有理数的加减法讲义
有理数的加减法(基础)知识讲解
有理数的加减法(基础)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算; 2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简 算,并会解决简单的实际问题. 【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则. (2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减). 3.要点诠释:交换加数的位置时,不要忘记符号. 要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算. 要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12);(2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭;(3)(+2)+(-11);(4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9);(6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1)(+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666类型二、有理数的减法运算2.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2015•泰安)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣5【答案】B.根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+-+(6)1355 354624618 -++-【答案与解析】(1)26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)]→符号相同的数先加= 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224→同分母的数先加 ()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭→统一成加法11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→整数、小数、分数分别加312128544⎛⎫=++-= ⎪⎝⎭(5)132.25321.87584+-+ (2.25 2.75)(3.125 1.875)=-++→统一同一形式(小数或分数),把可凑整的放一起 0.55 4.5=-+=(6)1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-→整数,分数分别加18273010036-++-=+2936= 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 举一反三:【高清课堂:有理数的加减 382681 简便方法计算】 【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4类型四、有理数的加减混合运算在实际中的应用4.(2014秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。
有理数的加减法(共44张PPT)
总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。
有理数的加减法讲义
有理数的加减法讲义Revised on November 25, 2020专题四 有理数的加法1、 相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法; (14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、 教材知识详解【知识点1】有理数加法法则(1) 同号两数相加;取相同的符号,并把绝对值相加。
数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2) 异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。
数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3) 一个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2) (2)(-8)+(-2) (3)(-8)+(+2) (4)(+8)+(-2) (5)(-8)+(+8) (6)(-8)+ 0【知识点2】有理数加法的运算律 加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c ) 【例2】计算 +(+12)+(-12)+()+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)= ②三月份先存人25元,后取出10元,两次合计存人 元,就是(+25)+(-10)= 2.计算:(1)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121;(2)(—)+; (3)314+(—561);(4)(—561)+0; (5)(+251)+(—); (6)(—152)+(+);(7)(—6)+8+(—4)+12;(8)3173312741++⎪⎭⎫ ⎝⎛-+(9)+(—++(—+; (10)9+(—7)+ 10 +(—3)+(—9); 3.