高一数学下册期末考试

合集下载

四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷(解析版)

四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷(解析版)

成都七中高2026届高一下期期末考试数学试题一.单项选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.若2i z =-,则z z -=()A.B.2iC.2D.4【答案】C 【解析】【分析】根据共轭复数写出z ,即可求出模长.【详解】2i z =- ,2i z ∴=+,即(2i)(2i)2i 2z z -=+--==.故选:C.2.若2,a a = 与b 夹角为60,且()b a b ⊥- ,则b = ().A.32B.1C.D.2【答案】B 【解析】【分析】根据向量垂直,结合数量积的定义即可列方程求解.【详解】由()b a b ⊥- ,得20b a b ⋅-= ,故22cos600b b ⋅-=,故1b = 或0b = ,若0b = ,则,a b共线,不满足题意,故1b = ,故选:B3.已知tan 2α=,α为锐角,则πsin()4α+=(). A.1010B.1010 C.31010-D.31010【答案】D 【解析】【分析】利用两角和的正弦公式把πsin()4α+展开,然后利用同角三角函数基本关系即可求解.【详解】πππ2sin(sin coscos sin (sin cos )4442ααααα+=+=+ ,,,α为锐角,sin 0,cos 0αα∴>>,sin tan 2cos ααα== ,sin 2cos αα∴=,又22sin cos 1αα+= sin ,cos 55αα∴==,即35sin cos 5αα+=,得0π2sin()31n cos 4201ααα+=+=.故选:D.4.将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()g x 的图象,则()g x 的一条对称轴可能为().A.5π12B.π12C.5π3D.π3【答案】D 【解析】【分析】根据平移伸缩得到三角函数解析式再求对称轴即可.【详解】将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()1πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则对称轴为πππ,Z 232x k k +=+∈,所以对称轴为π2π,Z 3x k k =+∈,当0k =时对称轴为π3x =.故选:D.5.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,且m αβ⋂=,给出下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若,αβγβ⊥⊥,则//αγ④若,//n m n γβ⋂=,则//γα则上述命题中正确的个数为().A.0B.1C.2D.3【答案】B 【解析】【分析】利用直线、平面间的位置关系判断即可.【详解】对于①,若,//m m n αβ⋂=,则如图所示,第一种情况,n 在,αβ外,可得//n α或//n β;第二种情况,n 在β内,可得//n α;第三种情况,n 在α内,可得//n β,综上所述,//n α或//n β,故①正确;对于②,若,m m n αβ⋂=⊥,则n 与α相交或在α内,n 与β相交或在β内,故②错误;对于③,若m αβαβγβ⊥⋂=⊥,,,则,αγ相交或//αγ,故③错误;对于④,若,,//m n m n αβγβ⋂=⋂=,则//γα或γ与α相交,故④错误.故选:B.6.同时抛掷两枚质地均匀的六面骰子,则所得点数之差绝对值小于2的概率为().A.23B.59C.49D.13【答案】C 【解析】【分析】|根据古典概型计算即可.【详解】同时抛掷两枚质地均匀的六面骰子,则所得点数分别为,x y ,共有36种情况,点数之差绝对值小于2的情况有()()()()()()()()()()()()()()()()1,1,2,2,3,3,4,4,5,5,6,6,1,2,2,3,3,4,4,5,5,6,2,1,3,2,4,3,5,4,6,5共16种点数之差绝对值小于2的概率为()1642369P x y -<==.故选:C.7.羌族是中国西部地区的一个古老民族,被称为“云朵上的民族”,其建筑颇具特色.碉楼是羌族人用来御敌、储存粮食柴草的建筑,一般多建于村寨住房旁.现有一碉楼,其主体部分可以抽象成正四棱台1111ABCD A B C D -,如图,已知该棱台的体积为311224m 8m 4m AB A B ==,,,则二面角1A AB C--的正切值为().A.3B.2C.D.32【答案】A 【解析】【分析】先求出正四棱台的高,再取正四棱台上下底面的中心为1,O O ,取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,即可求解.【详解】解:设正四棱台的高为h ,则(221843V h =++,得()12246416323h =++,得6h =,取正四棱台上下底面的中心为1,O O ,如图所示:取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,则184=6,22MN OO h EN -====,得6tan 32MN MEN EN∠===,故选:A8.在ABC 中,角A B C ,,所对的边分别为a b c ,,,已知160a A == ,,设O G ,分别是ABC 的外心和重心,则AO AG ⋅的最大值是()A.12B.13 C.14D.16【答案】B 【解析】【分析】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,求得212AO AC AC ⋅= ,212AO AB AB ⋅= ,化解得221166AO AG AB AC +=⋅ ,再通过余弦定理及均值不等式即可求解.【详解】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,因为21|||cos |||||2AO AC AO AC OAC AH AC AC ⋅=⋅∠=⋅= ,同理21|||cos 2|AO AB AO AB OAB AB ⋅=⋅∠= ,则()221332AO AG AO AD AO AB AC ⎛⎫⋅=⋅=⋅+ ⎪⎝⎭()()222211113666AO AB AC AB b c =⋅+=+=+,在ABC 中,1,60a A ==︒,由余弦定理得2222cos60a b c bc ︒=+-,即221b c bc +=+,由均值不等式,2212bc b c bc +=+≥,所以1bc ≤(当且仅当1b c ==等号成立),所以()()()2211111116663AO AG c b bc ⋅=+=+≤+= .故选:B.二.多项选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知()()1,,2,3a b ==+λλr r,则().A.“1λ=”是“a ∥b”的必要条件B.“3λ=-”是“a ∥b”的充分条件C.“12λ=-”是“a b ⊥ ”的必要条件D.“12λ=”是“a b ⊥ ”的充分条件【答案】BC 【解析】【分析】对于AB :根据向量平行的坐标表示结合充分必要条件分析判断;对于CD :根据向量垂直的坐标表示结合充分必要条件分析判断.【详解】因为()()1,,2,3a b ==+λλr r,对于选项AB :若a ∥b,则()23+=λλ,解得1λ=或3λ=-,可知a ∥b,等价于1λ=或3λ=-,若a ∥b ,不能推出1λ=,所以“1λ=”不是“a ∥b”的必要条件,故A 错误;若3λ=-,可以推出a ∥b ,所以“3λ=-”是“a ∥b”的充分条件,故B 正确;对于选项CD :若a b ⊥,则230++=λλ,解得12λ=-,可知a b ⊥ ,等价于12λ=-,若a b ⊥ ,可以推出12λ=-,所以“12λ=-”是“a b ⊥ ”的必要条件,故C 正确;若12λ=,不能推出a b ⊥ ,“12λ=”不是“a b ⊥ ”的充分条件,故D 错误;故选:BC.10.已知一组样本数据()12201220,,,,x x x x x x ≤≤≤ 下列说法正确的是().A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.若样本数据的方差2022112520i i s x ==-∑,则这组样本数据的总和为100D.若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍【答案】BCD 【解析】【分析】根据题意,结合百分位数、数据方差,以及平均数与方差的性质,逐项判定,即可求解.【详解】对于A ,由200.612⨯=,可得第60百分位数为12132x x +,错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如图所示,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,正确;对于C ,由()11222202011252020i i i i s x x x ===∑-=∑-,则20202221150020i i i i x x x ==-=-∑∑,所以5x =,故这组样本数据的总和等于20100x =,正确;对于D ,若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍,正确.故选:BCD .11.如图,在长方体ABCD A B C D -''''中,2,4,AB BC AA '===N 为棱C D ''中点,1,2D M P '=为线段A B '上一动点,下列结论正确的是().A.线段DP 长度的最小值为655B.存在点P ,使AP PC +=C.存在点P ,使A C '⊥平面MNP D.以B 为球心,176为半径的球体被平面AB C '所截的截面面积为6π【答案】AC 【解析】【分析】对于A ,在三角形中,由垂线段最短即可计算得到;对于B ,通过平面翻折,化空间到平面,利用两点之间线段最短计算出AP PC +的最小值,再与C ,依题意作出经过三点,,M N P 的平面,再证明A C '与平面垂直即得;对于D ,利用球的截面圆的性质,先通过等体积求得球心到平面的距离,再由垂径定理求出截面圆半径即得.【详解】对于A ,如图1,因A B A D ''===,BD =,故当DP A B ⊥'时,线段DP 长度最小,此时由等面积,1122DP ⨯⨯,解得655DP ==,故A 正确;对于B ,如图2,将平面A D CB ''旋转至平面11BC D A ',使之与平面A AB '共面,连接1AC 与A B '交于点1P ,此时1111AP PC AC +=为最小值.sinA BA '∠==,190A BC '∠=,故1cos cos(90)sinABC A BA A BA ''∠=∠+=-∠=-由余弦定理,2221122222cos 88(8AC ABC =+-⨯⨯∠=-⨯-=+,故1AC =>因此不存在这样的点P ,使AP PC +=B 错误;对于C ,如图3,取131,,22B E B F A G =='='',连接FG 交A B '于P ,下证AC MN '⊥.连接D C ',由2D N D DD M DC''=='可得ND M D DC '' ,则得D C MN '⊥,因D A ''⊥平面DCC D '',因MN ⊂平面DCC D '',则D A MN ''⊥,因D C D A D ''''⋂=,,D C D A '''⊂平面A D C '',故MN ⊥平面A D C '',又A C '⊂平面A D C '',故A C MN '⊥.同理,A C EN '⊥,因MN EN N ⋂=,,MN EN ⊂平面MEN ,故A C '⊥平面MEN .下证//EF GM .取线段A G '的三等分点,J K ,取A D ''的中点H ,连接,,,EH HJ JF D K ',易证////,EH A B FJ EH A B FJ ''''==,则得EFJH ,得//EF JH ,易得//JH D K ',因//,D M GK D M GK ''=,得D MJK ' ,得//D K GM ',故得//EF GM .同理可得//MN FG ,因此,,,,M N E F G 五点共面.由A C '⊥平面MEN 可得A C '⊥面MNEFG .所以存在这样的点P 使A C '⊥面MNP ,故C正确;对于D ,如图4,以点B 为球心,176为半径的球面被面AB C '所截的截面为圆形,记其半径为r,则r =(*),其中d 为点B 到平面AB C '的距离.由B ABC B AB C V V --''=可得,1133ABC AB C S BB S d ''⨯⨯=⨯⨯ ,则122442132d ⨯⨯⨯==⨯,代入(*),得52r =,所以截面面积225ππ4S r ==,故D 错误.故选:AC.【点睛】关键点点睛:本题主要考查多面体中与动点有关的距离最值,截面性质问题,属于难题.解题关键在于处理距离和的最小值常常需要平面翻折,截面问题,一般应先作出截面,再根据条件分析截面性质,对于球的截面圆,常通过垂径定理求解.三.填空题:本大题共3小题,每小题5分,共计15分.12.习主席曾提出“绿水青山就是金山银山”的科学论断,为响应国家号召,农学专业毕业的小李回乡创业,在自家的田地上种植了,A B 两种有机生态番茄共5000株,为控制成本,其中A 品种番茄占40%.为估计今年这两种番茄的总产量,小李采摘了10株A 品种番茄与10株B 品种番茄,其中A 品种番茄总重17kg ,B 品种番茄总重23kg ,则小李今年共可收获番茄约_______kg .【答案】10300【解析】【分析】求解两种番茄的种植株数,利用比例即可求解.【详解】由题意,知A 品种番茄共40%5000=2000⨯株,B 品种番茄3000株,故共可收获番茄约172320003000103001010⨯+⨯=kg ,故答案为:1030013.已知三棱锥A BCD,ABC - 是边长为2的等边三角形,BCD △是面积为2的等腰直角三角形,且平面ABC ⊥平面BCD ,则三棱锥A BCD -的外接球表面积为_______.【答案】28π3##28π3【解析】【分析】判断出等腰直角三角形BCD △的直角,根据面面垂直的性质说明四边形1O EGO 为矩形,求出相关线段长,即可求得三棱锥外接圆半径,即可求得答案.