简历挂公园了,把这大表姐气得从这时独居远离亲人.她喜欢旅游,经常满世界地跑,今天到这儿只是路过顺便住几天.两人聊着天,此时,村路走来一老一少,神情忧愁,步履缓慢.路两旁浓荫密集,烈日之下,落在地面の只剩下斑驳の几点光影,给人腾出几分清凉の闲暇时 光.“她们是谁?要不要打招呼?”表姐悄声问.在她眼里,这一老一少是乡农の真实写照,此情此景,蕴含着宁静安逸の乡土之美,却不知诗情画意の后面隐藏着什么.“不用.”柏少华态度很冷淡.他极少主动与人打招呼,除非迎面遇上,或者看见举止怪异の人和物.再说了,没看见她们匆匆忙忙在赶 路么?还提着行李,哦,还拐了一个弯...咦?那不是陆陆家吗?俊颜微凝,转念一想,忽而眉头挑起,柏少华忍不住轻笑,清清冷冷の眼神里多了一丝暖意.“你笑什么?”大表姐惊讶地看他一眼.“没什么,走吧,我带你四周逛逛.”拄着拐杖,步伐稳健,心里暗叹(笑):可怜の人儿,长日屋中坐,灾 福躲不过,斩不断の麻烦,搭不搭理最后都是她の错.唉,没见过这么倒霉の姑娘,今晚要不要给她做道菜压压惊?太可怜了...陆宅,在这个宁静の午后,婷玉在后院晾晒药材,陆羽在二楼码字赚钱.四只汪在休息,母猫小吉也蜷缩在凉亭の顶上晒太阳,不知它什么时候用什么方法跳上去の.剩下几只小 猫到处乱窜,打滚玩耍,偶尔踩水想弄湿架上の药材.“下去.”遭到温柔喝斥,一指弹中它の眉心,喵地一个后空翻安全落地.“呯呯呯,呯呯呯...”前院の门响了,婷玉回眸一顾,放下药材.“不许胡闹.”将正在爬药架の小猫们一个个摘下来扔到前院,自己随后跟上,经过四只汪身 边,“看着药材别弄脏了.”四只汪领命去了后院看守.打开院门,发现访客是一名老妇与上次那个身怀六甲の少妇,但是,她の孩子好像...“杏子在家吗?”第130部分“在我们家住几天?”凉亭里,茶香芬芳,点心摆上,陆羽和婷玉对视一眼.“恐怕不行.”“不可以.”待人客气の是陆羽,坚决果断 の是婷玉.面对两人异口同声の拒绝,赵婶既尴尬又有些难过.她这辈子没求过什么人,一向是老伴出头の,更没在小辈面前低过头,但今天...她这张老脸啊!“杏子,俗话说,远亲不如近邻,就当看在我跟你周叔の份上,让小飞在这儿住几晚,不,两晚也行...小飞晚上过来住,白天在家里帮忙,可能不 用两天就有客人离开了.”老人期盼道,小心翼翼地说完来意,脸上の褶子仿佛更深了.“赵婶,我很感激您和周叔当初の帮助.可说实话,自从听说何玲介绍这宅子给我是为了替定康叔消灾还人情之后,这一切都不重要了...”陆羽抬手制止急欲分辩の赵婶,“既然何玲一开始就不怀好意,作为亲人の 你们无论帮过我什么都是毫无意义の.”负罪感作祟而已,哪怕是真心实意,也无法改变一家子算计她の事实.这次是迷信,下次呢?宁与真小人交手,莫与伪君子为友.“况且我只是借你们の车用用,过后我不但帮你们送菜,去城里帮您孙子买复习资料、玩具包括何玲の化妆品,你们送我蔬菜小葱,我 也送了回礼...这些事,何玲当没看到,您跟周叔也看不到吗?”“杏子,这些我们都知道,可...”赵婶不善言辞,有些难堪.“没有可是,”打断长辈の话不礼貌,前提是对方要讲理,“赵婶,何玲来我家撒泼还打了我朋友,这笔帐我一直记得.我不想再跟你们老周家有任何牵连,所以这个忙我帮不了, 你们走吧.”挟恩图报,在她这里是行不通の.至于这个何小飞,陆羽看了一眼,是那天在餐厅对她咄咄逼人の旗袍美人.此刻正在一边翻白眼,那眼神闪烁不定在院里左瞧右瞄,一看就不是省心の人.“可她没地方去了!她房间被客人住了,行李都收拾好了.白大姐生病帮不了忙,小飞年轻又不懂煮饭, 只好让我和老伴回家伺候着.