江苏省2019年普通高考对口单招文化统考数学试卷(word版,图片答案)

合集下载

江苏省2019对口高考数学试卷.doc

江苏省2019对口高考数学试卷.doc

江苏省中 2019 年普通高校对口单招文化统考《数学》试卷一、单项选择题(本大题共 10 小题,每小题4 分,共 40 分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满.涂黑)1.已知集合 M={1,3,5} , N={2,3,4,5,},则 M ∩N 等于( )A.{3}B . {5}C . {3,5}D . {1,2,3,4,5} 2.若复数 z 满足 z · i=1+2i ,则 z 的虚部为()A .2B .1C . 3D . 63.已知数组 a=( 2, -1,0), b=(1,-1,6), 则 a ·b 等于()A .-2B . 1C . 3D . 64.二进制数() ?换算成十进制的结果是( )A .(138) 10B .( 147) 10C .( 150) 10D .( 162) 105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为( )A .4πB . 4 2 πC . 5 πD . 36. ( x 2 +1 )6 展开式中的常数项等于( )2x315512A .B .C .D.83162327.若 sin(,则 cos2等于( ))2 7 5715 18A .25B .C .D .25252838.已知 (f x )是定义在() ( )£x ,2 则 f (- 7) 等于( )B . - 2C . 2D .19.已知双曲线的焦点在y 轴上,且两条渐近线方程为y = ?3x ,则该双曲线的离心率为( )2A .13B .135D .532C .3210.已知( m , n )是直线 x+2y-4=0 上的动点,则 3m + 9n 最小值是()A .9B .18C . 36D . 81二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.题 11 图是一个程序框图,若输入m 的值是 21,则输出的m 值是_12.题 12 图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是_13. 已知 9a 3 ,则y cosax 的周期是_14. 已知点 M 是抛物线C:y2 2 px( p 0) 上一点,F为C的焦点,线段MF的中点坐标是(2,2),则 p=_2x , x015.已知函数 f ( x),令 g( x)=f(x)+x+a.若关于 x 的方程 g( x) =2 有两个实根,则log 2 x, x0实数 a 的取值范围是三、解答题(本大题共8 小题,共计90 分)16.(8 分)若关于x 的不等式x2-4ax+4a﹥ 0 在 R 上恒成立 .( 1)求实数 a 的取值范围;( 2)解关于x 的不等式log a23x 2log a 16 .17.( 10 分)已知f( x)是定义在R 上的奇函数,当x 0 时, f (x)log 2 ( x 2) ( a 1)x b ,且 f (2) 1 .令 a n f (n 3) (n N ) .(1)求 a, b 的值;(2)求a1a5a9的值 .18.( 12 分)已知曲线C:x2 +y2+mx+ny+1=0, 其中 m 是从集合M={-2,0} 中任取的一个数,n 是从集合N={-1,1,4} 中任取的一个数.( 1)求“曲线 C 表示圆”的概率;( 2)若 m=-2,n=4 ,在此曲线C上随机取一点Q( x, y),求“点 Q 位于第三象限”的概率 .19.( 12 分)设△ ABC 的内角 A,B,C 的对边为a,b,c,已知 2sinBcosC-sinC=2sinA.( 1)求角 B 的大小;( 2)若b 2 3, a c 4 ,求△ABC的面积.20.(10 分)通过市场调查知,某商品在过去90 天内的销售量和价格均为时间t (单位:天, t∈ N*)的函数,其中日销售量近似地满足q(t) 36 1 t (1 t 90) ,价格满足41 t 28, 1 t40P(t)4,求该商品的日销售额 f (t )的最大值与最小值 .1t 52, 41t90221.( 14 分)已知数列 {a n } 的前 n 项和 S n3 n 2 1n ,数列 {b n } 是各项均为正数的等比数列,且22a 1b 1 ,a 6 b 5 .( 1)求数列 {a n } 的通项公式;( 2)求数列 {b 2n } 的前 n 项和 Tn ;1 1 1 1( 3)求a 2 ?a 3...的值 .a 1 ? a 2 a 3 ?a 4a 33? a3422.( 10 分)某房产开发商年初计划开展住宅和商铺出租业务,每套住宅的平均面积为 80 平方米,每套商铺的平均面积为60 平方米,出租住宅每平方米的年利润是30 元,出租商铺每平方米的年利润是 50 元 .政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000 平方米 .若当年住宅和商铺的最大需求量分别为450 套和 600 套,且开发的住宅和商铺全部租空.问房产开发商出租住宅和商铺各多少套,可使年利润最大并求早最大年利润.23.( 14 分)已知圆 O :x 2+y 2=r 2(r>0 )与椭圆 C :x 2y 2 1(a b 0) 相交于点 M (0,1),n ( 0,y 2b 2-1),且椭圆的一条准线方程为x=-2.(1) 求 r 的值和椭圆 C 的方程;( 2)过点 M 的直线 l 另交圆 O 和椭圆 C 分别于 A,B 两点 .uuuv uuuv ①若 7MB 10MA, 求直线 l 的方程;②设直线 NA 的斜率为 k 121=2k 2.,直线 NB 的斜率为 k ,求证 :k。

2019年高考数学真题试卷(江苏卷)(word版+答案+解析)

2019年高考数学真题试卷(江苏卷)(word版+答案+解析)

