八年级数学第14章、第15章、期末考试共3份试卷
人教版 八年级数学上册 第14-到15章练习题(含答案)
人教版 八年级数学上册 14练习题(含答案)14.1 整式的乘法一、选择题(本大题共10道小题) 1. 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=2. 单项式乘多项式运算法则的依据是()A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 若a 3=b ,b 4=m ,则m 为() A .a 7B .a 12C .a 81D .a 644. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab5. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .166. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .177. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=9. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是()A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是________.12. 填空:()()()324a a a -⋅-⋅-= ;13. 填空:()()3223x x x --⋅=14. 计算:a 3·(a 3)2=________.15. 一个长方体的长、宽、高分别是3x -4,2x ,x ,它的体积等于________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)17. 已知x满足22x+2-4x=48,求x的值.18. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.19. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a的值应该是多少?人教版八年级数学上册14.1 整式的乘法同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】根据同底数幂相乘除的法则,应选D2. 【答案】C3. 【答案】B [解析] 因为a3=b,b4=m,所以m=(a3)4=a12.4. 【答案】A[解析] 因为一个长方形的周长为4a +4b ,若它的一边长为b ,则另一边长=2a +2b -b =2a +b , 故面积=(2a +b)b =b 2+2ab.5. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.6. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.7. 【答案】C【解析】根据积的乘方运算法则,应选C8. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C9. 【答案】B[解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题)11. 【答案】100 【解析】根据公式可得109÷107=102=100.12. 【答案】9a -【解析】原式()99a a =-=-13. 【答案】65x x - 【解析】原式65x x =-14. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.15. 【答案】6x 3-8x 216. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)17. 【答案】解:因为22x+2-4x=48,所以(22)x+1-4x=48.所以4x+1-4x=48.所以4x(4-1)=48.所以4x=16.所以4x=42.所以x=2.18. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.19. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.14.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2 B.±2 C.4 D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11 B.9 C.﹣11 D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a 的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3因式分解一.选择题(共10小题)1.下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是()A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=()A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)2 7.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为()A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为()A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为()A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4=.(2)2x2﹣4x+2=.12.因式分解:4a2﹣9a4=.13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B=.14.分解因式:=.15.多项式4x3y2﹣2x2y+8x2y3的公因式是.三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.人教版八年级上册数学第15章练习题(含答案)15.1 分式一、选择题1.若分式在实数范围内有意义,则实数x的取值范围是()A.x>-2B.x<-2C.x=-2D.x≠-22. 下列分式中,最简分式是( )A. x2-1x2+1 B.x+1x2-1 C.x2-2xy+y2x2-xy D.x2-362x+123. 下列各式中是最简分式的是()A.B.C.D.4. 若分式的值为0,则x的值为 ()A.±2B.2C.-2D.-15. 下列各式正确的是()A.=B.=C.=D.=6. 已知当x=-2时,分式无意义,则□可以是()A.2-xB.x-2C.2x+4D.x+47. 当分式的值为0时,x的值是()A.5B.-5C.1或5D.-5或58. 若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是 ()A.B.C.D.9. 有旅客m人,若每n个人住一间客房,还有一个人无房间住,则客房的间数为()A.B.C.-1 D.+110. 下列各项中,所求的最简公分母错误的是()A.与的最简公分母是6x2B.与的最简公分母是3a2b3cC.与的最简公分母是m2-n2D.与的最简公分母是ab(x-y)(y-x)二、填空题11. 请你写出一个含有字母x,y的分式:.12. 计算:xx-1-1x-1=________.13. 不改变分式的值,使分子、分母中x的系数都变为正数,则=.14. 请写出最简公分母是6a(a+1)的两个分式:.15. 不改变分式的值,使分子、分母各项系数都化成整数,且首项系数都为正数,则=.16. 如果=成立,那么a的取值范围是.三、解答题17. 从下面的三个整式中选取两个分别作为分子和分母,组成一个分式,使得当x=5时,分式的值为0,且当x=-6时,分式无意义.①x+5;②x-5;③x2-36.18. 在括号里填上适当的整式:(1)=;(2)=;(3)=.19. 已知分式的化简结果是一个整式,分式的化简结果也是一个整式,求b-a的值.20. 某医药公司有一种药品共300箱,将其分配给批发部和零售部销售.批发部经理对零售部经理说:“如果把你们分得的药品让我们卖可得3500元.”零售部经理对批发部经理说:“如果把你们所分得的药品让我们卖可得7500元.”若设零售部所得的药品是a箱,则:(1)该药品的零售价是每箱多少元?(2)该药品的批发价是每箱多少元?答案一、选择题1. 【答案】D[解析] ∵分式在实数范围内有意义,∴x+2≠0,解得x ≠-2.2. 【答案】A 【解析】A.x 2-1x 2+1分子分母中无公因式,是最简分式;B.x +1x 2-1=x +1(x +1)(x -1)=1x -1,故不是最简分式;C.x 2-2xy +y 2x 2-xy=(x -y )2x (x -y )=x -y x ,故不是最简分式;D.x 2-362x +12=(x +6)(x -6)2(x +6)=x -62,故不是最简分式.3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】C7. 【答案】B[解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x-5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】A[解析] 根据分式的基本性质,可知若x ,y 的值均扩大为原来的2倍,有=.所以选项A 符合题意.9. 【答案】A[解析] 有旅客m 人,只有一个人住不到房间,则住到房间的人有(m-1)人,若每间住n 个人,则需要房间数为.10. 【答案】D二、填空题11. 【答案】答案不唯一,如12. 【答案】1 【解析】原式=x-1x-1=1.13. 【答案】-[解析] ==-.14. 【答案】答案不唯一,如15. 【答案】[解析] ===.16. 【答案】a≠[解析] 由=成立,得2a-1≠0,解得a≠.三、解答题17. 【答案】解:因为当x=5时,分式的值为0,且当x=-6时,分式无意义,所以分式是.18. 【答案】(1)10a2b(2)3y(3)2a2+2ab[解析] (1)分子、分母都乘5a,得=.(2)分子、分母都除以x,得=.(3)分子、分母都乘2a,得=.19. 【答案】解:因为分式的化简结果是一个整式,所以x2-ax=x(x-a)有一个因式为x-3,即x-3=x-a.所以a=3.因为分式的化简结果也是一个整式,说明4x2-b有一个因式为x+1,即4x2-b=(x+1)(4x+c).所以4x2-b=(x+1)(4x+c)=4x2+(c+4)x+c.所以c+4=0,-b=c.所以b=4.所以b-a=4-3=1.20. 【答案】解:当零售部所得的药品是a 箱时,批发部所得的药品是(300-a )箱. (1)零售(300-a )箱药品,可得7500元,所以该药品的零售价是每箱元. (2)批发出a 箱药品,可得3500元,所以该药品的批发价是每箱元.15.2 分式的运算一、选择题(本大题共12道小题)1. 下列各式中,与xy 的值相等的是( )A.x +5y +5B.2-x 2-yC.-3x -3yD.x2y22.12a 和1a2通分后,分子的和为( )A .a +1B .2a +1C .a +2D .2a +23. 一个DNA 分子的直径约为0.0000002 cm ,用科学记数法表示为( )A .0.2×10-6 cmB .2×10-6 cmC .0.2×10-7 cmD .2×10-7 cm4. 根据分式的基本性质,分式-aa -b 可变形为( )A.a -a -b B .-a a +bC.a a +bD .-aa -b5. 将分式3aa2-b2通分后分母变成2(a -b)2(a +b),那么分子应变为( ) A .6a(a -b)2(a +b)B .2(a -b)C .6a(a -b)D .6a(a +b)6. 下列分式是最简分式的是( ) A.aa2B.63yC.x x +1D.x +1x2-17. 若△÷a2-1a =1a -1,则“△”可能是( )A.a +1aB.a a -1C.a a +1D.a -1a8. 计算x -y x +y ÷(y -x )·1x -y的结果是( ) A.1x 2-y 2B.y -xx +y C.1y 2-x 2 D.x -yx +y9. 计算16-a2a2+4a +4÷a -42a +4·a +2a +4,其结果是( )A .-2a +8B .2C .-2a -8D .-210. 不改变分式0.2x -10.4x +3的值,把它的分子和分母中各项系数都化为整数,则所得结果为( ) A.2x -14x +3B.x -52x +15C.2x -14x +30D.2x -10x +311. 把通分后,各分式的分子之和为 ( )A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+1312. 有一个计算程序(如图),每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次运算的结果y n = .(用含字母x 和n 的式子表示)二、填空题(本大题共6道小题)13. 计算:x x -1-1x -1=________.14. 计算1-4a 22a +1的结果是________.15. 若a b =23,则a +b b =________.16. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.17. 要使x +52x +1=(x +5)(3m +2)(2x +1)(7-2m )成立,则m =________.18. 已知a ≠0,S 1=-3a ,S 2=,S 3=,S 4=,…,S 2020=,则S 2020= .三、解答题(本大题共3道小题)19. 化简:m 2-93m 2-6m ÷(1-1m -2).20. 先化简,再求值:(a +1a 2-a -a -1a 2-2a +1)÷a -1a ,其中a =3+1.21. 先化简,再求值:x2-1x2-2x+1÷x+1x-1·1-x1+x,其中x=12.人教版八年级数学15.2 分式的运算答案一、选择题(本大题共12道小题)1. 【答案】C[解析] -3x-3y=xy.2. 【答案】C[解析] 由于最简公分母为2a2,因此12a和1a2通分后分别为a2a2,22a2,故分子的和为a+2.3. 【答案】D4. 【答案】D[解析]-aa-b=-aa-b.5. 【答案】C[解析]3aa2-b2=3a·2(a-b)(a+b)(a-b)·2(a-b)=6a(a-b)2(a-b)2(a+b).故选C.6. 【答案】C7. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.8. 【答案】C[解析] x-yx+y÷(y-x)·1x-y=x-yx+y·1y-x·1x-y=1(x+y)(y-x)=1y 2-x 2.9.【答案】D [解析]16-a2a2+4a +4÷a -42a +4·a +2a +4=-(a +4)(a -4)(a +2)2·2(a +2)a -4·a +2a +4=-2.10. 【答案】B[解析]0.2x -10.4x +3=5×(0.2x -1)5×(0.4x +3)=x -52x +15.11. 【答案】A[解析]==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.12. 【答案】[解析] 由题意得y 1=,y 2=,y 3=,…, 所以y n =.二、填空题(本大题共6道小题)13. 【答案】1 【解析】原式=x -1x -1=1.14. 【答案】1-2a 【解析】原式=(1-2a )(1+2a )2a +1=1-2a.15. 【答案】53 【解析】因为a b =23,则设a =2k ,b =3k ,代入分式得a +b b =2k +3k3k=5k 3k =53.16. 【答案】10(x +1)(x -1)[解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).17. 【答案】1[解析] 根据题意,得3m +2=7-2m ,移项,得3m +2m =7-2, 合并同类项,得5m =5, 系数化为1,得m =1.18. 【答案】-[解析] S 1=-3a ,S 2==-,S 3==-3a ,S 4==-,…∴S 2020=-.三、解答题(本大题共3道小题)19. 【答案】解:原式=(m -3)(m +3)3m (m -2)÷(m -2m -2-1m -2)(2分) =(m -3)(m +3)3m (m -2)·m -2m -3(4分) =m +33m .(6分)20. 【答案】解:原式=[a +1a (a -1)-a -1(a -1)2]·aa -1(2分) =[a +1a (a -1)-1a -1]·a a -1(4分)=1a (a -1)·a a -1(5分) =1(a -1)2.(6分)将a =3+1代入可得,原式=1(3+1-1)2=13.(7分)21. 【答案】解:原式=(x +1)(x -1)(x -1)2·x -1x +1·(-x -1x +1)=-x -1x +1.当x =12时,原式=-12-112+1=13.15.3《分式方程》一. 解分式方程 1.方程=的解为( )A.x=-5B.x=5C.x=D.x=- 2. 解分式方程=-2时,去分母变形正确的是( )A.-1+x=-1-2(x-2)B.1-x=1-2(x-2)C.-1+x=1+2(2-x)D.1-x=-1-2(x-2) 3.解方程: (1)=1-; (2)+=2.二.分式方程与参数问题1. 已知关于x的方程=1的解是非负数,则a的取值范围( )A.a≥-1B.a≥-1且a≠0C.a≤-1D.a≤-1且a≠-22. 已知关于x的分式方程+-1=0有整数解,且关于x的不等式组有且只有3个负整数解,则符合条件的所有整数a的个数为 ( )A.1B.2C.3D.43.若代数式的值是2,则a=____.4.若分式方程=无解,则m等于____.5. 若关于x的分式方程+=2a无解,则a的值为____. 三.分式方程实际问题1.某食堂购买了一批大米和面粉.已知购买大米的袋数是面粉袋数的2倍,购买大米共用了1 800元,购买面粉共用了750元,每袋大米比每袋面粉的售价多10元.如果设购买面粉x袋,那么根据题意,下列方程中正确的是( )A.=-10B.=+10C.=+10D.=-102.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家的优惠20元.若该校花费4 400元在B商家购买餐桌的张数等于花费4 000元在A商家购买餐桌的张数,则A商家每张餐桌的售价为( )A.197元B.198元C.199元D.200元3. 某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均每亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为 __.4.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20 kg,甲型机器人分类800 kg垃圾所用的时间与乙型机器人分类600 kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类700 kg垃圾,工作2小时后甲型机器人因机器维修退出,求甲型机器人退出后乙型机器人还需工作多长时间才能完成?5.在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27 720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.四.分式方程的综合运算1.定义运算“※”:a※b=若5※x=2,则x的值为( )A. B.或10 C.10 D.或2.用换元法解分式方程:-=2.解:设=m,则原方程可化为m-=2;去分母整理得:m2-2m-3=0,解得:m1=-1,m2=3,即:=-1或=3;解得:x=或x=-,经检验:x=或 x=-是原方程的解.故原方程的解为:x1=,x2=-.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程--2=0的根,求代数式÷的值.。
人教版八年级上册数学第11-14章综合复习试卷(含答案)
人教版八年级上册数学第11-14章综合复习试卷一.选择题1.下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、102.下列图形中具有稳定性的是()A.六边形B.五边形C.四边形D.三角形3.下列图形中,是轴对称图形的是()A.B.C.D.4.一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A.75°B.60°C.45°D.40°5.下列运算正确的是()A.a2+a3=a5B.a2•a2=2a2C.6a5÷3a3=2a2D.(﹣a2)3=﹣a56.如图,若△ABC≌△DEF,BC=7,CF=5,则CE的长为()A.1B.2C.2.5D.37.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.﹣168.如图,在△ABC中,AC=10,BC=8,AB垂直平分线交AB于点M,交AC于点D,则△BDC的周长为()A.14B.16C.18D.209.如图,在△ABC中,∠B=50°,∠A=30°,CD平分∠ACB,CE⊥AB于点E,则∠DCE的度数是()A.5°B.8°C.10°D.15°10.下列各式从左到右的变形中,属于因式分解的是()A.﹣12x3y=﹣3x3•4y B.m(mn﹣1)=m2n﹣mC.y2﹣4y﹣1=y(y﹣4)﹣1D.ax+ay=a(x+y)11.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°12.如图,AD∥BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2﹣AD2的值等于()A.14B.9C.8D.5二.填空题13.分解因式:mx2﹣4m=.14.平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是.15.计算:20+(﹣)﹣2=.16.八边形的外角和等于°.17.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.。
沪科版数学八年级上册第15章《轴对称图形与等腰三角形》单元检测试卷(含答案)
沪科版八年级上册数学第15章《轴对称图形与等腰三角形》单元检测试卷[检测内容:第15章满分:120分时间:120分钟]一、选择题(每小题3分,共30分)1. 下列图形中,轴对称图形有()A. 1个B. 2个C. 3个D. 4个2. 如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点,下列结论中错误的是()A. △AA′P是等腰三角形B. MN垂直平分AA′,CC′C. △ABC与△A′B′C′面积相等D. 直线AB,A′B′的交点不一定在MN上第2题第3题3. 如图,在△ABC中,∠B,∠C的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有()①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A. 1个B. 2个C. 3个D. 4个4. 在△ABC中,∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于点D,AB=a,则AD的长是()A. 34a B.a3 C.a2 D.a45. 已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OB对称,P2与P关于OA对称,则△P1OP2是()A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形6. 如图,已知△ABC,求作一点P,使P到∠BAC的两边的距离相等,且P A=PB.下列确定P 点的方法正确的是()A. P为∠BAC,∠ABC两角平分线的交点B. P为∠BAC的角平分线与AB的垂直平分线的交点C. P为AC,AB两边上的高的交点D. P为AC,AB两边的垂直平分线的交点第6题第7题7. 如图所示,已知DB⊥AE于点B,延长BD交AF于点G,DC⊥AF于C,且DB=DC,∠BAC =40°,∠ADG=110°,则∠DGF的度数为()A. 30°B. 50°C. 100°D. 130°8. 如图,BC=BD,AD=AE,DE=CE,∠A=36°,则∠B的度数为()A. 45°B. 36°C. 72°D. 30°第8题第9题9. 如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在BC或AC所在的直线上取一点P,使得△P AB为等腰三角形,则符合条件的点P共有()A. 4个B. 5个C. 6个D. 7个10. 在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①AD上任意一点到点C,B的距离相等;②AD上任意一点到AB,AC的距离相等;③AD⊥BC 且BD=CD;④∠BDE=∠CDF,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共24分)11. 等腰三角形的两边长分别为3和5,则该等腰三角形的周长为.12. 等腰三角形的一个角是另一个角的4倍,则这个等腰三角形的顶角的度数为.13. 平面直角坐标系内,点A和点B关于x轴对称,若点A到x轴的距离是3cm,则点B到x 轴的距离是.14. 如图所示,AD所在的直线是△ABC的对称轴,点E,F是AD上的点.若△ABC的面积为12cm2,。