【详解】由于ABC 是边长为2的等边三角形,故2BC =,BCD △是面积为2的等腰直角三角形,假设BDC ∠为直角,则BD DC ==112BCD S ==△不合题意;故DBC ∠或DCB ∠为直角,不妨设DBC ∠为直角,则2BD BC ==;设ABC 的中心为G ,E 为BC 的中点,则,,A G E 共线,且AE BC ⊥,由于平面ABC⊥平面BCD ,平面ABC ⋂平面BCD BC =,AE ⊂平面ABC ,故⊥AE 平面BCD ,设O 为三棱锥A BCD -的外接球球心,1O 为DC 中点,即为BCD △的外接圆圆心,连接1OO ,则1OO ⊥平面BCD ,则1OO AE ∥,连接1OG,O E ,则OG ⊥平面ABC ,AE ⊂平面ABC ,则OG AE ⊥,又⊥AE 平面BCD ,1O E ⊂平面BCD ,则1AE O E ⊥,则四边形1O EGO 为矩形,则112122323OG O E DB ,AG ====⨯=,故22273OA OG AG =+=,故三棱锥A BCD -的外接球表面积为228π4π3OA ⨯=,故答案为:28π314.在ABC 中,43AB AC AB AC P ⊥==,,,为斜边BC 上一动点,点Q 满足2PQ =,且AQ mAB nAC =+,则2m n +的最大值为______________.【答案】1323+【解析】【分析】取AB 中点D ,连接CD 交AQ 于点E ,由平面向量的线性运算得2AQ m n AE+=,过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=,如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值,即可求解.【详解】AB 中点D ,由题可知点Q 点在以P 为圆心,以2为半径的圆上,则2AQ mAB n AC mAD n AC =+=+;连接CD 交AQ 于点E ,()1AE AD AC λλ=+-,则()()1AQ AQ AQ AE AD AC AE AEλλ=⋅=⋅+- ,故2AQ m n AE+=.过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=.如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值.则3tan tan 2∠=∠=BFQ ADC,得sin ∠=BFQ ,得2,223sin 33BQ AB BF BF m n BFQAD +===+==∠.故答案为:1323+四.解答题:本大题共5小题,共计77分.解答应写出文字说明、证明过程或演算步骤.15.如图,棱长为6的正方体1111ABCD A B C D -中,O 是AC 的中点,E 是1AA 的中点,点F 在AB上.(1)当F 是AB 的中点时,证明:平面//EFO 平面11A D C ;(2)当F 是靠近B 的三等分点时,求异面直线FO 与1AC 所成角的余弦值.【答案】(1)证明见解析(2)3015.【解析】【分析】(1)利用OF OE ,分别为11,BC A C A D 的中位线,得到//OF 平面11A D C ,//OE 平面11A D C ,借助面面平行的判定定理证明即可;(2)由1//OE A C 可知EOF ∠或其补角为异面直线FO 与1AC 所成角,借助余弦定理求出即可.【小问1详解】由正方体1111ABCD A B C D -可知,,O E 是1,AC AA 中点,所以1//,OE A C 因为11A D ⊂平面11,A D C OE ⊄平面11A D C ,所以//OE 平面11A D C .因为F 是AB 中点,O 是AC 中点,所以OF 为ABC 的中位线,故11////OF BC A D .又由于1AC ⊂平面11,A D C OF ⊄平面11A D C ,所以//OF 平面11A D C .又,,OE OF O OE OF =⊂ 平面EFO ,故平面//EFO 平面11A D C .【小问2详解】由1//OE A C 知,异面直线FO 与1AC 所成角即为EOF ∠或其补角.由于1AA ⊥平面,,ABCD AB AO ⊂平面ABCD ,则1AA 与,AB AO 都垂直,所以90EAF EAO ∠=∠=︒,由题意得4AF =,在Rt EAF △中,由勾股定理可得5EF =.易得3AO AE ==,在Rt EAO △中,由勾股定理可得EO =在OAF △中,45CAB ∠=︒,由余弦定理得FO ==,在EOF 中,由余弦定理可得2222cos EF EO FO EO FO EOF =+-⋅⋅∠,代入解得cos 015EOF ∠==>.所以异面直线FO 与1AC 所成角的余弦值为3015.16.2024年4月26日,主题为“公园城市、美好人居”的世界园艺博览会在四川成都正式开幕,共建成113个室外展园,涵盖了英式、法式、日式、意式、中东、东南亚等全球主要园林风格,吸引了全球各地游客前来参观游玩.现从展园之一的天府人居馆中随机抽取了50名游客,统计他们的参观时间(从进入至离开该展园的时长,单位:分钟,取整数),将时间分成[)[)[]455555658595 ,,,,,,五组,并绘制成如图所示的频率分布直方图.(1)求图中a 的值;(2)由频率分布直方图,试估计该展园游客参观时间的第75百分位数(保留一位小数);(3)由频率分布直方图,估计样本的平均数¯(每组数据以区间的中点值为代表).【答案】(1)0.015a =;(2)78.3(3)69x =.【解析】【分析】(1)应用频率和为1求参数;(2)应用频率分布直方图求百分位数步骤求解;(3)应用频率分布直方图求平均数步骤求解.【小问1详解】由样本频率分布直方图可知()0.0120.0250.035101a +++⨯=,解得0.015a =;【小问2详解】样本频率直方图前三组频率之和为()0.0100.0250.035100.70.75++⨯=<,前四组频率之和为()0.0100.0250.0350.015100.850.75+++⨯=>,所以样本数据的第七十五百分位数在第四组内,设其为x ,则()750.0150.700.75x -⨯+=,解得78.3=x ,所以样本数据的第七十五百分位数为78.3.由样本估计总体,估计该展园游客参观时间的第七十五百分位数也为78.3;【小问3详解】0.0110500.03510600.02510700.01510800.0151090x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯,计算可得,样本的平均数69x =.17.甲、乙两位同学进行羽毛球比赛,并约定规则如下:在每个回合中,若发球方赢球,则得1分,并且下一回合继续由其发球;若发球方输球,则双方均不得分,且下一回合交换发球权;比赛持续三回合后结束,若最终甲乙得分相同,则为平局.已知在每回合中,甲获胜的概率均为23,各回合比赛结果相互独立,第一回合由甲发球.(1)求甲至少赢1个回合的概率;(2)求第二回合中有选手得分的概率;(3)求甲乙两人在比赛中平局的概率.【答案】(1)2627(2)59(3)427.【解析】【分析】(1)根据对立事件概率求法及乘法公式结合条件即得;(2)结合对立事件和独立事件,应用和事件求概率;(3【小问1详解】设事件=i A “第i 回合甲胜”,事件M =“甲至少赢一回合”,故M =“甲每回合都输”.i A 为i A 对立事件,()23i P A =,故()13i P A =.()()()()()()31231231261111327P M P M P A A A P A P A P A ⎛⎫=-=-=-=-=⎪⎝⎭,故甲至少赢1个回合的概率为2627.【小问2详解】设事件N =“第二回合有人得分”,由题可知1212N A A A A =⋃,且12A A 和12A A 互斥,则()()()()()()()1212121259P N P A A P A A P A P A P A P A =+=⋅+⋅=,故第二回合有人得分的概率为59.【小问3详解】设事件Q =“甲乙两人平局”,由题可知,只有0:0与1:1两种情况,因此123123Q A A A A A A =⋃,故()()()()()()()()()123123123123427P Q P A A A P A A A P A P A P A P A P A P A =+=+=,故甲乙两人平局的概率为427.18.记ABC 的内角A B C ,,的对边分别为a b c ,,,已知4,2,sin sin 2sin a c a A c C b B ==+=,D 是线段AC 上的一点,满足13AD AC =,过D 作一条直线分别交射线BA 、射线BC 于M N 、两点.(1)求b ,并判断ABC 的形状;(2)求BD 的长;(3)求BM BN ⋅的最小值.【答案】(1)b =,钝角三角形(2)2133(3)409【解析】【分析】(1)由正弦定理得b =cos 0A <,得到π2A >,ABC 是钝角三角形;(2),BA BC 可作为一组基底,求出5cos ,cos 8BA BC B 〈〉== ,根据题目条件得到2133BD BA BC =+ ,平方后2BD,从而求出答案;(3)设,BM xBA BN yBC ==,根据向量共线得到()()1,0,1BD t BM tBN t =-+∈ ,由向量基本定理得到()21,313x y t t ==-,表达出()291BM BN BA BC t t⋅=⋅-⋅ ,其中50BA BC ⋅=>,由基本不等式求出最小值.【小问1详解】由正弦定理得,222sin sin 2s n 2i a a c A c C b B b ⇒+=+=,又4,2a c ==,解得b =.又因为22220b c a +-=-<,故222cos 02+-=<b c a A bc,因为0πA <<,故π2A >,所以ABC 是钝角三角形.【小问2详解】由平面向量基本定理,,BA BC可作为一组基底向量,且有2,4BA BC == ,2225cos ,cos 28a cb BA BC B ac+-〈〉===.由于13AD AC = ,所以()13BD BA BC BA -=- ,故2133BD BA BC =+ .BD ==3===;【小问3详解】由题意可设,BM xBA BN yBC == .由于,,M D N 三点共线,设MD tMN =,01t <<,故()BD BM t BN BM -=- ,故()()1,0,1BD t BM tBN t =-+∈.所以()21133BD t x BA ty BC BA BC =-⋅+⋅=+ ,由平面向量基本定理,解得()21,313x y t t ==-,所以()21,313BM BA BN BC t t ==-.因此()()21231391BM BN BA BC BA BC t t t t ⎛⎫⎛⎫⋅=⋅=⋅ ⎪ ⎪ ⎪--⋅⎝⎭⎝⎭,而||||cos 50BA BC BA BC B ⋅=⋅⋅=>,其中()11122t t t t -+-≤=,当且仅当1t t -=,即12t =时,等号成立,因此当12t =时,409BM BN ⋅= 为最小值.【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.19.如图,斜三棱柱111A B C ABC -中,90ABC ∠= ,四边形11ABB A 是菱形,D 为AB 中点,1A D ⊥平面ABC ,点1A 到平面11BCC B 1AA 与1CC 的距离为2.(1)求证:CB ⊥平面11ABB A ;(2)求1AC 与平面11BCC B 所成角的正弦值;(3)若E F ,分别为1AA AC ,的中点,求此斜三棱柱被平面1B EF 所截的截面面积.【答案】(1)证明见解析(2)155(3)53412.【解析】【分析】(1)根据线面垂直判定定理证明即可;(2)先根据线面垂直判定定理证明线面垂直,几何法得出线面角,再计算得出正弦值;(3)先找到截面,再计算截面即可.【小问1详解】因为1A D ⊥平面,ABC BC ⊂平面ABC ,故1A D BC ⊥.又由90ABC ∠=︒,即1,,AB BC AB A D D AB ⊥⋂=⊂平面11ABB A ,1A D ⊂平面11ABB A ,因此BC ⊥平面11ABB A .【小问2详解】由于菱形11ABB A ,且1A D 为AB 的垂直平分线,因此可知1A AB △和11B A B 均为等边三角形.由BC ⊥平面11,ABB A BB ⊂平面1ABB A ,可得1BC BB ⊥,斜三棱柱进一步可得11B BCC 是矩形.此时作1111,A P BB AQ CC ⊥⊥,连接1,,PQ PC AC .由题知,112,AQ A P =⊂平面11ABB A ,可得111,BC A P BC BB B BB ⊥⋂=⊂,平面11,BCC B BC ⊂平面11BCC B ,因此1AP ⊥平面11BCC B ,因此由题知,1,A P PQ PC =⊂平面11BCC B ,所以也有11,A P PQ A P PC ⊥⊥.因此,1ACP ∠为1AC 与平面11BB C C 所成角.在1Rt A PQ △中,1PQ ==,由矩形可知1BC PQ ==.由于1A P =1B AB △中,可以解得12,BB P =为1BB 中点,1BP =.所以,在Rt BCP △中,PC =1Rt ACP △中,1AC =.因此,111115sin ,5A P ACP AC AC ∠===与平面11BB C C所成角的正弦值为5.【小问3详解】延长1,EF C C 交于点M ,连接1MB ,交BC 于N ,连接FN ,如图,故四边形1B EFN 即为所得截面.上一问可知,菱形11ABB A 的边长为2,矩形11B BCC 中1BC =,平行四边形11ACC A中111112,AA CC AC AC AC =====.要计算截面1B EFN 的面积,首先研究1B EM △.在11A B E △中,由于11120EA B ∠=︒,由余弦定理可得1B E =,E F 为中点,因此12EM EF AC ===,此时有1MC AE ==,在直角11MB C中1MB N =为BC 的三等分点.因此1B EM △中,由余弦定理可得2221111cos 25EM MB EB EMB EM MB +-∠==⋅⋅,第21页/共21页所以可以计算得117sin 5EMB ∠=.设截面面积为S ,由于111,23MF ME MN MB ==,有11111115534sin sin 22612B EM NFM B EM S S S ME MB EMB MF MN EMB S =-=⋅⋅∠-⋅⋅∠==△△△因此,此斜三棱柱被平面1B EF 所截的截面面积为53412.。

