气体动理论

合集下载

气体动理论

气体动理论
(答案:前者是由于分子碰撞次数增加导致,后者是由于运动 加剧导致)
2.两种不同种类的理想气体,压强相同,温度相同,体积不同, 试
问单位体积内的分子数是否相同?
(答案:相同)
3.两瓶不同种类的气体,分子平均平动动能相同,但气体的分 子数密度不同,试问他们的压强是否相同? (答案:不同)
4.两瓶不同种类的气体,体积不同,但温度和压强相同,问气体 分子的平均平动动能是否相同?单位体积中的分子的总平动 动能是否相同?方均根速率是否相同?(答案:相同,相同,不同)
2. 理想气体的内能包括哪些? 理想气体的内能=所有气体分子动能量的总和;
3. 内能与机械能有什么区别?
机械能可以为零,而内能永不为零。
一摩尔理想气体的内能:
Emol N
i KT i RT
2
2
M千克理想气体的内能: E M i RT i vRT
M mol 2
2
问题:
1.三个容器内分别储有1mol氦气(He),1mol氢气(H2),1mol氨 气(NH3)( 三种气体均 视为刚性分子的理想气体),若它们的 温度都升高 1K , 则三种气体内能的增加分别是多少? (答案:12.5J, 20.8J, 24.9J) 2.写出下列各量的表达式:
(2) 分子沿各个方向运动的机会是均等的,没有任何一个 方向上气体分子的运动比其它方向更占优势。即沿着各 个方向运动的平均分子数应该相等;
(3) 分子速度在各个方向的分量的各种平均值相等。
五、气体动理论的统计方法 (statistical metheds)
用对大量分子的平均性质的了解代替个别分子的 真实性质。对个别分子(或原子)运用牛顿定律求 出其微观量,如:质量、速度、能量等,再用统计的 方法,求出大量分子关于微观量的统计平均值,并 用来解释在实验中直接观测到的物体的宏观性质, 如:温度、压强、热容等。

气体动理论

气体动理论

每个分子的速度指向任何方向的概率是一样的。
∑ni vxi ∑ vx = i ni
i
vx = vy = vz = 0
∑n v2 i xi
∑ v
2 x
=
i
ni
i
v
2 x
=
v
2 y
=
vz2
=
v2 3
二、理想气体压强公式的推导
1. 压强宏观意义
p= F S
F S
2. 气体压强微观意义
气体压强等于气体对单位面积器壁的压力,气体对容器壁 的压力是气体分子对器壁频繁碰撞的总的平均效果。
理想气体的压强∗∗ 温度的微观意义∗∗ 能量均分定理∗∗ 麦克斯韦速率分布律∗∗
§ 理想气体的压强
一、理想气体的微观模型 T不变 PV = C
理想气体:在各种压强下都严格遵守玻意耳定律的气体。 1. 对单个分子的力学性质的假设
分子当作质点,不占体积; 分子之间,分子和器壁之间无相互作用,但可 以通过碰撞交换能量动量 ; 弹性碰撞(能量动量守恒); 分子运动服从牛顿力学。
pV = m RT M
pV =ν ⋅ RT
R为普适气体常数
R = p0Vm,0 = 1.013 × 105 × 22.4 × 10−3
T0
273.15
= 8.31(Jmol⋅K)
若写成 ν = N
NA
N为气体分子总数
N A = 6.023 × 1023 / mol 阿伏伽德罗常量
pV = μ N RT = N R T
εk
=
5 2
kT
E 转动
=
1 2
J
ω2
xx
+
1 2

大学物理气体动理论

大学物理气体动理论

气体分子之间的相互作用力产生的势能, 由于气体分子之间的距离非常大,因此气 体分子的势能通常可以忽略不计。
分子动理论的基本假设
分子之间无相互作用力
气体分子之间不存在相互作用的力,它们之间只 存在微弱的范德华力。
分子运动速度服从麦克斯韦分布
气体分子的运动速度服从麦克斯韦分布,即它们 的速度大小和方向都是随机的。
分子碰撞的统计规律
分子碰撞的随机性
01
气体分子之间的碰撞是随机的,碰撞事件的发生和结果都是随
机的。
分子碰撞频率
02
单位时间内分子之间的碰撞次数与分子数密度、分子平均速度
和分子碰撞截面有关。
碰撞结果的统计规律
03
碰撞后分子的速度方向和大小的变化遵循一定的统计规律,可
以用概率密度函数来描述。
热现象的统计解释
大学物理气体动理论
• 引言 • 气体动理论的基本概念 • 气体动理论的基本定律 • 气体动理论的统计解释 • 气体动理论的应用 • 结论
01Biblioteka 引言主题简介气体动理论
气体动理论是通过微观角度研究气体 运动状态和变化的学科。它以分子运 动论为基础,探究气体分子运动的规 律和特性。
分子模型
气体动理论中,将气体分子视为弹性 小球,相互之间以及与器壁之间发生 弹性碰撞。通过建立分子模型,可以 更好地理解气体分子的运动特性。
对未来研究的展望
随着科学技术的发展,气体动理 论仍有很大的发展空间和应用前
景。
未来研究可以进一步探索气体分 子间的相互作用和气体在极端条 件下的行为,例如高温、高压或
低温等。
气体动理论与其他领域的交叉研 究也将成为未来的一个重要方向, 例如与计算机模拟、量子力学和