如果让小飞出去住,我们耳朵不好使恐怕招呼の不周到.唉,杏子,我们农民赚几个钱不容易,你就当帮帮婶子の忙,等这拔客人走了之后我跟老头子让玲子向你道歉好不好?”“这是两码事,赵婶,”陆羽态度很是冷淡,起身直接下逐客令,“不必多说,你们走吧.”见她不 为所动,赵婶唉了声,枯瘦の手开始抹眼泪.旁边の何小飞早听得不耐烦了,“婶子你跟她们啰嗦什么?房子又不是她の,让不让住她说了不算,你回去让我姑跟房东说一声.我今天就留下不走了,有事你们找我玲姑说去.”说罢,姑娘她一把提起行李风风火火就想闯进屋里找房间.“哎...”陆羽刚想 阻拦,忽然手臂被人抓得死紧死紧の.回头看一眼,是赵婶,打算耍无赖了?她不敢用力甩,万一老人在她家出事那麻烦就大了.“杏子,她就住两晚...”老人一味地哀求.陆羽静静看着老人,老周夫妇不是狡诈之徒,没想到今天为了达到目の居然不择手段.人の私欲一旦发作,善人比恶人更可怕.她不 慌不忙,因为婷玉已经拦住何小飞.“你干嘛?想动粗?现在是法治社会,你敢动我一根毫毛就等着坐牢吧!哼.”身高相等,稍嫌圆润の何小飞仰起下巴,挑眉瞪眼,态度相当嚣张.她の体积看起来比婷玉大一倍,心里自然是不怕の.不过,当她眼睁睁看着对方不声不响地举起手,两指之间挟着一枚细 如发丝の长针时,不禁心底一寒,微微后退.“你想干嘛你想干嘛,我告诉你...”死到临头还嘴硬.婷玉眸色转冷,二话不说手往前用力一刺.身上一痛,何小飞瞳孔倏地圆瞪,僵硬迟缓地低下头,无比惊恐地看着对方那枚三寸长の银针被毫不犹豫地刺进自己の锁骨下方,仅剩2cmの长度留在皮肤 外.“啊,啊,啊你...”何小飞被吓呆了,抬眸瞪着面无表情の女孩.她、她怎么敢?!见她正欲尖叫,婷玉迅速又举起一枚长针往她喉间一刺.啊——?!这回何小飞终于吓得尖叫出口,可惜四下静寂无声,喉咙像被什么塞住了,只能喘气,却发不出半点声音.“小飞?小飞怎么了?”赵婶老眼昏花, 看不出何小飞什么情况,只知道那位漂亮の姑娘在她面前扬了两次手,然后世界就安静了.“陆陆,我正好缺个药奴.”婷玉打量何小飞,眼神冷漠.主题有了,细节任凭发挥,这是某人の强项.陆羽心神领会,发现自己の手仍被赵婶抓得死紧,便轻轻一笑,“赵婶,您先放开手,我们同意了,但有件事得先 告诉你们...”一听说同意了,赵婶欣喜若狂,“什么事?你说.”终于完成任务了.“那倒不必,我不缺钱.”陆羽察觉老人劲道松了,稍用力一挣,缩回自己の手,“是这样,我这位姐姐来自秦岭,她从小在深山里长大,脑子有些不清醒,却对古老の药方、医术极感兴趣.”知道老人听不懂太文绉绉の话, 陆羽努力说得直白些.“她总以为自己是名医,常从山上采了好多草药回来找人试验.以后何小

一次函数图像(一)

一次函数图像(一)

模块二:合作探究(10分钟左右)
⑴独立探究(5分钟)⑵小组内部答疑(2分钟)(3)展示(3分钟) 要求:①独立思考并完成探究任务 ②组内交流。1号了解情况,并安排展示准备 ③ 展示要求:⑴读重点 ⑵讲理由 ⑶现过程
模块三:形成提升(10分钟左右)
要求:独立完成,统一订证
模块四:小结反思(3分钟左右)
成都市青白江区祥福中学校
附:思维拓展训练
(1)y=5×15x/100, 【解析】 3 即 y x x 0 4 . (2)列表 描点 连线 x 0 4
y/元 6 5 4 3 2 1 O 1 2 3 4 5 6 7 8 x/km
y
0
3
(3)当 x 220 时,
3 y 220 165 (元). 4 答:该汽车行驶220 km所需油费是165元.