2019年高考数学真题试卷(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.3.下图是一个算法流程图,则输出的S的值是________.4.函数y=√7+6x−x2的定义域是________.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.=1(b>0)经过点(3,4),则该双曲线的渐近线方程是7.在平面直角坐标系xOy中,若双曲线x2−y2b2________.8.已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.9.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.10.在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________.11.在平面直角坐标系 xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.12.如图,在 △ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA , AD 与CE 交于点 O .若 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ ,则 AB AC的值是________.13.已知 tanαtan(α+π4)=−23 ,则 sin(2α+π4) 的值是________.14.设 f(x),g(x) 是定义在R 上的两个周期函数, f(x) 的周期为4, g(x) 的周期为2,且 f(x) 是奇函数.当 x ∈(0,2] 时, f(x)=√1−(x −1)2 , g(x)={k(x +2),0<x ≤1−12,1<x ≤2 ,其中k >0.若在区间(0,9]上,关于x 的方程 f(x)=g(x) 有8个不同的实数根,则k 的取值范围是________.二、解答题:本大题共6小题,共计90分.(共6题;共90分)15.在△ABC 中,角A , B , C 的对边分别为a , b , c . (1)若a =3c , b = √2 ,cos B = 23 ,求c 的值; (2)若sinA a=cosB 2b,求 sin(B +π2) 的值.16.如图,在直三棱柱ABC -A 1B 1C 1中,D , E 分别为BC , AC 的中点,AB =BC .求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C: x2a2+y2b2=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2: (x−1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1= 52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x−a)(x−b)(x−c),a,b,c∈R、f ′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f ′(x)的零点均在集合{−3,1,3}中,求f(x)的极小值;(3)若a=0,0<b⩽1,c=1,且f(x)的极大值为M,求证:M≤ 427.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} (n∈N∗)满足:a2a4=a5,a3−4a2+4a4=0,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: b1=1,1Sn =2b n−2b n+1,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} (n∈N∗),对任意正整数k,当k≤m时,都有c k⩽b k⩽c k+1成立,求m的最大值.三、数学Ⅱ(附加题)(每题10分)【选做题】本题包括21、22、23三题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.(共3题;共30分)21.A.[选修4-2:矩阵与变换]已知矩阵A=[31 22](1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,π4),B(√2,π2),直线l的方程为ρsin(θ+π4)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2 x−1|>2.四、【必做题】第24题、第25题,每题10分,共计20分.(共2题;共20分)24.设(1+x)n=a0+a1x+a2x2+⋯+a n x n,n⩾4,n∈N∗.已知a32=2a2a4.(1)求n的值;(2)设(1+√3)n=a+b√3,其中a,b∈N∗,求a2−3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n= {(0,2),(1,2),(2,2),⋯,(n,2)},n∈N∗.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).答案解析部分一、填空题:本大题共14小题,每小题5分,共计70分.1.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。

(完整word版)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

(完整word版)江苏省2019普通高考对口单招文化统考数学试卷(word版,图片答案)

江苏省2019年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2. 若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13. 已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64. 二进制数(10010011)2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257- B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图13.已知9a=3,则αxy cos=的周期是 .14.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,线段MF的中点坐标是(2,2),则p= .15.已知函数f (x)=⎪⎩⎪⎨⎧,2,log2xx,令g (x)=f (x)+x+a.若关于x的方程g (x)=2有两个实根,则实数a的取指范围是 .三、解答题(本大题共8小题,共90分)16.(8分)若关于x的不等式x2-4ax+4a>0在R上恒成立.(1)求实数a的取值范围;(2)解关于x的不等式16log2log23axa<-.x≤0x>017.(10分)已知f (x)是定义在R上的奇函数,当x≥0时,f (x)=log2(x+2)+(a-1)x+b,且f (2)=-1.令a n=f (n-3)(n∈N*).(1)求a,b的值;(2)求a1+a5+a9的值.18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n是从集合N={-1,1,4}中任取的一个数.(1)求“曲线C表示圆”的概率;(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sinC =2sin A .(1)求角B 的大小;(2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.1≤t ≤4041≤t ≤9021.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ;(3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+Λ的值.22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :()012222>>=+b a bya x 相交于点M(0,1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若MA MB 107 ,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图2019年江苏省普通高校对口单独招生数学参考答案。

(推荐)2019江苏省对口高考数学试卷

(推荐)2019江苏省对口高考数学试卷

江苏省2019年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑) 1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩ N 等于 A.{3} B.{5} C.{3,5} D.{1,2,3,4,5} 2. 若复数z 满足z ·i =1+2i ,则z 的虚部为 A.2 B.1 C.-2 D.-1 3. 已知数组a =(2,-1,0),b =(1,-1,6),则a ·b 等于 A.-2 B.1 C.3 D.64. 二进制数(10010011)2换算成十进制数的结果是 A.(138)10 B.(147)10 C.(150)10 D.(162)10 5. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为 A.π4B.π22C.π5D.π36. 6212⎪⎭⎫ ⎝⎛+x x 展开式中的常数项等于A.83 B.1615 C.25 D.3215 7. 若532πsin =⎪⎭⎫ ⎝⎛+α,则α2 cos 等于 A.257-B.257 C.2518 D.2518-8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤23时,f (x )=x ,则f (-7)等于 A.-1B.2-C.2D.19. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 23±=,则该双曲线的离心率为 A.313 B.213 C.25 D.35 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m+9n的最小值是 A.9 B.18 C.36 D.81 二、填空题(本大题共5小题,每小题4分,共20分)11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .题11图12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是 .题12图 13.已知9a=3,则αx y cos =的周期是 .14.已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,线段MF 的中点坐标是(2,2),则p = .15.已知函数f (x )=⎪⎩⎪⎨⎧,2,log 2x x, 令g (x )=f (x )+x +a .若关于x 的方程g (x )=2有两个实根,则实数a 的取指范围是 . 三、解答题(本大题共8小题,共90分)16.(8分)若关于x 的不等式x 2-4ax +4a >0在R 上恒成立. (1)求实数a 的取值范围; (2)解关于x 的不等式16log 2log 23a x a <-.17.(10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b ,且f (2)=-1.令a n =f (n -3)(n ∈N *). (1)求a ,b 的值; (2)求a 1+a 5+a 9的值.18.(12分)已知曲线C :x 2+y 2+mx +ny +1=0,其中m 是从集合M ={-2,0}中任取的一个数,n是从集合N ={-1,1,4}中任取的一个数. (1)求“曲线C 表示圆”的概率;(2)若m =-2,n =4,在此曲线C 上随机取一点Q (x ,y ),求“点Q 位于第三象限”的概率.x ≤0 x >019.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A .(1)求角B 的大小; (2)若b =23,a +c =4,求△ABC 的面积.20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-41t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 28415221,求该商品的日销售额f (x )的最大值与最小值.21.(14分)已知数列{a n }的前n 项和n n S n 21232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式; (2)求数列{2n b }的前n 项和T n ; (3)求3433433221111·1a a a a a a a a ⋅++⋅+⋅+ 的值.1≤t ≤40 41≤t ≤9022.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆C :)0>>(12222b a by a x =+相交于点M (0,1),N (0,-1),且椭圆的一条准线方程为x =-2.(1)求r 的值和椭圆C 的方程;(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点.①若107=,求直线l 的方程;②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .题23图(注:文档可能无法思考全面,请浏览后下载,供参考。