大学物理-气体动理论

大学物理-气体动理论
为漏气,经过若干时间后,压力降到原来的 5 8 ,温度降到 270c。
求: (1) 容器的容积,
(2) 漏去了多少氧气?
解: (1)
pv M RT
VM P RT8.21(升)
(2) 设漏气后的压力、温度、质量分别为 p' T' M'
p'V M' RT'
M' p'V0.06K 7 g
RT'
M 0 .1 0 0 .0 6 0 .0 7 K 3 3 g
平衡态: 在不受外界影响的条件下,一个系统的宏观性质不随时间
改变的状态。热动平衡
平衡过程:气体从一个状态变化到另一个状态,其间所经历的
过渡方式称为状态变化的过程.
如果过程所经历的所有中间状态都无限接近平衡状态,
该过程称为平衡过程.
2020/5/2
2
二、状态参量:
1、气体所占的体积 V: m 3
2、压强 P:
总的分子数密度为
n
n i
i
设 dA 法向为 x 轴
dA
一次碰撞单分子动量变化
vi dt
2 mvix
x 在 dt 时间内与dA碰撞的分子数
2020/5/2
ni vix dt dA 斜柱体体15积
dt 时间内传给 dA 的冲量为
dI = 2 mnivix2 dt dA
(vix>0)vx2= Nhomakorabeai
ni
vxi2
第三章 气体动理论
理想气体状态方程
麦克斯韦速率分布律
气体动理论的压强公式 玻耳兹曼分布律
气体动理论的温度公式
能量均分定理
2020/5/2
1

气体动理论

气体动理论
压强是大量分子对器壁冲量的统计平均效果,单个 分子的压强没有意义。
17
§2.1.3理想气体的温度
1.宏观意义:冷热程度,是决定某一系统 与另一系统是否处于热平衡的宏观标志。
2.微观意义:由状态方程可得
pV = N RT NA
状态方程:
p=
N V
R NA
T = nkBT
波尔兹曼常数:
kB
=
R NA
= 1.38 10-23 J
K -1
18
温度的统计意义
p = 2 nω 3
p = nkT
ω = 3 kT 2
此式称为理想气体分子温度公式. 温度的统计意义:
(1)温度是分子平均平动动能的量度,反映无 规则热运动的剧烈程度;
(2)温度是大量分子集体表现,对个别分子 温度没有意义。
相等。
2.气体分子沿各方向运动的概率相等 即分子速度在各方向上分量的各种平均值相
等。
在直角坐标系中有: vx2 = vy2 = vz2
vx2 + vy2 + vz2 = v2
vx2
=
vy2
=
vz2
=
1 v2 3
11
§2.1.2理想气体的压强
1.产生
固体、液体的 :重力原因 气体压强:大量分子不断碰撞的结果。
单个分子碰撞器壁的作用力是不 连续的、偶然的、不均匀的。从 总的效果上来看,分子碰撞对器 壁产生一个持续的平均作用力。
PA=F/SA
12
2 .理想气体压强公式的导出
公式导出 见图:

PA=F/SA
长方形容器内分子总数为N。
设分子质量为m,速率为vx、vy、vz;