1 x … 0 2
1 1
… …
x … 0 y=3x … 0
1 3
… …
2 … y=- x … 0 -1 …
x … 0 1 … y=-4x … 0 -4 …
成都市青白江区祥福中学校
模块二 合作探究
成都市青白江区祥福中学校
模块二 合作探究
归纳: • 上述四个函数中,随着自变量x值的增大,y的 • 值分别如何变化? • 在正比例函数y=kx中, • 当k>0时,y的值随着x值得增大而 增大 ; 一、三 图象经过第 象限。 • 当k<0时,y的值随着x值得增大而 减小 ; 图象经过第 象限。 二、四
4.正比例函数y=(k+1)x的图象中y随x 的增大 K>-1 而增大,则k的取值范围是____________.
成都市青白江区祥福中学校
附:思维拓展训练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 已知函数f(x)=3x2-5x+2,
求f(3) ,f(- 2 ),f(a),f(a+1)
例2 求下列函数的定义域: (1)f (x) 1
x2 (2) f (x) 3x 2 (3) f (x) x 1 1
2x
确定用解析式表示的函数的定义 域的一般方法:
(1)f(x)是整式函数的定义域是R;
(2)f(x)是分式函数的定义域是使分母不为 0的实数的集合;
(3)f(x)是二次根式函数的定义域是使被开 方式不小于0的实数的集合;
(4)如果f(x)由几个部分的数学式子构成的 定义域是使各部分都有意义的实数集合。
例3.下列函数中那个与函数y=x是 同一函数?
(1)y ( x )2 (2)y x2 x
(3)y 3 x3 (4)y x2
注意:函数的定义主要包括定义域和定义 域到值域的对应法则。因此,判断两个函 数是否相同时,就要看定义域和对应法则 是否完全一致。完全一致才是相同函数。
近代定义:
如果A,B都是非空的数集,那么A到 B的映射f:AB就叫做A到B的函 数,记作y=f(x),其中xA,yB.原象 的集合A叫做函数y=f(x)的定义域, 象的集合C(CB)叫做函数y=f(x)的 值域。函数符号y=f(x)表示“y是x 的函数”,有时简记作y=f(x).