用简便方法计算下列各题:(1) (2) (3))539()518()23()52()21(++++-+- (4))4.2()6.0()2.1()8(-+-+-+- (5))37(75.0)27()43()34()5.3(-++++-+-+- 3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下: +3,-6,-4,+2,-1,总计超过或不足多少千克5筐蔬菜的总重量是多少千克5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压【基础提高】1.计算:(1)3-8; (2)-4+7; (3)-6-9; (4)8-12;(5)-15+7; (6)0-2; (7)-5+9+3; (8)10+(-17)+8;2.计算:75.9)219()29()5.0(+-++-)127()65()411()310(-++-+(1)++()+10; (2);4.计算:(1)12+(-18)+(-7)+15;(2)-40+28+(-19)+(-24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+++(++(-6); (4) )31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、 相关知识链接减法是加法的逆运算。
有理数的加减法讲义
初一数学讲义(三)有理数的混合运算姓名成绩知识要点:1、有理数加减混合运算中,减法可以根据减法法则转化成加法,统一成只含有加法运算的和式.例如:(-5)+(-3)-(-7)-(+2)可转化为:(-5)+(-3)+(+7)+(-2)2、在一个和式里,通常把各个加数的括号和它前面的加号省略不写,如上式可写成:-5-3+7-23、省略加号的和式的读法有两种如-5-3+7-2,其意义表示-5,-3,+7,-2的和,只不过加号省略未写,因此,它可读作“-5,-3,+7,-2的和”;第二种读法是按习惯读作:“负5减3加7减2”。
第一种读法有利于用加法运算律简化运算.4、在运用加法交换律和结合律时,要注意连同前面的符号一起移动,如计算-5-3+7-2时,先交换成-5-3-2+7,再进行结合为(-5-3-2)+7,无论交换加数的位置,还是进行结合,都应连同符号移动,当省略“+”号的首项移到后面时,应补上“+”,如5-7+3=-7+5+3,事实上,代数和中符号应看作数的一部分.5、有理数加减混合运算的步骤(1)把算式中的减法转化成加法;(2)省略加号与括号写成代数和的形式;(3)用加法法则计算,尽可能运用运算律简便计算.例1:把(-36)-(-28)+(+125)+(-4)-(+53)-(-40)写成省略加号的和的形式并把它读出来.例2、计算-8+(-11)-2003.12-9-(-9)-(+2)-(-2003.12).例3、已知a=13,b=-12.1,c=-10,d=25.1求a-b-(c+d)的值综合练习一、判断题1.一个数的相反数一定比原数小;()2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等;()3.|-2.7|>|-2.6|; ( )4.若a+b=0,则a,b互为相反数。
( )二.选择题1.相反数是它本身的数是()A. 1B. ﹣1C. 0D.不存在2.下列语句中,正确的是()A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是()A、-=6 B、=-6 C、-=-1D、=-3.145、在数轴上表示的数8与-2这两个点之间的距离是()A、6B、10C、-10 D-66、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数三、填空题1. |-4|-|-2.5|+|-10|=________;2. 最大的负整数是___ ___;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 数轴三要素是__________,___________,___________5. 若上升6米记作+6米,那么-8米表示。
有理数的加减法基础知识讲解
有理数的加减法基础知识讲解【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:算律加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b-=+-.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2) (3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算: 【答案】 【变式2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2) 1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭111113333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666类型二、有理数的减法运算2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2020•泰安)若( )﹣(﹣2)=3,则括号内的数是( )A . ﹣1B . 1C . 5D . ﹣5【答案】B .