气体动理论公式总结

气体动理论公式总结

气体动理论公式总结气体动理论是研究气体分子在微观层面上的运动规律的一门学科。

它主要研究气体分子的速度、能量、碰撞等方面的性质。

气体动理论公式是描述气体分子运动规律的数学表达式,可以用来计算气体分子的平均速度、平均能量等参数。

下面将总结一些常见的气体动理论公式。

1. 理想气体状态方程理想气体状态方程描述了理想气体在一定温度、压力和体积下的状态关系。

它的数学表达式为:PV = nRT其中,P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。

2. 平均动能公式平均动能公式描述了气体分子的平均动能与温度之间的关系。

它的数学表达式为:K = (3/2)kT其中,K为气体分子的平均动能,k为玻尔兹曼常数,T为气体的温度。

3. 动量-速度关系动量-速度关系描述了气体分子的动量与速度之间的关系。

它的数学表达式为:p = mv其中,p为气体分子的动量,m为气体分子的质量,v为气体分子的速度。

4. 均方根速度公式均方根速度公式描述了气体分子的速度分布规律。

它的数学表达式为:v = √(3kT/m)其中,v为气体分子的均方根速度,k为玻尔兹曼常数,T为气体的温度,m为气体分子的质量。

5. 平均自由程公式平均自由程公式描述了气体分子在运动过程中与其他分子或壁面碰撞的平均距离。

它的数学表达式为:λ = (1/√2πd^2n)其中,λ为气体分子的平均自由程,d为气体分子的直径,n 为气体分子的密度。

6. 分子碰撞频率公式分子碰撞频率公式描述了气体分子碰撞的频率与气体分子数密度之间的关系。

它的数学表达式为:Z = 4πn(d^2)v其中,Z为气体分子的碰撞频率,n为气体分子的数密度,d 为气体分子的直径,v为气体分子的速度。

以上是一些常见的气体动理论公式总结,它们可以用来描述气体分子的运动规律和性质。

利用这些公式,我们可以进行气体的热力学计算和分析,深入理解气体的特性和行为。

同时,这些公式也为相关实验提供了理论基础,促进了气体动理论的发展。

气体动理论

气体动理论

气体动理论(kinetic theory of gases)是19世纪中叶建立的以气体热现象为主要研究对象的经典微观统计理论。

气体由大量分子组成,分子作无规则的热运动,分子间存在作用力,分子的运动遵循经典的牛顿力学。

根据上述微观模型,采用统计平均的方法来考察大量分子的集体行为,为气体的宏观热学性质和规律,如压强、温度、状态方程、内能、比热以及输运过程(扩散、热传导、黏滞性)等提供定量的微观解释。

气体动理论揭示了气体宏观热学性质和过程的微观本质,推导出宏观规律,给出了宏观量与微观量平均值的关系。

它的成功印证了微观模型和统计方法的正确性,使人们对气体分子的集体运动和相互作用有了清晰的物理图像,标志着物理学的研究第一次达到了分子水平。

9.0气体动理论

9.0气体动理论

温度的数值表示法 ——温标。
3. 温度(T) :
冰点 273.15K, 绝对零度:T = 0 K,
热力学(开氏)温标: 水三相点(气态、液态、固态的共存 状 国际单位:开尔文(K) 态)273.16 K
摄氏温标和开氏温标的关系
4. 热力学第零定律——
t = T-273.15
测温原理
热平衡 :
在不受外界影响的
3kT
v 2 3kT 3RT 1.73 RT
M
M
v 2 1.73 RT M
f(v)
3. d f (v ) 0
3. 最概然速率 (最可几
dv
速率)
vp
2kT
vp 1.41
RT M
O
2RT 1.41 RT
vp
v
M
M
三、三个统计速率 1. 平均速率
v 1.60 RT M
2. 方均根速率
假设要测定中国足球队队员的平均体
重,怎么测?
G G1 G2 Gi G22
22
22 G i i1 22
设系统由N个分子组成,要测量分子
的平均速率v,若测得N个分子的v值分别
为:v1、v2、…vi、…vN ,则v的平均值为:
v v1 v2 vi vN
N
N vi i1 N
如果足球队中有4个人的体重70公斤,
P
n vx2
1 3
n v 2
2 3
n
1 2
v2
2 3
n kt
其中
kt
1 2
v2
称为气体分子的平均平动动能。
§9-6 温度的微观本 质
由理想气体状态方程
p nk T n为单位体积内的分子数

气体动力论

气体动力论

aa
a
N个分子作用在S1面的压强为:
Pb F ca m bv1 2 x cv2 2x v2 Nx
Nm v1 2xv2 2x v2 Nx abc N
由于: v1 2xv2 2N x v2 Nxv2 x1 3v2
abcV
N V
n
所以:
p
1 3
nmv2
压强公式
P
2 3
n
k
k
1 2
mv2
分子平均平动动能
对于理想气体,分子间的相互作用力忽略不计,所以理想气体 分子没有相互作用的势能。因此,理想气体的内能就是所有分子的 各种运动动能的总和。
EM 2i RT2i PV
内能只是气体状态参数温度T的单值函数 气体状态变化时内能的增量:
EM 2i RT2i(PV)
第23页,本讲稿共40页
讨论题:明确下列各种表示的物理意义
2、平衡态,准静态过程
若无外界影响,系统的宏观性质将在长时间内保持不变,这种 状态称为平衡态。
系统从一个状态经过一系列中间状态变到另一个状态,这叫状 态变化过程,简称过程。如果这其中经过的所有中间状态都无限接 近平衡状态,则称这种过程为准静态过程,也叫平衡过程。平衡过 程是无限缓慢地进行的极限过程。
③、分子的平均转动动能的总和 N2 2kT 0.66 178 0J
④、分子的平均动能的总和
NkT 1.6 710J 5 2
8
第26页,本讲稿共40页
§6.5 气体分子按速率分布规律
伽尔顿板实验
粒子落入其中一 格是一个偶然事件, 大量粒子在空间的 分布服从统计规律。
.......................................................................................................................................