新高一数学下期末试卷(含答案)

新高一数学下期末试卷(含答案)

新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。

4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。

5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。

6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。

7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。

8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。

9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。

10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。

分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。

因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。

顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。

而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。

2023-2024学年湖北省五市州高一数学(下)期末考试卷附答案解析

2023-2024学年湖北省五市州高一数学(下)期末考试卷附答案解析

2023-2024学年湖北省五市州高一数学(下)期末考试卷全卷满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知3i z =+,则1iz=+()A .42i-B .42i +C .2i-D .2i +2.当()0,2πx ∈时,曲线2cos y x =+与直线13y x =的交点个数为()A .2B .3C .4D .53.已知()2,0a = ,()1,1b = ,则a 在b 上的投影向量为()A .)B .()1,1C .()2,1D .()2,24.已知1z ,2z ∈C ,则下列说法正确的是()A .若3z ∈C ,1323z z z z =,则12z z =B .若12z z =,则12=z zC .若1212z z z z +=-,则120z z ⋅=D .1212z z z z +=-5.如图所示,角x (π0,2x ⎛⎫∈ ⎪⎝⎭)的顶点为坐标原点,始边与x 轴的非负半轴重合,其终边与单位圆的交点为P ,分别过点A 作x 轴的垂线,过点B 作y 轴的垂线交角x 的终边于T ,S ,根据三角函数的定义,tan x AT =.现在定义余切函数cot y x =,满足1cot tan x x=,则下列表示正确的是()A .cot x OT =B .cot x PS =C .cot x OS =D .cot x BS=6.已知单位向量a ,b互相垂直,若存在实数t ,使得()1a t b +- 与()1t a b -+ 的夹角为60 ,则t =()AB .1-CD .1-7.1cos 20cos 40cos 202︒-︒︒=()A .14-B .14C .12-D .128.已知函数()sin sin 2f x x x =+,下面关于函数()f x 的图象与性质描述正确的是()A .函数()f x 的图象关于y 轴对称B .函数()f x 的最小正周期为πC .方程()0f x =在[]π,π-上有5个不同的实根D .()f x ≤恒成立二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学统计了某校高一男生的身高数据(单位:cm ),并整理得到下表身高[)155160,[)160165,[)165170,[)170175,[)175,180频数60120180240100根据表中数据,下列说法正确的是()A .该校高一年级男生身高的中位数小于170cmB .该校高一年级男生身高的众数和中位数相同C .该校高一年级男生身高的极差介于15cm 至25cm 之间D .该校高一年级男生身高的平均数介于170cm 到175cm 之间10.阻尼器是一种以提供阻力达到减震效果的专业工程装置,其提供阻力的运动过程可近似为单摆运动.若某阻尼器离开平衡位置的位移y (单位:m )和时间x (单位:s )满足函数关系:()sin y A x ωϕ=+(0A >,0ω>,π2ϕ<),某同学通过“五点法”计算了一个周期内的部分数据如下(其中a ,b ,c ,d 为未知数),则下列有关函数()y f x =的描述正确的是()A .函数()f x 的图象关于点,03⎛⎫⎪⎝⎭对称B .函数()f x 的图象可由函数sin y A x ω=的图象向右平移13个单位得到C .函数()f x 的图象上相邻的最高点与最低点之间的距离为4D .函数()f x的图象与函数ππ23y x ⎛⎫=+ ⎪⎝⎭的图象重合11.在棱长为2的正方体1111ABCD A B C D -中,Q 是1CC 的中点,下列说法正确的是()A .若P 是线段1AC 上的动点,则三棱锥P BQD -的体积为定值B .三棱锥1A BQD -C .若AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别为i θ(1,2,3i =),则321cos 2i i θ==∑D .若平面ABQ 与正方体各个面所在的平面所成的二面角分别为()1,,6i i θ= ,则612sin 4i i θ==∑三、填空题:本大题共3小题,每小题5分,共15分.12.已知()tan 1αβ+=,()tan 2αβ-=,则tan 2α=.13.在ABC 中,π2A =,3BC BA CA CB ⋅=⋅,则ABC 中最小角的余弦值为.14.设x ∈R ,m ∈Z ,若1122x m -<-≤,则称m 为离实数x 最近的整数,记作{}x ,即{}x m =,如{}2.42-=-.另外,定义[]x 表示不超过x 的最大整数,如[]2.63-=-.令()f x x x =⎡⎤-⎣⎦,(){}g x x x =-,当[]2024,2024x ∈-时,如果存在i x (1,2,,i n =⋅⋅⋅)满足()()i i f x g x =,那么112025ni i x ==∑.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b 最大,πsin cos 2cos sin 3A C B C ⎛⎫-=+ ⎪⎝⎭.(1)求B ;(2)若AC 边上的高为4,求ABC 面积的最小值.16.已知函数()224sin cos sin 3cos 1f x x x x x =-+-.(1)求函数()f x 的最值与单调递增区间;(2)若方程()()()2220f x a f x a -++=在[]0,π上恰有4个不同的实数根,求a 的值.17.在三棱锥-P ABC 中,AC CB ⊥,AB BP ⊥,CB CP CA ==,12BP AP =.点C 在平面PAB 上的射影D 恰好在PA 上.(1)若E 为线段BP 的中点,求证:BP ⊥平面CDE ;(2)求二面角C AB P --的余弦值.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)19.在直三棱柱111ABC A B C -中,AB BC ⊥,2AB =,123BC AA ==,点M 是平面ABC 上的动点.(1)若点M 在线段BC 上(不包括端点),设α为异面直线AC 与1B M 所成角,求cos α的取值范围;(2)若点M 在线段AC 上,求112A M MC +的最小值;(3)若点M 在线段BA 上,作MN 平行AC 交BC 于点N ,Q 是1BB 上一点,满足2MB BQ +=.设MB x =,记三棱锥Q MBN -的体积为()V x .我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.据此,判断函数()y V x =在定义域内是否存在0x ,使得函数()y V x =在()00,x 上的图象是中心对称图形,若存在,求0x 及对称中心;若不存在,说明理由.1.C【分析】根据复数的除法法则计算.【详解】由题意23i (3i)(1i)33i i i 2i 1i 1i (1i)(1i)2z ++--+-====-+++-,故选:C .2.A【分析】结合函数图象,函数的单调性得出结论.【详解】作出函数2cos y x =+和13y x =的图象,记()2cos f x x =+,1()3g x x =,函数2cos y x =+在[0,π]上递减,在[π,2π]上递增,π(π)1(π)3f g =<=,(0)3(0)0f g =>=,2π(2π)3(2π)3f g =>=,结合图象知在(0,2π)上有两个交点,故选:A .3.B【分析】根据投影向量的定义及向量的坐标运算求解.【详解】由已知b = 21012a b ⋅=⨯+⨯=,a 在b上的投影向量为(1,1)(1,1)a b b bb⋅⋅== ,故选:B .4.B【分析】根据复数的运算及复数、复数的模的概念判断各选项.【详解】选项A ,取1320,1,2z z z ===,满足1323z z z z =,但12z z =不成立,A 错;选项B ,设2i(,R)z a b a b =+∈,12i b z z a ==-,则12z z ==,B 正确.选项C ,取121,i z z ==,满足1212z z z z +=-,但12i 0z z ⋅=≠,C 错;选项D ,取1212i,z 12i z =+=-,则122z z +=,12(12i)(12i)4i z z -=--+=-,D 错;故选:B .5.D【分析】利用三角形相似,即可求解.【详解】由图象可知,OBS TAO ,则OB BSAT OA=,即1BS AT OB OA ⋅=⋅=,所以11cot tan BS x AT x===.故选:D 6.D【分析】根据向量数量积的运算律和定义,列等式,即可求解.【详解】因为()()()()()222111111a t b t a b t a t a b t b⎡⎤⎡⎤⎡⎤+-⋅-+=-+-+⋅+-⎣⎦⎣⎦⎣⎦1122t t t =-+-=-,()1a t b +-=()1t a b -+=又()1a t b +-与()1t a b -+ 的夹角为60 ,所以()22211cos60t t ⎡⎤-=+-⎣⎦,即()24411t t -=+-,解得:1t =-±故选:D.7.A【分析】利用两角和与差的余弦公式,正弦的二倍角公式及诱导公式变形可得.【详解】1cos 20cos 40cos 20(cos 60cos 40)cos 202︒-︒︒=︒-︒︒[cos(5010)cos(4010)]cos 20=︒+︒-︒-︒︒(cos 50cos10sin 50sin10cos 50cos10sin 50sin10)cos 20=︒︒-︒︒-︒︒-︒︒︒2sin 50sin10cos 20=-︒︒︒2cos 20cos 40cos80=-︒︒︒2sin 20cos 20cos 40cos80sin 20-︒︒︒=︒2sin 40cos 40cos802sin 80cos80sin1602sin 204sin 204sin 20-︒︒︒-︒︒-︒===︒︒︒sin 2014sin 204-︒==-︒.故选:A .8.C【分析】根据对称性,周期性,最值举例说明ABD 错误,解方程判断C 正确.【详解】选项A ,ππ(sin()sin(π)122f -=-+-=-,πππ(sin sin π1()222f f =+=≠-,即()()f x f x -=不可能恒成立,A 错;选项B ,()()πsin π)+sin(2+2πsin sin 2f x x x x x +=+=-+,即(π)()f x f x +=不可能恒成立,B 错;选项C ,()sin 2sin cos sin (12cos )f x x x x x x =+=+,由()0f x =得sin 0x =或1cos 2x =-,[π,π]x ∈-,则由sin 0x =得π,0,πx =-,由1cos 2x =-得2π2π,33x =-,即()0f x =在[]π,π-上有5个不同的实根,C 正确;选项D ,πππ2()sin sin 14422f =++D 错.故选:C .9.AC【分析】根据统计表.结合中位数定义判断A (利用频数),再由众数定义判断B ,由极差定义判断C ,求出身高期望值判断D .【详解】选项A ,由统计表,身高小于170cm 的频数为360,身高不小于170cm 的频数为340,因此身高的中位数小于170cm ,A 正确;选项B ,由统计表身高的众数在区间[)170,175上,结合选项A 的判断知B 错误;选项C ,由统计表,身高的极差最大为18015525cm -=,最小为17516015cm -=,C 正确;选项D ,身高的平均值为601575120162518016752401725100177516893cm 60120180240100......⨯+⨯+⨯+⨯+⨯≈++++,D 错.故选:AC .10.BC【分析】根据五点法求出()f x 的解析式,然后结合正弦函数的性质,诱导公式判断各选项.【详解】由五点法知41073323b +==,从而13a =,133d =,由正弦函数性质知c =,A =2ππ131233ω==-,π1023ϕ⨯+=,π6ϕ=-,所以ππ()sin(26f x x =-,选项A,16π16π(3236f =⨯-=A 错;选项B,πππ1()3sin(()2623f x x x =-=-,其图象可由π2y x =的图象向右平移13个单位得到,B 正确;选项C ,函数()f x4=,C 正确;选项D,πππππππ()3sin()cos(2623223f x x x x =-=+-=+,D 错.故选:BC .11.ACD【分析】对于A ,连接AC 交BD 于点O ,连接OQ ,可证得1AC ∥平面BDQ ,进而进行判断,对于B ,根据线面垂直的判定定理可证得OQ ⊥平面1A BD ,设G 为等边三角形1A BD 的外心,过G 作平面1A BD 的垂线,则三棱锥1A BQD -外接球的球心在此直线上,然后求解,对于C ,取11,DD BB 的中点,M N ,连接,,,AM AN MQ NQ ,可得AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别,,QAC QAM QAN ∠∠∠,然后求它们的余弦值即可,对于D ,由题意可得平面ABQM ⊥平面11BCC B ,平面ABQM ⊥平面11ADD A ,QBC ∠为二角面Q AB C --的平面角,1QBB ∠为二面角1Q AB B --的平面角,然后求出它们的正弦值判断.