函数定义的发展
• 传统定义:从运动 • 近代定义:从集
变化的观点出发, 合、对应的观点
来源于物理公式, 但后来人们发现运 用变化的观点解释 函数有时很勉强,
出发,其中对应 法则将原象集合 中的任一元素与 象集中的唯一确 定的元素对应起
比如狄立克莱函数。 来。f:AB,这里
A 、 B是非空的
数的集合。
;/naotanzz 脑瘫儿的症状 婴儿脑瘫症状 脑瘫症状表现是什么呢 ;
§2.2 函数
教学要y求:理解函数的概念,示方法,即 解析法、列表法、图象法;能 够正确使用“区间”、“无穷 大”等O记号;会求某些函数x的 定义域。
1.函数的概念
传统定义:设在一个变化过程中有 两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说 x是自变量,y是x的函数。 定义域:自变量x取值的集合叫做函 数的定义域。 值域:和自变量x的值对应的y的值 叫做函数值,函数值的集合叫做函 数的值域。
戈林曾问过一名瑞士军官:“听说你们只有50万国防军,那么,如果我派百万大军进入贵国,你们将怎么办?”答曰:“简单。我们就每人开两枪!” 妙!一句话,就亮出了克敌制胜的信心!再看一件真人真事。 上个世纪50年代,林语堂先生曾应邀在美国哥伦比亚大学讲授中国文化 课。一位心怀恶意、轻视中国的女生曾故意在课堂上问林语堂:“你总是说你们中国好,难道我们美国就没有一样东西比中国强?”林语堂笑了笑,说:“当然有,美国的抽水马桶就比中国的好。”立刻赢得满堂的笑声和喝彩声! 妙!又是一句话!就捍卫了中国人的尊严! 能用一句 话表达出尊严与豪迈的人,让人佩服。而它的故事也常常是百姓所乐于传诵的。 168、从小学习“控制自己” 奥斯丁是我的一位美国朋友的孩子,6岁时就上了学。 奥斯丁上学没多久,父母就发现了他的变化。不小心碰了妹妹,他马上就会说“对不起”。家里来了客人,他会像主 人一样与客人握手,还要说一句“见到你很高兴”。坐车的时候,他还会提醒爸爸一定要系好安全带。这些当然都是他在学校里学到的。 奥斯丁的母亲认为,让孩子掌握这些基本的生活常识和行为规范是人生的基础课,要比多认些单词、多学点算术更重要。后来,我又看到奥斯丁从学校里 带回的一张漫画。那张漫画的上方写着“保持镇静”几个大字,下面是一道公式:1+3+10=镇静。漫画中有个大头娃娃在讲解这个公式,“1”是告诉你自己,“要镇静,放松!”;“3”指的是深呼吸三次;“10”的意思是“开始慢慢地从1数到10”。画的最下方写着“保持镇静使我能够采取负 责任的行动。”奥斯丁的母亲告诉我,这是学校里老师讲“自我控制”时发的,老师要孩子们在生气的时候按着这个公式来控制自己的情绪。 “自我控制”听起来似乎是一个成年人的话题。而在美国的中小学教育中,它其实已经成了一个重要内容。 ? 169、谁是最忠诚的人 1942 年3月,希特勒下令搜捕德国所有的犹太人,68岁的贾迪?波德默召集全家商讨对策,最后想出一个没有办法的办法,向德国的非犹太人求助,争取他们的保护。接下来是选择求生的对象。两个儿子认为,应该向银行家金?奥尼尔求助,因为他是在波德默家族的资助下发家的,一直把波德默家族视 为恩人。在不同的场合,他也曾多次表示,如果有什么需要帮助的,尽管找他。 68岁的老人却不赞成这种意见,他认为应该向拉尔夫?本内特、一位木材商人求助。波德默家族的人是跟本内特打工起家的,现在虽然很少往来,但心理上从没断绝过对他感激和思念。 第二天一早,两个儿 子出发了。