气体分子运动论

气体分子运动论

第一章 气体动理论§1 理想气体的压强和温度 一.理想气体的微观模型1.忽略分子大小(看作质点)分子线度分子间平均距离2.忽略分子间的作用力(分子与分子或器壁碰撞时除外) 3.碰撞为完全弹性4.分子服从经典力学规律二.平衡态理想气体分子的统计假设 1.按位置的均匀分布分子在各处出现的概率相同(重力不计)。

容器内各处分子数密度相同:n = dN/dV = N/V2.速度按方向的分布均匀由于碰撞,分子往各方向运动的概率相同2222310vv v v v v v z y x z y x ======其中⎺v 2x = (v 21x + v 22x + … + v 2N x )/N⎺v 2 = ⎺v 2x +⎺v 2y +⎺v 2z三.理想气体压强公式:分子平均平动动能:分子质量:分子数密度其中22213231v n n v n P t tμεμεμ===v i推导: 速度分组:数密度的数密度:∑=+→ii i i i n n v d v v n ρρρ一个分子碰壁一次对壁的冲量ix v μ2面光滑在y,z 方向冲量=0 全部分子在dt 时间内对dA 的冲量()()∑=∑=∑=>iixi ixall ix i ix ix ix i ix v n dtdA v dtdA v n v v dtdA v n v I d 222μμμ压强2222223131v n p v n v n n v n n v n dtdA I d P x iixi iixi μμμμμ===∑∑=== 压强与平均平动动能的关系tt n P v εμε32212==压强是大量分子碰撞器壁单位面积作用力的统计平均值 四.温度的微观含义1.温度和平均平动动能的关系kTnkTP n P t t2332===εε 2.温度的统计意义标志分子无规运动的剧烈程度 只能用于大量分子的集体 3.方均根速率-分子速率的一种描述MRT kT v kTv t 33232122====μμε§2 能量均分定理,理想气体的内能 一.自由度● 决定物体空间位置所需独立坐标的数目 ● 自由质点:平动自由度t = 3 ● 刚体绕通过质心轴的转动:转动自由度 r= 3二. 能量按自由度的均分定理1.定理(用经典统计可证明)在温度为T 的热平衡态下,物质(气体,液体和固体)分子的每个自由度都具有相同的平均动能 kT 21.● 平均平动动能xyz θφψθ, φ :轴方向ψ :自转角度()kTkT v v v v v v t kT kT t z y x z y x z y x t 21212121213,232222222===========εεεμμμε ● 平均转动动能kT r r 2=ε● 平均振动能(动能+势能):假定是简谐振动:平均动能=平均势能kT S kT S kT S v 2222=+=ε● 总自由度s r t i 2++=其中t —平动自由度r —转动自由度 s —振动自由度● 总能量:kT i 2=ε2.重要情况● 单原子分子(He ,Ar ):kTkT i t i 2323====ε ● 刚性双原子分子(H 2,O 2):绕对称轴的转动无意义不计ψ自由度kTr t i 255232r ==+=+==ε● 刚性多原子分子(H 2O ):kTr t i 3633==+=+=ε ● 晶格点阵上的离子:kTs i 36322==⨯==ε 二.理想气体的内能1.内能:分子动能,分子中原子间的势能和分子间势能的总和 2.理想气体内能分子间势能为零内能只包括分子的平动,转动,振动动能和振动势能.内能只与T 有关。

第7章 气体动理论

第7章 气体动理论

碰后折回来需用的时间:
2x vx
t vxt 2x / vx 2x
一个分子在 t 时间内碰撞器壁的总冲量:
I1
2mv
x
t
2x / v x
mv
2 x
t
x
(3) N 个分子在 t 时间内
碰撞器壁的总冲量:
IN
N
mv
2 ix
t
x i 1
m x
t
N i 1
v2 ix
y
A1
vy
m
(4) I Ft P F / s
kr
1 2
mvc2x
1 2
mvc2y
1 2
mvc2z
1 2
J yc2y
1 2
J zc2z
1 2
J x c2x
2.能量均分定理(Boltzmann 假设)
t
1 2
mv2
3 2
kT
v
2 x
v
2 y
v
2 z
1 3
v2
1 2
mv
2 x
1 2
m
v
2 y
1 2
mvz2
1 ( 1 mv2 ) 32
1 kT 2
φ
确定刚体转轴的方位: 需要二个自由度(α,β);
β P(x,y,z)
α
γo
X
确定刚体绕转轴转过的角度, Z
需要一个自由度(φ);
刚体位置的确定共需要六个自由度。
3.气体分子模型自由度 ①单原子分子: 如氦原子 He 需要三个平动自由度 i=t=3;
②刚性双原子分子: 如氧气分子
O2
质心需要三个平动自由度;两原子连线方位需要