【详解】对于A ,连接AC 交BD 于点O ,连接OQ ,因为四边形ABCD 为正方形,所以O 为AC 的中点,因为Q 是1CC 的中点,所以OQ ∥1AC ,因为1AC ⊄平面BDQ ,OQ ⊂平面BDQ ,所以1AC ∥平面BDQ ,因为P 是线段1AC 上的动点,所以点P 到平面BDQ 的距离为定值,因为BDQ △的面积也为定值,所以三棱锥P BQD -的体积为定值,所以A 正确,对于B ,因为1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以1CC BD ⊥,因为AC BD ⊥,1AC CC C = ,1,AC CC ⊂平面1ACC ,所以BD ⊥平面1ACC ,因为1AC ⊂平面1ACC ,所以1BD AC ⊥,同理可证11A B AC ⊥,由选项A 可知OQ ∥1AC ,所以BD OQ ⊥,1A B OQ ⊥,因为1A B BD B ⋂=,1,A B BD ⊂平面1A BD ,所以OQ ⊥平面1A BD ,设G 为等边三角形1A BD 的外心,则112233AG AO ==⨯过G 作平面1A BD 的垂线,则三棱锥1A BQD -外接球的球心在此直线上,设球心为H ,连接1,A H QH ,过H 作HE OQ ⊥于E ,则111363323HE OG AO ===⨯,OQ ===设三棱锥1A BQD -外接球的半径为R ,则1A H QH R ==,设OE m =,则HG m =,因为22222211,A H AG GH HQ HE QE =+=+,所以)222222,R m R m ⎫=+=+-⎪⎪⎝⎭⎝⎭,解得m =,2R =,所以B 错误,对于C ,取11,DD BB 的中点,M N ,连接,,,AM AN MQ NQ ,则MQ ∥CD ,NQ ∥BC ,所以MQ ⊥平面1AD ,NQ ⊥平面1AB ,因为QC ⊥平面AC ,所以AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别,,QAC QAM QAN ∠∠∠,因为3AM AN AQ =====,所以cos 333AC AM AN QAC QAM QAN AQ AQ AQ ∠==∠==∠==,所以222222cos 2333QAC cos QAM cos QAN ⎛⎛⎛∠+∠+∠=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即321cos 2i i θ==∑,所以C 正确,对于D ,因为MQ ∥CD ,AB ∥CD ,所以MQ ∥AB ,所以平面ABQ 就是平面ABQM ,因为AB ⊥平面11BCC B ,AB ⊥平面11ADD A ,AB ⊂平面ABQM ,所以平面ABQM ⊥平面11BCC B ,平面ABQM ⊥平面11ADD A ,因为AB ⊥平面11BCC B ,BQ ⊂平面11BCC B ,所以AB BQ ⊥,所以QBC ∠为二角面Q AB C --的平面角,1QBB ∠为二面角1Q AB B --的平面角,sin QC QBC BQ ∠==,1sin sin BC QBB BDC BQ ∠=∠==所以平面ABQ与左右两个平面所成二面角的正弦值为πsin12=,所以226221sin 22214i i θ==⨯+⨯+⨯=∑,所以D正确,故选:ACD【点睛】关键点点睛:此题考查线面垂直,面面垂直,考查线面角,面面角,解题的关键是根据正方体的性质结合线面角和面面角的定义找出线面角和面面角,考查空间想象能力和计算能力,属于难题.12.3-【分析】由两角和的正切公式计算.【详解】tan()tan()12tan 2tan[()()]31tan()tan()112αβαβααβαβαβαβ++-+=++-===--+--⨯,故答案为:3-.13【分析】根据数量积的定义化简已知式后求解.【详解】因为π2A =,所以22cos ,cos B B A BC C C BA BA CA CB C CB B A CA ⋅===⋅= ,又3BC BA CA CB ⋅=⋅,所以223BA CA =,即BA =,因此B 最小,且cos BA B BC ===14.2024【分析】由函数()f x 与()g x 为偶函数,只需考虑[]0,2024x ∈的情形,然后设N m ∈,x m =,12m x m <≤+,112m x m +<<+分类讨论确定(1,2,,)i x i n = 的值,再求和.【详解】由题意()f x 与()g x 为偶函数,只需考虑[]0,2024x ∈的情形,设N m ∈,x m =时,由定义知{}[]m m m ==,()()0f x g x ==,12m x m <≤+时,{}[]x m x ==,()f x m x =-,()()g x x m f x =-≠,112m x m +<<+时,{}1x m =+,[]x m =,()f x m x =-,()(1)()g x x m f x =-+≠,所以i x i =(0,1,2,,2024i =⋅⋅⋅),()()1202412024111012202410122025202520252n i i x =⋅+=+++⋅⋅⋅+=⋅=∑由偶函数对称性可知,112101220242025ni i x ==⨯=∑.故答案为:2024.【点睛】方法点睛:本题考查函数新定义,关键是正确理解新定义并进行转化应用,解题方法是根据新定义对x 的值进行分类讨论,从而确定函数值并判断是否有()()f x g x =.15.(1)π2B =(2)16【分析】(1)利用两你用和与差的正弦公式对已知等式变形可求得B 角;(2)由面积建立,,a b c 的关系,利用基本不等式求得b 的最小值,得面积最小值.也可用A 角表示出边,a c ,然后利用正弦函数性质得面积的最小值.【详解】(1)因为()πsin cos 2cos sin 3B C C B C ⎛⎫+-=+ ⎪⎝⎭,所以1sin cos sin cos cos 2cos sin cos 22B C C B C B C C ⎛⎫+-=+ ⎪ ⎪⎝⎭.sin cos sin cos cos sin cos cos B C C B C C B B C +-=.()sin 1cos cos cos B C B C -.因为b 最大,所以cos 0C ≠,从而sin 1B B -=,即sin 1B B =,所以π1sin 32B ⎛⎫-= ⎪⎝⎭,即ππ36B -=或π5π36B -=(舍)从而π2B =.(2)法一:设ABC 面积为S ,1422S b b =⨯⨯=,因为π2B =,所以222b a c =+,又12S ac =,所以4b ac =,所以22222422161664a c a cb b ⎛⎫+ ⎪⎝⎭=≤=,所以8b ≥,当且仅当a c =时取等号,所以216S b =≥,ABC 面积的最小值为16.法二:由AC 边上的高为4,可得4sin A c =,即4sin c A=,同理444πsin cos sin 2a CA A ===⎛⎫- ⎪⎝⎭,116161622sin cos sin 2ABC S ac A A A===≥△,当且仅当π4A =即a c =时取等号.ABC 面积的最小值为16.16.(1)最大值-3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.(2)a =-a =【分析】(1)由三角公式化简函数为()sin()f x A x ωϕ=+形式,然后根据正弦函数的性质求解;(2)方程化为()2f x =或()f x a =,求得()2f x =在[]0,π上有三个根,因此()f x a =在[]0,π上有且仅有一个不同于π0,,π4x =的实数根,从而根据正弦函数性质可得结论.【详解】(1)由题意()()31cos 21cos 22sin 2122x x f x x +-=-+-,化简得()()π2sin 2cos 224f x x x x ⎛⎫=+=+ ⎪⎝⎭,当ππ22π42x k +=+,Z k ∈时,即ππ8x k =+,Z k ∈,()f x取得最大值当ππ22π42x k +=-,Z k ∈时,即3ππ8x k =-,Z k ∈,()f x取得最小值-;当πππ2π22π242k x k -≤+≤+,Z k ∈时,即3ππππ88k x k -≤≤+,Z k ∈,()f x 单调递增.所以()f x 的最大值-,单调递增区间为3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.(2)由题意()()()()20f x f x a --=,()2f x =或()f x a =.因为0πx ≤≤,ππ9π2444x ≤+≤当()2f x =时,所以π224x ⎛⎫+= ⎪⎝⎭,即π224x ⎛⎫+= ⎪⎝⎭,ππ244x +=或π3π244x +=或π9π244x +=,可得π0,,π4x =.所以()f x a =在[]0,π上有且仅有一个不同于π0,,π4x =的实数根.所以a =-a =17.(1)证明见解析【分析】(1)连接CD ,DE ,由CD ⊥平面PAB ,得CD BP ⊥,再由中位线定理得平行从而得BP DE ⊥,从而证得线面垂直;(2)作DF AB ⊥于F ,连接CF ,证明CFD ∠即为二面角C AB P --的平面角,然后在直角三角形中求解.【详解】(1)证明:连接CD ,DE ,CD ⊥ 平面PAB ,AP ⊂平面PAB ,BP ⊂平面PAB ,CD AP ∴⊥,CD BP ⊥,又CA CP =,D ∴为AP 中点.又E 为BP 中点,DE AB ∴∥又AB BP ⊥,BP DE ∴⊥,CD DE D = ,,CD DE ⊂平面CDE ,BP ∴⊥平面CDE .(2)作DF AB ⊥于F ,连接CF ,CD ⊥ 平面PAB ,AB ⊂平面PAB ,则CD AB ⊥,又因为CD DF D ⋂=,,CD DF ⊂平面CDF ,AB ∴⊥平面CDF ,而CF ⊂平面CDF ,AB CF ∴⊥.又CB CP CA == ,,D F ∴为,AP AB 的中点,所以DF PB ∥,又BP AB ⊥,DF AB ∴⊥.则CFD ∠即为二面角C AB P --的平面角.在Rt CDF △中,cos DFCFD CF∠=.设CB CA a ==,AC CB ⊥,则122CF AB a ==.因为12BP AP =,在Rt ABP 中,())22222BP BP AB -==,则3BP a =,126DF BP a ==,cos 3CFD ∠==.18.(1)0.016m =(2)不正确(3)78.26【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【详解】(1)根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.(2)由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.(3)由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010i i x x =-=∑,所以()()()()404011220i ii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220j ji i y yy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z z z ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.(1)64;(2)5;(3)存在,对称中心为283(,381,043x =.【分析】(1)作//MG AC 交AB 于G ,确定异面直线所成角,再利用余弦定理求解即得.(2)把矩形1ACC A 与ABC 置于同一平面,再求出点1A 到直线BC 的距离即可.(3)求出(x)V ,结合给定信息,利用奇函数建立方程求解即可.【详解】(1)在直三棱柱111ABC A B C -中,AB BC ⊥,作//MG AC 交AB 于G ,连接1B G ,则1B MG ∠为异面直线AC 与1B M 所成角或其补角,设BM x =,0x <<由BMG BCA △∽△223BG =,则3BG =3MG x =,2112B M x =+,21123x B G =+在1B MG △中,2221222412(12)3333cos 21221212213x x x x B MG x x x++-+∠===+++由023x <<21212x +>2361221x+,16cos (0,4B MG ∠∈,所以AC 与1B M 所成角余弦值的取值范围为6(0,4.(2)由AB BC ⊥,2AB =,23BC =,得30ACB ∠= ,60ABC ∠= ,将平面ABC 翻折使得与平面1AC 在同一平面上,且使矩形1ACC A 与ABC 在AC 两侧,过1A 作1A E BC '⊥于E ',交AC 于M ',则12M E M C '''=,对任意点M ,过M 作ME BC ⊥于E ,连接AE ,12ME MC =,则1111111212A C M MC E A M M '++=''''≥≥=+=+,当且仅当M 与M '重合时取等号,显然1//A M AB ',设AM a '=,4M C AC a a '=-=-,11222M E M C a '''==-,从而11132(2)222A E A M M E a a a ''''=+=+-=+,3)E C a '=-,在1Rt A E C ' 中,22211A E E C A C ''+=,即2233(2)(4)2824a a ++-=,化简得231628a +=,解得2a =,即15A E '=,所以112A M MC +的最小值为5.(3)043x =,对称中心为283(,381.由BMN △∽△BAC ,得2(2BMN BAC S x S = ,232BMN S x = ,BQ ⊥平面BMN ,2BQ x =-,21()(2)32V x x x =⋅-,整理得2()(2)6V x x x =-(02x <<),令2()(2)f x x =-,设其图象对称中心为(,)a b ,则()y f x a b =+-为奇函数,则2)(2)y x a x a b =+---32223)(3)(43)2a x a a x a a b=----为奇函数,23230)0a a a b -=⎧--=,解得238381a b ⎧=⎪⎪⎨⎪=⎪⎩,所以对称中心为2(,381,由对称性可得043x =.【点睛】关键点点睛:涉及空间图形中几条线段和最小的问题,把相关线段所在的平面图形展开并放在同一平面内,再利用两点之间线段最短解决是关键.。