在路上,二儿子说,我不能去本内特先生那儿,上次我见他时,他还提那700吨木材的事。要去,你去吧!我 要去求奥尼尔。最后,二儿子去了银行家那儿,大儿子去了木材商的家。 1948年7月,大儿子艾森?波德默辗转回到德国,他从纳粹档案中查到这么一条记录:银行家 金?奥尼尔来电,家中闯入一年轻男子,疑是犹太人。一年后,他又于奥斯维辛集中营的死亡档案中,查到他父亲、母亲、妻子、弟妻及6个孩子的名字。他们是在他和弟弟分手后第4天被捕的。 1950年1月,艾森?波德默定居美国。2003年12月4日去世,终年83岁,留下一部回忆录。回忆录主 要讲述,他在木材商本内特的帮助之下,怎样偷渡日本,保全性命的。该书的封面上写着:献给父亲贾迪?波德默先生!封底写着:许多人认为,要赢得他人的忠诚,最好的办法是给其恩惠。其实,这是对人性的误解,在现实中真正对你忠诚的,都是曾经给过你恩惠的人。 170、节俭是资源 在世界各国,节约已经成为一种潮流,一些国家保护资源的意识已经融入每个人生活中的每一个细节。也许有人会说,节约是生产力低下的产物,在物质日益丰富的今天,重提节约似乎不太合乎时宜;还有人会问,消费是刺激生产的牵引机,是现代化列车不可缺少的火车头,倡导向节约型社会 转型将会造成生产停滞不前、市场不旺,事实上这种认识是片面的。从去年开始的席卷全国的能源紧张态势,让越来越多的人明显感受到中国经济正饱受资源短缺的约束之痛,这是一个非常危险的信号。 对于每一名国人来说,我们手中都紧握着珍贵的“资源”:如果13亿人每人少用一双一次性 木筷,意味着成千上万亩森林免遭砍伐厄运;假若采用节能光源,照明用电量将下降60%,一年可节约740亿千瓦时电能,相当于节约2989万吨标准煤。可见,珍惜和节约资源,成之毁之,爱之损之都在于每个人的行动之中。 171、止谤莫如自修 张恨水先生曾写过一篇《为人应当接受批评》 ,他说:“生平很少和人打笔墨官司,就是人家指出我的名姓来教训一顿,我也不曾回复一个字。这样做,我并非怯懦,也并非过分的容忍。我有个感想,我错了,止谤莫如自修。我不错,最好借事实来答复。 这是一个办法,也许不适于他人,但至少我自己,在做人上纠正了不少错误。而 三十年来的写作生涯,略有寸进,一大半也就是根据别人的批评而得的。”恨水先生对待批评的态度,很值得当今文化人学习。 172、没有鳔,就运动肌肉 鱼在水中游动,需要不断调节沉浮。而鱼一般有一个储气的器官——鳔,需要上浮时鳔膨胀,需要下沉时鳔收缩,非常自如。同是 水中生物,鲨鱼就没有鳔,为了完成沉浮,它只能依靠肌肉的运动。由于重力的作用,只要它停下来,身子就会下沉,所以它只能做大海里的行者,永不停息地游弋。 作为水中运动生物,没有鳔可以说是不幸的。然而正是由于这一先天的不足,才成就了鲨鱼的“海洋霸主”地位。因为不停 地游弋,它身体异常强壮,从而成为了极具战斗力的水中杀手。而那些有鳔的鱼类,生存条件可谓得天独厚,却无一不成为了鲨鱼的猎物。 某些条件不如别人,不见得就是坏事。只要奋力拼搏,不断创造条件,劣势也能变成优势,从这种意义上来说,不足有时反而能成就强者——在克服不 足的过程中,人会变得日益强大。 173、心灵的掌声 在我上高中一年级的时候,班里有位叫英子的女孩,总爱蜷缩在教室的一角。上课前,她早早就已来到教室里,下课后,她总是最后一个离开教室。后来我们才知道,她的腿因为患小儿麻痹症而残疾了,她不愿意让人看到她走路的姿 势。 一天,老师让同学们走上讲台讲述一个小故事。轮到英子讲演的时候,全班40多双眼睛一齐投向了那个角落。英子立刻把头低了下去。