第四章 气体动理论

第四章 气体动理论

§4-1
分子动理论的基本观点
一、物质微观结构的物理图象 1、物质是由大量的微观粒子——原子或分子组 成的; 2、分子在作永不停息的无规则运动; 3、分子之间有相互作用力。 综上所述,一切宏观物体(不论它是气体、 液体、还是固体)都是由大量的原子或分子组 成的;所有分子都在不停的、无规则运动中; 分子之间有相互作用力。这就是关于物质微观 结构的三个基本观点。
(s t )
C2 引力: f1 t , C2、t均 0 r 斥力: f C 1 , C 、s均 0 2 1 s r t:4 ~ 7 s : 9 ~ 13
2、图线
(f—r图线)
三、分子间的势能曲线(Ep—r图线)
1、分子间的势能: dE p fdr
C1 C2 E p fdr ( s t )dr r r C1 C2 s 1 t 1 ( s 1)r (t 1)r
N pV RT NA
p nkT
温度 T 的物理意义
1 2 3 平 m v kT 2 2
1) 温度是分子平均平动动能的量度 平 T (反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种气体分子平均平动动能均 相等。 注意 热运动与宏观运动的区别:温度所反 映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有 分子的一种有规则运动的表现.
由于热力学方法的局限性,我们对平衡态下系统内 部的情况不了解,从而对温度和理想 气体的理解 也很肤浅,对气体的压强更是一无所知,因此,为 了全面了解平衡态下的基本热学信息,我们必须用 分子物理学的方法从微观本质上加以认识。
• 气体动理论是统计物理学的基础; • 气体动理论是从微观的观点来研究气体的热学 性质; • 解释气体的温度、压强、热容、内能等的微观 本质; • 建立统计的概念。

气体动理论

气体动理论

1 k m0 v 2 2 3kT 3 RT 2 v T, 3 m0 M k kT 2 2 称为方均根速率 (root-mean-square speed) v
例 . 在273K时: 3 k kT 5.65 10 21 J 2
2
3.53 10 eV
i E RT 2
pV RT
i E pV 2
i E NkT 2
i E RT 2
蓝皮书p50:35
若理想气体的体积为V,压强为p,温度为T,一个分子 的质量为m,/ m . (B) pV / (kT). (C) pV / (RT). (D) pV / (mT).
10-2 理想气体状态方程的微观解释
一 理想气体压强的统计意义
前提: 平衡态, 忽略重力, 分子看成质点 (即只考虑分子的平动); 讨论对象: 同 一种气体,分子质量为 m0 , N…… 总分子数, ……体积, V
N ……分子数密度(足够大), n V
设第i 组分子的速度在 vi vi d vi
一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后 理想气体的温度 (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定.
把所有分子按速度分为若干组,在每一 组内的分子速度大小,方向都几乎相等。
区间内。
Ni 速度为第 组的分子数密度, i ni V N N i , n ni
压强公式的推导步骤:
i i
器壁


一个分子对器壁的冲量
一组分子对器壁的冲量 各组分子对器壁的冲量
i

dS
x

整个气体对器壁的压强
3 k kT 2 m m R N NA M M k

气体动理论

气体动理论

2 x
2 y
2 z
1 2
3
二、理想气体的压强公式
对压强的统计解释
气体的压强是由大量分子 在和器壁碰撞中不断给器 壁以力的作用所引起的, 压强是气体分子给容器壁 冲量的统计平均量。
例: 雨点对伞的持续作用。
压强公式的推导:
单位时间内分子a作用在A面上的作用力:
l3 l2 z
y
v a vx A
Fa 2mvx vx 2l
§1 气体的微观图像
一、原子(atom)
“假如在一次浩劫中所有的科学知识都被摧毁, 只剩下一句话留给后代,什么语句可用最少的 词包含最多的信息?我相信,这是原子假说,即 万物由原子(微小粒子)组成.”——费曼
道尔顿确立 了原子概念
原子是化学元素的基本单元
现代的仪器已可以观察和测量原子的大小 以及它们在物体中的排列情况, 例如 X 光 分析仪,电子显微镜, 扫描隧道显微镜等.
引言
气体动理论是从气体分子热运动的观点出发, 运用统计方法研究大量气体分子的宏观性质和统 计规律的科学,它是统计物理学最基本的内容。 本章将根据气体分子模型,研究气体的压强与温 度等宏观性质和分子速率分布规律与能量分布规 律等统计规律,从微观角度揭示这些性质和规律 的本质,同时穿插介绍这些理论的一些应用.
2 x
2 y
2 z
v y
o
vv x
2
2 x
2 y
2 z
v z
12
2 1x
12y
12z
22
2 2x
22y
2 2z
……
N112 N112x N112y N112z N222 N222x N222y N222z
……

气体动理论

气体动理论
上一张 下一张 返回
三Hale Waihona Puke 、 压 强 推 导上一张 下一张
返回
具有速度 vi 的Ni 个分子作用:
上一张 下一张 返回
上一张 下一张 返回
压强公式的推导过程:
• 对象:理想气体的微观模型。
• 状态:平衡态。
• 方法:个别分子服从力学规律,