江西省部分学校2023-2024学年高一下学期6月期末考试 数学含答案

江西省部分学校2023-2024学年高一下学期6月期末考试 数学含答案

江西省2023~2024学年高一6月期末教学质量检测数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.5133.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A .a b c>> B.b a c>> C.a c b>> D.b c a>>4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件6.35cos cos cos777πππ的值为A.14B.14-C.18D.18-7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B. C. D.8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是610.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc>11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为3C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为1717三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.14.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且23203aOA bOB cOC ++=,则A =______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数113i sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G.(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.江西省2023~2024学年高一6月期末教学质量检测数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+【答案】A 【解析】【分析】由题意写出复数z 的代数形式,代入所求式,运用复数的四则运算计算即得.【详解】依题意,1i z =-,则2i 2i (2i)(1i)3i 31i 1i (1i)(1i)222z ---++====+--+.故选:A.2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.513【答案】C 【解析】【分析】设圆锥的底面圆半径为r ,母线长为l ,利用侧面展开图条件建立l 与r 的关系式,作出圆锥轴截面图,证明并求出线面所成角的余弦值即可.【详解】作出圆锥的轴截面图SAB ,设圆锥的底面圆半径为r ,母线长为l ,依题意可得,5π2π6l r =,即512r l =,因顶点S 在底面的射影即底面圆圆心O ,故母线SB 与底面所成的角即SBO ∠.在Rt SOB △中,5cos 12r SBO l ∠==.故选:C.3.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A.a b c >>B.b a c>> C.a c b>> D.b c a>>【答案】B 【解析】【分析】利用指数函数与对数函数的性质比较大小即可.【详解】因为2x y =在R 上递增,且0.30-<,所以0.30022-<<,即0.3021-<<,所以01a <<,因为13xy ⎛⎫= ⎪⎝⎭在R 上递减,且0.20-<,所以0.211133-⎛⎫⎛⎫>= ⎪⎪⎝⎭⎝⎭,即1b >,因为ln y x =在(0,)+∞上递增,且213<,所以2lnln103<=,即0c <,所以b a c >>.故选:B4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β【答案】D 【解析】【分析】由平面平行的判定定理可判断A 错误,由线面垂直性质可判断B 错误,利用面面垂直的性质定理可判断C 错误;由反证法可得D 正确.【详解】对于A ,由平面平行的判定定理易知当两个平面内的两条直线平行时,不能得出两平面平行,即A 错误;对于B ,若,a ααβ⊥⊥,则可得a β∥或a β⊂,故B 错误;对于C ,由面面垂直的性质知,两个平面垂直时,仅当直线在一个平面内且与交线垂直时才能确保直线与另一个平面垂直,而C 中直线b 与平面β的关系不确定,故b 与α不一定垂直,故C 错误;对于D ,若b β⊥,由条件易得a b ,与二者异面矛盾,故D 正确.故选:D .5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A .必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】由集合M 仅有1个真子集的条件,结合充分条件和必要条件的定义判断.【详解】集合{}210M x ax x =-+=仅有1个真子集,即集合M 只有一个元素,若0a =,方程210ax x -+=等价于10x -+=,解得1x =,满足条件;若0a ≠,方程210ax x -+=要满足140a ∆=-=,有14a =,则集合{}210M x ax x =-+=仅有1个真子集,有0a =或14a =,则14a =时满足集合M 仅有1个真子集,集合M 仅有1个真子集时不一定有14a =,所以“14a =”是“集合M 仅有1个真子集”的充分不必要条件.故选:B.6.35cos cos cos 777πππ的值为A.14B.14-C.18D.18-【答案】D 【解析】【分析】根据诱导公式以及余弦的降幂扩角公式即可容易求得.【详解】∵cos37π=-cos 47π,cos 57π=-cos 27π,∴cos7πcos 37πcos 57π=cos 7πcos 27πcos47π=248sincos cos cos 77778sin7πππππ=2244sin cos cos7778sin7ππππ=442sin cos778sin7πππ=8sin78sin7ππ=-18.故选:D.【点睛】本题考查诱导公式以及降幂扩角公式,属中档题.7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B.C.D.【答案】A【解析】【分析】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到212AO AC AC ⋅= ,同理可得212AO AB AB ⋅= ,解得AC ,根据向量乘法可求得sin BAC ∠,代入到1sin 2ABC S AB AC BAC=⋅∠可求得.【详解】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到()21122AO AC AE EO AC AC EO AC AC ⎛⎫⋅=+⋅=+⋅= ⎪⎝⎭,同理可得212AO AB AB ⋅= ,又因72AO BC ⋅= ,可得()72AO AC AB AO AC AO AB ⋅-=⋅-⋅= ,可解得4AC =,61cos 342AB AC BAC AB AC ⋅∠===⨯ ,所以3sin 2BAC ∠=,则113sin 43222ABC S AB AC BAC =⋅∠=⨯⨯⨯= .故选:A8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立【答案】D 【解析】【分析】用(,)x y 表示掷两枚骰子得到的点数,列出相关事件包含的样本点.对于A ,运用对立事件的定义判断;对于B ,分别计算,,M N M N 的概率,利用独立事件的概率乘法公式检验即得;对于C ,根据E 与M N ⋂的交集是否为空集判断;对于D ,与选项B 同法判断.【详解】依题意,可用(,)x y 表示掷两枚骰子得到的点数,则{(,)|,{1,2,3,4,5,6}}x y x y Ω=∈.对于A ,{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)}E =,而{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}F =,显然事件E 与事件F 互斥但不对立,如(1,2)∈Ω,但(1,2),(1,2)E F ∉∉,故A 错误;对于B ,易得F E M =,故181(),362P M ==因N F =,故93()1()1()1364P N P N P F =-=-=-=,而MN E =,则91()()364P MN P E ===,因()()()≠P MN P M P N ,即事件M 与事件N 不独立,故B 错误;对于C ,由上分析,MN E =,故事件E 与事件M N ⋂不可能互斥,即C 错误;对于D ,由上分析,91(),364P F ==而M N =Ω ,则1()()P M N P ⋃=Ω=,因()F F M N ⋂=⋃,则1[()]()4P F P F M N ⋂==⋃,即[()()()]P P M N F P M N F ⋂⋃⋃=,故事件F 与事件M N ⋃相互独立,即D 正确.故选:D .【点睛】方法点睛:本题主要考查随机事件的关系判断,属于较难题.解题方法有:(1)判断事件,A B 对立:必须,A B A B ⋂=∅⋃=Ω同时成立;(2)判断事件,A B 相互独立:必须()()()P A B P A P B ⋂=成立;(3)判断事件,A B 互斥:只需A B ⋂=∅即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是6【答案】BD 【解析】【分析】利用各特征数据的计算方法进行计算即可.【详解】对于A ,因为共10个数据11.3233.84.56.37.88.610,,,,,,,,,,所以1080%8⨯=,则8个数据8.6第80百分位数为7.88.68.22+=,故A 错误;对于B ,一组样本数据35,911x ,,,的平均数为7,可知7x =,则这组数据的方差为()()()()()222222113757779711740855s ⎡⎤=-+-+-+-+-=⨯=⎣⎦,故B 正确;对于C ,由于分层抽样,每一层的抽样比是相同的,都等于总的抽样比,故C 错误;对于D ,由于1210,,,x x x ⋅⋅⋅的标准差为2,则它的方差为4,而121031,31,,31x x x ++⋅⋅⋅+的方差为23436⨯=,则它的标准差是6,故D 正确;故选:BD.10.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc >【答案】ABC 【解析】【分析】对于A ,先求得函数定义域[1,1]-,判断其奇偶性,求函数在[0,1]上的值域,即得在[1,1]-上的值域;对于B ,利用常值代换法运用基本不等式即可求解;对于C ,先由条件推得1ab =,再运用基本不等式即可;对于D ,举反例即可排除.【详解】对于A ,由y =有意义可得,210x -≥,即11x -≤≤,函数定义域关于原点对称.由()()f x f x -=-=-,知函数为奇函数,当01x ≤≤时,y ==设2[0,1]t x =∈,则()g t =因[0,1]t ∈时,21110(244t ≤--+≤,即得10()2g t ≤≤,又函数y =为奇函数,故得其值域为11,22⎡⎤-⎢⎥⎣⎦,即A 正确;对于B ,因22sin cos 1x x +=,故2222221111()(sin cos )sin cos sin cos y x x x x x x=+=++2222sin cos 224cos sin x x x x =++≥+,当且仅当221sin cos 2x x ==时等号成立,即当221sin cos 2x x ==时,2211sin cos y x x=+的最小值为4,故B 正确;对于C ,由lg lg =a b 可得lg lg a b =或lg lg a b =-,即a b =或1a b=,因a b ¹,故1ab =,因0,0a b >>,则2a b +≥=当且仅当2a b ==即2+a b 的最小值为,故C 正确;对于D ,因R c ∈,不妨取0c =,则0a c bc ==,故D 错误.故选:ABC.11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为17【答案】ABD 【解析】【分析】利用正方体的性质,结合台体体积公式可求得正方体边长,再利用线面垂直证明线线垂直,利用侧面展开图思想求线段和的最小值,利用外接球的截面性质来求其半径,利用二面角的平面角来求解二面角的余弦值.【详解】由正方体性质可得:几何体1111A B C D EFGH -是正四棱台,设正方体的边长为a ,则其体积为:23211711234343a a a a ⎛++=⋅= ⎝,解得4a =,因为在正方体1111ABCD A B C D -中,有11AB A B ⊥,BC ⊥平面11ABB A ,又因为1AB ⊂平面11ABB A ,所以1BC AB ⊥,又因为1BC A B B ⋂=,1BC A B ⊂,平面11BCD A ,所以1AB ⊥平面11BCD A ,而PC ⊂平面11BCD A ,所以1AB PC ⊥,故A 正确;把直角三角形1BDD 与直角三角形1BCD 展开成一个平面图形,则PC PD CD +≥,而114,BC DD BD CD ====,由勾股定理可得:CD ==,故B 正确;当P 为1BD 的中点,此时四棱锥P ABCD -是正四棱锥,其外接球的球心M 一定在OP 上,又由于OA =2OP =,设MP MA R ==,则由勾股定理得:()2282R R =+-,解得:3R =,此时球M 的表面积为:24π336π⋅=,故C 错误;取AD 中点为Q ,取11A D 中点为T ,连结OQ EH G = ,再连接TG ,由,,AD OQ AD QT OQ QT Q ⊥⊥= ,OQ QT ⊂,平面OQT ,所以AD ⊥平面OQT ,又因为//EH AD ,所以EH ⊥平面OQT ,又因,GQ GT ⊂平面OQT ,所以,,EH GQ EH GT ⊥⊥即二面角1A HE A --的平面角就是QGT ∠,由正方体边长为4,可知1,4QG QT ==,所以16117GT =+=即17cos 1717QGT ∠==,故D 正确;故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用二面角的定义找到其平面角,再求出相关线段,利用余弦函数定义即可得到答案.三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________【答案】1±##1或1-##1-或1【解析】【分析】利用奇函数()()f x f x =--求解即可.【详解】因为函数()212xxk f x k -=+⋅为奇函数,所以由()()f x f x =--可得221212122x x xx xxk k k k k k-----⋅=-=+⋅+⋅+,即2222212x x k k -=-⋅,整理得()()221120xk -+=,解得1k =±,经检验,当()1212x xf x -=+或()1212xx f x --=-时,满足()()f x f x =--,故答案为:1±13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.【答案】1【解析】【分析】设G 为CD 中点,分别连接EG ,FG ,构造新的EFG 根据余弦定理可得到EF 的长.【详解】设G 为CD 中点,分别连接EG ,FG ,则EG 是ACD 的中位线,可得11,2EG AD EG AD == ,同理可得11,2FG BC FG BC == ,因为AD 与BC 所成的角为60°所以EGF ∠等于60°或120°,当60EGF ∠=︒在EFG 中根据余弦定理得1EF ===,当120EGF ∠=︒同理可得E F故答案为:114.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且203aOA bOB cOC ++=,则A =______.【答案】π6【解析】【分析】利用重心的向量性质0OA OB OC ++=,即可得到边的关系,再利用余弦定理即可求角.【详解】由点O 是ABC 的重心,可知:0OA OB OC ++=,又23203aOA bOB cOC ++=,可设2323a b c k ===,则3,,22k a b k c ===,再由余弦定理得:2222223222cos 2232k k b c a A bc ⎛⎫⎛⎫+- ⎪ ⎪+-==,又因为()0,πA ∈,所以π6A =,故答案为:π.6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数11sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.【答案】(1)2或1-(2)π;ππ[π,π]Z 6,3k k k -++∈【解析】【分析】(1)写出两复数对应的向量12,OZ OZ的坐标,,利用向量共线的坐标表示式计算即得;(2)利用三角恒等变换将函数()f x 化成正弦型函数,求得最小正周期,将π26x +看成整体角,利用正弦函数的递增区间即可求得.【小问1详解】依题意,复数12i z x =+,()()211i R z x x =+-∈的对应向量分别为12(,2),(1,1)OZ x OZ x ==-,由12//OZ OZ可得,(1)2x x -=,解得,2x =或=1x -;【小问2详解】依题意,12),(cos 2,2cos )OZ x OZ x x ==,则()12πcos 2cos cos 222sin(2)6f x OZ OZ x x x x x x =⋅=+==+ ,故()f x 的最小正周期为2ππ2T ==;由Z 262πππ2π22π,k x k k -+≤+≤+∈解得,ππππ,Z 36k x k k -+≤≤+∈,即()f x 的单调递增区间为ππ[π,π]Z 6,3k k k -++∈.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.【答案】(1)0.006a =;76.2(2)310【解析】【分析】(1)利用频率分布直方图中各组频率之和等于1求出a 的值,再根据平均数计算公式计算即可;(2)先计算出[)40,60内的人数,分别表示出随机试验和事件所含的样本点,利用古典概型概率公式计算即得.【小问1详解】由频率分布直方图可得,(0.0040.0180.02220.028)101a +++⨯+⨯=,解得,0.006a =;这50名学生的物理成绩的平均数为:0.04450.06550.22650.28750.22850.189576.2⨯+⨯+⨯+⨯+⨯+⨯=;【小问2详解】由频率分布直方图可知,成绩在[)40,60内的学生有50(0.040.06)5⨯+=人,其中[40,50)内有2人,设为,a b ,[50,60)内有3人,设为,,x y z ,“从成绩在[)40,60内的学生中随机抽取2人”对应的样本空间为:{,,,,,,,,,}ab ax ay az bx by bz xy xz yz Ω=,而事件A =“2人成绩都在[)50,60内”={,,}xy xz yz ,由古典概型概率公式可得,3()10P A =.即这2人成绩都在[)50,60内的概率为310.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G .(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.【答案】(1)证明见解析(2)13【解析】【分析】(1)先证明EF ⊥平面PAG ,再根据面面垂直的判定定理即可得证;(2)由体积相等P BEF B PEF V V --=,分别计算BEF S 和PEF S △,代入计算即得.【小问1详解】因E ,F 分别为BC ,CD 的中点,则//EF BD ,又四边形ABCD 是菱形,则BD AC ⊥,故EFAC ⊥,因PA ⊥平面ABCD ,EF ⊂平面ABCD ,故PA EF ⊥,又,,PA AC A PA AC ⋂=⊂平面PAG ,故EF ⊥平面PAG ,因EF ⊂平面PEF ,故平面PEF ⊥平面PAG .【小问2详解】如图,连接,,,PB BF AE AF ,设点B 到平面PEF 的距离为d .在菱形ABCD 中,π3ABC ∠=,则4,43AC BD ==,BEF △的面积为111143232442BEFBFC BCD S S S ===⨯⨯⨯= 因3432AE AF ===,则222(23)4PE PF ==+=,1232EF BD ==故PEF !的面积为221234(3)392PEF S =⨯-= 由P BEF B PEF V V --=可得,11323933d =⨯,解得21313d =,即点B 到平面PEF 的距离为21313.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.【答案】(1)π3A =(2))23,4⎡⎣.【解析】【分析】(13cos 1A A -=,再利用辅助角公式可得π3A =;(2)利用正弦定理可得23πsin 6a B =⎛⎫+ ⎪⎝⎭,再由ππ62B <<并利用三角函数单调性可求得a 的取值范围.【小问1详解】因为cos 3sin a C a C b c +=+,由正弦定理得()sin cos 3sin sin sin sin sin sin A C A C B C A C C +=+=++,sin cos cos sin sin A C A C C =++,sin cos sin sin A C A C C -=,因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π2sin 16A ⎛⎫-= ⎪⎝⎭,所以π1sin 62A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π666A -<-<,即ππ66A -=,可得π3A =.【小问2详解】由正弦定理得sin sin sin a b c A B C==,即sin sin sin a b c A B C+=+,且π,3A b c =+=所以()sin 66232πππsin sin 31sin sin sin 36622b c Aa B CB B B B +====+⎛⎫⎛⎫⎛⎫+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为ABC 为锐角三角形,π2ππ0,0232B C B <<<=-<,所以ππ62B <<,所以ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,即πsin ,162B ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦.可得)a ⎡∈⎣,即a 的取值范围为)4⎡⎣.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.【答案】(1)1557π19(2)6【解析】【分析】(1)作出旋转体1Ω,其表面积即两个圆锥侧面积的和,利用余弦定理求出AB ,继而求得底面圆半径1r ,代入公式计算即得;(2)由(1)类似过程求得AB 和1r ,计算出其体积1V ,作出旋转体2Ω,是由两个同底面圆的大圆锥去掉小圆锥组成的组合体,求出底面圆半径2r ,间接法求出23,V V ,代入所求式,运用换元法、基本不等式和二次函数的单调性即可求得函数最大值.【小问1详解】如图1,把ABC 以直线AB 为旋转轴旋转一周得到旋转体1Ω,它是由两个同底面圆的圆锥11,AO BO 拼成的组合体,其表面积即两个圆锥的侧面积的和.因2a =,3b =,120C =︒,由余弦定理,22212cos12094232()192AB AC BC AC BC =+-⋅=+-⨯⨯⨯-=,可得,AB =因11AO CO ⊥,设底面圆半径为1r,由11123sin12022ABC S r =⨯⨯⨯=解得,119r =,于是,13571557π()5ππ1919S r b a =⨯+=⨯=;【小问2详解】由(1)可得,222222212cos1202()2AB AC BC AC BC a b ab a b ab =+-⋅=+-⨯⨯-=++,即AB =,底面圆半径为111sin120212ab r O C ===于是,22221111ππ33V r AB=⨯=⨯⨯如图2,把ABC以直线BC为旋转轴旋转一周得到旋转体2Ω,它是由两个同底面圆的大圆锥去掉小圆锥组成的组合体.设底面圆半径为22AO r=,因120ACB∠= ,易得23602120602ACO-⨯∠==,则23sin602r b== ,于是,22222113πππ)3324V r BC a ab=⨯=⨯=,同理可得23π4V a b=,于是,2212223ππ44VyV V ab a b==++=设222a btab+=≥,当且仅当a b=时等号成立,则y==,因2t≥时,函数231()24t+-单调递增,故231(1224t+-≥,则0y<≤即a b=时,max6y=.【点睛】思路点睛:本题主要考查旋转体的表面积求法和与其体积有关的函数的最值求法,属于难题.解题思路是作出旋转体的图形,理解其组成,正确求出底面半径、高,母线长等关键量,代入公式,整理后,运用换元,利用基本不等式和函数的单调性求其最值.。