完整word版,2019年高考真题数学(江苏卷含答案)

完整word版,2019年高考真题数学(江苏卷含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:样本数据X1,X2,…,X n的方差S2 1 x X 2,其中X - X i •n i 1 n i 1柱体的体积V Sh,其中S是柱体的底面积,h是柱体的咼.锥体的体积V 1Sh,其中S是锥体的底面积,h是锥体的咼. 3一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.1 •已知集合A { 1,0,1,6} , B {x|x 0,X R},则AI B ▲.2•已知复数(a 2i)(1 i)的实部为0,其中i为虚数单位,则实数a的值是▲.3•下图是一个算法流程图,则输出的S的值是▲4•函数y 7 6x x 2的定义域是▲.5.已知一组数据 6, 7, 8, 8, 9, 10,则该组数据的方差是▲.6•从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是▲.27.在平面直角坐标系 xOy 中,若双曲线x 2每 1(b 0)经过点(3, 4),则该双曲线的 b渐近线方程是▲.&已知数列{a n }( n N *)是等差数列,S n 是其前n 项和若a ?a 5 a * 0,S 9 27 ,则S *的 值是 ▲ . A i B i C i D i 的体积是120, E 为CC i 的中点,则三棱锥 E-BCD 的体积是 ▲x+y=0的距离的最小值是▲.11. 在平面直角坐标系 xOy 中,点A 在曲线y=lnx 上,且该曲线在点 A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是厶9•如图,长方体 ABCDt10.在平面直角坐标系P 到直线12. 如图,在 A ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA , AD 与CE 交于点O .UJU ABEC ,则竺的值是 ▲ AC —14.设f(x), g(x)是定义在R 上的两个周期函数,f (x)的周期为4, g(x)的周期为2,且f (x)是奇函数.当 x (0,2]时,f (x). 1 (x 1) , g(x)k(x 2),0 x 11 , -,1 x2 2其中k>0•若在区间(0, 9]上,关于x 的方程f(x) g(x)有8个不同的实数根,则 k 的 取值范围是▲.二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字 说明、证明过程或演算步骤. 15. (本小题满分14分)在厶ABC 中,角A , B , C 的对边分别为 a , b , c .― 2(1) 若 a=3c , b= •• 2 , cosB=,求 c 的值;3…sin A cosB(2) 若,求sin(B -)的值.a 2b216. (本小题满分14分)如图,在直三棱柱 ABC — A 1B 1C 1中,D , E 分别为BC , AC 的中点,AB=BC . 求证:(1) A 1B 1// 平面 DEC 1; (2) BE 丄 C 1E .UJU UULT 若 AB AC uuu 6AO 13.已知tantan-,则sin 2-的值是 ▲3 417. (本小题满分14分)2 2 2F 2 (1, 0).过F 2作x 轴的垂线I ,在x 轴的上方,I 与圆F 2:(X 1) y 4a 交于点A ,与椭圆C 交于点D •连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E , 连结DF 1. 已知DF 1= 5 .2(1) 求椭圆C 的标准方程; (2) 求点E 的坐标.18. (本小题满分16分)如图,一个湖的边界是圆心为 O 的圆,湖的一侧有一条直线型公路 l ,湖上有桥AB( AB 是圆O 的直径).规划在公路I 上选两个点P 、Q ,并修建两段直线型道路 PB 、QA .规 划要求:线段PB 、QA 上的所有点到点 O 的距离均不小于圆 O 的半径.已知点 A 、B 到 直线l 的距离分别为 AC 和BD (C 、D 为垂足),测得 AB=10, AC=6, BD=12 (单位: 百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;如图,在平面直角坐标系 xOy 中,椭圆C:2 x ~~2a2右1(a b 0)的焦点为F (- 4、°),(2) 在规划要求下,P 和Q 中能否有一个点选在 D 处?并说明理由;(3) 对规划要求下,若道路 PB 和QA 的长度均为d (单位:百米)•求当d 最小时,P 、 Q 两点间的距离.19. (本小题满分16分)设函数 f(x) (x a)(x b)(x c),a,b,c R 、f'(x)为 f (x )的导函数. (1) 若 a=b=c , f (4) =8,求 a 的值;(2) 若a 丰b , b=c ,且f (x )和f'(x)的零点均在集合{ 3,1,3}中,求f (x )的极小值;4(3)若a 0,0 b, 1,c 1,且f (x )的极大值为M ,求证:M <.2720. (本小满分 16分)定义首项为1且公比为正数的等比数列为“M -数列”.*(1)已知等比数列{a n } (n N )满足:a ?a 4 a 5,a 3 4a ? 4a 4 0 ,求证 澈列{a n } 为“ M —数列”;① 求数列{b n }的通项公式;② 设m 为正整数,若存在“ M —数列” {c n }(n N *),对任意正整数k ,当k < m 时, 都有c k 剟b k c k 1成立,求m 的最大值.数学H (附加题)21. 【选做题】本题包括 A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步(2)已知数列{bn }满足:011,s n2 b n2bn 1,其中S n 为数列{b n }的前n 项和.骤.A. [选修4-2 :矩阵与变换](本小题满分10 分)已知矩阵A(1 )求 A 2;(2)求矩阵A 的特征值.B. [选修4-4:坐标系与参数方程](本小题满分10分) 在极坐标系中,已知两点 A 3,— ,B .2,,直线I 的方程为sin -3.4 24(1 )求A ,B 两点间的距离;(2)求点B 到直线I 的距离. C. [选修4-5 :不等式选讲](本小题满分10分) 设x R ,解不等式|x|+|2 x 1|>2.【必做题】第22题、第23题,每题10分,共计20分•请在答题卡指定区域 内作答,解 答时应写出文字说明、证明过程或演算步骤.a b.3,其中 a,b N *,求 a 2 3b 2的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集A n {(0,0),(1,0),(2,0), ,(n,0)}B n (0,1),(n,1)},C n {(0,2),(1 ,2),(2,2), L ,(n,2)}, n N .令M n A n U B n U C ..从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1 )当n=1时,求X 的概率分布;22.(本小题满分10分)设(1 x)na 0 a 1x2a 2xn *a .x , n-4, n N .已知2 a32a 2a 4.(1 )求门的值;(2)设(1 x3)n2019年普通高等学校招生全国统一考试(江苏卷)数学I 答案、填空题:本题考查基础知识、基本运算和基本思想方法•每小题5分,共计70分.571.{1,6}2.23.54.[ 1,7]5.-6.—7.y -2x3108.169.10 10.411.(e, 1) 12. 313.- 1 14.-辽 J103 4二、解答题15•本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力•满分14分. 