第14章 整式的乘法与因式分解(提优卷)学生版-2024-2025学年八年级数学上册真题汇编章节复习
2024-2025学年人教版数学八年级上册章节真题汇编检测卷(提优)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.54姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•金沙县期末)下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.a2+2a+1=a(a+2)+1C.a3+2a2+a=a(a2+2a)D.m3﹣mn2=m(m+n)(m﹣n)2.(2分)(2023春•城关区校级期中)下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)23.(2分)(2023春•衢江区期末)如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣4 B.4 C.0 D.14.(2分)(2022秋•黄冈期末)若(a2+b2+1)(a2+b2﹣1)=35,则a2+b2=()A.3 B.6 C.±3 D.±65.(2分)(2023春•成县期末)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x2﹣4=(x+2)(x﹣2)6.(2分)(2022秋•城关区校级期末)若a m=4,a n=7,则a m+n的值为()A.3 B.11 C.28 D.无法计算7.(2分)(2023春•连平县期末)下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是()A.﹣x2+5x B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x8.(2分)(2023•东莞市校级一模)已知3m=2,3n=5,则32m+n=()A.B.10 C.9 D.209.(2分)(2022秋•鼓楼区校级期末)若二次三项式ax2+bx+c=(a1x+c1)(a2x+c2),则当a>0,b<0,c >0时,c1,c2的符号为()A.c1>0,c2>0 B.c1<0,c2<0 C.c1>0,c2<0 D.c1,c2同号10.(2分)(2023•安徽模拟)若实数a、b满足a2+b2=1,则ab+a+3b的最小值为()A.﹣3 B.﹣2 C.1 D.3评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•建昌县期末)分解因式:mn2+6mn+9m=.12.(2分)(2023春•高港区期中)若x2+mx+16是完全平方式,则m的值是.13.(2分)(2023春•福山区期中)如图1.将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为.(2023春•兴化市期末)已知二次三项式x2+mx+9能用完全平方公式分解因式,则m的值为.14.(2分)(2023春•靖江市期末)若(x+2)(x2﹣ax+5)的乘积中不含x的一次项,则a=.(2分)15.16.(2分)(2023春•江都区期中)若3x=4,3y=5,则3x﹣y=.17.(2分)(2022秋•夏邑县期末)若x2+2(m﹣3)x+16是完全平方式,则m的值为.18.(2分)(2022秋•番禺区期末)若(x﹣1)(x+2)=x2+ax﹣2,则a=.19.(2分)(2023春•达川区校级期末)多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.20.(2分)(2021秋•卢龙县校级期末)计算:15(24+1)(28+1)(216+1)(232+1)=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023春•永定区期末)分解因式:(1)﹣2x3+8xy2 (2)3a2﹣12a+1222.(6分)(2022秋•魏都区校级期末)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图1是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的形状拼成一个正方形.请解答下列问题:(1)图2中阴影部分的正方形的边长是.(2)请用两种不同的方法求图2中阴影部分的面积:方法1:;方法2:.(3)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(4)根据(3)中的等量关系解决如下问题:若x+y=6,xy=,则(x﹣y)2=.23.(8分)(2022秋•陕州区期末)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.24.(8分)(2022秋•射洪市期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下面试题:已知x2﹣4y2=12,x+2y=4,求x和y的值;25.(8分)(2023春•金水区校级期中)(1)已知2x+5y﹣3=0,试求4x×32y的值.(2)已知2m=3,2n=5,求24m+2n的值.26.(8分)(2022春•阳谷县期中)阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∴533<355<444.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m=3,a n=5,求a3m+2n的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方公式,完成题目的解答.解法如下:解:∵a3m=(a m)3=33=27,a2n=(a n)2=52=25,∴a3m+2n=a3m•a2n=27×25=675.学习以上解题思路和方法,然后完成下题:已知a m=2,a n=3,求a2m+3n的值.(3)计算:(﹣16)505×(﹣0.5)2021.27.(8分)(2022秋•怀柔区期末)小柔在进行因式分解时发现一个现象,一个关于x的多项式x2+ax+b若能分解成两个一次整式相乘的形式(x+p)(x+q),则当x+p=0或x+q=0时原多项式的值为0,因此定义x=﹣p和x=﹣q为多项式x2+ax+b的0值,﹣p和﹣q的平均值为轴值.例:x2﹣2x+3=(x﹣3)(x+1),x﹣3=0或x+1=0时x2﹣2x+3=0,则x=3和x=﹣1为x2﹣2x+3的0值,3和﹣1的平均值1为x2﹣2x+3的轴值.(1)x2﹣4的0值为,轴值为;(2)若x2+ax+4的0值只有一个,则a=,此时0值与轴值相等;(3)x2﹣bx(b>0)的0值为x1,x2(x1<x2),轴值为m,则x1=,若x2﹣6x+m的0值与轴值相等,则b=.28.(8分)(2021秋•定西期末)我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解.例如:a2+6ab+9b2﹣1,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:a2+6ab+9b2﹣1=(a+3b)2﹣1=(a+3b+1)(a+3b﹣1),我们把这种分解因式的方法叫做分组分解法.利用这种分解因式的方法解答下列各题:(1)分解因式:x2﹣y2﹣2x+1;(2)若△ABC三边a、b、c满足a2﹣2bc+2ac﹣ab=0,试判断△ABC的形状,并说明理由.。
难点解析京改版八年级数学下册第十五章四边形专题测试试题(含答案解析)
京改版八年级数学下册第十五章四边形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在正方形有ABCD 中,E 是AB 上的动点,(不与A 、B 重合),连结DE ,点A 关于DE 的对称点为F ,连结EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH ,那么BHAE 的值为( )A .1BCD .22、在平面直角坐标系中,点()4,1A -关于原点对称的点的坐标是( )A .()41-,B .()4,1C .()4,1-D .()4,1--3、下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.1)B.(1,1)C.(1D.,1)5、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.360°C.540°D.不能确定6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A .AB =BE B .DE ⊥DC C .∠ADB =90°D .CE ⊥DE7、如图,在六边形ABCDEF 中,若1290∠+∠=︒,则3456∠+∠+∠+∠=( )A .180°B .240°C .270°D .360°8、如图,四边形ABCD 中,∠A =60°,AD =2,AB =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为( )A B C D 9、平面直角坐标系内与点P ()2,3-关于原点对称的点的坐标是( )A .()3,2-B .()2,3C .()2,3-D .()2,3--10、如图,菱形ABCD 中,60C ∠=°,2AB =.以A 为圆心,AB 长为半径画BD ,点P 为菱形内一点,连PA ,PB ,PD .若PA PB =,且120APB ∠=︒,则图中阴影部分的面积为( )A .23y π= B .23y π= C .23y π= D .23y π=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形ABCD 和四边形OMNP 都是边长为4的正方形,点O 是正方形ABCD 对角线的交点,正方形OMNP 绕点O 旋转过程中分别交AB ,BC 于点E ,F ,则四边形OEBF 的面积为______.2、如图,在矩形ABCD 中,=8AB ,=5AD ,点E 是线段CD 上的一点(不与点D ,C 重合),将△BCE 沿BE 折叠,使得点C 落在'C 处,当△'C CD 为等腰三角形时,CE 的长为___________.3、一个正多边形的每个外角都等于45°,那么这个正多边形的内角和为______度.4、如图,△ABC 中,D 、E 分别是AB 、AC 的中点,若DE =4cm ,则BC =_____cm .5、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.三、解答题(5小题,每小题10分,共计50分)1、(教材重现)如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.(问题思考)结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:(问题探究)n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).(问题拓展)(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).2、如图,将矩形1111DCBA沿EF折叠,使1B点落在11A D边上的B点处;再将矩形1111DCBA沿BG折叠,使1D点落在D点处且BD过F点.(1)求证:四边形BEFG是平行四边形;(2)当1B FE∠是多少度时,四边形BEFG为菱形?试说明理由.3、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线483y x=-+交x轴正半轴于点C.(1)写出C点坐标;(2)若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.4、如图,在长方形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点B'处.(1)如图1,当点E与点C重合时,CB'与AD交于点F,求证:FA=FC;(2)如图2,当点E不与点C重合,且点B'在对角线AC上时,求CE的长.5、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E 按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=BE=APE的面积.-参考答案-一、单选题1、B【分析】作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【详解】解:如图,在线段AD上截取AM,使AM=AE,,∵AD=AB,∴DM=BE,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∠1=∠2,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF DC DG DG=⎧⎨=⎩,∴Rt△DFG≌Rt△DCG(HL),∴∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵1DM BE BEHDE EH =⎧⎪∠=∠⎨⎪=⎩,∴△DME ≌△EBH (SAS ),∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM ,∴BH ,即BHAE.故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等.2、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点()4,1A -关于原点对称的点的坐标是:4,1,故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.3、B【详解】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.4、B【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.5、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得∠=∠+∠∠=∠+∠,再根据四边形的内角和等于360°,即可求解.BMD B F CNE A E,【详解】解:设BE与DF交于点M,BE与AC交于点N,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.6、B【分析】先证明四边形BCED 为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,且AD =BC ,又∵AD =DE ,∴DE ∥BC ,且DE =BC ,∴四边形BCED 为平行四边形,A 、∵AB =BE ,DE =AD ,∴BD ⊥AE ,∴□DBCE 为矩形,故本选项不符合题意;B 、∵DE ⊥DC ,∴∠EDB =90°+∠CDB >90°,∴四边形DBCE 不能为矩形,故本选项符合题意;C 、∵∠ADB =90°,∴∠EDB =90°,∴□DBCE 为矩形,故本选项不符合题意;D 、∵CE ⊥DE ,∴∠CED =90°,∴□DBCE 为矩形,故本选项不符合题意.故选:B .【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED 为平行四边形是解题的关键.7、C【分析】根据多边形外角和360︒求解即可.【详解】解:123456360∠+∠+∠+∠+∠+∠=︒ ,1290∠+∠=︒()345636012270∴∠+∠+∠+∠=︒-∠+∠=︒,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和360︒是解题的关键.【分析】DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,根据三角形的中位线定理得出EF=12此时根据勾股定理求得DN,从而求得EF的最大值.连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EM,MF=FN,DN,∴EF=12∴DN最大时,EF最大,∴N与B重合时DN=DB最大,在R t△ADH中,∵∠A=60°ADH∴∠=︒30=1,DH=∴AH=2×12∴BH=AB﹣AH=3﹣1=2,∴DBDB,∴EF max=12∴EF【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF =12DN 是解题的关键.9、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.【详解】解:由题意,得点P (-2,3)关于原点对称的点的坐标是(2,-3),故选:C .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.10、C【分析】过点P 作PM AB ⊥交于点M ,由菱形ABCD 得60DAB C ∠=∠=︒,2AB AD ==,由PA PB =,120APB ∠=︒得112AM AB ==,1602APM APB ∠=∠=︒,故可得30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,根据SAS 证明ABP ADP ≅,求出PM =ABP ADP ABD S S S S =--阴扇形.【详解】如图,过点P 作PM AB ⊥交于点M ,∵四边形ABCD 是菱形,∴60DAB C ∠=∠=︒,2AB AD ==,∵PA PB =,120APB ∠=︒, ∴112AM AB ==,1602APM APB ∠=∠=︒, ∴30PAM ∠=︒,603030PAD DAB PAM ∠=∠-∠=︒-︒=︒,在ABP △与ADP △中,AB AD PAB PAD AP AP =⎧⎪∠=∠⎨⎪=⎩, ∴()ABP ADP SAS ≅,∴ABP ADP S S =△△,在Rt AMP △中,30PAM ∠=︒,∴2AP PM =,222AP PM AM =+,即2241PM PM =+,解得:PM =∴260211222360223ABP ADPABD S S S S ππ⋅=--=-⨯⨯=阴扇形故选:C .【点睛】此题主要考查了菱形的性质以及求不规则图形的面积等知识,掌握扇形的面积公式是解答此题的关键.二、填空题1、4【分析】过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,把四边形OEBF 的面积转化为正方形OGBH的面积,等于正方形ABCD 面积的14. 【详解】如图,过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,∵四边形ABCD 的对角线交点为O ,∴OA =OC ,∠ABC =90°,AB =BC ,∴OG ∥BC ,OH ∥AB ,∴四边形OGBH 是矩形,OG =OH =1122AB CB =,∠GOH =90°, ∴22211==()(4)22OGBH S OG AB =⨯四边形=4,∵∠FOH +∠FOG =90°,∠EOG +∠FOG =90°,∴∠FOH =∠EOG ,∵∠OGE =∠OHF =90°,OG =OH ,∴△OGE ≌△OHF ,∴=OGE OHF S S △△,∴=OGBH OEBF S S 四边形四边形,∴OEBF S 四边形=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.2、52或203【分析】根据题意分C D C C ''=,CC CD '=,DC DC '=三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形ABCD 是矩形∴90C ∠=︒,8,5CD AB BC AD ====∵将△BCE 沿BE 折叠,使得点C 落在'C 处,∴BCE BC E '≌,90C E CE BC E BCE ''∴=∠=∠=︒,BC BC '=,设CE x =,则8DE CD x x =-=-①当C D C C ''=时,如图过点C '作,C F CD C G BC ''⊥⊥,则四边形C GCF '为矩形 C D C C ''=142C G DF FC CD '∴====,4EF x =- 在Rt BC G '中3BG =532C F CG '∴==-=在Rt C FE '中222C E C F EF ''=+即()22224x x =+- 解得52x = 52CE ∴= ②当CC CD '=时,如图,设,CC BE '交于点O ,设OE y =,BC BC EC EC ''==BE ∴垂直平分CC '11422OC OC CC CD ''∴====3OB在Rt OCE 中222OE OC CE +=即2224y x +=在Rt BCE 中,222BE BC CE =+即()2223+5y x =+联立()22222243+5y x y x ⎧+=⎪⎨=+⎪⎩,解得203163x y ⎧=⎪⎪⎨⎪=⎪⎩ 203EC ∴= ③当DC DC '=时,如图,又BC BC '=DB ∴垂直平分CC ',BC BC EC EC ''==BE ∴垂直平分CC '此时,D E 重合,不符合题意 综上所述,203=EC 或52 故答案为:52或203【点睛】 本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.3、1080【分析】利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】解:∵正多边形的每一个外角都等于45︒,∴正多边形的边数为360°÷45°=8,所有这个正多边形的内角和为(8-2)×180°=1080°.故答案为:1080.【点睛】本题考查了多边形内角与外角等知识,熟知多边形内角和定理(n﹣2)•180 °(n≥3)和多边形的外角和等于360°是解题关键.4、8【分析】运用三角形的中位线的知识解答即可.【详解】解:∵△ABC中,D、E分别是AB、AC的中点∴DE是△ABC的中位线,∴BC=2DE=8cm.故答案是8.【点睛】本题主要考查了三角形的中位线,掌握三角形的中位线等于底边的一半成为解答本题的关键.5、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE =CE ,∵CE 2=BC 2+BE 2,∴CE 2=9+(9-CE )2,∴CE =5,∴AE =5,∵△AEP 为等腰三角形,且∠EAP =90°,∴AE =AP =5,∴点E 坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE 的长是本题的关键.三、解答题1、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n 边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x-,四边形的边数为x ,∴一共可以连接()()3122x x x x x --+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.2、(1)见解析;(2)当∠B 1FE =60°时,四边形EFGB 为菱形,理由见解析【分析】(1)由题意,1B FE FEB ∠=∠,结合1B FE BFE ∠=∠,得BE BF =,同理可得FG BF =,即BE FG =,结合BE FG ∥,依据平行四边形的判定定理即可证明四边形BEFG 是平行四边形;(2)根据菱形的性质可得BE EF =,结合(1)中结论得出BEF 为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.【详解】证明:(1)∵1111A D B C ∥,∴1B FE FEB ∠=∠.又∵1B FE BFE ∠=∠,∴FEB BFE ∠=∠.∴BE BF =.同理可得:FG BF =.∴BE FG =,又∵BE FG ∥,∴四边形BEFG 是平行四边形;(2)当160B FE ∠=︒时,四边形EFGB 为菱形.理由如下:∵四边形BEFG 是菱形,∴BE EF =,由(1)得:BE BF =,∴BE EF BF ==,∴BEF 为等边三角形,∴60BFE BEF ∠=∠=︒,∴160B FE ∠=︒.【点睛】题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.3、(1)点C (6,0);(2)点1224(,)55M ;(3)满足条件的点G 坐标为34(0,)7或(0,-2). 【分析】(1)直接利用直线483y x =-+,令y=0,解方程即可; (2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组2483y x y x =⎧⎪⎨=-+⎪⎩,解方程组求得交点M 的坐标; (3)分两种情形:①当n >4时,如图2-1中,点Q 落在BC 上时,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .求出Q (n-4,n-2).②当n <4时,如图2-2中,同法可得Q (4-n ,n +2),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线483y x =-+交x 轴正半轴于点C . ∴当y =0时,48=03x -+, 解得x =6∴点C (6,0)故答案为(6,0);(2)连接OM 并双向延长,∵S △AMB =S △AOB ,∴点O 到AB 与点M 到AB 的距离相等,∴直线OM 平行于直线AB ,∵AB 解析式为y =2x +8,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组得:2483y x y x =⎧⎪⎨=-+⎪⎩,解得:125245x y ⎧=⎪⎪⎨⎪=⎪⎩故点1224(,)55M ; (3)∵直线y =2x +8与x 轴交于点A ,与y 轴交于点B ,∴令y=0,2x +8=0,解得x =-4,∴A (-4,0),令x =0,则y =8∴B (0,8),∵点F 为AB 中点,点F 横坐标为()1-4+0=-22,纵坐标为()10+8=42∴F (-2,4),设G (0,n ),①当n >4时,如图2-1中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN =n -4,∴Q (n -4,n -2),∵点Q 在直线483y x =-+上, ∴42(4)43n n -=--+, ∴34=7n , ∴34(0,)7G . ②当n <4时,如图2-2中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N . ∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN = 4-n ,∴Q (4- n , n +2),∵点Q 在直线483y x =-+上, ∴42(4)83n n +=--+,∴n =-2,∴(0,-2)G .综上所述,满足条件的点G 坐标为34(0,)7或(0,-2). 【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4、(1)见解析;(2)CE=52.【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得90EB C'∠=,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt△CEB'中,根据勾股定理EC2=EB'2+B C'2列方程求解即可;【详解】解:(1)如图1,∵四边形ABCD是矩形,∴AD BC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵90EB C'∠=,如图2,设CE= x,∵四边形ABCD 是矩形,∴∠B =90°,∴AC 2=AB 2+BC 2= 32+42=25,∴AC =5,由折叠可知:90AB E B '∠=∠=,AB AB 3'==,4EB EB x '==-,∴B C '=5-3=2,在Rt △CEB '中,EC 2=EB '2+B C '2∴x 2=(4-x )2+22,∴x =52,∴CE =52.【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5、(1)BP =CE ,CE ⊥BC ;(2)仍然成立,见解析;(3)【分析】(1)连接AC ,根据菱形的性质和等边三角形的性质证明△BAP ≌△CAE 即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】解:(1)如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∴AC⊥BD BD平分∠ABC,∵∠ABC=60°,AB=∴∠ABO=30°,AB OB=3,∴AO=12∴BD=6,由(2)知CE⊥AD,∵AD∥BC,∴CE⊥BC,∵BE=BC=AB=∴CE=8,由(2)知BP=CE=8,∴DP=2,∴OP=5,∴AP∵△APE是等边三角形,∴S△AEP)2=如图4中,当点P在DB的延长线上时,同法可得AP∴S△AEP2=【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.。
人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试
2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。
【沪科版】2019年秋八年级数学上册第14章《全等三角形》单元试卷附解析
2019年秋八年级数学上册第14章《全等三角形》单元试卷班级姓名一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个2.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE二、填空题4.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .5.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.6.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= .三、解答题7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.8.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.9.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.10.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.11.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.12.如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.13.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.14.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.15.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.16.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.参考答案与试题解析一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个 B.3个 C.2个 D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.2.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】压轴题.【分析】由等边三角形的性质得出AB=DB,∠ABD=∠CBE=60°,BE=BC,得出∠ABE=∠DBC,由SAS即可证出△ABE≌△DBC;由△ABE≌△DBC,得出∠BAE=∠BDC,根据三角形外角的性质得出∠DMA=60°;由ASA证明△ABP≌△DBQ,得出对应边相等BP=BQ,即可得出△BPQ为等边三角形;证明P、B、Q、M四点共圆,由圆周角定理得出∠BMP=∠BMQ,即MB平分∠AMC.【解答】解:∵△ABD、△BCE为等边三角形,∴AB=DB,∠ABD=∠CBE=60°,BE=BC,∴∠ABE=∠DBC,∠PBQ=60°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选:D.【点评】本题考查了等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.3.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【考点】全等三角形的判定与性质.【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.【点评】此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.二、填空题4.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.5.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是.【考点】全等三角形的判定与性质;勾股定理;圆心角、弧、弦的关系;圆周角定理.【专题】压轴题.【分析】将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;过C作CE⊥AB于E,CF⊥AD于F,得出∠E=∠CFD=∠CFA=90°,推出=,求出∠BAC=∠DAC,BC=CD,求出CE=CF,根据圆内接四边形性质求出∠D=∠CBE,证△CBE≌△CDF,推出BE=DF,证△AEC≌△AFC,推出AE=AF,设BE=DF=x,得出5=x+3+x,求出x,解直角三角形求出即可.【解答】解:解法一、∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵∠BAD=60°,AC平分∠BAD,∴∠CAD=∠CAB=30°,如图1,将△ACD绕点C逆时针旋转120°得△CBE,则∠E=∠CAD=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣CAB+∠ACB)+(180°﹣∠E﹣∠BCE)=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=×(5+3)=4,在Rt△AMC中,AC===;解法二、过C作CE⊥AB于E,CF⊥AD于F,则∠E=∠CFD=∠CFA=90°,∵点C为弧BD的中点,∴=,∴∠BAC=∠DAC,BC=CD,∵CE⊥AB,CF⊥AD,∴CE=CF,∵A、B、C、D四点共圆,∴∠D=∠CBE,在△CBE和△CDF中∴△CBE≌△CDF,∴BE=DF,在△AEC和△AFC中∴△AEC≌△AFC,∴AE=AF,设BE=DF=x,∵AB=3,AD=5,∴AE=AF=x+3,∴5=x+3+x,解得:x=1,即AE=4,∴AC==,故答案为:.【点评】本题考查了圆心角、弧、弦之间的关系,圆内接四边形性质,解直角三角形,全等三角形的性质和判定的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度适中.6.如图,正方形ABCD的对角线相交于点O,△OEF是正三角形,且AE=BF,则∠AOE= 15°.【考点】全等三角形的判定与性质;等边三角形的性质;正方形的性质.【分析】根据正方形、等边三角形的性质,可得AO=BO,OE=OF,根据SSS可得△AOE≌△BOF,根据全等三角形的性质,可得对应角相等,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴OA=OB,∠AOB=90°.∵△OEF是正三角形,∴OE=OF,∠EOF=60°.在△AOE和△BOF中,,∴△AOE≌△BOF(SSS),∴∠AOE=∠BOF,∴∠AOE=(∠AOB﹣∠EOF)÷2=(90°﹣60°)÷2=15°,故答案为15°.【点评】本题考查了全等三角形的性质与判定,正方形、等边三角形的性质,利用SSS证明三角形全等得出∠AOE=∠BOF是解题的关键.三、解答题7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.【解答】解:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△ABF和△DAE中,∴△ABF≌△DAE (AAS),∴BF=AE.∵AF=AE+EF,AF=BF+EF.【点评】本题考查了全等三角形的判定与性质,利用了正方形的性质,余角的性质,全等三角形的判定与性质,等量代换.8.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.【考点】全等三角形的判定与性质;三角形中位线定理.【专题】证明题.【分析】(1)根据三角形中位线,可得DF与CE的关系,DB与DC的关系,根据SAS,可得答案;(2)根据三角形的中位线,可得DF与AE的关系,根据平行四边形的判定与性质,可得答案.【解答】证明:(1)∵DE、DF是△ABC的中位线,∴DF=CE,DF∥CE,DB=DC.∵DF∥CE,∴∠C=∠BDF.在△CDE和△DBF中,∴△CDE≌△DBF (SAS);(2)∵DE、DF是△ABC的中位线,∴DF=AE,DF∥AE,∴四边形DEAF是平行四边形,∵EF与AD交于O点,∴AO=OD【点评】本题考查了全等三角形的判定与性质,(1)利用了三角形中位线的性质,全等三角形的判定;(2)利用了三角形中位线的性质,平行四边的性的判定与性质.9.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.【考点】全等三角形的判定与性质.【专题】证明题;新定义.【分析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.【解答】证明:∵在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.庆)如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据等式的性质得出BD=CE,再利用SAS得出:△ABD与△FEC全等,进而得出∠ADB=∠FCE.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.【点评】此题考查全等三角形的判定和性质,关键是根据等式的性质得出BD=CE,再利用全等三角形的判定和性质解答.11.已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图1,连接BD,AF,则BD = AF(填“>”、“<”或“=”);(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.【考点】全等三角形的判定与性质;等腰三角形的性质;平移的性质.【专题】证明题.【分析】(1)根据等腰三角形的性质,可得∠ABC与∠ACB的关系,根据平移的性质,可得AC与DF 的关系,根据全等三角形的判定与性质,可得答案;(2)根据相似三角形的判定与性质,可得GM与HN的关系,BM与FN的关系,根据全等三角形的判定与性质,可得答案.【解答】(1)解:由AB=AC,得∠ABC=ACB.由△ABC沿BC方向平移得到△DEF,得DF=AC,∠DFE=∠ACB.在△ABF和△DFB中,,△ABF≌△DFB(SAS),BD=AF,故答案为:BD=AF;(2)证明:如图:,MN∥BF,△AMG∽△ABC,△DHN∽△DEF,=, =,∴MG=HN,MB=NF.在△BMH和△FNG中,,△BMH≌△FNG(SAS),∴BH=FG.【点评】本题考查了全等三角形的判定与性质,利用了平移的性质,相似三角形的判定与性质,全等三角形的判定与性质.12.如图,CA=CD,∠B=∠E,∠BCE=∠ACD.求证:AB=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】如图,首先证明∠ACB=∠DCE,这是解决问题的关键性结论;然后运用AAS公理证明△ABC≌△DEC,即可解决问题.【解答】解:如图,∵∠BCE=∠ACD,∴∠ACB=∠DCE;在△ABC与△DEC中,,∴△ABC≌△DEC(AAS),∴AB=DE.【点评】该题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是牢固掌握全等三角形的判定方法,这是灵活运用、解题的基础和关键.13.如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.【专题】证明题.【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE 为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.【解答】(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CBD=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.【点评】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.14.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)易证得△ABE≌△CDF,即可得AB=CD;(2)易证得△ABE≌△CDF,即可得AB=CD,又由AB=CF,∠B=30°,即可证得△ABE是等腰三角形,解答即可.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.【点评】此题考查全等三角形问题,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.15.我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.【考点】全等三角形的判定与性质.【专题】计算题.【分析】AC与BD垂直,理由为:利用SSS得到三角形ABD与三角形CBD全等,利用全等三角形对应角相等得到BD为角平分线,利用三线合一性质即可得证.【解答】解:AC⊥BD,理由为:在△ABD和△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABO=∠CBO,∵AB=CB,∴BD⊥AC.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.16.如图,在▱ABCD中,点E,F在AC上,且∠ABE=∠CDF,求证:BE=DF.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质,证明AB=CD,AB∥CD,进而证明∠BAC=∠DCF,根据ASA即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∴△ABE和△CDF中,,∴△ABE≌△CDF,∴BE=DF.【点评】本题考查的是利用平行四边形的性质结合三角形全等来解决有关线段相等的证明.。
八年级上册数学第十四章 14.3因式分解 测试卷(含答案)
八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》选择题精选
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》选择题精选一.选择题(共35小题)1.(2019秋•蜀山区期末)在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°2.(2019秋•义安区期末)如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=a,则∠A2020B2020O=()A.a22020B.a22019C.4040a D.4038a3.(2019秋•芜湖期末)如图,在锐角三角形ABC中,AB=4,△ABC的面积为8,BD平分∠ABC.若M、N分别是BD、BC上的动点,则CM+MN的最小值是()A.2 B.4 C.6 D.84.(2018秋•义安区期末)如图,△ABC中,AB=AC=8cm,AB的垂直平分线MN交AC于D,△DBC的周长是14cm,则BC的长是()A.4 cm B.6 cm C.8 cm D.10 cm5.(2018秋•宣城期末)如图,在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,则∠CDE的度数为()A.15°B.20°C.25°D.30°6.(2018秋•怀宁县期末)如图,∠MON=45°,P为∠MON内一点,A为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A .80°B .90°C .110°D .120°7.(2018秋•瑶海区期末)在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是( )A .BC =BEB .EC =BE C .BC =ECD .AE =EC8.(2018秋•蚌埠期末)已知等腰三角形的周长是20,其中一边长为6,则其它两边的长度分别是( )A .6和8B .7和7C .6和8或7和7D .3和119.(2018秋•宣城期末)如图,△ABC 中,AB =AC ,AD ⊥BC ,下列结论中不正确的是( )A .D 是BC 中点B .AD 平分∠BACC .AB =2BD D .∠B =∠C10.(2018秋•庐江县期末)如图,直线l 1,l 2,l 3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有( )A .四处B .三处C .两处D .一处11.(2019秋•宿松县校级期末)如图,△ABC 是等腰三角形,点O 是底边BC 上任意一点,OE 、OF 分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE +OF 的值为( )A .5B .7.5C .9D .1012.(2019秋•宿松县校级期末)已知,等腰三角形的一边是3,另一边是方程a −32+a 8=1的解,则这个三角形的周长是( )A .10B .11C .10或11D .7或813.(2019秋•宿松县校级期末)如图所示的平面直角坐标系中,点A 坐标为(4,2),点B 坐标为(1,﹣3),在y 轴上有一点P 使P A +PB 的值最小,则点P 坐标为( )A.(2,0)B.(﹣2,0)C.(0,2)D.(0,﹣2)14.(2020春•当涂县期末)已知a,b,c是△ABC的三边长,且满足√a−6+|b﹣8|+(c﹣10)2=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.以c为底边的等腰三角形15.(2020春•蜀山区期末)已知,在△ABC中,∠A:∠B:∠C=1:2:3,BC=a,AC=b,AB=c,则下列结论错误的是()A.c=√3b B.c=2a C.b2=3a2D.a2+b2=c216.(2020春•瑶海区期末)如图,在四边形ABCD中,AB=BC=CD,∠ABC=160°,∠BCD=80°,△PDC为等边三角形,则∠ADC的度数为()A.70°B.75°C.80°D.85°17.(2019秋•石台县期末)如图,△ABC的面积为12,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.6 B.8 C.10 D.1218.(2019秋•当涂县期末)已知等腰三角形的周长是22,其中一边长为8,则其它两边的长度分别是()A.3和11 B.7和7C.6和8或7和7 D.3和11或7和719.(2019秋•宣城期末)已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.520.(2019秋•谢家集区期末)等腰三角形的周长为14cm,其中一边长为4cm,则该等腰三角形的腰长为()A.4cm B.5cm C.4cm或5cm D.4cm或6cm21.(2019秋•濉溪县期末)如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF的值是()A.12 B.8 C.4 D.322.(2019秋•无为县期末)长方形按如图所示折叠,点D折叠到点D′的位置,已知∠D′FC=60°,则∠EFD等于()A.30°B.45°C.50°D.60°23.(2019秋•潜山市期末)一个等腰三角形的周长为8,且三条边长均为整数,则腰长为()A.5 B.4 C.3 D.224.(2019秋•瑶海区期末)如图,在△ABC中,点D、E在BC边上,点F在AC边上,将△ABD沿着AD 翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,②DE=EF,③∠B=2∠C,④AB=EC,正确的有()A.①②③④B.③④C.①②④D.①②③25.(2019秋•瑶海区期末)下列图形是轴对称图形的是()A.B.C.D.26.(2019秋•瑶海区期末)如图所示的钢架中,∠A=18°,P1A=P1P2,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.∠P5P4B的度数是()A.80°B.85°C.90°D.100°27.(2019秋•瑶海区期末)如图,△ABC中,DE垂直平分AC,交AC于E,交BC于D,连接AD,AE=4cm,则△ABC的周长与△ABD的周长差为()A.2cm B.4cm C.6cm D.8cm28.(2019秋•无为县期末)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5 B.6 C.7 D.829.