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024高一第二学期期末数学质量检测试题参考答案与评分细则

2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。

西藏自治区昌都市2024-2025学年高一数学下学期期末考试

西藏自治区昌都市2024-2025学年高一数学下学期期末考试

西藏自治区昌都市2024-2025学年高一数学下学期期末考试第一单元考试范围:xxx;考试时间:100分钟;命题人:xxx学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、填空题(共9题,共18分)1、看图,写出学校场地类单词。

2、Do you want to be Robin's friend? 你想成为Robin的朋友吗?试着给Robin写封信吧!Dear Robin,I want to be your friend. I am a . I'm years old. I can .I can . But I can't . Can I be your friend? Please tell me! Thank you.3、看图,把单词补充完整。

h t f m4、按照句子顺序给图片写序号。

①They'll visit our classroom.②They'll visit the art room.③They'll go to the hall.④They'll go to the library.⑤They'll meet the teachers in the meeting room.5、The dress is.Give it to.( she )6、Look at your bedroom. Let's tidy up. (is / it / it's)7、抄写单词并翻译quiet______8、翻译句子。

他们在谈论什么?______________________________9、请你根据要求写单词.1)class(复数) ______2)clean(单三形式) ______3)don't(单三形式) ______评卷人得分二、选择题(共19题,共38分)10、What do you often do in summer?A. I often go swimming.B. I often make a snowman.11、What can you do at home? I can ________.A. cookB. cookingC. cooks12、( )A. Wild geese will fly south in autumn.B. Wild geese will fly north in autumn.C. Wild geese will fly twice in winter.13、What’s your favourite food?A. Yes, I can.B. Beef. It’s healthy.C. I have Chinese and math.E. He’s tall and strongE. He’s tall and strong14、找出不同类的单词A. cameB. liveC. met15、选正确的答语Can we have a dog,Mum?A. Yes,he can’t see.B. No.She’s deaf.C. No,we can’t.E. No,I can’t.E. No,I can’t.16、单项选择The woman is ____ .She can’t see anything.A. deafB. hungryC. blind17、单项选择You can ____ my good friend.A. areB. beC. is18、A. I go to school.B. No,I didn’t.C. What do you do at eight o’clock every weekday?E. I played the piano.E. I played the piano.19、根据句意选出对应的图片Sam’s T-shirts are clean.A.B.C.E.E.20、单项选择。

高一数学第二学期期末考试试题(带参考答案)

高一数学第二学期期末考试试题(带参考答案)

高一数学第二学期期末考试试题(带参考答案)选择题1. 以下属于集合 {1, 2, 3, 4} 的真子集的个数是:A. 3B. 7C. 15D. 16正确答案:A2. 已知集合 A = {x | -2 ≤ x ≤ 3},则集合 A 中的元素个数是:A. 4B. 5C. 6D. 7正确答案:C3. 设集合 A = {a, b, c},集合 B = {1, 2, 3},则集合 A × B 的元素个数是:A. 3B. 6C. 9D. 12正确答案:D4. 已知集合 A = {x | -5 ≤ x ≤ 5},则集合 A 的幂集的元素个数是:A. 10B. 20C. 32D. 64正确答案:C解答题1. 已知函数 f(x) = 2x + 3,求 f(-4) 的值。

解答:将 x = -4 代入函数 f(x) = 2x + 3 中,得到 f(-4) = 2(-4) + 3 = -5。

2. 计算下列算式的值:(-3)^4 - 2 × 5^2解答:首先计算指数,得到(-3)^4 = 81,5^2 = 25。

然后代入算式,得到值为 81 - 2 × 25 = 31。

3. 已知一组数据为 {2, 4, 6, 8, 10},求这组数据的中位数。

解答:将数据从小到大排序为 {2, 4, 6, 8, 10},可以看出中间的数为 6,所以这组数据的中位数为 6。

4. 某商品标价为 800 元,商场打折后的售价为 720 元,求打折幅度。

解答:打折幅度为原价与打折后价之间的差值除以原价,所以打折幅度为 (800 - 720) ÷ 800 = 0.1,即打折幅度为 10%。

以上为高一数学第二学期期末考试试题及参考答案。

四川省广安市2023-2024学年高一下学期7月期末考试 数学(含解析)

四川省广安市2023-2024学年高一下学期7月期末考试 数学(含解析)