解:(1)因为a 3c, b3sin A cos B(2)因为a2b由正弦定理ab得 cosBsin B ,所以cosB2s inBsin A sin B 2bb从而 cos 2B (2sinB)2, 2即 cos B 24 1 cos B ,故 cos2B 单516•本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力•满分14分.证明:(1)因为D , E 分别为BC , AC 的中点, 所以 ED // AB. 在直三棱柱 ABC-A 1B 1C 1 中,AB // A 1B 1, 所以 A 1B 1 // ED.由余弦定理cos B2 2 , 2a c bac(3c)2 c 2 (迈)23c c,即c 2因为 sinB 0,所以 cosB 2sinB0,从而cos BncosB所以c将x=i代入圆F2的方程(x-i) 2+y2=i6,解得y= ± 4.因为点A在x轴上方,所以A(i, 4).又F i(-i , 0),所以直线AF i:y=2x+2.由;x 2x 2i)2y2i6,得5x26x 11 0 ,解得xii代入2x 2,得i2 T,又因为ED?平面DEC i, A1B1 平面DEC i, 所以A i B i //平面DEC i.(2)因为AB=BC, E为AC的中点,所以BE丄AC.因为三棱柱ABC-A i B i C i是直棱柱,所以CC i丄平面ABC. 又因为BE?平面ABC,所以CC i丄BE.因为C i C?平面A i ACC i, AC?平面A i ACC i, C i C n AC=C, 所以BE丄平面A i ACC i.因为C i E?平面A i ACC i,所以BE丄C i E.i7.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力满分i4分.解:(i)设椭圆C的焦距为2c.因为F i( —i , 0), F2(i , 0),所以F i F2=2, c=i.5又因为DF i= , AF2丄x轴,所以2DF2= DF i2 F i F225)2 22因此2a=DF i+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为(2 )解法一:x2由(i)知,椭圆C:—4i , a=2,因为AF2丄x轴,所以点A的横坐标为i.ii因此B (11 J5).又 F 2(1 ,0), 所以直线 BF 2: y|(x1).3“1)y -(x由24 2得7x 26x 13 0 , 解得x1或x 13x y 1743又因为E 是线段BF 2与椭圆的交点,所以 X 1 .3 33 将 x 1 代入 y —(x 1),得 y -.因此 E( 1,-).4 22解法二:x 2由(1)知,椭圆C :—4因为 BF 2=2a , EF 1+EF 2=2a ,所以 EF 1=EB , 从而/ BF 1E= / B. 因为 F 2A=F 2B ,所以/ A= / B , 所以/ A= / BF 1E ,从而 EF 1// F 2A.因为AF 2丄x 轴,所以EF 1丄x 轴.X 13 因为 F 1(-1, 0),由 x 2 y 2,得 y -.124 33又因为E 是线段BF 2与椭圆的交点,所以 y .23因此 E( 1,―).218.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法(1)过A 作AE BD ,垂足为E. 由已知条件得,四边形ACDE 为矩形,DE BE AC 6, AE CD 8因为PB 丄AB ,所以 cos PBD sinABE —410 5 .1•如图,连结EF 1.因此道路PB 的长为15 (百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B , E )到点O 的距离均 小于圆O 的半径,所以P 选在D 处不满足规划要求 ②若Q 在D 处,连结AD ,由(1)知AD .. ―ED^ 10,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求• 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当/ OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当/ OBP > 90时,对线段PB 上任意一点F , OF 俎B ,即线段PB 上所有点到点O 的距离均 不小于圆O 的半径,点P 符合规划要求•设R 为I 上一点,且RB AB ,由(1)知,R B=15,3此时 PD PBsin PBD PB cos EBA 15 —9 ;5当/ OBP>90° 时,在△ PPB 中,PB PB 15. 由上可知,d > 15. 再讨论点Q 的位置•由(2 )知,要使得QA > 15点Q 只有位于点C 的右侧,才能符合规划要求 •当QA=15时,CQ QA 2 AC 2 . 152 62 3、、21 .此时,线段QA 上所有点到点O 的距离均不小于所以PBBDcos PBD12a15.从而cos BAD2 2 2AD AB BD2 AD AB7 250 ,所以/ BAD 为锐角.综上,当PB 丄AB ,点Q 位于点C 右侧,且CQ=3「21时,d 最小,此时P , Q 两点间的距离 PQ=PD+CD + CQ=17+ 3 21.因此,d 最小时,P , Q 两点间的距离为17+3 21 (百米)• 解法二:(1)如图,过0作0H 丄I ,垂足为H.以0为坐标原点,直线 0H 为y 轴,建立平面直角坐标系.因为BD=12, AC=6,所以0H=9,直线I 的方程为y=9,点A , B 的纵坐标分别为3, -3. 因为AB 为圆0的直径,AB=10,所以圆0的方程为x 2+y 2=25.3从而A ( 4, 3), B (-4, -3),直线AB 的斜率为—.4因为PB 丄AB ,所以直线PB 的斜率为所以 P (-13, 9), PB ( 13 4)2 (9 3)2 15.因此道路PB 的长为15 (百米)(2)①若P 在D 处,取线段BD 上一点E (-4, 0),则EO=4<5,所以P 选在D 处不满足规 划要求• ②若 Q 在 D 处,连结 AD ,由(1)知 D (-4, 9),又 A (4, 3),3所以线段AD : y —x 6( 4剟x 4).4在线段AD 上取点M (3, 15),因为0M , 321 5. 32 42 5 ,4 V 4所以线段AD 上存在点到点0的距离小于圆0的半径.因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处.直线PB 的方程为y253(3)先讨论点P的位置.当/ OBP<90°时,线段PB上存在点到点0的距离小于圆0的半径,点P不符合规划要求;当/ OBP > 90 °寸,对线段PB上任意一点F , OF RB,即线段PB上所有点到点0的距离均不小于圆0的半径,点P符合规划要求•设R 为I上一点,且RB AB,由(1)知,R B=15,此时R (-13, 9);当/ OBP>90°时,在△ PRB 中,PB RB 15.由上可知,d > 15.再讨论点Q的位置•由(2)知,要使得QAM5,点Q只有位于点C的右侧,才能符合规划要求•当QA=15时,设Q(a, 9),由AQ ,. (a 4)2 (9 3)2 15(a 4),得a= 4 3一21,所以Q( 4 3 21 ,9),此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P (- 13, 9), Q ( 4 3 21 , 9)时,d最小,此时P, Q两点间的距离PQ 4 3 何(13) 17 3何.因此,d最小时,P, Q两点间的距离为17 ^21 (百米)•19 •本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力•满分16分.