(2019秋•义安区期末)若等腰三角形的两边长分别是3和10,则它的周长是()A.16 B.23 C.16或23 D.1330.(2019秋•芜湖期末)如图,∠AOB=150°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于点E.若OD=4,则PE的长为()A.2 B.2.5 C.3 D.431.(2019秋•蚌埠期末)如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为()A.30°B.20°C.25°D.15°32.(2019秋•全椒县期末)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN 的周长是7cm,则BC的长为()A.1 cm B.2 cm C.3 cm D.4cm33.(2019秋•蜀山区期末)等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm34.(2019秋•长丰县期末)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在∠A、∠B两内角平分线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边高线的交点处D.在AC、BC两边垂直平分线的交点处35.(2018秋•濉溪县期末)如图,在等边三角形ABC中,∠DFE=120°,那么AD与CE的大小关系是()A.AD>CE B.AD<CE C.AD=CE D.不能确定2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》选择题精选参考答案与试题解析一.选择题(共35小题)1.【解答】解:∠A =180°﹣130°=50°.当AB =AC 时,∠B =∠C =12(180°﹣50°)=65°;当BC =BA 时,∠A =∠C =50°,则∠B =180°﹣50°﹣50°=80°;当CA =CB 时,∠A =∠B =50°.∠B 的度数为50°或65°或80°,故选:D .2.【解答】解:∵B 1A 2=B 1B 2,∠A 1B 1O =α,∴∠A 2B 2O =12α,同理∠A 3B 3O =12∠A 2B 2O =122α, ∠A 4B 4O =123α, ∴∠A n B n O =12a −1α, ∴∠A 2020B 2020O =a 22019, 故选:B .3.【解答】解:过点C 作CE ⊥AB 于点E ,交BD 于点M ′,过点M 作MN ′⊥BC 于N ′,∵BD 平分∠ABC ,M ′E ⊥AB 于点E ,M ′N ′⊥BC 于N∴M ′N ′=M ′E ,∴CE =CM ′+M ′E∴当点M 与M ′重合,点N 与N ′重合时,CM +MN 的最小值.∵三角形ABC 的面积为8,AB =4,∴12×4•CE =8,∴CE =4.即CM +MN 的最小值为4.故选:B .4.【解答】解:∵AB 的垂直平分线MN 交AC 于D ,∴AD =BD ,∵AB =AC =8cm ,△DBC 的周长是14cm ,∴BC +CD +BD =BC +CD +AD =BC +AC =14cm ,∴BC =6cm .故选:B .5.【解答】解:∵AB =AC ,AD ⊥BC ,∴∠CAD =∠BAD =40°,∠ADC =90°,又∵AD =AE ,∴∠ADE =12(180°﹣∠CAD )=70°,∴∠CDE =90°﹣70°=20°,故选:B .6.【解答】解:如图,作出P 点关于OM 、ON 的对称点P 1,P 2连接P 1,P 2交OM ,ON 于A 、B 两点,此时△P AB的周长最小,由题意可知∠P1PP2=180°﹣∠MON=180°﹣45°=135°,∴∠P1P A+∠P2PB=∠P1+∠P2=180°﹣∠P1PP2=45°,∴∠APB=135°﹣45°=90°.故选:B.7.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:A.8.【解答】解:当腰为6时,另一腰也为6,则底为20﹣2×6=8,∵6+6=12>8,∴三边能构成三角形.当底为6时,腰为(20﹣6)÷2=7,∵7+7>6,∴三边能构成三角形.故选:C.9.【解答】解:∵AB=AC,AD⊥BC,∴∠B=∠C,∠BAD=∠CAD,BD=DC.∴AD平分∠BAC,无法确定AB=2BD.故A、B、D正确,C错误.故选:C.10.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.11.【解答】解:连接AO,如图,∵AB=AC=6,∴S△ABC=S△ABO+S△AOC=12AB•OE+12AC•OF=15,∴12AB (OE +OF )=15,∴OE +OF =5.故选:A . 12.【解答】解:a −32+a8=1,4(x ﹣3)+x =8,4x ﹣12+x =8,4x +x =8+12,5x =20,x =4,当等腰三角形的腰为4,底边为3时,这个三角形的周长=4+4+3=11,当等腰三角形的腰为3,底边为4时,这个三角形的周长=4+3+3=10.所以这个三角形的周长是10或11.故选:C .13.【解答】解:如图所示:作B 点关于y 轴对称点B ′点,连接AB ′,交y 轴于点P ,则此时AP +PB =AP +PB ′=AB ′的值最小,∵点B 坐标为(1,﹣3),∴B ′(﹣1,﹣3),∴B ′C =AC =5,∴∠AB ′C =45°,∴PD =B ′D =1,∵OD =|﹣3|=3,∴OP =2,∴P (0,﹣2),故选:D .14.【解答】解:由题意得,a ﹣6=0,b ﹣8=0,c ﹣10=0,解得a =6,b =8,c =10,∵62+82=100=102,∴a 2+b 2=c 2,∴∠ACB =90°,故选:C .15.【解答】解:∵在△ABC 中,∠A :∠B :∠C =1:2:3,∴∠A =30°,∠B =60°,∠C =90°,∵BC =a ,AC =b ,AB =c , ∴a 2+b 2=c 2,c =2a ,a a =tan60°=√3,a a =sin60°=√32, ∴b =√3a ,c =2√33b故B、C、D均正确,A错误.故选:A.16.【解答】解:∵△PDC为等边三角形;∴∠PCD=∠DPC=∠CDP=60°,且PC=CD=PD,∵AB=BC=CD,∴AB=CP,∵∠BCD=80°,∴∠BCP=∠BCD﹣∠DCP=80°﹣60°=20°,∵∠ABC=160°,∴∠ABC+∠BCP=180°,∴PC∥AB,∵AB=CP,∴四边形ABCP为平行四边形,∴∠APC=∠ABC=160°,AP=BC,∴AP=DP,∠APD=360°﹣∠CPD﹣∠APC=140°,∴∠PDA=∠P AD=180°−aaaa2=20°,∴∠ADC=∠CDP+∠ADP=60°+20°=80°,故选:C.17.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=6,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CP+PD的最小值,∴△CDP的周长最短=(CP+PD)+CD=AD+12BC=6+12×4=6+2=8.故选:B.18.【解答】解:当腰为8时,另一腰也为8,则底为22﹣2×8=6,∵6+8=14>8,∴三边能构成三角形.当底为8时,腰为(22﹣8)÷2=7,∵7+7>6,∴三边能构成三角形.故选:C.19.【解答】解:(1)当3是腰长时,底边为16﹣3×2=10,此时3+3=6<10,不能组成三角形;(2)当3是底边时,腰长为12×(16﹣3)=6.5,此时3,6.5,6.5三边能够组成三角形.所以腰长为6.5.故选:C.20.【解答】解:∵当腰是4cm时,则另两边是4cm,6cm;当底边是4cm时,另两边长是5cm,5cm.∴该等腰三角形的腰长为4cm或5cm.故选:C.21.【解答】解:延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选:C.22.【解答】解:根据翻折不变性得∠EFD=∠EFD′,∵∠D′FC=60°,∠DFE+∠EFD′+∠D′FC=180°,∴2∠EFD=180°﹣60°=120°,∴∠EFD=60°.故选:D.23.【解答】解:设腰长为x,则底边为8﹣2x.∵8﹣2x﹣x<x<8﹣2x+x,∴2<x<4,∵三边长均为整数,∴x可取的值为:3.故选:C.24.【解答】解:∵将△ABD沿着AD翻折,使点B和点E重合,∴AB=AE,∠B=∠AEB,∵将△CEF沿着EF翻折,点C恰与点A重合,∴AE=CE,∠C=∠CAE,∴AB=EC,∴④正确;∵∠AEB=∠C+∠CAE=2∠C,∴∠B=2∠C,故③正确;故选:B.25.【解答】解:A、不是轴对称图形,本选项不符合题意;B、是轴对称图形,本选项符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意.故选:B.26.【解答】解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠A=18°,∴∠P3P5P4=72°,∴∠P5P4B=90°.故选:C.27.【解答】解:∵DE垂直平分边AC,AE=4cm,∴AD=CD,AC=2AE=8cm,∵△ABC的周长=AB+AC+BC,∵△ABD的周长=AB+AD+BD=AB+BC,∴△ABC的周长与△ABD的周长差AC=8cm.故选:D.28.【解答】解:如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.29.【解答】解:∵等腰三角形的两边分别是3和10,∴应分为两种情况:①3为底,10为腰,则3+10+10=23;②10为底,3腰,而3+3<10,应舍去,∴三角形的周长是23.故选:B.30.【解答】解:过P点作PF⊥OD,∵∠AOB=150°,OC平分∠AOB,∴∠DOP=∠POE=75°,∵DP∥OA,∴∠DPO=∠POE=75°,∴∠DOP=∠DPO﹣75°,∴DP=OD=4,∴∠PDO=180°﹣75°﹣75°=30°,∵PF⊥OD,∴∠PFD=90°,∴PF=12DP=2,∵PE⊥OA,OC平分∠AOB,∴PE=PF=2,故选:A.31.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=180°−aaaa2=75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故选:D.32.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.33.【解答】解:当7为腰时,周长=7+7+3=17cm;当3为腰时,因为3+3<7,所以不能构成三角形;故三角形的周长是17cm.故选:B.34.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:A.35.【解答】解:AD=CE,理由:∵△ABC是等边三角形,∴∠A=∠ACB=60°,∵∠DFE=120°,∴∠EFC=60°,∴∠BDC=60°+∠ACD,∠AEF=40°+∠ACE,∴∠BDC=∠AEB,∴∠ADE=∠BEC,∵AC=BC,∴△ACD≌△CBE(AAS),∴AD=CE.故选:C.。
八年级数学上册 第15章 数据的收集与表示 单元测试卷(华师版 2024年秋)
八年级数学上册第15章数据的收集与表示单元测试卷(华师版2024年秋)一、选择题(每题3分,共24分)题序12345678答案1.某校八年级(3)班体训队员的身高(单位:cm)如下:169,165,166,164,169,167,166,169,166,165,获得这组数据的方法是()A.直接观察B.查阅文献资料C.互联网查询D.测量2.“水是生命之源,成年人每天体内47%的水分靠喝水获得,14%来自体内氧化时所释放出来的水,39%来自食物中所含的水.”若要表述上述信息,则最合适的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上都可以3.在单词mathematics(数学)中,字母“a”出现的频率为()A.1 10B.111C.211D.2134.甲、乙两户居民家庭全年支出的费用都设计成扇形统计图,且知甲、乙两户食品支出费用分别占全年支出费用的31%和34%,下面对食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多5.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如图所示的折线统计图,若该路段汽车限速110km/h,则超速行驶的汽车有()A.20辆B.60辆C.70辆D.80辆(第5题)6.甲、乙、丙三个小组生产帐篷,已知女工人3人每天共生产4顶帐篷,男工人2人每天共生产3顶帐篷.如图是描述三个小组一天生产帐篷情况的统计图,从中可以得出人数最多的是()A.甲组B.乙组C.丙组D.乙、丙两组(第6题)(第7题)7.如图是某超市2019~2023年的销售额及其增长率的统计图,下列结论正确的是()A.这5年中,销售额先增后减再增B.这5年中,增长率先变大后变小C.2023年销售额比2021年增长了0.4%D.2021年销售额比2019年增长了4.09万元8.在一次捐书活动中,A、B、C、D分别表示“名人传记”“科普图书”“小说”“其他图书”.某校九年级学生捐书情况如以下图表所示,则下列选项错误的是()图书种类A B C D数目/本a175100d(第8题)A.共捐书500本B.a=150C.C所占的百分比是20%D.D对应的扇形的圆心角的度数为50°二、填空题(每题3分,共18分)9.若从“等腰三角形、直角三角形、等边三角形、线段、角”五种图形中随便拿出一种图形,则拿出的这个图形是轴对称图形的频率是________.10.下表是一个各种动物孵化统计表,需用统计图表示这些数据,应选择__________________________________________________________________ ____________统计图较为合适.鸡鸭鹅鸽子火鸡21天30天30天18天28天11.如图,武老师将七年级(1)班的一次数学考试成绩分为A,B,C三个等级,并绘制成如图所示的扇形统计图,则A等级所在扇形的圆心角的度数是________.(第11题)(第12题)12.如图所示是某校初中三个年级男、女生人数的条形统计图,则学生最多的年级是________.(第13题)(第14题) 13.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下列说法:①甲超市的利润逐月减少;②乙超市的利润在1月至4月间逐月增加;③8月份两家超市的利润相同;④乙超市在9月份的利润必超过甲超市.其中说法正确的是________(填序号).14.某校为开设足球、篮球、排球选修课程,现对该校学生就“你最喜欢的球类运动”进行随机调查(要求在足球、篮球、排球中选择一种),并将调查数据绘制成如图所示的两幅不完整的统计图.本次共调查了________名学生,喜欢篮球的学生所占的百分比为________.三、解答题(15,16题每题8分,17,18题每题9分,19,20题每题12分,共58分)15.某厂准备在“六一”儿童节时送一批气球给幼儿园的小朋友们,为此特地对30名小朋友最喜欢的气球颜色进行调查,结果如下:红蓝红黄红蓝绿绿黄红红蓝红蓝蓝蓝红蓝红绿黄红红蓝红绿黄红黄红请你设计一个表格,对上面的数据进行统计.16.航模兴趣小组的老师想知道全组学生的年龄情况,于是让大家把自己的年龄写在纸上,下表是全组40名学生的年龄(单位:岁).14131315161214161713141512121314151615141312151417161613121414151316151617141413(1)在这个表中,13岁的频数是________,频率是________;(2)________岁的频率最大,这个最大频率是________;(3)假如老师随机地问一名学生的年龄,你认为老师最可能听到的回答是多少岁?17.魏茹丽同学本学期由于努力学习,数学成绩稳步提高.下表为魏茹丽同学本学期近5次的数学考试成绩:(1)补全折线统计图(如图);(2)已知第6次考试的难度与前5次相当,请你预测一下她这次的数学成绩,并说明你的预测理由(言之有理即可).序号12345数学成绩/分8085859090(第17题)18.郑州某中学举行了一次知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取调查了部分参赛学生的成绩,如下是根据调查结果绘制的统计图表的一部分.组别成绩x/分频数A组60≤x<706B组70≤x<808C组80≤x<90aD组90≤x<10014(第18题)根据图表信息,解答下列问题:(1)此次调查的人数是________,表中a=________;(2)求扇形统计图中C组对应扇形的圆心角度数.19.某校对九年级学生进行了一次综合文科中考模拟测试,将成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x <80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如下不完整的统计图表.等级频数频率A a20%B1640%C b mD410%(第19题)请你根据统计图表提供的信息解答下列问题:(1)本次调查共抽取了多少名学生?(2)上表中的a=________,b=________,m=________.(3)补全条形统计图.20.图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况.根据统计图,解答下列问题:(1)若这7天的日访问总量一共为10万人次,求星期三的日访问总量;(2)求星期日学生的日访问量;(3)请写出一条从统计图中得到的信息.(第20题)答案一、1.D 2.C 3.C 4.D 5.D 6.C7.D8.D点拨:共捐书175÷35%=500(本),故A正确;a=500×30%=150,故B正确;C所占的百分比为100500×100%=20%,故C正确;D的数目为500-150-175-100=75(本),所以D对应的扇形的圆心角的度数为75500×100%×360°=54°,故D错误.二、9.0.810.条形11.72°12.七年级13.①②③14.40;35%三、15.解:如下表.最喜欢的气球颜色记录频数红正正13黄正5蓝正8绿416.解:(1)8;0.2(2)14;0.25(3)因为14岁的频率最大,所以老师最可能听到的回答是14岁.17.解:(1)补全折线统计图如图.(2)(答案不唯一)她这次的数学成绩可能是95分.理由:由折线统计图可知,魏茹丽同学本学期近5次的数学考试成绩稳步提升,因为第6次考试的难度与前5次相当,所以这次的数学成绩可能提高5分,成绩为95分.(第17题)(第19题) 18.解:(1)40;12(2)C组对应扇形的圆心角度数为360°×1240=108°.19.解:(1)本次调查共抽取了16÷40%=40(名)学生.(2)8;12;30%(3)补全条形统计图如图所示.20.解:(1)星期三的日访问总量为10-0.5-1-1-1.5-2.5-3=0.5(万人次).(2)星期日学生的日访问量为3×30%=0.9(万人次).(3)该教育网站一周内星期日的日访问总量最大.(答案不唯一)。
第14--15章 人教版数学八年级上册同步单元测试题附答案
《第十四章整式的乘法与因式分解》单元测试一、选择题(每小题3分,共30分)1.计算(a3)2的结果是()A.a5B.a6C.a8D.a92.下列添括号错误的是()A.a2-b2-b+a=a2-b2+(a-b)B.(a+b+c)(a-b-c)=[a+(b+c)][a-(b+c)]C.a-b+c-d=(a-d)+(c-b)D.a-b=-(b+a)3.计算6m6÷(-2m2)3的结果为()A.-m B.-1C.34D.-344.下列运算中,正确的是()A.a2+a=a3B.(-ab)2=-ab2C.a5÷a2=a3D.a5·a2=a105.设a=-0.32,b=-32,c=(-13)2,d=(-13)0,则a,b,c,d的大小关系是()A.a<b<c<d B.b<a<c<dC.b<a<d<c D.a<b<d<c6.已知(a+b)2=49,a2+b2=25,则ab等于()A.24 B.48C.12 D.2 67.若(a-2)0=1,则a的取值范围是()A.a>2 B.a=2 C.a<2 D.a≠28.三个连续奇数,若中间的数为n,则这三个连续奇数的积为() A.n3-n B.n3+nC.n3-4n D.n3+4n9.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x -1,a -b ,3,x 2+1,a ,x +1分别对应“州”“爱”“我”“数”“学”“广”六个字,现将3a (x 2-1)-3b (x 2-1)分解因式,结果呈现的密码信息可能是( )A .我爱学B .爱广州C .我爱广州D .广州数学10.如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2)后,将剩余部分沿虚线剪开,并拼成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2二、填空题(每小题4分,共28分)11.计算:2x 3·(-3x )=________.12.若|a -2|+b 2-2b +1=0,则a b =________.13.点(-3,4)与点(a 2,b 2)关于y 轴对称,则(a +b )·(a -b )=________.14.若x ,y 满足⎩⎨⎧x -3y =-2,x +3y =3,则x 2-9y 2的值为________. 15.若x +y =-3,xy =1,则x 2y +xy 2=________.16.长方形的面积为4a 2-6ab +2a ,若它的一条边长为2a ,则它的周长为________.17.如图,点M 是AB 的中点,点P 在MB 上,分别以AP ,BP 为边作正方形APCD和正方形PBEF ,连接MD 和ME .设AP =a ,BP =b ,若a +b =6,ab =7,则图中阴影部分的面积为________.三、解答题(一)(每小题6分,共18分)18.计算:(1)(2a 2)3+(-3a 3)2+(a 2)2·a 2;(2)(x 5y 3-2x 4y 2+3x 3y 5)÷⎝ ⎛⎭⎪⎫-23xy .19.分解因式:(1)-a +2a 2-a 3;(2)a 3(x -y )+ab 2(y -x ).20.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =1,y =-3.21.若关于x的多项式(x2+x-n)(mx-3)的展开式中不含x2和常数项,求m,n 的值.22.对于任意自然数n,(n+7)2-(n-5)2是否能被24整除?23.小马、小虎两人共同计算一道题:(x+a)(2x+b).由于小马抄错了a的符号,得到的结果是2x2-7x+3,小虎漏抄了第二个多项式中x的系数,得到的结果是x2+2x-3.(1)求a,b的值;(2)请计算这道题的正确结果;(3)当x=-1时,计算(2)中式子的值.24.小红家有一块L形菜地,要把L形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a m,下底都是b m,高都是(b -a) m.(1)请你算一算,小红家菜地的面积是多少平方米?(2)当a=10,b=30时,该菜地的面积是多少平方米?25.常用的分解因式的方法有提公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x2-2xy+y2-16,我们细心观察这个式子,会发现,前三项是完全平方式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a2+4b2-25m2-n2+12ab+10 mn;(2)已知a,b,c分别是△ABC的三边长且2a2+b2+c2-2a(b+c)=0,请判断△ABC的形状,并说明理由.答案一、1.B 2.D 3.D 4.C 5.C 6.C 7.D 8.C 9.C 10.C二、11.-6x 412.213.-1 14.-6 15.-316.8a -6b +217.13三、18.解:(1)原式=23·(a 2)3+(-3)2·(a 3)2+(a 2)2·a 2=8a 6+9a 6+a 6=(8+9+1)a 6=18a 6.(2)原式=x 5y 3÷⎝ ⎛⎭⎪⎫-23xy -2x 4y 2÷⎝ ⎛⎭⎪⎫-23xy +3x 3y 5÷⎝ ⎛⎭⎪⎫-23xy =-32x 4y 2+3x 3y -92x 2y 4. 19.解:(1)原式=-a (1-2a +a 2)=-a (1-a ) 2.(2)原式= a 3(x -y )-ab 2(x -y )= a (x -y )(a 2-b 2)= a (x -y )(a +b )(a -b ).20.解:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy=(x 2-y 2)-(2x 2-4y 2)=-x 2+3y 2.当x =1,y =-3时,原式=-1+27=26.四、21.解:原式=mx 3-3x 2+mx 2-3x -mnx +3n = mx 3+(m -3)x 2-(3+mn )x +3n .由展开式中不含x 2和常数项,可得m -3=0,3n =0.解得m =3,n =0.22.解:(n +7)2-(n -5)2=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1).