大量分子服从统计规律。
• 结论:P = n m v 2/ 3
即:
(1) f (v) dN Ndv
f (v)表示在速率v 附近 单位速率间隔内的分子数 占总分子数的比率.
(2) f (v)dv dN N
表示速率在 v~v+dv 区间 内的分子数占总分子数的比 率,即阴影1 面积。
(3) v2 f (v)dv N
v1
N
表示速率在 v1~ v2 区间 内的分子数占总分子数的 比率, 即阴影2 面积。
• Q:系统与外界的热交换。 Q>0表示系统从外界吸热;Q<0表示系统向外 界放热。
• E:系统内能的改变量。 E>0表示系统内能增加(若是理想气体,则 温度升高);E<0表示系统内能减少。
• A:系统对外界的做功情况。 A>0表示系统对外界作正功,如体积膨胀的过 程;A<0表示系统对外界作负功,亦即外界对 系统做功。
不可逆 可逆.
上一张 下一张 返回
有关物质结构与运动规律的 三条基本定理
• 宏观物体有大量微粒组成。 • 分子间存在相互作用力。 • 分子永不停息地无规运动。
上一张 下一张 返回
气体分子运动的特点:
• 看作是惯性支配下的自由运动。 • 分子间存在频繁碰撞。 • 服从统计规律。

气体动理论

气体动理论
v0

0
a vd v Nv0
2 v0
v0

a dv 1 N
2N a 3v0
八 热学
1 N N Nf ( v ) d v a d v av0 2 3 1.5 v0 1 .5 v 0
2 v0 2 v0
a 2 v vf ( v ) d v v dv Nv0 0 0
T ( K),t ( o C)
平衡态
t T 273.15
若某种气体处于热平衡、力学平衡与化学平衡之中, 就说它处在热力学平衡状态。
八 热学
与外界没有能量交换,内部没有能量转换,
也没有外场作用。 气体分子的热运动和相互碰撞永不停息,
在宏观上表现为热动平衡状态——
密度均匀、温度均匀、压强均匀。
M mol N A m
M 代入 pV RT M mol
分子数密度
M Nm
N R p T V NA
N n V
p nkT
R 玻尔兹曼常量 k 1.38 10 23 J/K NA
八 热学 2 理想气体的压强公式和温度公式 分子热运动的统计规律 分子热运动具有无序性与统计性。 气体处在平衡状态时,在容器中密度处处 均匀,因此—— 沿各个方向运动的分子数目相等,分子速 度在各个方向的分量的各种平均值也相等。
8 RT M mol RT 1.60 M mol
八 热学 2)方均根速率2 Nhomakorabeav
0
2
v v 2 f ( v) d v

v
2
3k T m

3RT RT 1.73 M mol M mol
八 热学
3)最概然速率 v p

第6章 气体动理论

第6章 气体动理论
第六章 气体动理论
6-1 物质的微观模型 统计规律性
物质结构的微观模型 :
1、宏观物体是由大量微观粒子—分子(或原子 )组成的,分子之间有空隙;
2、分子在不停地作无规则的运动,其剧烈程度与 温度有关;
3、分子之间存在相互作用力。
这些观点就是气体动理论的基本出发点。统计物 理学的任务就是从上述物质分子运动论的基本观点 出发,研究和说明宏观物体的各种现象和性质。
1.理想气体分子的微观模型
(1)由于气体分子间距较大,分子的大小可以忽 略不计,即可把分子视为质点。
(2)气体分子间的相互作用力很弱,可忽略不计 。即认为除碰撞的瞬间外,分子之间以及分子与容 器壁之间都没有相互作用力。
(3)分子之间以及分子与器壁之间的碰撞可视为 完全弹性碰撞。
2.统计假设
(1)容器中各处的分子数密度相同。
123
2.55 1021 J
v2
3RT
3 8.31123 28 103
331m
s 1
6-3 气体分子速率分布定律 玻耳兹曼分布
一个分子在某一时刻的速度完全是随机的,但 是这并不是说气体分子的运动速度就无规律可循。 实验表明,在一定条件下,大量分子的整体的速度 分布服从统计规律。
一、速率分布函数与平均速率
由上式得
v2 3kT 3RT
m
M
例1 一容器内贮有气体, 温度是27C,(1)压强为1.013 105Pa时,在1m3中有多少个分子;(2)在高真空时压强 为1.33 10 -5Pa,在1m3中有多少个分子?
解:按公式 p=nkT,可知
(1)
n
p kT
1.013 105 1.38 1023 300
f

大学物理第十章 气体动理论

大学物理第十章 气体动理论

分子间的相互作用力,
f
称分子力。此力为短程力,
引力、斥力视距离而定


当 r = r0(r0 10-10 m)时 f = 0
当 r < r0 时 f 为斥力 当 r > r0 时 f 为引力 当 r > 10-9 m 时,分子力可忽略。
o
引 r0

r
§6-2气体的状态参量、平衡状态、理想气体状态方程
p
F A1

F l2l3

m l1 l 2 l 3
N
v
2 ix
i 1
1 mN V
v
2 ix
N
1 V

mN
v
2 x

v
2 x

1 v2
3
1

N
mv 2
3V
分子数密度n
理想气体压强公式
p 1 nmv 2 3
p 1 nmv 2 3

2 3
1 n(
2
mv2 )