秘密★启用前广安市2023—2024学年度下期期末教学质量检测高一数学试题本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、座位号和准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数所表示的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.从小到大排列的数据的第三四分位数为()A.B.9C.D.103.复数满足,则( )A. B.C.D.4.如图,在梯形中,在上,且,设,则()A. B.C. D.()3i 1i -1,2,3,7,8,9,10,11172192z 1i22iz z +-=+z =31i 515--31i 515-+11i 155-11i 155+ABCD 2,AB DC E =BC 12CE EB =,AB a AD b == DE =1233a b + 1233a b - 2133a b + 2133a b -5.已知表示两条不同直线,表示平面,则( )A.若,则B.若,则C.若,则D.若,则6.一艘船向正北航行,在处看灯塔在船的北偏东方向上,航行后到处,看到灯塔在船的北偏东的方向上,此时船距灯塔的距离(即的长)为()B. C. D.7.在复平面内,满足的复数对应的点为,复数对应的点为,则的值不可能为( )A.3B.4C.5D.68.已知下面给出的四个图都是正方体,为顶点,分别是所在棱的中点.则满足直线的图形的个数为()A.1个B.2个C.3个D.4个二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.为普及居民的消防安全知识,某社区开展了消防安全专题讲座.为了解讲座效果,随机抽取14位社区居民,让他们在讲座前和讲座后各回答一份消防安全知识问卷,这14位社区居民在讲座前和讲座后问卷答题的得分如图所示,下列说法正确的是(),m n α,m n α⊥∥αm n ⊥m ∥,n α∥αm ∥n ,m m n α⊥⊥n ∥αm ∥,m n α⊥n α⊥A S 30 10nmile B S 75 S BS 5i11iz --=-z Z 1i --0Z 0Z Z ,A B ,E F AB EF ⊥A.讲座前问卷答题得分的中位数小于70B.讲座后问卷答题得分的众数为90C.讲座前问卷答题得分的方差大于讲座后得分的方差D.讲座前问卷答题得分的极差大于讲座后得分的极差10.若平面向量满足.则( )A.B.向量与的夹角为C. D.在上的投影向量为11.如图,在棱长为1的正方体中,是的中点,点是侧面上的动点.且平面,则()A.在侧面B.异面直线与所成角的最大值为C.三棱锥的体积为定值D.直线与平面所成角的正切值的取值范围是第II 卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分.12.某学校高中二年级有男生600人,女生400人,为了解学生的身高情况,现按性别分层,采用比例分配,a b2a b a b ==+= 2a b ⋅=-aa b -π3a b -= a b - a 32a1111ABCD A B C D -M 11A B P 11CDD C MP ∥1AB C P 11CDD C AB MP π21A PB C -124MP 11ABB A ⎡⎣的分层随机抽样方法抽取一个容量为50的样本,则所抽取的男生人数为__________.13.已知的内角的对边分別为,且边上的高为则__________.14.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体.如图是以一个正方体的各条棱的中点为顶点的多面体,这是一个有8个面为正三角形,6个面为正方形的“阿基米德多面体”,包括在内的各个顶点都在球的球面上.若为球上的动点,记三棱锥体积的最大值为,球的体积为.则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数(其中.(1)若为实数,求的值;(2)当时,复数是方程的一个根,求实数的值.16.(15分)已知向量.(1)若与垂直,求实数的值;(2)已知为平面内四点,且.若三点共线,求实数的值.17.(15分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:),将全部数据按区间分成5组,得到如图所示的频率分布直方图.ABC V ,,A B C ,,a b c ()πsin π,6,2A A b BC ⎛⎫-=-= ⎪⎝⎭c =,,A B C O P O P ABC -1V O V 1V V=122i,i z m z m =-=-)m ∈R 12z z m 1m =12z z ⋅220x px q ++=,p q ()()1,2,3,2a b =-=2ka b - 2a b + k ,,,O A B C ()2,3,3,2OA a b OB a b OC m m =+=+=-,,A B C m kg [)[)[]50,60,60,70,,90,100(1)求图中的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜;进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?18.(17分)从①;②;③.这三个条件中任选一个补充在下面问题中,并解答该题记的内角的对边分别为,已知__________.(1)求角的大小;(2)若点在上,平分.求的长;(3的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.19.(17分)我国古代数学名著《九章算术》在“商功”一章中,将“底面为矩形,一侧棱垂直于底面的四棱锥”称为“阳马”.现有如图所示一个“阳马”形状的几何体,底面是正方形,底面,为线段的中点,为线段上的动点.(1)平面与平面是否垂直?若垂直,请证明,若不垂直,请说明理由;(2)求二面角的大小;(3)若直线平面,求直线与平面所成角的正弦值.a 85%()cos sin a a C B C +=+πsin 62a b c B +⎛⎫+= ⎪⎝⎭()sin sin sin B A C A -=-ABC V ,,A B C ,,a b c C D AB CD ,2,ACB a c ∠==CD a ABCD PA ⊥,ABCD PA AB =E PB F BC AEF PBC B PC D --PC ∥AEF AB AEF数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分.1.【命题意图】本小题主要考查复数的代数运算及其几何意义,考查化归与转化等数学思想,考查数学抽象、数学运算等数学核心素养.【答案】C【解析】,故所表示的点位于第三象限.2.【命题意图】本小题主要考查四分位数等基础知识,考查数学抽象等数学核心素养.【答案】C【解析】由于,该组数据的第三四分位数为9和10的平均数.3.【命题意图】本小题主要考查复数的代数运算、共轭复数等基础知识,考查化归与转化等数学思想,考查数学运算等数学核心素养.【答案】B【解析】设,则,即,所以且,即,所以.4.【命题意图】本小题主要考查平面向量的线性运算的几何意义等基础知识,考查数学抽象、直观想象、数学运算等数学核心素养.【答案】D【解析】依题意,.5.【命题意图】本小题主要考查空间直线与平面等基础知识,考查化归与转化、数形结合等数学思想,考查推理论证、空间想象、运算求解等数学能力.【答案】A【解析】若,则,故A 正确;若,则相交或平行或异面,故B 错误;若,则或,故C 错误;若,则或或()343i 1i i i 1i -=-+=--()3i 1i -875%6⨯=192()i ,z a b a b =+∈R ()()1i 2i 31i 22i i 555a b a b +-+-+==+313i i 55a b -+=+35a -=135b =31,515a b =-=31i 515z =-+23DE AE AD AB BE AD AB BC AD=-=+-=+-()()2233AB AC AB AD AB AD DC AB AD=+--=++-- 212121323333AB AD AB AB AD AB AD a b ⎛⎫=++--=-=- ⎪⎝⎭,m n α⊥∥αm n ⊥m ∥,n α∥α,m n ,m m n α⊥⊥n ∥αn α⊂m ∥,m n α⊥n ∥αn α⊂或与相交,故D 错误.6.【命题意图】本小题主要考查正弦定理和余弦定理的应用等基础知识,考查化归与转化、数形结合等数学思想,考查数学抽象、运算求解等数学核心素养.【答案】B【解析】在中,,依据正弦定理,,则.7.【命题意图】本小题主要考查复数运算的几何意义,复数与向量的关系等基础知识,考查化归与转化等数学思想,考查数学抽象、逻辑推理、数学运算等数学核心素养.本小题根据习题7.2第8题内容创编.【答案】A 【解析】依题意,,点的轨迹为以为圆心,1为半径的圆,故只需求和之间距离的取值范围即可,点,则,故的值不可能等于3.8.【命题意图】本小题主要考查空间直线与平面位置关系等基础知识,考查化归与转化等数学思想,考查空间想象等数学能力.本小题根据第8.6节例2、习题8.6第11题等题创编.【答案】D【解析】对于图①和图②,分别取如图所示的棱中点,易证平面,则,故图①和图②均符合题意;对于图③,连接,易证平面,则,图③符合题意;对于图④,取如图所示的棱的中点,易证,于是平面,所以,故图④符合题意.二、多选题:本题共3小题,每小题6分,共18分.9.【命题意图】本小题主要考查统计图的识别、统计量的意义等基础知识,考查了数学抽象、数据处理等数学核心素养.【答案】ACD【解析】由图可知,讲座前问卷答题的得分的中位数应该小于,A 正确;讲座后问卷答题的得分的众n α⊥n αABS V 45ASB ∠= sin sin30AB BSASB ∠=10sin30sin45BS ==()()5i 1i 5i 32i 1i 2-+-==+-Z ()3,20Z Z 0Z 5=046Z Z……0Z ZG AB ⊥EFG AB EF ⊥AC EF ⊥ABC AB EF ⊥G ,AB EG AB FG ⊥⊥AB ⊥EFG AB EF ⊥70数为95,B 错误;讲座前问卷答题得分比讲座后波动大,故讲座前问卷答题的得分的方差大于讲座后得分的方差,C 正确;由图可知,讲座前问卷答题的得分的极差大于讲座后得分的极差,D 正确.10.【命题意图】本小题主要考查平面向量的线性运算及其几何意义,平面向量的数量积等基础知识,考查化归与转化等数学思想,考查数学抽象、数学运算、直观想象等素养.【答案】AD【解析】方法1:由于,则,得正确;,则,C 错误;又,所以,则向量与的夹角为,B 错误;在上的投影向量为正确.方法2:根据向量加法的平行四边形法则,满足条件的向量构成如图所示的平行四边形,且,则,A 正确;向量与的夹角为错误;C 错误;在上的投影向量为,D 正确.11.【命题意图】本小题主要考查空间直线与平面的位置关系和相关计算,考查推理论证、空间想象、运算求解等数学能力.【答案】ABD【解析】如图,取的中点,取的中点,取的中点,依题意,,易证,则,可知,四点共面,又平面平面,所以平面,同理,平面,又平面,所以平面平面,又平面,所以平面,于是,在侧面的轨迹即为线段,由,得,则A 正确;当在处时,此时直线,即异面直线与所成角的最大值为,B 正确;由上可2a b a b ==+= 222||2824a b a b a b a b +=++⋅=+⋅= 2,A a b ⋅=-()222||282212a b a b a b -=+-⋅=-⨯-= a b -= ()26a a b a a b ⋅-=-⋅= ()cos ,a a b a a b a a b ⋅--===⋅- a a b -π6a b - a ()2423,D 222a ab a a a b a a a a a a a ⋅--⋅+⋅=⋅=⋅=,a b2π,3a b = 2πcos23a b a b ⋅=⋅=- a a b - π,B 6a b -= a b- a 32a 1CC R CD N 11B C H 1B C ∥HR MN ∥1B C MN ∥HR ,,M N R H HR ⊄11,AB C B C ⊂1AB C HR ∥1AB C MH ∥1AB C ,,HR MH H HR MH ⋂=⊂MNRH MNRH ∥1AB C MP ⊂MNRH MP ∥1AB C P 11CDD C NR 1AB =NR ==P N AB MP ⊥AB MP π2知,平面,则线段上的点到平面的距离为定值的面积也为定值,则(定值),C 错误;由于平面平面,故直线与平面所成角和直线与平面所成角相等,取的中点,连接,则平面,故是直线与平面所成的角,且,则,D 正确.三、填空题:本题共3小题,每小题5分,共15分.12.【命题意图】本小题设置课程学习情境,设计抽样问题,主要考查分层抽样方法相关知识;考查运算求解能力,抽象概括能力.本小题源于教材必修第二册“巩固复习”第5题.【答案】30【解析】该学校高二年级学生中,男生占比为,则所抽取的男生人数为.13.【命题意图】本小题主要考查正弦定理和余弦定理的应用,考查化归与转化等数学思想,考查推理论证、运算求解等数学能力.【答案】3【解析】依题意得,则,因为,所以的面积,即,根据余弦定理,得,则有,解得.14.【命题意图】本小题主要考查几何体中的相关运算,体积公式等知识,考查化归与转化等数学思想,考查空间想象、运算求解等数学能力.NR ∥1AB C NR 1AB C 01,hAB C V 111111111132212A PBC P AB C N AB C B ANC V V V V ----⎛⎫====⨯⨯⨯⨯= ⎪⎝⎭11ABB A ∥11CDD C MP 11ABB A MP 11CDD C 11C D Q PQ MQ ⊥11CDD C MPQ ∠MP 11CDD C 1tan MQ MPQ PQ PQ ∠==1PQ …1tan MPQ ∠……188P 60036004005=+350305⨯=sin A A -=tan A =()0,πA ∈2π.3A ABC =V 112π6sin223ABC S c ==⨯V a =22366a c c =++260c c --=3c =【解析】根据图形可知,该阿基米德多面体是由一个正方体切去八个角得到的,该多面体的外接球球心与正方体的外接球球心相同,设该多面体的棱长为1,可知球的半径为1为如图正方体中与点等距的一个顶点,设三棱锥的高为,由,得,球心到平面距离为,三棱锥,故其体积的最大值,所以四、解答题:本题共5小题,共77分.15.(13分)【命题意图】本小题设置课程学习情境,主要考查复数的概念及代数运算等基础知识,考查化归与转化等数学思想,考查数学抽象、数学运算等数学核心素养.【解析】(1),因为为实数,所以,解得.故为实数时,的值为.(2)当时,,O Q A B C 、、Q ABC -h Q ABC A QBC V V --=21111332h ⎛⨯=⨯ ⎝h =O ABC 122-=P ABC -11113V ⎫=+=⎪⎪⎭14π3V V ==()()()2122232i2i i 2i i 11m m m m z m z m m m+--+-===-++12z z 220m -=m =12z z m 1m =122i,1i z z =-=-则复数,因为是方程的一个根,所以,化简得,由解得16.(15分)【命题意图】本小题设置课程学习情境,主要考查平面向量线性运算、数量积、共线向量及其坐标运算等基础知识,考查化归与转化等数学思想,考查数学抽象、数学运算等数学核心素养.【解析】(1),则,因为与垂直,所以,解得.(2),,,,因为三点共线,所以.所以,解得.17.(15分)【命题意图】本小题设置生活实践情景,设计水果进货规划问题,考查平均数、百分位数等统计量的计算,样本估计总体,决策等相关知识;考查统计概率思想;运算求解能力和应用能力.本小题源于教材必修第二册P 223复习参考题“综合运用”第9题编制.【解析】(1)由直方图可得,样本落在的频率分别为,由()()122i 1i 13i z z ⋅=--=-13i -220x px q ++=()22(13i)13i 0p q -+-+=()16123i 0p q p +--+=()160,1230,p q p +-=⎧⎨-+=⎩4,20.p q =-⎧⎨=⎩()()()21,223,26,42ka b k k k -=--=--- ()()()221,23,25,2a b +=-+=- 2ka b - 2a b +()()562420k k ----=229k =()()()21,223,27,2OA a b =+=-+= ()()()331,23,26,4OB a b =+=-+=- ()()()6,47,21,6AB OB OA =-=--=-- ()()()3,27,237,22AC OC OA m m m m =-=--=--- ,,A B C AB ∥AC()()22637m m ---=-⨯-2m =[)[)[]50,60,60,70,,90,100 10,10,0.2,0.4,0.3a a,解得.则样本落在频率分别为,所以,该苹果日销售量的平均值为.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.方法1:依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,设为,则,解得.所以,每天应该进95kg 苹果.方法2:依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进95kg 苹果.18.(17分)【命题意图】本小题主要考查正弦定和余弦定理等基础知识,考查化归与转化等数学思想,考查推理论证、运算求解等数学能力.【解析】(1)若选条件①,依题意,得,根据正弦定理得,因为,所以,则,,所以.又,则,所以.若选条件②.由正弦定理得,10100.20.40.31a a ++++=0.005a =[)[)[]50,60,60,70,,90,100 0.05,0.05,0.2,0.4,0.3()5060607070808090901000.050.050.20.40.383.5kg 22222+++++⨯+⨯+⨯+⨯+⨯=85%85%10.03100.7-⨯=85%[]90,100()kg x ()0.031000.15x ⨯-=()95kg x =10.03100.7-⨯=85%[]90,10085%()0.850.7901095kg 10.7-+⨯=-cos sin a a C A +=sin sin cos sin A A C C A +=π02A <<sin 0A >1cos C C +=cos 1C C -=11cos 22C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭0πC <<ππ66C -=π3C =πsin sin sin sin 62A B C B +⎛⎫+= ⎪⎝⎭所以,,,即.因为,所以,所以.若选条件③在中,因为,所以,即,化简得.又,则,故.因为,所以.(2)依题意,,即,则在中,根据余弦定理,有,即,解得或(舍去),所以(3)依题意,的面积,所以.又为锐角三角形,且,则,所以.()sin sin 1sin sin sin cos 222B C B A B C B B ⎫++++==⎪⎪⎭sin cos cos sin sin 2B C B C B ++=sin sin cos sin cos cos sin sin C B C B B C B C B +=++sin sin cos sin C B B C B =+cos 1C C -=π1sin 62C ⎛⎫-= ⎪⎝⎭()0,πC ∈ππ66C -=π3C =ABC V ()sin sin sin ,πB A C A A B C -=-++=()()sin sin sin C A A C A +-=-sin cos cos sin sin sin cos cos sin C A C A A C A C A +-=-sin 2cos sin A C A =()0,πA ∈sin 0A ≠1cos 2C =0πC <<π3C =1π1π1πsin sin sin 262623a CDb CD ab ⋅⋅+⋅⋅=⋅()a b CD +⋅=CD =ABC V 22222π2cos 3c a b ab a b ab =+-=+-2742b b =+-3b =1a =-CD ==ABC V 11sin 22ABC S ab C ab ===V 4ab =ABC V π3C =2ππ0,32A B ⎛⎫=-∈ ⎪⎝⎭π2π63B <<又,则,所以.由正弦定理,得,所以,所以,所以的取值范围为.19.(17分)【命题意图】本小题设置探索创新情境,设计空间直线、平面的位置关系问题,主要考查直线与平面的位置关系、直线与平面所成角、二面角等基础知识;考查直观想象、逻辑推理、数学运算等数学核心素养.本小题源于教材必修第二册P 164习题8.6“拓展探索”第21题.【解析】(1)平面平面.理由如下:因为平面平面,所以,因为,又.所以平面,故.在中,为的中点,所以.因为平面平面,所以平面.又平面,所以平面平面.π02B <<ππ62B <<tan B >sin sin a b A B =sin sin b A a B =22πsin 3sin ab B a B⎛⎫- ⎪⎝⎭=14sin 222sin B B B ⎫+⎪⎝⎭==+228a <<a <<a AEF ⊥PBC PA ⊥,ABCD BC ⊂ABCD PA BC ⊥BC AB ⊥PA AB A ⋂=BC ⊥PAB BC AE ⊥PAB V ,PA AB E =PB AE PB ⊥PB ⊂,PBC BC ⊂,PBC PB BC B ⋂=AE ⊥PBC AE ⊂AEF AEF ⊥PBC(2)不妨设,计算可得又,所以,则,作于,连结,又,可知,所以,所以是二面角的平面角在中,由,,则,连结,知,在中,根据余弦定理,得,所以.(3)因为直线平面平面,平面平面,所以直线直线.又为线段的中点,所以为线段上的中点.由(2)知,所以.设与交点为,连结,由(1)知,平面平面,平面平面,所以平面.所以直线与平面所成角为.又由为上的中点,可得为的中点,1AB =PB PD PC ====,,PB PD BC DC PC PC ===PBC PDC ≅V V PCB PCD ∠∠=BG PC ⊥G DG ,BC DCCG CG ==GBC GDC ≅V V 90DGC BGC ∠∠== BGD ∠B PC D --Rt PBC V PC BG PB BC ⋅=⋅1=BG DG ==BD BD =GBD V 222cos 2BG DG BD BGD BG DG∠+-=⋅12==-120BGD ∠= PC ∥,AEF PC ⊂PBC PBC ⋂AEF EF =PC ∥EF E PB F BC BG PC ⊥BG EF ⊥BG EF H AH AEF ⊥PBC AEF ⋂PBC EF =BH ⊥AEF AB AEF BAH ∠PC ∥,EF F BC H BG可知,,又,所以直线与平面.12BH BG ===1AB =sin BH BAH AB ∠==AB AEF。