∵24(n +1)中含有24这个因数,∴(n +7)2-(n -5)2能被24整除.23.解:(1)根据题意,得小马的计算过程如下:(x -a )(2x +b )=2x 2+bx -2ax -ab=2x 2+(b -2a )x -ab=2x 2-7x +3.小虎的计算过程如下:(x +a )(x +b )=x 2+(a +b )x +ab =x 2+2x -3.所以b -2a =-7,a +b =2,解得a =3,b =-1.(2)由(1)得正确的算式是(x +3)(2x -1)=2x 2-x +6x -3=2x 2+5x -3.(3)当x =-1时,2x 2+5x -3=2×(-1)2+5×(-1)-3=-6.五、24.解:(1)小红家菜地的面积是2×12×(a +b )(b -a )= (b 2-a 2) m 2. (2)当a =10,b =30时,该菜地的面积是302-102=800(m 2).25.解:(1)9a 2+4b 2-25m 2-n 2+12ab +10mn=(9a 2+12ab +4b 2)-(25m 2-10mn +n 2)=(3a +2b )2-(5m -n )2=(3a +2b +5m -n )(3a +2b -5m +n ).(2)由2a 2+b 2+c 2-2a (b +c )=0,可得2a 2+b 2+c 2-2ab -2ac =0,得(a 2-2ab +b 2)+(a 2-2ac +c 2)=0,即(a -b )2+(a -c )2=0,所以a -b =0,a -c =0,所以a =b =c ,所以△ABC 是等边三角形.《第十五章分式》单元测试一、选择题(每小题3分,共30分)1.下列式子是分式的是()A.a-b2 B.5+yπ C.x+3x D.1+x2.下列分式中为最简分式的是()A.x+1x2+1B.42xC.x-1(x-1)2D.1-xx-13.不论x取何值,下列式子的值不可能为0的是() A.x+1 B.x2-1C.1x+1D.(x+1)24.某病毒的直径为132 nm(1 nm=10-9m),则这种病毒的直径用科学记数法表示为()A.132×10-9 m B.1.32×10-6 mC.1.32×10-7 m D.1.32×10-8 m5.若分式xx+y中的x和y的值都扩大到原来的2倍,则分式的值() A.扩大到原来的2倍B.扩大到原来的4倍C.缩小到原来的12D.不变6.已知a=2-2,b=(3-1)0,c=(-1)3,则a,b,c的大小关系是() A.a>b>c B.b>a>cC.c>a>b D.b>c>a7.把6ca2b,c3ab2通分,下列结果正确的是()A.6ca2b=6bca2b2,c3ab2=ac3a2b2B. 6ca2b=18bc3a2b2,c3ab2=ac3a2b2C.6ca2b=18bc3a2b2,c3ab2=c3ab2D.6c a 2b =18c 3a 2b ,c 3ab 2=c 3ab 28.下列运算正确的是( )A.3b 4a ·2a 9b 2=b 6B.13ab ÷2b 23a =b 32C.12a +1a =23aD.1a -1-1a +1=2a 2-1 9.下列说法:①361-x =18x 是分式方程;②x =-1是分式方程x -1x +1=0的解;③分式方程x x -3=2-33-x转化成一元一次方程时,方程两边需要同乘(x -3);④解分式方程时一定会出现无解.其中正确的有( )A .1个B .2个C .3个D .4个10.广州某公交线路日均运送乘客总量为15 600人次,实施5G 快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.则实施智能调度前每趟车平均运送乘客量为( )A .120人次B .110人次C .100人次D .90人次二、填空题(每小题4分,共28分)11.要使分式5x -1有意义,则x 的取值范围为________. 12.计算:(-2xy -1)-3=________.13.在学校组织的登高望远活动中,某班分成甲、乙两个小组同时开始攀登一座450 m 高的山.乙组的攀登速度是甲组的1.2倍,乙组到达山顶所用时间比甲组少15 min.设甲组的攀登速度为x m/min ,则可列方程为____________.14.已知1f =1u +1v (v ≠f ),用v , f 表示u 的式子是________.15.若1x +3=3x ,则x =________. 16.若m 2+2m =1,则m 2+4m +4m÷m +2m 2的值为________. 17.若关于x 的分式方程2x x -1-3=m 1-x 的解为正数,则m 的取值范围是________.三、解答题(一)(每小题6分,共18分) 18.计算:(1)a2-b2a2+2ab+b2÷2b-2aa+b;(2)x2+2x+1x+1-x2+xx.19.解分式方程:(1)3x+1+1x-1=6x2-1;(2)1-xx-2+2=12-x.20.先化简a 2-2a +1a 2-1÷⎝ ⎛⎭⎪⎫a -2a a +1,再从-1,0,1,2中选择一个合适的数代入求值.四、解答题(二)(每小题8分,共24分)21.已知实数a 满足a 2+4a -8=0,求1a +1-a +3a 2-1·a 2-2a +1a 2+6a +9的值.22.某工人原计划在规定时间内加工1 500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1 500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?23.已知关于x的方程mx+3-13-x=m+4x2-9.若原方程无解,求m的值.五、解答题(三)(每小题10分,共20分)24.深圳文博会期间,某展商展出了A、B两种商品,已知用120元可购得的A 种商品比B种商品多2件,B种商品的单价是A种商品的1.5倍.(1)A、B两种商品的单价各是多少元?(2)小亮用不超过260元购买A、B两种商品共10件,并且A种商品的数量不超过B种商品数量的2倍,那么他有哪几种购买方案?并说明哪种是最优方案.25.观察下列方程的特征及其解的特点.①x+2x=-3的解为x1=-1,x2=-2;②x+6x=-5的解为x1=-2,x2=-3;③x+12x=-7的解为x1=-3,x2=-4.解答下列问题:(1)请写出一个符合上述特征的方程;(2)根据这类方程的特征,写出第n个方程;(3)请利用(2)的结论,求关于x的方程x+n2+nx+3=-2(n+2)(n为正整数)的解.答案一、1.C 2.A 3.C 4.C 5.D 6.B7.B8.D9.B 10.C二、11.x≠112.-y38x313.450x-4501.2x=1514.u=fvv-f15.-9216.117.m>-3且m≠-2三、18.解:(1)原式=(a+b)(a-b)(a+b)2·a+b-2(a-b)=-12.(2)原式=(x+1)2x+1-x(x+1)x=x+1-(x+1)=0.19.解:(1)去分母、去括号,得3x-3+x+1=6,解得x=2,经检验,x=2是分式方程的解.(2)去分母、去括号,得1-x+2x-4=-1,解得x=2,检验:当x=2时,x-2=0,∴分式方程无解.20.解:原式=(a-1)2(a+1)(a-1)÷⎣⎢⎡⎦⎥⎤a(a+1)a+1-2aa+1=(a-1)2(a+1)(a-1)×a+1a(a-1)=1 a.由原式可知a不能取1,0,-1,∴a=2,原式=1 2.四、21.解:原式=1a+1-a+3(a+1)(a-1)·(a-1)2(a+3)2=1a+1-a-1(a+1)(a+3)=a+3(a+1)(a+3)-a-1(a+1)(a+3)=a+3-a+1(a+1)(a+3)=4(a+1)(a+3)=4a2+4a+3.∵a2+4a-8=0,∴a2+4a=8.∴原式=48+3=411.22.解:设原计划每小时加工x个零件,则提高工作效率后每小时加工2x个零件,由题意可得1 500x=1 5002x+5,解得x=150,经检验,x=150是分式方程的解.答:原计划每小时加工150个零件.23.解:方程两边都乘(x-3)(x+3),得m(x-3)+(x+3)=m+4,整理得(m+1)x=1+4m,当m+1=0时,1+4m≠0,方程无解,此时m=-1.当m+1≠0时,x=1+4m m+1,当x=3时,(x-3)(x+3)=0,方程无解,即1+4mm+1=3,解得m=2.当x=-3时,(x-3)(x+3)=0,方程无解,即1+4mm+1=-3,解得m=-4 7.综上,若原方程无解,则m=-1或2或-4 7.五、24.解:(1)设A种商品的单价为x元,由题意可得120x =1201.5x +2,解得x =20,经检验,x =20是分式方程的解,∴1.5x =30,∴A 种商品的单价是20元,B 种商品的单价是30元.(2)设购买A 种商品a 件,B 种商品(10-a )件,⎩⎨⎧20a +30(10-a )≤260,a ≤2(10-a ),解得4≤a ≤203,∴a 可以取的整数为4,5,6,∴共有3种购买方案:方案一:购买A 种商品4件,B 种商品6件,所需费用为20×4+30×6=260(元); 方案二:购买A 种商品5件,B 种商品5件,所需费用为20×5+30×5=250(元); 方案三:购买A 种商品6件,B 种商品4件,所需费用为20×6+30×4=240(元). ∵240<250<260,∴方案三是最优方案.25.解:(1)x +20x =-9的解为x 1=-4,x 2=-5.(2)x +n 2+n x =-(2n +1)的解为x 1=-n ,x 2=-n -1.(3)∵x +n 2+n x +3=-2(n +2), ∴x +3+n 2+n x +3=-2(n +2)+3, ∴(x +3)+n 2+n x +3=-(2n +1), ∴x +3=-n 或x +3=-n -1,即x 1=-n -3,x 2=-n -4.检验:当x =-n -3时,x +3=-n ≠0,当x =-n -4时,x +3=-n -1≠0,∴原分式方程的解是x1=-n-3,x2=-n-4.。
人教版 八年级上册 数学第13--14章 期末复习题(含答案)
人教版八年级上册第13章轴对称章末综合训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,△ABC是等边三角形,D是AC的中点,DE⊥BC于点E,CE=3,则AB的长为()A.11 B.12 C.13 D.143. 在△ABC中,与∠A相邻的外角是110°,要使△ABC为等腰三角形,则∠B 的度数是()A.70°B.55°C.70°或55°D.70°或55°或40°4. 如果点(m-1,-1)与点(5,-1)关于y轴对称,那么m的值为()A.4 B.-4 C.5 D.-55. 如图直线a∥b∥c,等边三角形ABC的顶点B,C分别在直线b和c上,边BC与直线c所夹的锐角为20°,则∠α的度数为()A.20°B.40°C.60°D.80°6. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-737. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 108. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°9. 在平面直角坐标系中,已知在y轴与直线x=3之间有一点M(a,3).如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.110. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°二、填空题11. 如图,AD是△ABC的边BC上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上)①∠BAD=∠ACD ②∠BAD=∠CAD③AB+BD=AC+CD ④AB-BD=AC-CD12. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.13. 如图,等腰三角形ABC的底边BC的长为6,面积是24,腰AC的垂直平分线EF分别交AC,AB边于点E,F.若D为BC边的中点,M为线段EF上一动点,则△CDM周长的最小值为________.14. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.15. 定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=________.16. 如图,点E在等边三角形ABC的边BC上,BE=6,射线CD⊥BC于点C,P是射线CD上一动点,F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC的长为________.三、解答题17. 如图,已知△ABC中,D为BC边上一点,且AB=AC=BD,AD=CD,求∠BAC的度数.18. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.19. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.20. 如图,在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴对称的图形是△A1B1C1,△A1B1C1关于直线l对称的图形是△A2B2C2,请直接写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.21. 如图①所示,A,B两地在一条河的两岸,现要在河岸上造一座桥MN,桥造在何处才能使从A地到B地的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)[思考1]如图②,如果A,B两地之间有两条平行的河流,我们要建的桥都是与河岸垂直的,我们应该如何找到这个最短的路径呢?[思考2]如图③,如果A,B两地之间有三条平行的河流呢?[拓展]如图④,如果在上述其他条件不变的情况下,两条河并不是平行的,又该如何建桥呢?请将你的思考在下面准备好的图形中表示出来,保留作图痕迹,将行走的路线用实线画出来.链接听P30例2归纳总结人教版八年级上册第13章轴对称章末综合训练-答案一、选择题1. 【答案】 C2. 【答案】B∴∠CDE=30°.∴CD=2CE=6.∵D是AC的中点,∴AC=2CD=12.∴AB=AC=12.3. 【答案】D 当∠B =55°时,可得∠C =55°,∠B =∠C ,△ABC 为等腰三角形;当∠B =40°时,可得∠C =70°=∠A ,△ABC 为等腰三角形.4. 【答案】B5. 【答案】D∵△ABC 是等边三角形,∴∠ACB =60°.∴∠α=∠ACE =∠ACB +∠BCE =60°+20°=80°.6. 【答案】C7. 【答案】C8. 【答案】C∵AC =BC ,∴CG 平分∠ACB ,∠A =∠B =40°.∵∠ACB =180°-∠A -∠B =100°, ∴∠BCG =12∠ACB =50°.9. 【答案】D又∵点M (a ,3)到直线x=3的距离为3-a ,∴3-a=2.∴a=1.10. 【答案】A∴∠E =180°-∠EAB =180°-120°=60°.又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.二、填空题12. 【答案】(2,3)13. 【答案】11 ∵△ABC 是等腰三角形,D 是BC 边的中点, ∴AD ⊥BC.∴S △ABC =12BC·AD =12×6×AD =24,解得AD =8.∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC. ∴MC +DM =MA +DM≥AD. ∴AD 的长为MC +DM 的最小值.∴△CDM 周长的最小值=(MC +DM)+CD =AD +12BC =8+12×6=8+3=11.14. 【答案】615. 【答案】85或14 ∴特征值k=80°50°=85.②当∠A 为底角时,顶角的度数为180°-80°-80°=20°, ∴特征值k =20°80°=14. 综上所述,特征值k 为85或14.16. 【答案】10如图,作点E 关于直线CD 的对称点G ,过点G 作GF ⊥AB 于点F ,交CD 于点P ,则此时EP +PF 的值最小.∵∠B =60°,∠BFG =90°,∴∠G =30°. ∵BF =7,∴BG =2BF =14.∴EG =8. ∴CE =CG =4.∴AC =BC =10.三、解答题17. 【答案】解:∵AD =CD ,∴设∠DAC =∠C =x°. ∵AB =AC =BD ,∴∠BAD =∠BDA =∠DAC +∠C =2x°, ∠B =∠C =x°.∴∠BAC =3x°.∵∠B +∠BAC +∠C =180°,∴5x =180, 解得x =36.∴∠BAC =3x°=108°.18. 【答案】解:∵∠ADB =30°+40°=70°,AB =BD , ∴∠BAD =∠ADB =70°.∴∠BAC =∠BAD +∠CAD =100°.19. 【答案】解:(1)证明:如图,过点D 作DM ∥AB ,交CF 于点M ,则∠MDF =∠E.∵△ABC 是等边三角形, ∴∠CAB =∠CBA =∠C =60°. ∵DM ∥AB ,∴∠CDM =∠CAB =60°,∠CMD =∠CBA =60°. ∴△CDM 是等边三角形. ∴CM =CD =DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF≌△EBF(ASA).∴DM=BE. ∴CD=BE.(2)∵ED⊥AC,∠CAB=∠CBA=60°,∴∠E=∠FDM=30°.∴∠BFE=∠DFM=30°.∴BE=BF,DM=MF.∵△DMF≌△EBF,∴MF=BF.∴CM=MF=BF.又∵BC=AB=12,∴BF=13BC=4.20. 【答案】解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)如图①,若0<a≤3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(x,0),可得=3,即x=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.如图②,若a>3,∵点P与点P1关于y轴对称,P(-a,0),∴P1(a,0).又∵点P1与点P2关于直线x=3对称,设P2(m,0),可得=3,即m=6-a.∴P2(6-a,0),则PP2=6-a-(-a)=6-a+a=6.综上,PP2的长为6.21. 【答案】如图①所示,MN即为所求.[思考1] 如图②所示,折线AMNEFB即为所求.[思考2] 如图③所示,折线AMNGHFEB即为所求.[拓展] 如图④所示,折线AMNEFB即为所求.人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练一、选择题1. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 52. 计算(x -1)2的结果是() A .x 2-x +1 B .x 2-2x +1 C .x 2-1D .2x -23. 计算(2x +1)(2x -1)的结果为( )A .4x 2-1B .2x 2-1C .4x -1D .4x 2+14. 若3×9m ×27m =321,则m 的值是( )A .3B .4C .5D .65. 下列各式中,能用完全平方公式计算的是()A .(x -y )(x +y )B .(x -y )(x -y )C .(x -y )(-x -y )D .-(x +y )(x -y )6. 下列各式中,计算正确的是()A .()222p q p q -=- B .()22222a b a ab b +=++ C .()2242121a a a +=++ D .()2222s t s st t --=-+7. 化简(-2x -3)(3-2x )的结果是( ) A .4x 2-9B .9-4x 2C .-4x 2-9D .4x 2-6x +98. 若(x +a )2=x 2+bx +25,则( )A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =109. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除10. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ).A.大于零B.小于零 C 大于或等于零D .小于或等于零二、填空题11. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号)12. 若x -y =6,xy =7,则x 2+y 2的值等于________.13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 填空:()()22552516a a a b +-=-15. 课本上,公式(a -b )2=a 2-2ab +b 2是由公式(a +b )2=a 2+2ab +b 2推导得出的.已知(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4,则(a -b )4=________________.16. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题17. 计算:(41)(41)a a ---+18. 分解因式:44()()a x a x +--19. 分解因式:42231x x -+;20. 分解因式:222332154810ac cx ax c +--21. 分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;人教版 八年级上册 第14章 整式的乘法与因式分解 章末综合训练-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】A8. 【答案】D 所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.9. 【答案】B10. 【答案】B 【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】其中⑴是单项式变形,⑷是多项式的乘法运算,⑵中并没有写成几个整式的乘积的形式,只有⑶是因式分解12. 【答案】50 所以x 2+y 2=(x -y)2+2xy =62+2×7=50.13. 【答案】±314. 【答案】()()2254542516a b a b a b +-=-【解析】()()2254542516a b a b a b +-=-15. 【答案】a 4-4a 3b +6a 2b 2-4ab 3+b 4所以(a -b)4=[a +(-b)]4=a 4+4a 3(-b)+6a 2(-b)2+4a(-b)3+(-b)4=a 4-4a 3b +6a 2b 2-4ab 3+b 4.16. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题17. 【答案】222(41)(41)(4)1161a a a a ---+=--=-【解析】222(41)(41)(4)1161a a a a ---+=--=-18. 【答案】228()ax a x +【解析】442222()()()()()()a x a x a x a x a x a x ⎡⎤⎡⎤+--=+--++-⎣⎦⎣⎦[][]22()()()()()()a x a x a x a x a x a x ⎡⎤=+--++-++-⎣⎦222222(22)8()x a a x ax a x =⋅⋅+=+19. 【答案】22(15)(15)x x x x +++-【解析】42422222222312125(1)(5)(15)(15)x x x x x x x x x x x -+=++-=+-=+++-20. 【答案】22(23)(165)c x a c --【解析】222323223215481032101548ac cx ax c ac c cx ax +--=-+- 22222(165)3(516)(23)(165)c a c x c a c x a c =-+-=--21. 【答案】22x x-+(2)(3)【解析】22222222 -+--+-=+-=-+;(3)2(3)(3)(3)(6)(2)(3)x x x x x x x x。
人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解八年级数学上学期单元测试卷(人教版)