解:(1 )因为a b c,所以 f (x) (x a)(:x b)(x c) (x\3a) •因为f(4)8,所以(4 a)38,解得a 2(2) 因为b c,所以f(x)2(x a)(x b) x 3 2(a 2b)x2b(2a b)x ab ,从而f'(x)3(x b) x-•令f'(x)0 ,得x b或x 2a b332 a b因为a,b,旦卫,都在集合{ 3,1,3}中,且a b ,32a b 所以2^-b1,a 3,b 3 •3此时f(x) (x 3)(x 3)2, f'(x) 3(x 3)(x 1) •272 b 2 b1 (b 1)b(b 1) 9令f'(x)x 3或x 1 •列表如下:所以f(x)的极小值为f(l) (1 3)(1 3)2 32 .32(3)因为 a 0,c1,所以 f(x) x(x b)(x 1) x (b 1)x bx ,f'(x) 3x 2 2(b 1)x b .因为 0 b 1,所以 4(b 1)2 12b (2 b 1)2 3 0,则f'(x)有2个不同的零点,设为 x 1,x 2x 2 .由 f'(x) 0,得 x , 口必 L 一b b 1 .33所以的极大值1解法一:b(b 1) 2(b 1)2(b 1)2727M f x-!x ; (b 1)x : 3x f 2(b1)为 b b(b 1)92b(b 1)2 4 4 •因此M -2727 2727解法二:因为0 b 1,所以x , (0,1) • 当 x (0,1)时,f(x)x(x b)(x 1)x(x 1)2 •2 1令g(x) x(x1),x W),则 g '(x)3 x3 (x1)•1令g'(x) 0,得x.列表如下:11 所以当x —时,g ( x)取得极大值,且是最大值,故 g(X )max g —3344所以当x (0,1)时,f(x) g(x) ,因此M -272720.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力•满分 解:(1)设等比数列{a n }的公比为q ,所以a 1M 0, q^0.4 2716分.a 2a 4 a 5a 3 4a ? 4a 〔0,得2 4 a 1q2a 〔q4a 1q,解得4®q 4a 1a 1 1 q 2因此数列{a n }为 M —数列”(2) ①因为1 S n2 b n2b n -,所以 1b n1 由—S n2b nb n1,得b n 6 12(b n 1 b n),1S2J,则b2 2.b22当n 2时,b n bn 1bn 1bn由 b nSn S i 1,得 n 2 b b2 bb,2 bb2 bb整理得b n 1 b n 1 2b n . 所以数列{b n }是首项和公差均为1的等差数列因此,数列{b n }的通项公式为b n =n n N ②由①知,b k =k , k N .因为数列{c n }为M -数列”设公比为q ,所以c i =1, q>0.因为 C k<b k<c k+1,所以 q k 1 kkq ,其中 k=1 , 2, 3,…,m 当k=1时,有q > 1;, ,亠 ln kln k 当k=2, 3,…,m 时,有 -ln qkk 1In x1 In x 设f (x )= (x 1),则 f'(x)— xx令f'(x)0,得X=e.列表如下:经检验知q k 1 k 也成立. 因此所求m 的最大值不小于5.若m 》6,分别取k=3 , 6,得3角3,且q 5<6从而q 15> 243且q 15< 216 所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.数学H (附加题)参考答案f(k)max罟,所以3f ⑶罟取 q 33,当 k=1,2, 3, 4, 5时, ln k ,k=lnq ,即 k q ,10分.321.【选做题】A .[选修4 - 2 :矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分3 1解:(1)因为A2 23 3 1 2 3 1 1 2 11 52 3 2 2 2 1 2 2 : =10 6(2)矩阵A 的特征多项式为f()令f ( ) 0 ,解得A 的特征值11, 2 4 .B •[选修4 - 4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力•满分解:(1 )设极点为 0•在△ OAB 中,A (3,), B (、3 ,),42由余弦定理,得 AB=,. 32( /2)2 2 3 2 cosq J(2)因为直线I 的方程为 sin(-) 3 ,又BC-2—),所以点B 到直线I 的距离为(3\2.2) sin(3) 242C .[选修4吒:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分1解:当x<0时,原不等式可化为x 1 2x 2,解得x< -所以A 23 13 1 2 2 2 210分.4.10分.则直线I 过点 (3-2,-) ,倾斜角为3_42.1当O$w —时,原不等式可化为 x+1 -x>2,即x< 无解;2 1当x>_时,原不等式可化为x+2x-1>2,解得x>1.2综上,原不等式的解集为 {x|x(2)由(1)知,n 5 .a b 、3 .解法一:因为 a,b N *,所以 a C 0 3C 5 9C ; 76, b C 5 3C 5 9C 5 44, 从而 a 2 3b 2 762 3 442 32 .解法二:(1 .3)5 c ; c 5( .3)c 5( .3)2 c ;( .3)3 c ;( G )4 c :(、3)5c ; c 5,3c fe ,3)2 &(「3)3C ;(.3)4C 5C -3)5.因为 a,b N *,所以(1 、.3)5 a b 、3 . 因此 a 2 3b 2(a b . 3)(a b . 3) (1、、3)5 (1 .3)5 ( 2)5 32 .22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:所以 (1)因为(1 x)n C 0 Qx Ux 2 Lc n x n ,n 4 ,n(n 1)(n 2)a 2a 4C :c 2 n(n" a C ;cn2 ,a 3Cnn(n 1)(n 2)( n 3)24因为a ; 2a ?a 4,1)(n 2)]2 26解得n 5.n(n 1) 2n(n 1)(n 2)(n 3)24 c 2(.3)2c ;c3)3 c :( 一3)4 c :(、3)5(2)设A(a ,b)和B(c , d)是从M n 中取出的两个点.因为P(X n) 1 P(X n),所以仅需考虑X n 的情况. ① 若b d ,则AB n ,不存在X n 的取法;② 若 b 0 ,d 1,则 AB , (a c)2 1 、n 2 1,所以 X n 当且仅当 ABn 2 1, 此时a 0, c n 或a n ,c 0,有2种取法;③ 若 b 0,d 2,则 AB (a c)2 4 \ n 2 4 ,因为当 n 3 时,、(n 1)2 4 n ,所以X n 当且仅当AB .... n 2 4 ,此时a 0, c n 或解: (1 )当n 1时,X 的所有可能取值是1,2 ,2,5 •23 .【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识, 考查逻辑思维能力和推理论证能力•满分 10分.X 的概率分布为P (x 1)C 2右P(X ①44 C 215,P(X2)2 C 6215,p (x 2 2 2 C615④若b 1 ,d2,则 AB(a c)21 •一 n2 1 ,所以X n 当且仅当此时a 0, c n 或a n ,c 0,有2种取法•综上,当当Xn 时,X 的所有可能取值是、n 21 和 n 24,且P(Xn 2 1)24,P(Xn 24)2 2C 2n 4C2n 4 1赞P(X n) 1 P(X n 2 1)P(X -n 2 4)c 0,有2种取法;AB因此,2n 4a n , n 2 1 ,。