根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)(3) (4)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭(5) (6) 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法=(26+5)+[(-18)+(-16)] →符号相同的数先加= 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3) →同分母的数先加 (4) →统一成加法 →整数、小数、分数分别加 (5) 132.2532 1.87584+-+1355354624618-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++-= ⎪⎝⎭132.2532 1.87584+-+→统一同一形式(小数或分数),把可凑整的放一起(6) →整数,分数分别加 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.举一反三:【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4. (2020秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936=(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。
《有理数的加法与减法》 讲义
《有理数的加法与减法》讲义一、有理数的加法(一)有理数加法的意义有理数的加法,就是把两个有理数合并成一个有理数的运算。
例如,在数轴上,一个点表示+3,另一个点表示+2,它们的和就是从原点出发,先向右移动 3 个单位长度,再向右移动 2 个单位长度,最终到达的点所表示的数+5 。
(二)有理数加法的法则1、同号两数相加,取相同的符号,并把绝对值相加。
例如,+5 ++3 =+8,-5 +-3 =-8 。
解释:因为两个加数都是正数或者都是负数,所以它们的和的符号与加数相同,然后将它们的绝对值相加。
2、异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,+5 +-5 = 0 ,+8 +-3 =+5 ,-8 ++3 =-5 。
解释:当两个加数的绝对值相等时,它们在数轴上的位置关于原点对称,相互抵消,和为 0 。
当绝对值不等时,和的符号取决于绝对值较大的加数,然后用较大的绝对值减去较小的绝对值。
3、一个数同 0 相加,仍得这个数。
例如,0 + 5 = 5 , 0 +-3 =-3 。
(三)有理数加法的运算步骤1、确定和的符号。
2、计算和的绝对值。
(四)有理数加法的运算律1、加法交换律:两个数相加,交换加数的位置,和不变。
即 a +b = b + a 。
例如,2 + 3 = 3 + 2 。
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即(a + b) + c = a +(b + c) 。
例如,(2 + 3) + 4 = 2 +(3 + 4) 。
运用运算律可以使计算简便。
二、有理数的减法(一)有理数减法的意义有理数的减法,就是已知两个有理数的和与其中一个加数,求另一个加数的运算。
例如,已知和是 5 ,一个加数是 3 ,求另一个加数,就用 5 3 。
(二)有理数减法的法则减去一个数,等于加上这个数的相反数。
即 a b = a +(b) 。
七年级上册数学第一章有理数1.3讲义
第一章有理数1.3 有理数的加减法一、相关复习:1、相反数①定义:一般的,如a与-a这样的一对数,只有符号不相同,叫做互为相反数。
②特征:任何数都有且只有一个相反数,正数的相反数是负数,负数相反数是正数,0的相反数是0.③性质:若a和b互为相反数,则a+b=0;若a+b=0,则a和b互为相反数。
2、绝对值①定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
②运算:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.①如果a>0,那么|a|=a;②如果a=0,那么|a|=0;③如果a<0,那么|a|=-a.③性质:①互为相反数的两个数的绝对值相等,|a|=|-a|;②绝对值具有非负性,若几个数的绝对值的和为0,则这几个数同时为0,若|a|+|b|=0,则a=0,b=0。
二、知识解析:【知识点一】有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.互为相反数的两个数相加得0.4.一个数同0相加,仍得这个数。
例1.直接写出答案:(1) (+50)+(+40)= (2) (-50)+(-40)=(3) (+50)+(-40)= (4) (-50)+(+40)=(5) (+0.5)+(-1/2)= (6) (-2.35)+(-0)=例2.用“>”或“<”填空:(1)如果a>0,b>0,那么a+b0; (2)如果a<0,b<0,那么a+b0;(3)如果a>0,b<0,|a|>|b|,那么a+b0; (4)如果a<0,b>0,|a|>|b|,那么a+b0.1.加法交换律:a+b=b+a.2.加法结合律:(a+b )+c=a+(b+c).例3. 计算:16+(-25)+24+(-35)例4.8箱苹果,以每箱15千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:1.5,-0.7,2.3,-1.5,0.8,-0.55,1.2,0.25.问这8筐苹果总共重多少?随堂练习:1.已知||1a =,b 是2的相反数,则a b +的值为( )A .3-B .1-C .1-或3-D .1或3-2.