第十四章整式的乘法与因式分解(时间:100分钟,分值:150分)一.选择题目(共12小题,每小题4分,共48分)1.下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x5【解答】解:A、x4+x4=2x4,故A不符合题意;B、x6÷x2=x4,故B不符合题意;C、x•x4=x5,故C符合题意;D、(x2)3=x6,故D不符合题意;故选:C.2.计算﹣(﹣2x3y2)4的结果是()A.16x7y6B.﹣16x7y6C.16x12y8D.﹣16x12y8【解答】解:﹣(﹣2x3y2)4=﹣16x12y8,故选:D.3.多项式3x2y2﹣12x2y4﹣6x3y3的公因式是()A.3x2y2z B.x2y2C.3x2y2D.3x3y2z【解答】解:多项式3x2y2﹣12x2y4﹣6x3y3的公因式是3x2y2,故选:C.4.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)【解答】解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.5.下列各式中,正确的因式分解是()A.a2﹣b2+2ab﹣c2=(a+b﹣c)(a﹣b﹣c)B.﹣(x﹣y)2﹣(x﹣y)=﹣(x﹣y)(x﹣y+1)C.2(a﹣b)+3a(b﹣a)=(2+3a)(a﹣b)D.2x2+4x+2﹣2y2=(2x+2+2y)(x+1﹣y)【解答】解:A.a2﹣b2+2ab﹣c2=(a﹣b+c)(a﹣b﹣c),故此选项不合题意;B .﹣(x ﹣y )2﹣(x ﹣y )=﹣(x ﹣y )(x ﹣y +1),故此选项符合题意;C .2(a ﹣b )+3a (b ﹣a )=(2﹣3a )(a ﹣b )),故此选项不合题意;D .2x 2+4x +2﹣2y 2=2(x +1+2y )(x +1﹣y ),故此选项不合题意;故选:B .6.若2x 2+m 与2x 2+3的乘积中不含x 的二次项,则m 的值为( )A .﹣3B .3C .0D .1 【解答】解:(2x 2+m )(2x 2+3)=4x 4+6x 2+2mx 2+3m ,∵2x 2+m 与2x 2+3的乘积中不含x 的二次项,∴6+2m =0,∴m =﹣3.故选:A .7.计算(−23)2021×(32)2021的结果是( )A .﹣1B .1C .23D .32 【解答】解:(−23)2021×(32)2021=[(−23)×32]2021=(﹣1)2021=﹣1,故选:A .8.若(2x ﹣1)0有意义,则x 的取值范围是( )A .x =﹣2B .x ≠0C .x ≠12D .x =12 【解答】解:(2x ﹣1)0有意义,则2x ﹣1≠0,解得:x ≠12.故选:C .9.若x 2﹣mx +16是完全平方式,则m 的值等于( )A .2B .4或﹣4C .2或﹣2D .8或﹣8【解答】解:∵x 2﹣mx +16=x 2﹣mx +42,∴﹣mx =±2•x •4,解得m =8或﹣8.故选:D .10.已知a =817,b =279,c =913,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a【解答】解:∵a =817,b =279,c =913,∴a =(34)7=328,b =(33)9=327,c =(32)13=326.又∵328>327>326,∴a >b >c .故选:A .11.若(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,则a 的值为( )A .0B .2C .12D .﹣2【解答】解:(x 2+ax +2)(2x ﹣4)=2x 3+2ax 2+4x ﹣4x 2﹣4ax ﹣8=2x 3+(﹣4+2a )x 2+(﹣4a +4)x ﹣8,∵(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,∴﹣4+2a =0,解得:a =2.故选:B .12.如图所示的是4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为64,小正方形的面积为16,若分别为x ,y (x >y )表示为小长方形的长和宽,则下列关系式中不正确的是( )A .x +y =8B .xy =24C .x 2﹣y 2=32D .4xy +16=64【解答】解:由题意得:(x +y )2=64且(x ﹣y )2=16.(x >y >0).∴{x+y=8,x−y=4.解得:{x=6.y=2.∴x+y=8,xy=12,x2﹣y2=32,4xy+16=64.故选:B.二.填空题目(共4小题)13.计算:6m3÷2m=3m2.【解答】解:原式=6÷2•m3﹣1=3m2,故答案为:3m2.14.若a m=2,a n=5,则a2m+2n=100.【解答】解:∵a m=2,a n=5,∴a2m+2n=a2m•a2n=(a m)2•(a n)2=22×52=4×25=100,故答案为:100.15.计算:20212﹣2020×2022=1.【解答】解:20212﹣2020×2022=20212﹣(2021﹣1)(2021+1)=20212﹣(20212﹣12)=20212﹣20212+1=1.16.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+12)×(1+122)×(1+124)×(1+128)+1215=2.【解答】解:(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−12)×(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−122)(1+122)×(1+124)×(1+128)+1215=2×(1−124)(1+124)×(1+128)+1215=2×(1−128)×(1+128)+1215=2×(1−1216)+1215=2−1215+1 215=2.故答案为:2.三.解答题(共14小题)17.(1)计算;√9−|﹣3|+(π﹣3.14)0﹣(﹣1);(2)199×201【解答】解:(1)原式=3﹣3+1+1=2;(2)解:199×201=(200﹣1)×(200+1)=2002﹣1=39999.18.计算:(1)(4a2b+6a2b2﹣ab2)÷2ab;(2)(2x-3y)2【解答】解:(1)(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab−12 b.(2)(2x-3y)2=4x2﹣12xy+9y219.计算:(1)(x+y﹣2z)(x﹣y+2z).(2)(x﹣y)(2x+y)﹣(x+y)(x﹣y).【解答】(1)解:(x+y﹣2z)(x﹣y+2z)=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣(y2+4z2﹣4yz)=x2﹣y2﹣4z2+4yz.(2)解:原式=2x2﹣xy﹣y2﹣x2+y2=x2﹣xy.20.因式分解:(1)﹣3a3b2+6ab3(2)4x2﹣9.(3)2m2﹣12m+18.(4)(a﹣2b)2﹣(3a﹣2b)2【解答】(1)解:﹣3a3b2+6ab3 =﹣3ab2(a2﹣2b)(2)解:4x2﹣9=(2x+3)(2x﹣3).(3)解:2m2﹣12m+18=2(m2﹣6m+9)=2(m﹣3)2.(4)解:(a﹣2b)2﹣(3a﹣2b)2=(a﹣2b+3a﹣2b)(a﹣2b﹣3a+2b)=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).21.解方程或不等式:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1)(2)x(3x﹣2)<3(x﹣2)(x+1)【解答】解:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1),x2﹣2x﹣3x+6+18=x2+x+9x+9,x2﹣5x﹣10x﹣x2=9﹣6﹣18,﹣15x=﹣15,x=1;(2)x(3x﹣2)<3(x﹣2)(x+1),3x2﹣2x<3x2+3x﹣6x﹣6,3x2﹣2x﹣3x2﹣3x+6x<﹣6,x<﹣6.22.在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12.(1)求出a的值;(2)在(1)的条件下,且b=﹣3时,计算(x+a)(x+b)的结果.【解答】解:(1)∵(x+a)(x+6)=x2+6x+ax+6a=x2+(6+a)x+6a,∴x2+(6+a)x+6a=x2+8x+12,∴6+a=8,6a=12,解得a=2;(2)当a=2,b=﹣3时,(x+a)(x+b)=(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x﹣6.23.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形“正方形(如图2).(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2=(a﹣b)2+4ab;(2)根据(1)中的结论,若x+y=5,xy=94,则(x﹣y)2=16;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.【解答】解:(1)由题意可得,图2的面积为:(a +b )2=(a ﹣b )2+4ab ,故答案为:(a +b )2=(a ﹣b )2+4ab ;(2)由(1)题结论(a +b )2=(a ﹣b )2+4ab ,可得(a ﹣b )2=(a +b )2﹣4ab ,∴x +y =5,xy =94时,(x ﹣y )2=(x +y )2﹣4xy=52﹣4×94=25﹣9=16,故答案为:16;(3)由完全平方公式(a +b )2=a 2+2ab +b 2,可得ab =(a+b)2−(a 2+b 2)2, ∴当(2019﹣m )2+(m ﹣2020)2=7时,(2019﹣m )(m ﹣2020)=[(2019−m)+(m−2020)]2−[(2019−m)2+(m−2020)2]2=(−1)2−72 =−62=﹣3.24.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是 a 2+b 2=(a +b )2﹣2ab ;(2)如图2所示的大正方形,是由四个三边长分别为a 、b 、c 的全等的直角三角形(a 、b 为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.【解答】解(1)方法一:阴影部分是两个正方形的面积和,即a2+b2;方法二:阴影部分也可以看作边长为(a+b)的面积,减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,由两种方法看出a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(2)中间正方形的边长为c,因此面积为c2,也可以看作从边长为(a+b)的面积减去四个两条直角边分别a、b的面积,即c2=(a+b)2﹣2ab,也就是c2=a2+b2,所以c2=a2+b2;(3)∵a+b=17,ab=60,∴c2=a2+b2=(a+b)2﹣2ab=172﹣2×60=169,∴c=13,答:斜边的长为13.祝福语祝你考试成功!。
安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》解答题精选
2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》解答题精选一.解答题(共25小题)1.(2019秋•宿松县校级期末)已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.2.(2019秋•宿松县校级期末)根据下列命题画出图形,写出已知、求证,并完成证明过程.命题:等腰三角形两底角的角平分线相等.已知:如图,.求证:.3.(2019秋•宿松县期末)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向上平移4个单位,再向右平移5个单位得到的△A1B1C1,并直接写出C1点的坐标为:.(2)作出点A关于x轴的对称点A'.若把点A'向右平移a个单位长度后落在△A1B1C1的内部(不包括顶点和边界),请写出满足条件的a的取值范围.(3)在x轴上画出点P,使P A+PB的值最小,并直接写出点P坐标:.4.(2019秋•石台县期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,1),B(3,4),C(4,2).(1)在图中画出△ABC关于x轴对称的△A1B1C1;(2)通过平移,使C1移动到原点O的位置,画出平移后的△A2B2C2.(3)在△ABC中有一点P(m,n),则经过以上两次变换后点P的对应点P2的坐标为.5.(2019秋•东至县期末)在边长为1的正方形网格中建立如图所示的平面直角坐标系,点A、点B的坐标分别为(2,1),(5,0).(1)画出△OAB关于x轴对称图形;(2)在平面直角坐标系内找一点D(不与点B重合),使△OAD与△OAB全等,请直接写出所有可能的点D的坐标.6.(2019秋•全椒县期末)如图:在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(2,﹣1),B(1,﹣2),C(3,﹣3).(1)将△ABC向上平移4个单位长度,再向左平移1个单位长度,得到△A1B1C1,请画出△A1B1C1.(点A,B,C的对应点分别为A1,B1,C1)(2)请画出与△ABC关于y轴对称的△A2B2C2.(点A,B,C的对应点分别为A2,B2,C2)(3)请写出A1,A2的坐标.7.(2019秋•蜀山区期末)如图,点O是线段AB的中点,C、D是直线AB同侧的两点,且∠COD=120°,△DEO与△DAO关于直线DO对称.(1)在图中作出点F,使点F与点B关于直线CO对称(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的图中连接EF、OF,判断△EOF的形状并证明.8.(2019秋•肥东县期末)如图,△ABC的三个顶点都在网格的交点处.(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A的对称点A1的坐标;(2)若△ABC内一点P(m,n)与△A1B1C1内的点Q是对称点,请写出点Q的坐标.9.(2019秋•临泉县期末)如图,△ABC的三个顶点的坐标分别是A(2,4),B(1,1),C(3,2).(1)作出△ABC向左平移4个单位长度,再向下平移1个单位长度后得到的△A1B1C1,并写出点C1的坐标.(2)作出△ABC关于直线l对称的△A2B2C2,使点C的对应点为C2(﹣2,﹣3).(3)写出直线l的函数解析式为.10.(2019秋•肥东县期末)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,点G在边BC上,EG 交AD于点F,BE=BG=6cm,∠BEG=60°,EF=2cm.(1)求∠DFG的度数.(2)求BC的长度.11.(2019秋•安庆期末)如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D.(1)求证:∠AOB=90°+12∠C;(2)求证:AE+BF=EF;(3)若OD=a,CE+CF=2b,请用含a,b的代数式表示△CEF的面积,S△CEF=(直接写出结果).12.(2019秋•包河区期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,4),B(﹣4,1),C(﹣1,﹣1)(1)直接写出△ABC的面积;(2)在图中作出△ABC关于x轴的对称△A1B1C1;(3)将△ABC向右平移5个单位,向上平移一个单位,得到△A2B2C2,并写出B2的坐标.13.(2019秋•瑶海区期末)(1)如图1,已知△DEF,用直尺和圆规在△DEF内作出点P,使点P到△DEF 三边距离相等不写作法,保留作图痕迹).(2)如图在图示的网格中,作出△ABC关于MN对称的图形△A1B1C1;说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?14.(2019秋•庐阳区期末)如图,已知△ABC各顶点的坐标分别为A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1)(1)请你画出△ABC,并画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标;(2)尺规作图:∠A的角平分线AD,交BC于点D(保留作图痕迹,不写作法)15.(2019秋•肥西县期末)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中点A,B,C分别和点A1,B1,C1对应;(2)平移△ABC,使得点A在x轴上,点B在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中点A,B,C分别和点A2,B2,C2对应;(3)直接写出△ABC的面积.16.(2019秋•东至县期末)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点O:①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N 是BD的中点.17.(2019秋•安庆期末)如图,在长度为1个单位长度的小正方形网格中,△ABC三个顶点在格点上.(1)建立适当的平面直角坐标系后,使点A的坐标为(1,2),点C的坐标为(4,3),并写出B点坐标;(2)在图中作出△ABC关于y轴对称的△A1B1C1.18.(2019秋•田家庵区期末)在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.19.(2019秋•蚌埠期末)如图,在平面直角坐标系中,△ABC的顶点坐标为A(1,2),B(2,3),C(4,1).(1)在图中作出△ABC关于y轴对称的△A1B1C1,其中点A1的坐标为;(2)将△A1B1C1向下平移4个单位得到△A2B2C2,请画出△A2B2C2,其中点B2的坐标为.20.(2019秋•无为县期末)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);点A1的坐标为;点B1的坐标为;点C1的坐标为.(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.21.(2019秋•长丰县期末)如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求:△BDC的面积.22.(2019秋•颍州区期末)△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的三角形△A1B1C1并写出A1、B1、C1的坐标;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2并写出A2、B2、C2的坐标.23.(2019秋•长丰县期末)(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′().(3)计算△ABC的面积.24.(2018秋•庐江县期末)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=;B1=;C1=;(2)画出△A1B1C1,并求△A1B1C1面积.25.(2018秋•临泉县期末)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线L.(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形;(2)画出△DEF关于直线L对称的三角形;(3)四边形ABFC的面积为平方单位.2020-2021学年安徽省八年级上册数学(沪科版)期末考试复习:第15章《轴对称图形与等腰三角形》解答题精选参考答案与试题解析一.解答题(共25小题)1.【解答】解:(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,△A 2B 2C 2即为所求;(3)点B 2的坐标为(﹣4,﹣3).2.【解答】解:已知:如图,△ABC 中,AB =AC ,BD ,CE 是△ABC 的角平分线.求证:BD =CE ,证明:∵AB =AC ,∴∠ABC =∠ACB ,∵BD ,CE 是△ABC 的角平分线,∴∠ABD =12∠ABC ,∠ACE =12∠ACB ,∴∠ABD =∠ACE , ∵AB =AC ,∠A =∠A ,∴△ABD ≌△ACE (ASA ),∴BD =CE .故答案为:△ABC 中,AB =AC ,BD ,CE 是△ABC 的角平分线,BD =CE .3.【解答】解:(1)如图所示:C 1点的坐标为(1,0),故答案为:(1,0);(2)满足条件的a 的取值范围是3<a <5,故答案为:3<a <5;(3)设A ′B 所在直线解析式为y =kx +b ,∵A ′(﹣2,2),B (﹣4,﹣1),∴{2=−2k +k−1=−4k +k,解得:{k =32k =5,∴A ′B 所在直线解析式为y =32x +5,当y =0时,x =−103,∴P(−103,0).故答案为:(−103,0).4.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点P(m,n)经过第一次变换后的点P1的坐标为(m,﹣n),经过第二次变换后的对应点P2的坐标为(m﹣4,﹣n+2).故答案为:(m﹣4,﹣n+2).5.【解答】解:(1)如图所示,△OA′B即为所求;(2)如图所示,△OAD′,△OAD″,△OAD′″即为所求,其中点D的坐标为(﹣1,﹣3)或(3,4)或(﹣3,1).6.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2.即为所求;(3)由图可看出,A1(1,3),A2(﹣2,﹣1).7.【解答】解:(1)如图所示,点F即为所求;(2)△EOF是等边三角形.证明:∵△DEO与△DAO关于直线DO对称,∴OA=OE,∵点F与点B关于直线CO对称,∴OF=OB,∵O是线段AB中点,∴OA=OB,∴OF=OE,∵∠COD=120°,∴∠DOA+∠COB=60°,∴∠EOD+∠FOC=60°,∴∠EOF=60°,∴△EOF是等边三角形.8.【解答】解:(1)如图即为△ABC关于y轴对称的△A1B1C1,点A的对称点A1的坐标为(2,2);(2)∵△ABC内一点P(m,n)与△A1B1C1内的点Q是对称点,点Q的坐标为(﹣m,n).9.【解答】解:(1)如图,△ABC向左平移4个单位长度,再向下平移1个单位长度后得到的△A1B1C1,C1(﹣1,1);(2)如图即为△ABC关于直线l对称的△A2B2C2,使点C的对应点为C2(﹣2,﹣3);(3)直线l的函数解析式为y=﹣x.故答案为y=﹣x.10.【解答】解:(1)∵EB=BG=6cm,∠BEG=60°,∴△EBG是等边三角形,∴∠FGD=60°,∵AB=AC.AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠DFG=90°﹣60°=30°,(2)∵EB=BG=6cm,∠BEG=60°,∴△EBG是等边三角形,∴EG=BE=6(cm),∵EF=2cm,∴FG=4(cm)在Rt△DFG中,∵FG=4cm,∠DFG=30°,∴DG=12GF=2(cm),∴BD=BG﹣DG=4(cm),∴BC=2BD=8(cm).11.【解答】证明:(1)∵OA,OB平分∠BAC和∠ABC,∴∠OAB=∠OAE=12∠BAC,∠kkk=∠kkk=12kkkk,∴∠AOB=180°﹣∠OAB﹣∠OBA=180°−12kkkk−12kkkk=180°−12(kkkk+kkkk)=180°−12(180°−kk)=90°+12kk (2)∵EF∥AB,∴∠OAB=∠AOE,∠ABO=∠BOF 又∠OAB=∠EAO,∠OBA=∠OBF,∴∠AOE=∠EAO,∠BOF=∠OBF,∴AE=OE,BF=OF,∴EF=OE+OF=AE+BF;(3)∵点O在∠ACB的平分线上,∴点O到AC的距离等于OD,∴S△CEF=12(CE+CF)•OD=12•2b•a=ab,故答案为:ab.12.【解答】解:(1)△ABC的面积=3×5−12×2×3−12×2×3−12×1×5=15﹣3﹣3﹣2.5=6.5;(2)如图所示:△A1B1C1即为所求;(3)如图所示,△A2B2C2即为所求,其中B2(1,2).13.【解答】解:(1)如图1所示:点P即为所求作的点;(2)如图2所示:△A1B1C1即为所求作的图形;△A2B2C2是由△A1B1C1经过向右平移6个单位、再向下平移2个单位得到的、14.【解答】解:(1)如图所示,△ABC和△A1B1C1为所作图形,A1(3,2)(2)线段AD为所作图形.15.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A 2B 2C 2即为所求.(3)△ABC 的面积为3×3−12×1×3−12×1×2−12×2×3=72.16.【解答】解:(1)①∵CA =CB ,CD =CE ,∠CAB =∠CED =α, ∴∠ACB =180°﹣2α,∠DCE =180°﹣2α,∴∠ACB =∠DCE ,∴∠ACB ﹣∠DCB =∠DCE ﹣∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,{kk =kkkkkk =kkkk kk =kk,∴△ACD ≌△BCE (SAS ), ∴BE =AD ;②∵△ACD ≌△BCE ,∴∠CAD =∠CBE =α+∠BAO ,∵∠ABE =∠BOA +∠BAO ,∴∠CBE +α=∠BOA +∠BAO ,∴∠BAO +α+α=∠BOA +∠BAO ,∴∠BOA =2α;(2)如图2,作BP ⊥MN 交MN 的延长线于P ,作DQ ⊥MN 于Q , ∵∠BCP +∠BCA =∠CAM +∠AMC ,∵∠BCA =∠AMC ,∴∠BCP =∠CAM ,在△CBP 与△ACM 中,{kk =kkkkkk =kkkk kkkk =kkkk,∴△CBP ≌△ACM (AAS ), ∴MC =BP ,同理,CM =DQ ,∴DQ =BP ,在△BPN 与△DQN 中,{kk =kkkkkk =kkkk kkkk =kkkk,∴△BPN ≌△DQN (AAS ), ∴BN =ND ,∴N 是BD 的中点.17.【解答】解:(1)如图所示:B点坐标为:(3,5);(2)如图所示:△A1B1C1,即为所求.18.【解答】解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠MAC+∠P AC=∠P AB+∠P AC=60°,∵AP=AM,∴△APM为等边三角形∴P A=PM.19.【解答】解:(1)△ABC关于y轴对称的△A1B1C1,如图所示,其中点A1的坐标为(﹣1,2);故答案为(﹣1,2);(2)△A1B1C1向下平移4个单位得到△A2B2C2,B2(﹣2,﹣1);故答案为(﹣2,﹣1)20.【解答】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(1,3);点B1的坐标为:(﹣2,0);点C1的坐标为:(3,﹣1);故答案为:(1,3),(﹣2,0),(3,﹣1);(2)△ABC的面积是:4×5−12×3×3−12×2×4−12×1×5=9.故答案为:9.21.【解答】解:∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=6cm,∴△BDC的面积=12×BC×DE=12×15×6=45cm2.22.【解答】解:(1)所作图形如图所示:点A1(2,3),B1(3,2),C1(1,1);(2)所作图形如图所示:点A2(﹣2,0),B2(﹣3,﹣1),C2(﹣1,﹣2).23.【解答】解:(1)如图; (2)A ′(2,3),B ′(3,1),C ′(﹣1,﹣2);(3分)(3)S △ABC =5×4−12×1×2−12×3×4−12×5×3,=20﹣1﹣6﹣7.5, =5.5. (2分)24.【解答】解:(1)A 1(﹣1,1);B 1(﹣4,2);C 1(﹣3,4);(2)如图所示:△A 1B 1C 1,即为所求,△A 1B 1C 1面积为:9−12×2×3−12×3×1−12×1×2=72.25.【解答】解:(1)如图所示:△A ′B ′C ′即为所求;(2)如图所示:△DEF 关于直线L 对称的△B ′GC ′即为所求;(3)四边形ABFC 的面积为:S △ABC +S △BFC =12×1×3+12×3×4=7.5.故答案为:7.5.。