2019年江苏卷数学高考真题文档版(含答案)

2019年江苏卷数学高考真题文档版(含答案)
(1)若 a=b=c,f(4)=8,求 a 的值;

(2)若 a≠b,b=c,且 f(x)和 f '(x) 的零点均在集合{ 3,1,3} 中,求 f(x)的极小值;
成 (3)若 a 0,0 b„ 1, c 1 ,且 f(x)的极大值为 M,求证:M≤ 4 . 27
到 20.(本小满分 16 分)
y
3 4
(x
1)
.

y 3 (x 4
x2 y2 43
1) 1
,得
7x2
6x
13
0
,解得
x
1

x
13 7
.
又因为 E 是线段 BF2 与椭圆的交点,所以 x 1 .
将 x 1 代入 y 3 (x 1) ,得 y 3 .因此 E(1, 3) .
4
2
2
解法二:
由(1)知,椭圆 C: x2 y2 1.如图,连结 EF1. 43
! 功
由 b2=a2-c2,得 b2=3.
因此,椭圆 C 的标准方程为 x2 y2 1. 43
(2)解法一:
成 到
由(1)知,椭圆 C: x2 y2 1,a=2, 43

考 因为 AF2⊥x 轴,所以点 A 的横坐标为 1.
将 x=1 代入圆 F2 的方程(x-1) 2+y2=16,解得 y=±4. 因为点 A 在 x 轴上方,所以 A(1,4).
您 因为PB⊥AB,
所以 cos PBD sin ABE 8 4 .
祝 10
所以
PB
BD cos PBD
12 4
15
.
5
5
因此道路PB的长为15(百米).

江苏省对口单招职教高考数学考试含答案

江苏省对口单招职教高考数学考试含答案

江苏省中等职业学校学业水平考试《数学》试卷(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1. 方程182x⎛⎫= ⎪⎝⎭的解是( )A .31B .31- C .3 D .3-2.设全集R U =,集合{}2>=x x P ,则=P C U ( )A .{}2≤x xB .{}2<x xC .{}2≠x x D .{}2,1 3.下列关于奇函数图象的对称性,正确的叙述是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点中心对称D .关于直线x y =对称 4.下列关于零向量的说法中,错误..的是( ) A .零向量的长度为0 B .零向量没有方向C .零向量的方向是任意的D .零向量与任一向量都平行 5.样本数据-1,2,0,-2, 1的方差为( ) A .1 B .2 C .3 D .5 6.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ) A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A //平面ABCD D .A 1A //平面BB 1C 1C7.直线220x y -+=和310x y ++=的交点坐标为( ) A .(0,2) B .(1,4) C .(-2,-2) D .(-1,0)8.某公司在甲、乙、丙、丁四个地区的销售点分别有150个、120个、180个、250个.公司为了调查产品销售情况,需从这700个销售点中抽取一个容量为100的样本,比较适宜的抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .抽签法9.设p :2a =,q :1a >-;则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 10.过点(-1,3)且与直线210x y -+=垂直的直线方程是( ) A .270x y -+= B .210x y --=A B C DB 1C 1D 1 A 1 第6题图C .210x y +-=D .210x y ++= 11.已知(3,4),(2,3)a b =-=,则2||3a a b -⋅等于( )A .28B .8-C .8D .28- 12.302302302.log ,,..===c b a 则c b a ,,的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b << 二、填空题(本大题共2小题,每小题4分,共8分) 13.函数()2f x x =的单调增区间是 .14.如图,在正方体1111ABCD A B C D -中,对角线1BD 与底面ABCD 所成角的正切值为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)解不等式215x +<.16.(满分10分)已知 4cos 5α=-,α是第三象限的角,试求sin α和tan α的值. 17.(满分10分)某林场计划第一年植树造林200公顷,以后每年比前一年多造林3%.问: (1)该林场第五年计划造林多少公顷?(只需列式) (2)该林场五年内计划造林多少公顷?(精确到0.01)第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.第14题图1—1.与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +1—2.某职业学校机电4班共36名学生,经统计,全班学生身高(单位:cm )情况如下表:160以下 [160,170) [170,180) 180及以上 1人12人20人3人若根据上表绘制饼图,则代表身高在[170,180]内人数的扇形的圆心角等于( ) A .20︒B .100︒C .200︒D .270︒2.[选做题]在2-1和2-2两题中选答一题.2—1.下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果. A .1个 B .2个 C .3个 D .4个 2—2.某项工程的网络图如图所示(单位:天),则完成该工程的最短总工期为( )A .10.5B .12C .13D .16.5 3.[选做题]在3-1和3-2两题中选答一题.3—1.函数3sin(2)6y x π=-的最小正周期为( )A .2πB .πC .2πD .3π 3—2.复数2(34i -)的实部和虚部分别是( )A .3,4-B .6,8-C .3,4i -D .6,8i - 二、填空题(本大题共1小题,共4分.)4—1.将参数方程是参数)(t 42⎩⎨⎧==ty tx 化为普通方程是 .4—2.表示图中阴影部分平面区域的不等式是 .第4—2题江苏省中等职业学校学业水平考试《数学》试卷 参考答案及评分标准(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)1 2 3 4 5 6 7 8 9 10 11 12 DACBBDDBACAC二、填空题(本大题共2小题,每小题4分,共8分)13.[)∞+,0或(0)+∞,;14.22. 三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:原不等式等价于5215x -<+< ………………3分 624x ∴-<< ………………5分 32x ∴-<< ………………7分 ∴原不等式的解集为{}32x x -<<. ………………8分 16.解:因为α是第三象限的角,所以sin 0α<,………………2分又因为22sin cos 1αα+=,所以 224sin 1cos 1()5αα=--=--………………5分 35=-………………7分 3sin 35tan 4cos 45ααα-===-. ………………10分17.解:(1)该林场第五年计划造林 4200(13%)+ 公顷. ……4分 (2)该林场五年内计划造林200+200(13%)++2200(13%)++3200(13%)++4200(13%)+ ……2分5200[1(13%)]1(13%)-+=-+ ……5分1061.83≈(公顷) ……6分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.二、填空题(本大题共1小题,共4分.)4—1.24x y =; 4—2.632≥+y x .。