已知||5a =,||2b =,且a b >,则a b +的值为( )A .7或3-B .7-或3C .7-或3-D .7或33.若||2x =,||3y =,则x y +的绝对值是( )A .5或5-B .1或1-C .5或1D .5,5-,1,1-4.如果||||||a b a b +<+成立,那么( )A .a 、b 为一切有理数B .a 、b 同号C .a 、b 异号或a 、b 中至少有一个为零D .a 、b 异号 5.a ,b ,c 三个数的位置如图所示,下列结论不正确的是( )A .0a b +<B .0b c +<C .0b a +>D .0a c +>6.如图,从左到右,在每个小格子中都填入一个整数,使其中任意三个相邻格中所填整数之和都相等,则c = ,第2012个格子中数为 .7.(1) (-0.6)+(-2.7)= (2) 3.7+(-8.4)=(3) 7+(-3.3)=(4) (-1.9)+(-0.11)= (5) (-9.18)+6.18= (6) 4.2+(-6.7)=减去一个数,等于加这个数的相反数。
有理数加减法讲义
有理数加减法讲义一、知识要点1. 要正确认识“+、-”号在小学数学中,“+”、“-”表示加号和减号。
学习有理数后,“+”与“-”还表示正号与负号。
我们通常把四则运算中的加(+)、减(-)、乘(×)、除(÷)号叫运算符号;把表示正负数的正(+)、负(-)号叫性质符号。
在初次进行有理数的加减运算时,首先要分清“+”、“-”号是运算符号还是性质符号。
刚开始时,最好把性质符号用括号括起来,使性质符号与运算符号分开。
如:正2加上负3,应写作,不能写成“”。
2. 有理数的加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
(4)在运用加法交换律和结合律时,要注意连同前面的符号一起移动,如计算-5-3+7-2时,先交换成-5-3-2+7,再进行结合为(-5-3-2)+7,无论交换加数的位置,还是进行结合,都应连同符号移动,当省略“+”号的首项移到后面时,应()()++-23++-23补上“+”,如5-7+3=-7+5+3,事实上,代数和中符号应看作数的一部分.3. 有理数减法法则:减去一个数,等于加上这个数的相反数.a –b = a + (-b)(1)减去一个数,等于加上这个数的相反数;(2)0减去一个数,就得到这个数的相反数;(3)减法运算转化成加法的过程中,必须同时改变减号和减数的符号.4. 有理数加减混合运算的步骤(1)把算式中的减法转化成加法;(2)省略加号与括号写成代数和的形式;(3)用加法法则计算,尽可能运用运算律简便计算. 例1.计算16+(-25)+24+(-35)(1)23+(-17)+6+(-22))528(435)532(413 )3()61(31)21(1 )2(-++-+-++-+例2.例3 计算(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5(-2)+3+1+(-3)+2+(-4)例4. 据襄樊市气象台预报:2001年2月7日我县的最高气温是4 °C ,最低气温是–3 °C ,请问这天温差是多少?你是怎样算的?)111()54()8.5()1110(++++-+-)515(412)434(517-++-+例5. 数轴上的点A、B、C、D、E分别是-4,-1.5,-0.5,1.5,3,回答下列问题:(1)A与B两点间的距离是多少?(2)C与D两点间的距离是多少?(3)D与E两点间的距离是多少?(4)你能发现所得结果与相应两数的差有什么关系吗?例6. 比2°C低8°C的温度是;比-3°C低6°C的温度;(3)比0小4的数是;比0 小-4的数是;(4)7.4比8.3小;7.4比8.3大。
第四讲 有理数的减法及加减混合运算讲义
第五讲 有理数的减法及加减混合运算【学习目标】理解有理数的减法法则,并能熟练的进行有理数的加减混合运算【知识归纳】有理数减法法则 减去一个数,等于加上这个数的相反数,即)(b a b a -+=-, 这里a 、b 表示任意有理数。
步骤:(1)变减为加,把减数的相反数变成加数;(2)按照加法运算的步骤去做。
有理数加减法混合运算步骤:①减法转化成加法;②省略加号括号;(括号前面正号,去括号时括号内符号不变;括号前是符号,去括号时括号内所有符号都变成原来的相反数)③运用加法交换律(这里既交换又结合,交换时应连同数字前的符号一起交换); ④按有理数加法法则计算.【例题精讲】例1计算(1)(-3)-(-5); (2)0-7; (3)7.2-(-4.8);例2计算:(1)-11-7-9+6 (2)(+4.7)-(-8.9)+(+7.5)-(-6)(3)111()()6312+-+-- (4)13513462-+-+例3.把()131515432+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+写成省略加号的和的形式,并把它读出来。