人教版八年级数学上册第十五章分式-测试题带答案
人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
人教版数学 八年级上册第15章 分式 测试卷(3)(含答案解析)
第15章分式测试卷(3)一、选择题1.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D.+=202.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=3.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+204.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A 类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.= C.=D.=7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A.=15% B.=15% C.90﹣x=15% D.x=90×15%8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2 B.﹣=2C.+=D.﹣=10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.12.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=313.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=14.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1 B.=1 C.=1 D.=115.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=16.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A.=×2 B.=﹣35C.﹣=35 D.﹣=3517.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500二、填空题18.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.19.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为.20.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x 千米/时,根据题意可列方程为.21.若分式方程﹣=2有增根,则这个增根是.22.若关于x的方程﹣1=0有增根,则a的值为.23.分式方程的解是.24.解方程:﹣1=,则方程的解是.25.分式方程=3的解是.26.分式方程的解x=.27.分式方程=的解为.三、解答题28.人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”请你根据对这段话的理解,解决下面问题:已知关于x的方程﹣=0无解,方程x2+kx+6=0的一个根是m.(1)求m和k的值;(2)求方程x2+kx+6=0的另一个根.29.解分式方程:.30.解方程组和分式方程:(1)(2).参考答案与试题解析一、选择题1.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.﹣=20 B.﹣=20C.﹣=20 D.+=20【考点】由实际问题抽象出分式方程.【分析】根据题意可得等量关系:原计划种植的亩数﹣改良后种植的亩数=20亩,根据等量关系列出方程即可.【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.2.张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.【解答】解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x ﹣5)个,由题意得,=,故选B.【点评】本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.3.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A.=﹣B.=﹣20 C.=+D.=+20【考点】由实际问题抽象出分式方程.【分析】表示出汽车的速度,然后根据汽车行驶的时间等于骑车行驶的时间减去时间差列方程即可.【解答】解:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,=+.故选C.【点评】本题考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解题的关键.4.岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.【解答】解:设每个笔记本的价格为x元,则每个笔袋的价格为(x+3)元,根据题意得:=,故选B.【点评】本题考查了由实际问题抽象出分式方程的知识,解题的关键是能够找到概括题目全部含义的等量关系,难度不大.5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A 类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意B类玩具的进价为(m﹣3)元/个,根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.【解答】解:设A类玩具的进价为m元/个,则B类玩具的进价为(m﹣3)元/个,由题意得,=,故选:C.【点评】本题考查的是列分式方程解应用题,找到等量关系是解决问题的关键.6.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.= C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.7.某商店销售一种玩具,每件售价90元,可获利15%,求这种玩具的成本价.设这种玩具的成本价为x元,依题意列方程,正确的是()A.=15% B.=15% C.90﹣x=15% D.x=90×15%【考点】由实际问题抽象出分式方程.【分析】设这种玩具的成本价为x元,根据每件售价90元,可获利15%,可列方程求解.【解答】解:设这种玩具的成本价为x元,根据题意得=15%.故选A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数,根据利润率=(售价﹣成本)÷成本列方程.8.关于x的分式方程+3=有增根,则增根为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.【解答】解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选:A.【点评】本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意.9.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A.+=2 B.﹣=2C.+=D.﹣=【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设原来的平均速度为x千米/时,高速公路开通后平均速度为1.5x千米/时,根据走过相同的距离时间缩短了2小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,由题意得,﹣=2.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程.【解答】解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得,=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】行程问题.【分析】设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.【解答】解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,由题意得,=.故选:B.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【考点】分式方程的增根.【分析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.14.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1 B.=1 C.=1 D.=1【考点】由实际问题抽象出分式方程.【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.15.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意设出未知数,根据甲所用时间=乙所用时间列出分式方程即可.【解答】解:设甲每天完成x个零件,则乙每天完成(x﹣4)个,由题意得,=,故选:A.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.16.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A.=×2 B.=﹣35C.﹣=35 D.﹣=35【考点】由实际问题抽象出分式方程.【分析】设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.【解答】解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,﹣=35,故选:D.【点评】本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.17.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.﹣=20 B.﹣=20C.﹣=500 D.﹣=500【考点】由实际问题抽象出分式方程.【分析】根据“今后项目的数量﹣今年项目的数量=20”得到分式方程.【解答】解:∵今后项目的数量﹣今年的数量=20,∴﹣=20.故选:A.【点评】本题考查了由实际问题抽象出分式方程.找到关键描述语,找到等量关系是解决问题的关键.二、填空题18.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.【考点】由实际问题抽象出分式方程.【分析】设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.【解答】解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.19.制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x个零件,则可列方程为=.【考点】由实际问题抽象出分式方程.【分析】设小芳每小时做x个零件,则小明每小时做(x+20)个零件,根据小明做220个零件与小芳做180个零件所用的时间相同,列方程即可.【解答】解:设小芳每小时做x个零件,则小明每小时做(x+20)个零件,由题意得,=.故答案为:=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.20.A、B两地相距60千米,若骑摩托车走完全程可比骑自行车少用小时,已知摩托车的速度是自行车速度的2倍,求自行车的速度.设骑自行车的速度为x千米/时,根据题意可列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,根据骑摩托车走完全程可比骑自行车少用小时,列方程即可.【解答】解:设骑自行车的速度为x千米/时,则摩托车的速度为2x千米/小时,由题意得,﹣=.故答案为:﹣=.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.21.若分式方程﹣=2有增根,则这个增根是x=1.【考点】分式方程的增根.【专题】计算题.【分析】根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.【解答】解:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.22.若关于x的方程﹣1=0有增根,则a的值为﹣1.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=﹣1.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23.分式方程的解是x=2.【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程得到解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣1=3(x﹣1),去括号得:2x﹣1=3x﹣3,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.解方程:﹣1=,则方程的解是x=﹣.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.25.分式方程=3的解是x=3.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。
华师版八年级数学上册 第15章 数据的收集与表示 单元测试卷(2024年秋)
华师版八年级数学上册第15章数据的收集与表示单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.在反映某种股票的涨跌情况时,宜选择()A.条形统计图B.折线统计图C.扇形统计图D.以上都可以2.[2024·重庆沙坪坝区期末]“一九二九不出手,三九四九冰上走”.据气象预报,新一轮寒潮即将到来,未来10天中“最低温度为2℃”将出现5天,那么这10天中出现“最低温度为2℃”的频率是()A.0.2B.0.4C.0.5D.0.8 3.从调查消费者购买汽车能源类型的扇形统计图(如图)中可看出,人们更倾向于购买()A.纯电动车B.混动车C.轻混车D.燃油车(第3题)(第4题)(第6题)(第7题) 4.某校在一次演讲比赛中,将所有参赛学生的成绩绘制成如图所示的折线统计图,则下列说法错误的是()A.95分的人数最多B.最高分与最低分的差是15分C.参赛学生人数为8人D.最高分为100分5.[2024·长春南关区八年级期末]为了解学生心理健康情况,某学校在全校七、八、九三个年级共1000名学生中开展心理健康知识竞赛活动,根据竞赛成绩将各年级合格人数绘制了如下的统计表,则下列说法正确的是()B.九年级学生的合格人数最少C.八年级学生的人数为330人D.九年级学生的合格率为32.2%6.[2023·温州]某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示的统计图.已知选择雁荡山的有270人,那么选择楠溪江的有()A.90人B.180人C.270人D.360人7.某车间工人某一天的加工零件数只有5件、6件、7件、8件四种情况,数据如图所示,若这一天加工零件数是7件的人数最多.设加工零件数是7件的工人有x人,则()A.x>16B.x=16C.12<x<16D.x≥16 8.[2024·常宁期末]“三农问题”是指农业、农村、农民这三个问题.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是40000元和60000元,如图是依据①②③三种农作物每种农作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论中,正确的是()A.去年③的收入为19500元B.前年②的收入为21000元C.前年③的收入所占比例比去年的大D.①的收入去年和前年相同(第8题)(第9题)9.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的统计图(不完整),已知该校共有1000名学生,据此估计该校五一期间参加社团活动时间在8h~10h内的学生人数是()A.280B.240C.300D.260 10.[2024·南阳期末]某超市去年8月~11月,每月销售总额的条形图和每月水果类销售额占销售总额百分比的折线图如图所示,则下列说法错误的是()A.10月份水果类销售额比11月份多B.月销售总额与水果类销售额变化不一致C.10月份水果类销售额比11月份少D.四个月中8月份水果类销售额最高(第10题)(第14题)二、填空题(每题4分,共24分)11.[2024·徐州期中]“永不言弃”的英语翻译是Never give up,短语中“e”出现的频率为.12.某校统计各班学生人数,宜选用统计图;气象局统计一昼夜气温变化情况,宜选用统计图;农业部门统计种植各类农作物所占的百分比,宜选用统计图.13.[情境题·教育政策]为落实“双减”政策,某校对200名学生进行课后延时服务,积极开展“泥塑、无人机、瑜伽、国学、古筝、国画”六种特色课程,限一人只报一种,报名具体情况如下:则报无人机的频率是14.如图是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题的电话最多,共有60个,则有关道路交通问题的电话有个.15.某校学生来自A,B,C三个地区,其人数比是2∶5∶3,若用扇形统计图表示,则代表来自C地区的学生的扇形圆心角的度数是.16.学校团委会为了举办“庆祝五·四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,赞成举办郊游活动的学生有人.三、解答题(17题12分,其余每题18分,共66分)17.某校八年级举行了课外知识竞赛,随机抽查了部分学生,然后将他们的得分按优秀、良好、合格、待合格四个等级进行了统计,并绘制了如下不完整的统计图表.优秀420.42良好0.40合格12待合格请根据提供的信息,解答下列问题:(1)本次调查抽查了名学生;(2)补全统计表;(3)补全条形统计图.18.[2023·宿迁]为了解某校九年级学生周末活动情况,随机抽取了部分学生进行调查,并绘制了如下两个不完整的统计表和统计图.学生参加周末活动人数统计表(1)m=,n=;(2)扇形统计图中A对应的圆心角的度数是度;(3)若该校九年级有800名学生,请估算该校九年级周末有多少名学生参加家务劳动.19.[新趋势·传承文化]小暑是二十四节气中的第十一个节气,这时候天气非常热,但还不是最热,所以称为小暑.小暑时节大江南北有着多种习俗,为了解学生最感兴趣的习俗,小莉从向阳中学中随机抽取200名学生进行调查,将调查结果绘制成如下不完整统计图.(1)补全条形统计图.(2)计算最感兴趣习俗为吃芒果的男生人数.(3)小亮看到折线统计图认为女生喜欢晒衣服的人数比吃芒果的人数多,你同意吗?请说明理由.20.第二十二届中国绿色食品博览会上,我省采用多种形式,全方位展示“寒地黑土”“绿色有机”金字招牌,大力推介以下绿色优质农产品:A.“龙江奶”;B.“龙江肉”;C.“龙江米”;D.“龙江杂粮”;E.“龙江菜”;F.“龙江山珍”等.为了更好地了解某社区对以上六类绿色优质农产品的关注程度,某校学生对社区居民进行了抽样调查(每位居民只选最关注的一项),根据调查统计结果,绘制了如图所示的不完整统计图.请根据两幅统计图中的信息,解答下列问题:(1)本次参与调查的居民有多少人?(2)补全条形统计图,在扇形统计图中C类的百分比是.(3)如果该社区有4000人,估计关注“龙江杂粮”的居民有多少人?答案一、1.B2.C3.A4.C5.B6.B7.A8.A【点拨】去年③的收入为60000×360-117-126360=19500(元),故A正确;前年②的收入为40000×135360=15000(元),故B错误;前年③的收入所占比例=360-117-135360×100%=30%,去年③的收入所占比例=360-117-126360×100%=32.5%,∴去年③的收入所占比例比前年的大,故C错误;去年①的收入=60 000×117360=19500(元),前年①的收入=40000×117360=13000(元),∴①的收入去年和前年不同,故D错误.故选A.9.A10.C【点拨】由题意知,10月份水果类销售额为60×20%=12(万元),11月份水果类销售额为70×15%=10.5(万元).∵12>10.5,∴10月份水果类销售额比11月份多,故选项A正确,不符合题意,选项C错误,符合题意;由题意知,8月份水果类销售额为90×25%=22.5(万元),9月份水果类销售额为80×10%=8(万元),∵8<10.5<12<22.5,∴四个月中8月份水果类销售额最高,故选项D正确,不符合题意;∵月销售总额从8月份到10月份在减少,从10月份到11月份在增加,水果类销售额从8月份到9月份在减少,从9月份到10月份在增加,从10月份到11月份在减少,∴月销售总额与水果类销售额变化不一致,故选项B正确,不符合题意.故选C.二、11.31112.条形;折线;扇形13.0.18【点拨】由题意得,报名无人机的人数为200-24-20-30-33-57=36,∴报无人机的频率是36200=0.18.14.5015.108°【点拨】代表来自C地区的学生的扇形圆心角的度数为360°×32+5+3=108°.16.250【点拨】400÷40%=1000(人),1000×(1-40%-35%)=1000×25%=250(人).三、17.【解】(1)100(2)40;0.12;6;0.06(3)补全条形统计图如图.18.【解】(1)24;62(2)72(3)800×24200=96(名).∴估算该校九年级周末有96名学生参加家务劳动.19.【解】(1)补全条形统计图如图所示.(2)最感兴趣习俗为吃芒果的男生人数为80-80×70%=80-56=24.(3)不同意.理由如下:∵女生喜欢晒衣服的人数为20×80%=16,女生喜欢吃芒果的人数为80×70%=56,且16<56,∴女生喜欢晒衣服的人数比吃芒果的人数少.∴不同意女生喜欢晒衣服的人数比吃芒果的人数多.20.【解】(1)∵关注E类的人数为34人,关注E类的人数占总人数的17%,∴本次参与调查的居民有34÷17%=200(人).(2)补全条形统计图如图所示.30%(3)∵关注D类的人数为46人,本次调查的总人数为200人,∴估计该社区关注“龙江杂粮”的居民有4000×46200=920(人).。
第十四章 整式的乘法与因式分解- 章末检测试卷(解析版)-人教版八年级数学试题