2 3

得 P M RT Nm RT N R T nkT
V
VN 0 m
V N0
N0m
波尔兹曼常数
由压强公式
p nkT
p

2 3
n
k
k

3 kT 2
可见:从微观角度看,温度是分子

大小的量度,表征大
k
量气体分子热运动剧烈程度,是一统计平均值,对个别分子无
意义。
§6—5 能量按自由度均分原则、理想气体的内能
一、运动自由度:
确定运动物体在空间位置所需要的独立坐标数目,称为 该物体的自由度

第4章气体动理论

第4章气体动理论

小球每次落入哪个狭槽是不
完全相同的,这表明在一次
实验中小球落入哪个狭槽中 是偶然的。 尽管一个小球落入哪个槽中 是偶然的,但大量小球的分 布规律则是确定的,即遵从
统计分布规律。
7
统计规律:当小球数N 足够大时小球的分布具有统计规律。
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
子,如果分子有 t 个平动自由度,r 个转动自由度,则气体分 子的平均动能为
1 i ( t r ) kT kT 2 2
单原子分子
双原子分子
多原子分子
3 kT 2
5 kT 2
6 kT 2
27
★ 理想气体的内能 实际气体的内能 气体分子热运动的各种形式的动能和势能的总和。 平动动能 分子动能 转动动能 振动动能 分子振动势能
i i
于1,称为概率的归一化条件。
6
小球在伽尔顿板中的分布规律
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
单位: 8.31J · mol-1 · K-1
4
★ 统计规律
一定条件下,大量偶然随机事件的整体具有确定的规律
性,这种规律称为统计规律。
对单个分子运用力学规律,对大量分子求统计平均值, 从而建立大量分子微观量的统计平均值与系统宏观量之 间的关系。这种关系就是所要寻求的统计规律。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本章研究的目的:
寻求处于平衡态的理想气体体系的宏观参量P、T、 E与有关微观量统计平均值间的关系。
研究的方法:
统计方法。系统的宏观性质是气体分子微观运动的 统计表现。 气体动理论是研究分子热运动的最简单最基本的理论。
Pi = lim
N→∞
出现某一事件的次数 Ni 总的事件次数 N
正面:50 % 反面:50 %
§6. 2 理想气体的压强及温度的微观意义
Chapter 6. 气体动理论
§6. 3 能量均分定理
理想气体的内能
二、温度公式
将状态方程 p = nkT 代入压强公式:
p = 1 nm v 2 = 2 n εkt = nkT 3 3 ε kt = 3 kT 2
( 温度公式 )
§ 6-3 能量均分定理 理想气体的内能
vix × 1
综合考虑,S面上的压强为:
p = p (+) + p (−) =
x
∑ n i mv 2 ix
i
p= F, S
F = ∆P = ?
x
∵ v2 x =
2 2 2 v1 x + v 2 x + ⋯ + v Nx N
v ix × 1
= 1 ∑ N iv 2 ix N i
2 2 单位体积内: v x = 1 ∑niv ix n i
平衡态下,可用三个宏观状态参量描述:
x
v 1y + v 2 y + ⋯ + v Ny = 0
v 1z + v 2 z + ⋯ + v Nz = 0
z
o
1. 压强 p:(国际单位:牛顿/米2(N·m -2), 帕(Pa) ) 1 Pa = 1 N·m-2 另:大气压(atm) 1atm = 1.013 × 105 Pa 2. 体积V:(国际单位:米3 (m3) 1 m 3 = 1× 103 L
状态方程只适应平衡态下的理想气体。
· 15 · · 18 ·
Chapter 6. 气体动理论
§6. 2 理想气体的压强及温度的微观意义
Chapter 6. 气体动理论
§6. 2 理想气体的压强及温度的微观意义
一、理想气体的压强公式 压强:大量分子作用的平均效果。
∆t 设单位体积内速率为vix>0 的分 子数共有n i个 ; 1秒内有多少个分子通过 S ? 每个分子在x 方向携带的动量 为 mv ; ( ) m为分子质量 ix>0
v ix ×1
N ,n p ,V ,T ρ
( 压强公式)
[定义] 分子平均平动动能:
ε kt = 1 m v 2 2
则:
� vi
� v ix
p = 1 nm v 2 = 2 n εkt 3 3
P
( +)
=
i (v ix >0 )
∑P
( +)
i
=
i ( v ix >0 )
∑ n Smv
i
2 ix
vix > 0 S
∑ n i kT
i
其中: p i = n i kT 即:混合气体的总压强等于组成 它的各个气体的分压强之和。 (道尔顿定律)
pV = m RT = N RT = ν RT 或 p = nkT M NA
( The end · ) 17 ·
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
说明
x
压强 p是大量气体分子碰撞器壁产生的,是对大量 分子统计平均的结果。单个分子压强无意义。 压强公式建立起宏观量压强 p 与微观气体分子运 动 之间的关系。 由 p = 2 n ε kt ∝ n 可知:分子数密度越大,压强越大; 3 p = 2 n ε kt ∝ ε kt :分子运动得越激烈,压强越大。 3
· 6·
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
� � � 平衡态下: v 1 + v 2 + ⋯+ v N = 0
y
一、理想气体的状态参量
� vi
{
v 1 x + v 2 x + ⋯ + v Nx = 0
1秒内共有 vix×1×S ×ni 个气体分子沿+x 方向通过S 。 1秒内速度分量vix>0 的分子带给S面的动量为:
x