2019江苏省对口高考数学试卷(20200401004110)

2019江苏省对口高考数学试卷(20200401004110)

江苏省2019年普通高校对口单招文化统考数学试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含选择题(第1题~第10题,共10题)、非选择题(第11题~第23题,共13题)。

本卷满分为150分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符。

4.作答选择题(第1题~第10题),必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选择其它答案。

作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B铅笔绘、写清楚。

一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.已知集合M={1,3,5},N={2,3,4,5},则M∩N等于A.{3}B.{5}C.{3,5}D.{1,2,3,4,5}2.若复数z满足z·i=1+2i,则z的虚部为A.2B.1C.-2D.-13.已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于A.-2B.1C.3D.64.二进制数(10010011) 2换算成十进制数的结果是A.(138)10B.(147)10C.(150)10D.(162)105.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为A.4πB.22πC.5πD.3π6.61x展开式中的常数项等于22xA.38B.1516C.52D.15327.若π3 sin,则cos2等于25A.725B.725C.1825D.18256.已知f则f(-7)等于 3 2时,f(x)=x , A.-1B.2C.2D.13 7.已知双 2,则该双A.13 3 B. 13 2 C.52D.5 3m n的最小值是10.已知(m,n)是直线x+2y-4=0上的动点,则3+9 A.9B.18C.36D.81二、填空题(本大题共5小题,每小题4分,共20分)8.题11图是一个程序框m 的值是21,的m 值是.题11图9.题12图是某项工程的网络),则完成该工程的最短总数是.题12图10.已知9 a=3,则ycos αx 的周期是.11.已知点M 是抛物线C :y2=2p x (则p=.x 2 , x ≤0 ,令g(x)=f(x)+x+a.若关于x 的方程g(x)=2有两个实根, 8.已知函数f(x)=log 2x,x >0 则实数a 的取指范围是.三、解答题(本8小90分)9.(8分)若关于x 的不等式x2-4ax+4a >0在R 上恒成立.(1)求实数a 的取值范围; 3x2 (2)解关于x 的不等式log2log16 a <. a 10.(10分)已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x+2)+(a-1)x+b ,且f(2)=-1.令an=f(n-3)(n ∈N*). (1)求a ,b 的值; (2)求a 1+a 5+a 9的值.11.(12分)已知曲线C :x2+y 2+mx+ny+1=0,其中m 是从集合M={-2,0}中任取的一个数,n 是从集合N={-1,1,4}中任取的一个数.(1)求C ”的概率; (2)若m =-2,n =4,12.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sinBcosC-sinC=2sinA.(1)求角B 的大小;(2)若b=23,a+c=4,求△ABC 的面积. 13.(10分)通过市场调查知,某的90天内的销售量和价格间t (单位:天,t ∈N*)的 1 4t (1≤t ≤90),价格满足P(t)=1 4t28, 1≤t ≤40,求该商品的日f(x)的最大值与最小值.1 2t52, 41≤t ≤90 321 21(.14分)已知数列{an}的前n 项和S n nn22 且a 1=b 1,a 6=b 5.(1)求数列{a n }的通项公式;数列{bn}是各项均为正数的等比数列, (2)求数列{ 2b}的前n 项和T n ; n(3)求1 a ·a 12 a 2 1 a3 a 3 1 a4 a 331 a 34的值.14.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大?并求最大年利润.22xy23(.14分)已知圆O:xab相交于点M(0,1),2+y2=r2(r>0)与椭圆C:(1>>0)22abN(0,-1),且椭圆的一条准线方程为x=-2.(1)求r的值和椭圆C的方程;(2)过点M的直线l另交圆O和椭圆C分别于A,B两点.①若7MB10MA,求直线l的方程;②设直线NA的斜率为k1,直线NB的斜率为k2,求证:k1=2k2.题23图。

2019年江苏卷数学高考试题文档版(含答案)

2019年江苏卷数学高考试题文档版(含答案)