2020-2021学年八年级数学上册期末复习(人教版)单元冲刺必刷卷第十四章 整式的乘法与因式分解(解析版)姓名: 满分:120分 时间:120分钟 得分: 分一、选择题(每小题3分,共30分)1.计算3a 2·a 3的结果是( C )A .4a 5B .4a 6C .3a 5D .3a 62.计算下列代数式,结果为x 5的是( D )A .x 2+x 3B .x·x 5C .x 6-xD .2x 5-x 53.下列运算正确的是( C )A .3a ×2a =6aB .a 8÷a 4=a 2C .-3(a -1)=3-3aD .(13 a 3)2=19a 9 4.若x +2y -4=0,则4y ·2x -2的值等于( A )A .4B .6C .-4D .85.已知(2a +2b -3)(2a +2b +3)=40,则a +b 的值为( C )A .72B .-72C .±72D .±3 6.一个三角形的面积为(x 3y)2,它的一条边长为(2xy)2,那么这条边上的高为( A ) A .12 x 4 B .14 x 4 C .12 x 4y D .12x 2 7.如图,两个正方形边长分别为a ,b ,如果a +b =9,ab =12,则阴影部分的面积为( B )A .21.5B .22.5C .23.5D .24(第7题图) (第15题图)8.248-1能被60到70之间的某两个整数整除,则这两个数是( B )A .61和63B .63和65C .65和67D .64和679.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y)(x +y)(x 2+y 2),若取x =9,y =9,则各个因式的值是:x -y =0,x +y =18,x 2+y 2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3-xy 2,取x =20,y =10,用上述方法产生的密码不可能是( A )A .201010B .203010C .301020D .20103010.已知三个实数a ,b ,c 满足a -2b +c =0,a +2b +c <0,则( D )A .b >0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b >0,b 2-ac ≥0D .b <0,b 2-ac ≥0二、填空题(每小题3分,共18分)11.若(x -2)0=1,则x 的取值范围是x ≠2.12.3m =4,3n =6,则3m +2n =144.13.计算:(-14 ab 2)3÷(-0.5a 2b)=132 ab 5. 14.已知a 2-6a +9与|b -1|互为相反数,计算a 3b 3+2a 2b 2+ab 的结果是48.15.如图,从边长为a +4的正方形纸片中剪去一个边长为a 的正方形(a >0),剩余部分沿虚线剪开,拼成一个长方形(不重叠无缝隙),则长方形的面积为8a +16.16.若x 2-3x -7=0,则x(x -1)(x -2)(x -3)的值为63.三、解答题(共72分)17.(6分)计算:(1)(-a)2+a 7÷a -(a 2)3;解:a 2.(2)[(a -2b)2+(a -2b)(2b +a)-2a(2a -b)]÷2a.解:-a -b.18.(9分)把下列各式因式分解:(1)x(m -x)(m -y)-m(x -m)(y -m);解:-(m -x)2(m -y).(2)ax 2+8ax +16a ;解:a(x +4)2.(3)(x 2-5)2+8(5-x 2)+16.解:(x +3)2(x -3)2.19.(7分)先化简,再求值:(m -n)(m +n)+(m +n)2-2m 2,其中m ,n 满足⎩⎪⎨⎪⎧m +2n =1,3m -2n =11. 解:原式=2mn ,又∵m ,n 满足⎩⎪⎨⎪⎧m +2n =1,3m -2n =11, 解得⎩⎪⎨⎪⎧m =3,n =-1, ∴原式=-6.20.(8分)已知实数a 满足a 2+2a -8=0,求a(a +2)2-a(a -3)(a -1)+3(5a -2)的值. 解:原式=8(a 2+2a)-6,∵a 2+2a -8=0,∴a 2+2a =8,∴原式=58.21.(8分)小华同学在学习整式乘法时发现,如果合理地使用乘法公式可以简化运算,于是如下计算题她是这样做的:(2x-3y)2-(x-2y)(x+2y)=4x2-6xy+3y2-x2-2y2第一步=3x2-6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小华仔细检查后自己找到了如下一处错误:小禹看到小华的改错后说:“你还有错没有改出来.”(1)你认为小禹说的对吗?对(填“对”或“不对”);(2)如果小禹说的对,那小华还有哪些错误没有改出来?请你帮助小华把第一步中的其他错误圈画出来并改正,再完成此题的解答过程.解:(2)圈出来的其他错误为:正确解法为:(2x-3y)2-(x-2y)(x+2y)=4x2-12xy+9y2-x2+4y2=3x2-12xy+13y2.22.(8分)(1)计算:(a-2)(a2+2a+4)=a3-8;(2x-y)(4x2+2xy+y2)=8x3-y3.(2)上面的整式乘法计算结果很简洁,你又发现一个新的乘法公式(请用含a,b的式子表示)(a-b)(a2+ab+b2)=a3-b3.(3)下列各式能用你发现的乘法公式计算的是C.A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)23.(8分)阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如x2-4y2-2x+4y,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:x2-4y2-2x+4y=(x2-4y2)-(2x-4y)=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:x2-2xy+y2-4;(2)已知△ABC的三边长a,b,c满足a2-ab-ac+bc=0,判断△ABC的形状并说明理由.解:(1)x2-2xy+y2-4=(x-y)2-4=(x-y+2)(x-y-2).(2)△ABC是等腰三角形.理由:∵a2-ab-ac+bc=0,∴a(a-b)-c(a-b)=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=b或a=c,∴△ABC是等腰三角形.24.(8分)观察下列各式发现规律,完成后面的问题:2×4=32-1,3×5=42-1,4×6=52-1,5×7=62-1.(1)12×14=132-1,99×101=1002-1;(2)n(n+2)=(________)2-1(n为整数);(3)童威家现有一个用篱笆围成的长方形菜园,其长比宽多4米(长、宽均为整数),为了扩大菜园面积,童威用原来的篱笆围成一个正方形,童威的做法对吗?面积是否扩大了?如果扩大了,扩大了多少?试说明理由.解:(2)n(n+2)=(n+1-1)(n+1+1)=(n+1)2-1,故答案为:n+1.(3)童威的做法对,面积扩大了,扩大了4平方米.理由:设原长方形菜园的宽为x米,则长为(x+4)米,原长方形面积为x(x+4)=(x+2)2-4,现正方形面积为(x+2)2,∴现面积比原面积扩大了4平方米.25.(10分)材料:一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,比如指数式23=8可以转化为对数式3=log28,对数式2=log636可以转化为指数式62=36.根据以上材料,解决下列问题:(1)计算:log24=________,log216=________,log264=________;(2)观察(1)中的三个数,猜测:log a M+log a N=________(a>0,且a≠1,M>0,N>0),并加以证明这个结论;(3)已知log a3=5,求log a9和log a27的值(a>0,且a≠1).解:(1)∵22=4,24=16,26=64,∴log24=2;log216=4;log264=6.故答案为:24 6.(2)设log a M=x,log a N=y,则a x=M,a y=N,∴M·N=a x·a y=a x+y,根据对数的定义,得x+y=log a MN,即log a M+log a N=log a MN.故答案为:log a MN.(3)由log a3=5,得a5=3,∵9=3×3=a5·a5=a10,27=3×3×3=a5·a5·a5=a15,∴根据对数的定义,得log a9=10,log a27=15.。
人教版初中八年级数学上册 第15章 章末检测试卷含答案解析及单元知识点总结和思维导图
分式 测试题(总分:100分 时间:90分钟)一、选择题(本题包括10小题,每小题3分,共30分。
每小题只有1个选项符合题意) 1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3x D .1+x2.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=19C .(a -12)2=a 14D .(-a -1b -3)-2=-a 2b 63.当x =1时,下列分式中值为0的是( ) A.1x -1 B.2x -2x -2 C.x -3x +1 D.|x|-1x -14.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( ) A .1个 B .2个 C .3个 D .4个 5.下列各式正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +bcC.-a -b c =a -b c D .-a b -a =a a -b6.化简⎝ ⎛⎭⎪⎫1+a 21+2a ÷1+a 1+2a 的结果为( ) A .1+a B.11+2a C.11+aD .1-a7.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,这个数用科学记数法表示正确的是( ) A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-118.方程2x +1x -1=3的解是 ( )A .-45 B.45 C .-4 D .49.若xy =x -y ≠0,则1y -1x =( )A.1xyB .y -xC .1D .-1 10.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5 000 kg 所用时间与乙搬运8 000 kg 所用时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为( )A.5 000x -600=8 000xB.5 000x =8 000x +600C.5 000x +600=8 000xD.5 000x =8 000x -600 二、填空题(本题包括10小题,每空2分,共20分) 11.(2分)计算:3m 2n ·⎝ ⎛⎭⎪⎫p 3n -2÷mn p 2=________.12.(2分)若|a|-2=(a -3)0,则a =________.13.(2分)把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________.14.(2分)禽流感病毒的形状一般为球形,直径大约为0.000 000 102 m ,该直径用科学记数法表示为________m.15.(2分)若分式|y|-55-y的值为0,则y =________.16.(2分)如果实数x 满足x 2+2x -3=0,那么式子⎝ ⎛⎭⎪⎫x 2x +1+2÷1x +1的值为________.17.(2分)若分式方程2+1-kx x -2=12-x有增根,则k =________. 18.(2分)一列数:13,26,311,418,527,638,…,它们按一定的规律排列,则第n 个数(n为正整数)为________.19.(2分)小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用 10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为____________________.20.(2分)数学家们在研究15 ,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(本题包括6小题,共50分)21.(5分)(1)计算:(-3)2-⎝ ⎛⎭⎪⎫15-1+(-2)0; (2)计算:1x -4-2x x 2-16;(3)化简:x2x -2-x -2;(4)化简:⎝ ⎛⎭⎪⎫a a -b -2b a -b ·ab a -2b ÷⎝ ⎛⎭⎪⎫1a +1b .22.(5分)(1)先化简,再求值:x -3x 2-1·x 2+2x +1x -3-⎝ ⎛⎭⎪⎫1x -1+1,其中x =-65.(2)先化简,再求值:⎝ ⎛⎭⎪⎫1x -3-x +1x 2-1·(x -3),从不大于4的正整数中,选择一个合适的x的值代入求值.23.(10分)解分式方程:(1)x -2x +3-3x -3=1; (2)2x +2x -x +2x -2=x 2-2x 2-2x .24.(10分)化简求值:a 2-6ab +9b 2a 2-2ab ÷⎝ ⎛⎭⎪⎫5b 2a -2b -a -2b -1a ,其中a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.25.(10分)观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13;第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15;第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19;….请回答下面的问题:(1)按以上规律列出第5个等式:a 5=__________=______________;(2)用含n 的式子表示第n 个等式:a n =__________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.26.(10分)佳佳果品店在批发市场购买某种水果销售,第一次用1 200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1 452元所购买的质量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次购买的水果的进价是每千克多少元.(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?分式 测试题参考答案一、选择题(本题包括10小题,每小题3分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广丰区2016—2017学年度第一学期单元质量测试卷八年级数学单元四 (第14章 整式乘法)命题人:周焕山学校_____________班级____________姓名____________班号___________一、选择题(每小题3分,共18分)1.下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 62.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ; ③(a 3)2=a 5;④(-a )3÷(-a )=-a 2.A .1个B .2个C .3个D .4个 3.下列各式是完全平方式的是( ).A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -14.把多项式ax 2-ax -2a 分解因式,下列结果正确的是( ). A .a (x -2)(x +1) B .a (x +2)(x -1) C .a (x -1)2 D .(ax -2)(ax +1) 5.若3x =15,3y =5,则3x y -等于( ). A .5 B .3 C .15 D .106.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0D .1二、填空题(每小题3分,共24分)7.计算(-3x 2y )·(213xy )=__________.8.计算:(-a 2)3+(-a 3)2-a 2·a 4+(2a 9+a 3) ÷a 3=__________. 9.当x __________时,(x -4)0=1.10. (- 23)2016×(-1.5)2019÷(-1)2015=________.11.若|a -2|+b 2-2b +1=0,则a b =________.12.已知a +1a =3,则a 2+21a的值是________.13.已知()()212-=---y x x x ,则xy y x -+222= . 14.计算:22007200720082006-⨯=__________. 三、 解答题(第15、16题各16分,第17、18题各8分,第19、20、21题各10分,共78分)15.计算: (1)(ab 2)2·(-a 3b )3÷(-5ab ); (2) (x -y +z )2-(x +y -z )2.(3)(3x +y -z )2 (4)(a +4b -3c )(a -4b -3c )16.(本题满分16分)把下列各式因式分解:(1)3x -12x 3. (2)-2a 3+12a 2-18a .(3) (x +y)2-2(x +y)+1. (4)2()x xy y x y ---.17.已知x 2+2y 2+4x -12y+22=0,求x+y 的值.18.已知x -y=2,y -z=2,x +z=14.求x 2-z 2的值.19.已知8=+b a ,2=ab ,求2)(b a -的值.20.已知:a ,b ,c 为△ABC 的三边长,且2a 2+2b 2+2c 2=2ab +2ac +2bc ,试判断△ABC 的形状,并证明你的结论.21.在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )·(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x -y )=0,(x +y )=18,x 2+y 2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10时,请你写出用上述方法产生的密码.广丰区2016—2017学年度第一学期单元质量测试卷八年级数学单元五 (第15章 分式)命题人:周焕山学校_____________班级____________姓名____________班号___________一、选择题(每小题3分,共18分)1.在式子x y 3,πa,13+x ,31+x ,aa 2中,分式有( )A .1个B .2个C .3个D .4个2.分式32+x x无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a--的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—ab a-4.计算(2-a a —2+a a )·aa 24-的结果是( )A . 4B . -4C .2aD .-2a 5.把分式(0)xyx y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变6.若分式34922+--x x x 的值为0,则x 的值为( )A .0B . 3或-3C .3D .-3 二、填空题(本大题共8小题,每小题3分,共24分)7.当x= 时,分式22x x --值为零.8.计算.2323()a b a b --÷= . 9.用科学记数法表示0.002 016= .10.分式222439xx x x --与的最简公分母是____ ______.11.若方程322x mx x-=--无解,则m =__________________. 12.已知a 1-b 1=21,则b a ab -的值为________________. 13.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________.14. 某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、(本大题共8小题,其中第15、16题为8分,第17、18题为9分,第19、20题为10分,第21、22题为12分,共78分) 15.计算:21+-x x ÷41222-+-x x x +11-x .16.先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.17.解方程21124x x x -=--.18.若01,x << 且xx x x 1,61-=+求 的值.19.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.20.已知2214x y xy +=(x ≠0,y ≠0),求xyy x x y y x 22+--的值.21.先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x -3),得x = 2(x -3)+a ①. 因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?22.荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案. (1)甲队单独做这项工程刚好如期完成. (2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.C广丰区2016—2017学年度第一学期单元质量测试卷八年级数学单元六 (期末考试)命题人:周焕山学校_____________班级____________姓名____________班号___________一、选择题(每小题3分,共18分)1. 1(2)--的倒数是( ).A .2-B .12C .12-D .15-2. 如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( ).A. 20°B. 40°C. 50°D. 60° 3.下列图形中,不是轴对称图形的是( ).4.下列运算正确个数有( ) ①263-=- ②24= ③532a a a =⋅ ④3252a a a +=A 1个B 2个C 3个D 4个5.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或5 6. 等腰三角形的两条边长分别为3,6,那么它的周长为( )A .15B .12C .12或15D .不能确定7.如果942+-ax x 是一个完全平方式,则a 的值是( ) A 、±6 B、 6 C、12 D、 ±128.如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =45°,则∠BDF 度数是( )A.80°B.90°C.40°D.不确定 (第8题)二、填空题(本大题共8个小题,每小题3分,共24分) 9.当x __________时,分式13x -有意义.10.因式分解:2282b a -= . 11.已知点P (2a , b )与P 1(8,-2)关于y 轴对称,则a +b 12.如图,在△ABC 中,∠C =,AD 平分∠BAC , BC =10cm ,BD =6cm ,则点D 到AB 的距离是________ cm .13.在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是________.14.如图,△ABC 中,DE 是AC 的垂直平分线,AE=4cm,△ABD 的周长为14cm,则△ABC 的周长为_________ cm.15.已知:在R t △ABC 中,∠ACB=90°,∠B=30°,CD ⊥AB 于D ,若AB=12,则AD=_______. 16.已知:3223222⨯=+,8338332⨯=+,154415442⨯=+,…请你把发现的规律用含正整数 n ≥2的等式表示为____________________.三、 解答题(第15、16题各8分,第17、18题各9分,第19、20题各10分,第21、22题各12分,共78分)17.计算: ()233120141-+⎪⎭⎫ ⎝⎛---.18.化简求值:24362a a a --+-,其中a=-3.第3题 CD B A(第12题)(第13题)19.已知:如图∠ABC 及两点M 、N. 求作:点P ,使得PM =PN ,且P 点 到∠ABC 两边的距离相等. (保留作图痕迹,不写做法)20.解方程:625132+=++x x x21.如图所示,△ADF 和△BCE 中,∠A =∠B ,点D ,E ,F ,C 在同一条直线上,有如下三个 关系式:①AD =BC ;②DE =CF ;③BE ∥AF ;(1) 请你用其中两个关系式作为条件,另一个作为结论,写出一个 你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗, 那么⊗)________________________________________ (2) 说明你写的这个命题的正确性.22.已知:x 2+2x=3, 求代数式 (x -3)2-(2x+1)(2x -1) -7的值.24.已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC (1) 求证:DM ⊥AM ;(2) 问线段CD 、AB 、AD 之间有怎样的关系?并说明原因.B E D。