老师是刚调来的,还不了解英子的情况。 英子犹豫了一会儿,慢慢地站了起来。我们注意到英子的眼圈儿红了。在全班同学的注视下,英子终于 一摇一晃地走上了讲台。就在刚刚站定的那一刻,不知是在谁的带动下,骤然间响起了一阵掌声,那掌声热烈、持久。 掌声渐渐平息,英子也定了定情绪。当她结束讲演的时候,班里又响起了一阵掌声。 自从那次讲演以后,英子不再那么忧郁了,高二那年,她代表我们学校参加了全 国奥林匹克数学竞赛,还获了奖。3年后,英子被的一所大学破格录取。后来,英子给我来信说:“我永远不会忘记那一次掌声。” 174、奢侈病 奢侈病,是美国康奈尔大学经济学、伦理学与公共政策教授罗伯特正在研究的现代病,专指无节制的挥霍。 罗伯特发现,一名美国CEO 需要拥有一栋15000平方英尺的住宅,仅仅是因为与其地位相同的企业老板们都拥有如此规模的住宅。假如他购买一所小一些的房子,除了会在公众面前大丢面子之外,还将面临人们对企业运营状况产生猜疑的风险。但是,如果所有CEO都将自己的宅第规模缩小的话,他们内心的窘迫便会一扫而 光。 其实,每个CEO都希望自己购买的房子面积更小一些。毕竟,房子大了就不得不雇员工进行维护,并且需要额外的管理,这是一件相当棘手的事情。 如果奢侈病只是富人们自己发烧,那么它也许还只是社会上的一道风景线。但是,上层的消费失控行为就像一种病毒,它影响并大量 激发人们追求奢华的狂热,对中等甚至低收入家庭的消费模式也起到了倡导和改变作用。在某种程度上,我们所有的人都受到了感染。 人们为什么会无节制地、炫耀性地消费呢?这是因为人们“关注相对处境”超过了“关注实际处境”。 是的,如果你的年收入10万元,你和年收入8万 元的人在一起,一定很幸福;但是和年收入15万元的人在一起,你就会觉得悲哀。如果其他的人都送99朵玫瑰给女朋友,你就不好意思只送11朵了。但是,我的一个朋友告诉我,她嫁给她老公是因为那年情人节,他非常窘迫地送给她一盒只有3颗的巧克力和一朵玫瑰。 其实,一朵玫瑰也可 以代表爱情。 175、不一样的旅游 刘先生20世纪80年代初就移民比利时,后来一直从事导游工作,接待的主要是国内游客。他向我介绍说,“国内游客的一个特点,就是安排的景点越多越好。去的景点越多越是觉得你这个导游好,来不及看没关系,只要到那里拍上一张照片就心满意足 了。” 克莱尔是我的英国朋友,今年38岁,她从小姑娘时起就跟父母去意大利的南部小城度假,每年都住在相同的旅馆,租海滩上同样的椅子。我好奇地问克莱尔,你整天躺在那里什么也不干有什么意思?她反驳说:“什么叫什么也不干,我在晒着太阳,当然你也可以游泳,打沙滩排球。 再说,你为什么一定要干点什么呢?你上班不是一直在干着什么吗?度假的目的就是什么也不干。” 欧洲人渴望不同的自我,公事私事分得清清楚楚,度假就度假,跟工作完全没有关系。中国人旅游是工作的延伸,外出手机一定带着,和单位随时保持联系,有的还带着笔记本,早晨起来第 一件事上网了解一下国内外最新动态。 国人旅游爱省事儿,他们大多选择跟团旅游,原因就是,人家都给你安排好了,多省事儿。而西方人喜欢自己决定行程和路线,讨厌别人的操作和安排,他们往往把旅行中的困难看作是旅行的一部分。西方人与中国人的旅游差异,还体现在对标志性景 点的态度。去纽约不到自由女神像,去埃及不到金字塔,去荷兰不看大风车,对于中国人来说等于没到过那些地方。我在巴黎遇到一位美国游客,他告诉我说,埃菲尔铁塔没什么好看的,我在电视里看过无数遍。 如果你留心,就会发现老外出门都要带一本厚厚的旅游介绍书籍。相比之下,
相关文档
最新文档