【练习巩固】一、选择题:1.下列交换加数的位置的变形中,正确的是( )A.1-4+5-4=1-4+4-5B.1311131134644436-+--=+--C. 1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.72.如果│a+b │=│a │+│b │成立,那么( )A .a ,b 同号B .a ,b 为一切有理数C .a ,b 异号D .a ,b 同号或a ,b 中至少有一个为零3.若│a │=7,│b │=10,则│a+b │的值为( )A .3B .17C .3或17D .-17或-34.下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数5.小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A.12.25元B.-12.25元C.12元D.-12元6.有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -7.一个数加上-12得-5,那么这个数为( )A.17B.7C.-17D.-78.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个9.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )A.20B. 119C.120D.319二、填空题:10.比-18小5的数是 ,比-18小-5的数是11.若│x+2│+│y-5│=0,则x-2y=_________12.有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。
有理数的加减法说课稿(通用11篇)
有理数的加减法说课稿有理数的加减法说课稿(通用11篇)作为一位优秀的人民教师,有必要进行细致的说课稿准备工作,是说课取得成功的前提。
怎么样才能写出优秀的说课稿呢?下面是小编为大家收集的有理数的加减法说课稿,希望对大家有所帮助。
有理数的加减法说课稿篇1今天我要说课的课题是有理数的加减法,属课前说课。
首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。
这一节课是本册书第一章第三节的内容。
我打算分四课时完成,去括号、加法计算、减法计算、加减法混合计算。
下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本小节的理解与设计。
一、教材结构与内容简析在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。
首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。
它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
就第一章而言,有理数的加减法是本章的一个重点。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想(2)培养学生严谨的思维品质。
03-有理数的加减法-七年级寒假讲义
第三讲有理数的加减法【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【知识梳理】知识点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;(3)一个数同0相加,仍得.3.运算律:(1)加法交换律:;(2)加法结合律:;知识点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的,即有:。
知识点三、有理数加减混合运算将加减法统一成运算,适当应用加法运算律简化计算.【例1】计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.51(4)(-3.4)+(+4.3) (5)(-2.9)+(+2.9) (6)(-5)+0.【例2】计算:(1)(-32)-(+5);(2)(+2)-(-25) (3)8.2-(-1.8)(4))9()2(--- (5))8.4(6.5-- (6)435)214(-- 【例3】计算: (1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)(3))1713(134)174()134(-++-+-(4))412(216)313()324(-++-+-(5))5()3(9)7(-+---- (6)104.87.52.4+-+-【例4】(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。
有理数的加减法讲义
专题四有理数的加法1、相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法;(14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、教材知识详解【知识点1】有理数加法法则(1)同号两数相加;取相同的符号,并把绝对值相加。
数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2)异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。
数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3)一个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2)(2)(-8)+(-2)(3)(-8)+(+2)(4)(+8)+(-2)(5)(-8)+(+8)(6)(-8)+ 0 【知识点2】有理数加法的运算律加法交换律:a + b = b + a加法结合律:(a + b)+ c = a +(b + c)【例2】计算 4.1+(+12)+(-12)+(-10.1)+7【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况 ①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)=②三月份先存人25元,后取出10元,两次合计存人 元,就是(+25)+(-10)= 2.