p= nmv2 x p = 1 nm v 2 3
Pi( + ) = (v ix × 1 × S × n i ) × mv ix
= ni Smv 2 ix 则,1秒内S左方的分子带给S面 的动量为:
Chapter 作者:杨茂田 6 气体动理论
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
Chapter 6.
气体动理论
§6.1 理想气体的描述及其状态方程 §6.2 理想气体的压强及温度的微观意义 §6.3 能量均分定理 理想气体的内能 §6.4 Maxwell 速率分布律 §6.5 气体分子的平均碰撞频率和平均自由程
� vi
� v ix
vix > 0
� vi � v ix vix >0
S
S
· 19 ·

∑n v
i i
2 ix
=n v
2 x
· 22 ·
Chapter 6. 气体动理论
§6. 2 理想气体的压强及温度的微观意义
Chapter 6. 气体动理论
§6. 2 理想气体的压强及温度的微观意义 2 2 1 2 而 vx = v2 y = vz = v 3
∴ p = p1 + p 2 + ⋯+ p N = ∑ pi
i
使用的天数: n =
m1 − m2 (130 − 10) × 30 = 90 ( 天 ) = m3 1 × 40
归纳
1. 理想气体模型及平衡态; 2. 理想气体状态参量:p,V,T ; 3. 理想气体状态方程:
道尔顿 (1766-1844) · 14 ·
p 2 ,V 1 ,T2
· 9·
· 12 ·
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
二、理想气体的状态方程
平衡态下,气体系统有: T = f ( p , V ) 对理想气体: pV = m RT = ν RT M 或: pV = N RT NA
Chapter 6. 气体动理论
§6. 2 理想气体的压强及温度的微观意义
注意
RT 注意状态方程 pV = m M p
Pa atm
两边单位的统一。
V
m
3
T
K
R
8.31 J ⋅ mol
−1
§ 6-2
⋅K
−1
理想气体的压强及 温度的微观意义
L
K
0.082 atm ⋅ L ⋅ mol −1 ⋅ K −1
例一氧气瓶V1=30L ,p1=130 atm ,若p下降到 p2=10 atm 时需重新灌气,若每天用掉 p3 = 1 atm、V3 = 40 L 的氧气,则能用几天?设使用 中温度不变。 解:由理想气体状态方程:
质量为 m
p ,V ,T
( N 个分子 )
pV = m RT M
m = M pV RT
= v + v +v
2 x
2 y
2 z
2 2 2 v1 x + v 2 x + ⋯ + v Nx ≠0 N 2 2 2 其中: v y2 = v 1 y + v 2 y + ⋯ + v Ny ≠ 0 N 2 v2 +v2 2z + ⋯+ v Nz 2 = 1z ≠0 vz N
{
= v2 x
温 度
水汽
p = nkT 其中:M为气体的摩尔质量;
NA=6.02 ×1023 mol -1(阿伏伽德罗常数 ); n为分子数密度; k = 1.38×10-23J/K; R = 8.31J/mol/K 。
· 13 ·
{
M pV 原氧气瓶内质量: m 1 = RT 1 1
氧气瓶剩余质量: m 2 = M p 2V 2
∴ S左方的分子给S面的压强为:
p(+) = F S
( +)
v ix ×1
=
i ( v ix >0 )
∑ n mv
i
2 ix
� vi � v ix
vix > 0
同理,S右方分子给S面的压强为:
p(−) = F S
( −)
=
i (v ix <0)
∑ n imv 2ix
S
· 21 · · 24 ·
Chapter 6. 气体动理论
计 泡 水

开尔文 1824 - 1907 · 8·
· 11 ·
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
Chapter 6. 气体动理论
§6. 1 理想气体的描述及其状态方程
平衡态下:气体分子沿任一方向运动的概率相同,即
2 2 1v2 v2 x = vy = vz =
摄氏温标 t 与绝对温标T 关系:
· 20 ·
ρv 2 有时: p = 1 3
( ρ = nm ) ( 气体质量密度 )
· 23 ·
Chapter 6. 气体动理论
相关文档
最新文档