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑.柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则AB =▲ .2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是 ▲ . 3.下图是一个算法流程图,则输出的S 的值是 ▲ .4.函数y =的定义域是 ▲ .5.已知一组数据6,7,8,8,9,10,则该组数据的方差是 ▲ .6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 ▲ .7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是 ▲ .9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 ▲ .10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .12.如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是 ▲ .13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC . 求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.18.(本小题满分16分)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.19.(本小题满分16分)设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 20.(本小满分16分)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }*()n ∈N 满足:245324,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }*()n ∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }*()n ∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ·参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,6}2.23.54.[1,7]-5.536.7107.y =8.16 9.10 10.411.(e, 1)14.13⎡⎢⎣⎭二、解答题15.本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.满分14分.解:(1)因为23,3a cb B ===, 由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以3c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此π25 sin cos25B B⎛⎫+==⎪⎝⎭.16.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.满分14分.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.17.本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.满分14分.解:(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=52,AF2⊥x轴,所以DF2=222211253()222DF F F-=-=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为221 43x y+=.(2)解法一:由(1)知,椭圆C:22143x y+=,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±. 又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.18.本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分16分.解:解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB =. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+所以Q (4+),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.19.本小题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=,解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得121133b b x x +++==.列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下: 所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()x f 'x x -=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =当k =1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+其中*,ab ∈N ,求223a b -的值.23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4–2:矩阵与变换]本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分.解:(1)因为3122⎡⎤=⎢⎥⎣⎦A ,所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.B .[选修4–4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C .[选修4–5:不等式选讲]本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13;当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.22.【必做题】本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力,满分10分.解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯, 解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.23.【必做题】本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.满分10分.解:(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======, 22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤,因为当3n ≥时,n ≤,所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2019年普通高校对口单招文化统考
数学试卷
一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正
确答案,将答题卡上对应选项的方框涂满、涂黑)
1. 已知集合M ={1,3,5},N ={2,3,4,5},则M ∩N等于
A.{3}
B.{5}
C.{3,5}
D.{1,2,3,4,5}
2. 若复数z满足z·i=1+2i,则z的虚部为
3. 已知数组a=(2,-1,0),b=(1,-1,6),则a·b等于
4. 二进制数()2换算成十进制数的结果是
A.(138)10
B.(147)10
C.(150)10
D.(162)10
5. 已知圆锥的底面直径与高都是2,则该圆锥的侧面积为
A.π4
B.π22
C.π5
D.π3
6. 6
212⎪⎭⎫ ⎝

+x x 展开式中的常数项等于
A.
8
3 B.
16
15 C.
2
5 D.
32
15 7. 若5
3
2πsin =⎪⎭⎫
⎝⎛+α,则α2 cos 等于 A.257-
B.
25
7 C.
25
18 D.25
18-
8. 已知f (x )是定义在R 上的偶函数,对于任意x ∈R ,都有f (x +3)=f (x ),当0<x ≤2
3
时,f (x )=x ,则f (-7)等于
B.2-
C.2
9. 已知双曲线的焦点在y 轴上,且两条渐近线方程为x y 2
3
±
=,则该双曲线的离心率为 A.
3
13 B.
2
13 C.
25 D.
3
5 10. 已知(m,n )是直线x +2y -4=0上的动点,则3m +9n 的最小值是
二、填空题(本大题共5小题,每小题4分,共20分)
11. 题11图是一个程序框图,若输入m 的值是21,则输出的m 值是 .
题11图
12.题12图是某项工程的网络图(单位:天),则完成该工程的最短总工期天数是.
题12图
13.已知9a=3,则αx
y cos
=的周期是.
14.已知点M是抛物线C:y2=2px(p>0)上一点,F为C的焦点,线段MF的中点坐标是(2,2),
则p= .
15.已知函数f (x)=
⎪⎩


⎧,
2
,
log
2
x
x
,令g (x)=f (x)+x+a.若关于x的方程g (x)=2有两个实根,则实数a的取指范围是.
三、解答题(本大题共8小题,共90分)
16.(8分)若关于x的不等式x2-4ax+4a>0在R上恒成立.
(1)求实数a的取值范围;
(2)解关于x的不等式16
log
2
log2
3
a
x
a

-.
x≤0
x>0
17.(10分)已知f (x)是定义在R上的奇函数,当x≥0时,f (x)=log2(x+2)+(a-1)x+b,且
f (2)=-1.令a n=f (n-3)(n∈N*).
(1)求a,b的值;
(2)求a1+a5+a9的值.
18.(12分)已知曲线C:x2+y2+mx+ny+1=0,其中m是从集合M={-2,0}中任取的一个数,n
是从集合N={-1,1,4}中任取的一个数.
(1)求“曲线C表示圆”的概率;
(2)若m=-2,n=4,在此曲线C上随机取一点Q(x,y),求“点Q位于第三象限”的概率.
19.(12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B cos C -sin C =2sin A . (1)求角B 的大小;
(2)若b =23,a +c =4,求△ABC 的面积.
20.(10分)通过市场调查知,某商品在过去的90天内的销售量和价格均为时间t (单位:
天,t ∈N *)的函数,其中日销售量近似地满足q (t )=36-4
1
t (1≤t ≤90),价格满足 P (t )=⎪⎪⎩⎪⎪⎨⎧++-,t ,t 2841
522
1 ,求该商品的日销售额f (x )的最大值与最小值.
1≤t ≤40
41≤t ≤90
21.(14分)已知数列{a n }的前n 项和n n S n 2
1
232-=数列{b n }是各项均为正数的等比数列,且a 1=b 1,a 6=b 5.
(1)求数列{a n }的通项公式; (2)求数列{2
n b }的前n 项和T n ;
(3)求
34
334332211
11·1a a a a a a a a ⋅++⋅+⋅+Λ的值.
22.(10分)某房产开发商年初计划开展住宅和商铺出租业务.每套住宅的平均面积为80平方米,每套商铺的平均面积为60平方米,出租住宅每平方米的年利润是30元,出租商铺每平方米的年利润是50元,政策规定:出租商铺的面积不能超过出租住宅的面积,且出租的总面积不能超过48000平方米.若当年住宅和商铺的最大需求量分别为450套和600套,且开发的住宅和商铺全部租空,问房产开发商出租住宅和商铺各多少套,可使年利润最大并求最大年利润.
23.(14分)已知圆O :x 2+y 2=r 2(r >0)与椭圆
C :()0122
22>>=+b a b
y a x 相交于点M (0,
1),N (0,-1),且椭圆的一条准线方程为x =-2. (1)求r 的值和椭圆C 的方程;
(2)过点M 的直线l 另交圆O 和椭圆C 分别于A ,B 两点. ①若107=,求直线l 的方程;
②设直线NA 的斜率为k 1,直线NB 的斜率为k 2,求证:k 1=2k 2 .
题23图2019年江苏省普通高校对口单独招生数学参考答案。

相关文档
最新文档