计算:(1)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (2)(—2.2)+3.8; (3)314+(—561);(4)(—561)+0; (5)(+251)+(—2.2);(6)(—152)+(+0.8);(7)(—6)+8+(—4)+12; (8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64; (10)9+(—7)+ 10 +(—3)+(—9);3.用简便方法计算下列各题:(1) (2)(3))539()518()23()52()21(++++-+- (4))4.2()6.0()2.1()8(-+-+-+-(5))37(75.0)27()43()34()5.3(-++++-+-+-3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,75.9)219()29()5.0(+-++-)127()65()411()310(-++-+称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:星期一二三四五血压的变化升30单位降20单位升17单位升18单位降20单位请算出星期五该病人的血压【基础提高】1.计算:(1)3-8; (2)-4+7; (3)-6-9;(4)8-12;(5)-15+7; (6)0-2;(7)-5+ 9+3; (8)10+(-17)+8;2.计算:(1)-4.2+5.7+(-8.4)+10; (2)6.1-3.7-4.9+1.8;4.计算:(1)12+(-18)+(-7)+15; (2)-40+28+(-19)+(-24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+4.7)+(-8.9)+(+7.5)+(-6); (4) )31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、 相关知识链接 减法是加法的逆运算。
有理数加减ppt课件
海拔高度的计算
总结词
海拔高度的的海拔高度差。
详细描述
在地理学和地形测量中,海拔高度的计算是重要的任务之一。通过有理数加减运算,可以方便地计算两个地点之 间的海拔高度差,从而了解地势的变化和特点。
金融中的利息计算
总结词
金融中的利息计算涉及到有理数加减运算, 通过加减运算可以方便地计算不同时间段的 利息和本息总额。
有理数的加法运算
同号有理数加法
总结词
同号有理数相加,取相同的符号,绝对值相加。
详细描述
同号有理数是指具有相同符号的有理数,例如+3和+5,-7和-9等。在进行加法 运算时,应先取相同的符号,再将绝对值相加。例如,+3和+5相加的结果为+ (3+5)=+8。
异号有理数加法
总结词
异号有理数相加,取绝对值较大数的符号,用较大的绝对值减去较小的绝对值。
04
有理数加减混合运算
顺序无关性
顺序无关性
有理数加减混合运算中,运算的顺序 不影响结果。例如,计算表达式 (-5 + 2) - (-3 + 4) 和 (-5 + (-3)) + (2 + 4) 的结果相同。
证明
根据有理数的加法和减法法则,我们 可以逐步展开每个表达式并简化,最 终得到相同的结果。
异号有理数减法
总结词
异号有理数减法需要先将减法转换为加 法,再根据同号有理数相加的规则进行 计算。
VS
详细描述
对于异号的有理数,可以先将减法转换为 加法,再根据同号有理数相加的规则进行 计算。例如,$a - (-b) = a + b$,$ab ba = a - b$。在进行异号有理数相减时 ,结果的符号与绝对值较大数的符号相同 。
有理数的加减法讲义
有理数的加减法讲义有理数的加减法讲义Revised on November 25, 2020专题四有理数的加法1、相关知识链接(13)加法的定义:把两个数合成⼀个数的运算,叫做加法;(14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、教材知识详解【知识点1】有理数加法法则(1)同号两数相加;取相同的符号,并把绝对值相加。
数学表⽰:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2)异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较⼤的数的符号,并且⽤较⼤的绝对值减去较⼩的绝对值。
数学表⽰:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3)⼀个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2)(2)(-8)+(-2)(3)(-8)+(+2)(4)(+8)+(-2)(5)(-8)+(+8)(6)(-8)+ 0【知识点2】有理数加法的运算律加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c )【例2】计算 +(+12)+(-12)+()+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①⼀⽉份先存10元,后⼜存30元,两次合计存⼈元,就是(+10)+(+30)= ②三⽉份先存⼈25元,后取出10元,两次合计存⼈元,就是(+25)+(-10)= 2.计算:(1)??-+? -3121;(2)(—)+;(3)314+(—561);(4)(—561)+0;(5)(+251)+(—);(6)(—152)+(+);(7)(—6)+8+(—4)+12;(8)3173312741++??? ??-+(9)+(—++(—+;(10)9+(—7)+ 10 +(—3)+(—9); 3.⽤简便⽅法计算下列各题:(1)(2)(3))539()518()23()52()21(++++-+- (4))4.2()6.0()2.1()8(-+-+-+- (5))37(75.0)27()43()34()5.3(-++++-+-+- 3、⽤算式表⽰:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不⾜记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不⾜多少千克5筐蔬菜的总重量是多少千克5. ⼀天下午要测量⼀次⾎压,下表是该病⼈星期⼀⾄星期五⾎压变化情况,该病⼈上个星期⽇的⾎压为160单位,⾎压的变化与前⼀天⽐较:请算出星期五该病⼈的⾎压【基础提⾼】1.计算:(1)3-8; (2)-4+7; (3)-6-9; (4)8-12;(5)-15+7; (6)0-2; (7)-5+9+3; (8)10+(-17)+8;2.计算:75.9)219()29()5.0(+-++-)127()65()411()310(-++-+(1)++()+10; (2);4.计算:(1)12+(-18)+(-7)+15;(2)-40+28+(-19)+(-24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+++(++(-6); (4) )31()21(54)32(21-+-++-+专题五有理数的减法及加减混合运算1、相关知识链接减法是加法的逆运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减法讲义专题四有理数的加法1、相关知识链接(13)加法的定义:把两个数合成一个数的运算,叫做加法;(14)加法交换律:两个数相加,交换加数的位置,和不变;(15)加法分配律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
2、教材知识详解【知识点1】有理数加法法则(1)同号两数相加;取相同的符号,并把绝对值相加。
数学表示:若a>0、b>0,则a+b=|a|+|b|;若a<0、b<0,则a+b=-(|a|+|b|);(2)异号两数相加,绝对值相等(相反数)时和为0;绝对值不相等时,取绝对值较大的数的符号,并且用较大的绝对值减去较小的绝对值。
数学表示:若a>0、b<0,且|a|>|b|则a+b=|a|-|b|;若a>0、b<0,则a+b=|b|-|a|;(3)一个数同0相加,仍得这个数。
【例1】计算:(1)(+8)+(+2)(2)(-8)+(-2)(3)(-8)+(+2)(4)(+8)+(-2) (5)(-8)+(+8) (6)(-8)+ 0【知识点2】有理数加法的运算律 加法交换律:a + b = b + a加法结合律:(a + b )+ c = a +(b + c )【例2】计算 4.1+(+12)+(-12)+(-10.1)+7 【基础练习】1.如果规定存款为正,取款为负,请根据李明同学的存取款情况①一月份先存10元,后又存30元,两次合计存人 元,就是(+10)+(+30)= ②三月份先存人25元,后取出10元,两次合计存人元,就是(+25)+(-10)= 2.计算:(1)⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (2)(—2.2)+3.8; (3)314+(—561);(4)(—561)+0; (5)(+251)+(—2.2);(6)(—152)+(+0.8);(7)(—6)+8+(—4)+12; (8)3173312741++⎪⎭⎫ ⎝⎛-+(9)0.36+(—7.4)+0.3+(—0.6)+0.64; (10)9+(—7)+ 10 +(—3)+(—9);3.用简便方法计算下列各题:(1) (2)(3))539()518()23()52()21(++++-+-(4))4.2()6.0()2.1()8(-+-+-+-75.9)219()29()5.0(+-++-)127()65()411()310(-++-+(5))37(75.0)27()43()34()5.3(-++++-+-+-3、用算式表示:温度由—5℃上升8℃后所达到的温度.4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?5. 一天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压【基础提高】1.计算:(1)3-8; (2)-4+7; (3) -6-9; (4)8-12;(5)-15+7; (6)0-2;(7)-5+9+3; (8)10+(-17)+8;2.计算:(1)-4.2+5.7+(-8.4)+10; (2)6.1-3.7-4.9+1.8;4.计算:(1)12+(-18)+(-7)+15;(2)-40+28+(-19)+( -24)+(-32);5.计算:(1)(+12)+(-18)+(-7)+(+15); 2)(-40)+(+28)+(-19)+(-24)+(32);(3)(+4.7)+(-8.9)+(+7.5)+(-6); (4) )31()21(54)32(21-+-++-+专题五 有理数的减法及加减混合运算1、 相关知识链接 减法是加法的逆运算。
2、 教材知识详解 【知识点1】有理数减法法则减去一个数,等于加上这个数的相反数,即a-b=a+(-b ),这里a 、b 表示任意有理数。
步骤:(1)变减为加,把减数的相反数变成加数;(2)按照加法运算的步骤去做。
【例1】计算(1)(-3)-(-5); (2)0-7; (3)7.2-(-4.8);(4)(+4.7)-(-8.9)+(+7.5)-(-6) (5)-11-7-9+6 【知识点2】有理数加减混合运算的方法和步骤 第一步:运用减法法则将有理数混合运算中的减法转化成为加法;第二步: 再运用加法法则、加法交换律、加法结合律进行运算。
【例2】计算:(1)13513462-+-+ (2)111()()6312+-+-- 【基础练习】1. 已知两个数的和为正数,则( )A.一个加数为正,另一个加数为零 B.两个加数都为正数C.两个加数一正一负,且正数的绝对值大于负数的绝对值 D.以上三种都有可能2. 若两个数相加,如果和小于每个加数,那么( ) A.这两个加数同为正数 B .这两个加数的符号不同 C .这两个加数同为负数 D .这两个加数中有一个为零3. 笑笑超市一周内各天的盈亏情况如下:(盈余为正,亏损为负,单位:元):132,-12,-105,127,-87,137,98,则一周总的盈亏情况是( )A. 盈了B. 亏了C. 不盈不亏D. 以上都不对4. 下列运算过程正确的是()A.(-3)+(-4)=-3+-4=…B.(-3)+(-4)=-3+4=…C.(-3)-(-4)=-3+4=…D.(-3)-(-4)=-3-4=…5. 如果室内温度为21℃,室外温度为-7℃,那么室外的温度比室内的温度低()A.-28℃B.-14℃C.14℃D.28℃6. 汽车从A地出发向南行驶了48千米后到达B地,又从B 地向北行驶20千米到达C地,则A地与C地的距离是( ) A.68千米B.28千米C.48千米D.20千米7. x<0, y>0时,则x, x+y, x-y,y中最小的数是( )A x Bx-y C x+y D y8.|x-1|+|y+3|=0, 则y-x-12的值是()A -412 B -212C-112D1129. 在正整数中,前50个偶数和减去50个奇数和的差是( )A 50B -50C 100D -10010. 在1,—1,—2这三个数中,任意两数之和的最大值是()A1B0C-1D-3二、填空题11. 计算:(-0.9)+(-2.7)= , 3.8-(+7)= .12. 已知两数为 556和-823,这两个数的相反数的和是,两数和的绝对值是 .13. 绝对值不小于5的所有正整数的和为 .14. 若m,n互为相反数,则|m-1+n|= .15. 已知x.y,z三个有理数之和为0,若x=812,y=-512,则z= .16. 已知m是6的相反数,n比m的相反数小2,则m-n等于。
17.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 .18. 13的绝对值的相反数与323的相反数的和为______________。
【基础提高】1、下列算式是否正确,若不正确请在题后的括号内加以改正:(1)(-2)+(-2)=0 ( ); (2)(-6)+(+4)=-10 ( ); (3)+(-3)=+3 ( );(4)(+65)+(-61)=32( ); (5)-(-43)+(-743)=-7 ( ). 2.已知两个数-8和+5.(1)求这两个数的相反数的和; (2)求这两个数和的相反数;(3)求这两个数和的绝对值; (4)求这两个数绝对值的和.3.分别根据下列条件,利用a 与b 表示a+b :(1)a>0,b>0; (2)a<0,b<0 (3)a>0,b<0, a >b (4)a>0,b<0, a <b4.选择题(1)若a,b 表示负有理数,且a>b,下列各式成立的是 A.a+b>(-a)+(-b); B.a+(-b)>(-a)+b C.(+a)+(-a) >(+b)+(-b) D.(-a)+(-b)<a+(-b).(2)若a +b =b a ,则a,b 的关系是( ) A.a,b 的绝对值相等; B.a ,b 异号; C.a ,-b 的和是非负数; D.a ,b 同号或其中至少一个为零.(3)如果x +[-132]=1,那么x 等于( ) A .32或-32; B .232或-232; C .31或-31 D .132或-132 (4)若a+b=(-a)+(-b),那么下列各式成立的是( ) A .a=b=0 B .a>0,b<0,a=-b C .a+b=0 D .a+(-b)=0 5、计算(1)(+23)+(-27)+(+9)+(-5); (2)(-5.4)+(+0.2)+(-0.6)+(+0.35)+(-0.25); (3)231+[653+(-231)+(-552)]+(-5.6);(4)(-385)+(4121)+[(-65)+(+285)+(1+11211)];(5)841+[673+(-341)+(-574)]+(-376).有理数的加法课堂习题一、 填空题1.(1)同号两数相加,取 并把 。
(2)绝对值不相等的异号两数相加,取 的符号,并用较大的绝对值 较小的绝对值。
(3)互为相反数的两数相加得 。
(4)一个数与零相加,仍得 。
2.计算:(1)(+5)+(+2)= (2)(-8)+(-6)=(3)(+8)+(-3)= (4)(-15)+(+10)=(5)(+208)+0= 3.小华向东走了-8米,又向东走了-5米,他一共向东走了米。
4.在下列括号内填上适当的数。
(1)0+( )= -8 (2)5+( )=-2(3)10+( )=0 (4)12 +( )= -125.计算:-1+3= 二选择题1. 下列计算正确的是( )A. (+6) +(-13) =+7B. (+6) +(-13) =-19C. (+6) +(-13) =-7D. (-5) +(-3) =8 2. 下列计算结果错误的是( )A. (-5) +(-3) =-8B. (-5) +(=3) =2C. (-3) +5 =2D. 3 +(-5) =-23. 下列说法正确的是( )A .两数相加,其和大于任何一个加数 B. 0与任何数相加都得0C .若两数互为相反数,则这两数的和为0 D.两数相加,取较大一个加数的符号 ◎ 能力提高 一、 填空题1. 若a+3=0,则a= 。
2. -31的绝对值的相反数与332的相反数的和为 。
3. 绝对值小于2010的所有整数的和为 。
4. 已知两个数是18和-15,这两个数的和的绝对值是 ,绝对值的和是 。