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。

高一下册数学期末试卷(含答案)

高一下册数学期末试卷(含答案)

高一数学下册期末试卷(含答案)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、若,则下列不等式成立的是( C )A. .B. .C. .D. .2、已知为等比数列,若,则公比的值为( B )A. B. C. D.3、设等差数列的前项和为,若,,则( B )A.63 B.45 C.36 D.274、在中,,,,则的解的个数是(C)A. 0个B. 1个C. 2个D. 不确定5、已知为等比数列,为方程的两根,则=( A )A.16 B. C.10 D.6、在中,则BC =( A )A. B. C. 2 D.7、已知为等差数列,为等比数列,则下列结论错误..的是( D )A.一定是等比数列 B.一定是等比数列C.一定是等差数列 D.一定是等差数列8、已知a,b,c为△ABC的三个内角A,B,C的对边,若,则的形状为(D)A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰或直角三角形9、利用基本不等式求最值,下列各式运用正确的是(D)A. B.C. D.10、在数列中,,则=(A)A. B. C. D.二、填空题:本大题共3小题,每小题5分,共15分.11、不等式的解集为________________.12、在中,,则_______________.13、已知等差数列的首项,公差,则前项和_________________,当=________________时,的值最小. ,5或6三、解答题:本大题共4小题,共35分.解答应写出文字说明、证明过程或演算步骤.14、(6分)解不等式解:,……1分,……2分,……3分……4分由标根法得:原不等式的解集为……6分(漏分母不为零,最多得4分)15、(6分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为:.问:在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?解:……1分……4分……5分所以当汽车平均速度为40(千米/小时)时,车流量最大为10(千辆/小时).……6分16、(11分)已知、、为的三个内角,它们的对边分别为、、,且.(1)求;(2)若,求的值,并求的面积.解:(Ⅰ).. ……2分又,. ……4分(没有说明范围,扣1分),. ……5分(Ⅱ)由余弦定理,得, ……7分即:,. ……9分. ……11分、17、(12分)设数列的前项和为,且;数列为等差数列,且,.(1)求数列、的通项公式;(2)若,为数列的前项和. 求.解:(1)数列为等差数列,公差,……1分可得……2分由,令,则,又,所以. ……3分当时,由,可得.即. ……5分所以是以为首项,为公比的等比数列,于是. ……6分(2)……7分∴、……8分∴. ……10分,从而.(写成也可)……12分第二部分能力检测(共50分)四、填空题:本大题共2小题,每小题5分,共10分.18、若数列满足,且,则通项________________.19、如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个侧点与.现测得,并在点测得塔顶的仰角为,则塔高=_________________.五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.20、(12分)已知(1)求函数的解析式,并求图象的对称中心的横坐标;(2)若时,不等式恒成立,求实数的取值范围.解:(1)……2分……4分……5分令……6分,对称中心的横坐标为……7分(欠扣1分)(2)由、……8分则……9分所以函数……10分由恒成立,得,……12分(没有等号扣1分)21、(14分)某农场预算用5600元购买单价为50元(每吨)的钾肥和20元(每吨)的氮肥,希望使两种肥料的总数量(吨)尽可能的多,但氮肥数不少于钾肥数,且不多于钾肥数的1.5倍。

安徽省蚌埠市2023-2024学年高一下学期7月期末考试 数学含答案

安徽省蚌埠市2023-2024学年高一下学期7月期末考试 数学含答案

蚌埠市2023—2024学年度第二学期期末学业水平监测高一数学(答案在最后)本试卷满分150分,考试时间120分钟注意事项:1.答卷前,务必将自己的姓名和座位号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,务必擦净后再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.OA OB AC -+= ()A .OCB.BCC.CBD.CA2.7πsin 6⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.23.已知点(,P m ()0m ≠在角α终边上,且cos 4m α=,则sin α=()A.64-B.4-C.64D.1044.如图,OAB 的斜二测画法的直观图是腰长为2的等腰直角三角形O A B ''' ,y'轴经过斜边A'B'的中点,则OAB 中OA 边上的高为()A. B. C.2 D.45.要得到函数()πsin 24x g x ⎛⎫=+ ⎪⎝⎭的图象,可将函数()sin f x x =的图象()A.先向左平移π4个单位,再把图象上每个点的横坐标伸长为原来的2倍B.先向左平移π4个单位,再把图象上每个点的横坐标缩短为原来的12倍C.先向右平移π4个单位,再把图象上每个点的横坐标伸长为原来的2倍D.先向右平移π4个单位,再把图象上每个点的横坐标缩短为原来的12倍6.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题正确的是()A.若m α⊂,n β⊂,m ∥n ,则α∥βB.若m α⊥,m β⊥,则αβ⊥C.若m α⊂,n β⊂,m n ⊥,则αβ⊥D.若αγ⊥,β∥γ,则αβ⊥7.已知π7π,1212x ⎛⎫∈⎪⎝⎭,πsin 125x ⎛⎫-= ⎪⎝⎭,则πsin 212x ⎛⎫+= ⎪⎝⎭()A.10-B.10C.10D.108.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知cos cos 2sin sin B C A B +=,a =,则C =()A.π6B.π4C.π3D.π2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =-,21i z =+,其中i 为虚数单位,下列说法正确的是()A.12z z =B.12||||z z =C.12i z z = D.2212122z z z z +≥10.已知正方体1111ABCD A B C D -,,E M 分别为AB ,1BD 的中点,下列说法正确的是()A .//EM BCB.EM MC⊥C.直线EM 与直线1CC 所成角的大小为45D.直线EM 与平面11BB D 所成角的大小为3011.已知向量a ,b满足()2a b a +⊥ ,则以下说法正确的是()A.若()2,a m =,(b =- ,则0m =或-B.若||a b +=,则||b =C.若||a =||2b =r,则向量b 在向量aD.向量b 在向量a 上的投影向量为2a-三、填空题:本题共3小题,每小题5分,共15分.12.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.13.已知()tan αβ-,tan β是方程22310x x --=的两根,则tan α=________.14.在△ABC 中,22AC AB ==,AB BC ⊥,点M 满足2π3AMC BMC ∠=∠=,则AM BM CM ++=________.四、解答题:本题共5个小题,共77分.解答应写出说明文字、证明过程或演算步骤.15.已知复数()2322i z a a a =-++-,其中i 为虚数单位,R a ∈.(1)若z 为纯虚数,求|2|z +;(2)若复数z 在复平面内对应的点在第四象限,求实数a 的取值范围.16.如图,在ABCD Y 中,E ,H 分别是AD ,BC 的中点,2AFFB =,G 为DF 与BE 的交点.(1)记向量AB a =,AD b = ,试以向量a ,b 为基底表示BE ,DF;(2)若AC mBE nDF =+,求m ,n 的值;(3)求证:A ,G ,H 三点共线.17.如图,直三棱柱111ABC A B C -中,1B C 与1BC 交于点O ,M 为线段AC 的中点,1B C AB ⊥,1222AB BC AA ===.(1)求证://OM 平面11ABB A ;(2)求证:平面1ABC ⊥平面11BCC B ;(3)求三棱锥1B BOM -的体积.18.已知函数()π2cos cos sin26f x x x x ⎛⎫=-+ ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)关于x 的方程()f x a =在区间π[0,]2有两个不相等的实数根,求实数a 的取值范围;(3)不等式()204m mf x ⎛⎫-+ ⎪ ⎪⎝⎭≥对R m ∈恒成立,求实数x 的取值范围.19.已知球O 半径为2,A ,B ,C ,D 是球面上的点,平面OAC ⊥平面ABC ,四边形OACD 为平行四边形.(1)证明:AB BC ⊥;(2)若AB BC =,求点O 到平面BCD 的距离;(3)求BD 与平面OAC 所成角的余弦值的最小值.蚌埠市2023—2024学年度第二学期期末学业水平监测高一数学本试卷满分150分,考试时间120分钟注意事项:1.答卷前,务必将自己的姓名和座位号填写在答题卡和试卷上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,务必擦净后再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.OA OB AC -+= ()A.OCB.BCC.CBD.CA【答案】B 【解析】【分析】根据平面向量加减运算法则及运算律计算可得.【详解】OA OB AC OA BO AC BO OA AC BC -+=++++==.故选:B 2.7πsin 6⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.2【答案】C 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】7πππ1sin sin πsin 6662⎛⎫⎛⎫-=--== ⎪ ⎪⎝⎭⎝⎭.故选:C3.已知点(,P m ()0m ≠在角α终边上,且cos 4m α=,则sin α=()A.4-B.4-C.4D.4【答案】A 【解析】【分析】根据三角函数的定义求出2m ,再由定义计算可得.【详解】因为点(,P m ()0m ≠在角α终边上,且2cos 4m α=,即cos 4m α==,解得25m =,所以sin 4α===-.故选:A4.如图,OAB 的斜二测画法的直观图是腰长为2的等腰直角三角形O A B ''' ,y'轴经过斜边A'B'的中点,则OAB 中OA边上的高为()A. B. C.2 D.4【答案】B 【解析】【分析】根据斜二测画法的规则,即可得OAB 的原图,根据长度关系即可求解.【详解】根据题意可得OAB 的原图如图所示,其中D 为AB 的中点,由于D ¢为A B''的中点,O D ''=且2OD O D ''==,则OAB中OA 边上的高为2OD =故选:B.5.要得到函数()πsin 24x g x ⎛⎫=+ ⎪⎝⎭的图象,可将函数()sin f x x =的图象()A.先向左平移π4个单位,再把图象上每个点的横坐标伸长为原来的2倍B.先向左平移π4个单位,再把图象上每个点的横坐标缩短为原来的12倍C.先向右平移π4个单位,再把图象上每个点的横坐标伸长为原来的2倍D.先向右平移π4个单位,再把图象上每个点的横坐标缩短为原来的12倍【答案】A 【解析】【分析】根据三角函数的变换规则一一判断即可.【详解】将函数()sin f x x =的图象先向左平移π4个单位得到πsin 4y x ⎛⎫=+ ⎪⎝⎭,再把πsin 4y x ⎛⎫=+⎪⎝⎭图象上每个点的横坐标伸长为原来的2倍得到1πsin 24y x ⎛⎫=+ ⎪⎝⎭,故A 正确;将函数()sin f x x =的图象先向左平移π4个单位得到πsin 4y x ⎛⎫=+ ⎪⎝⎭,再把πsin 4y x ⎛⎫=+⎪⎝⎭图象上每个点的横坐标伸长为原来的12倍得到πsin 24y x ⎛⎫=+ ⎪⎝⎭,故B 错误;将函数()sin f x x =的图象先向右平移π4个单位得到πsin 4y x ⎛⎫=- ⎪⎝⎭,再把πsin 4y x ⎛⎫=-⎪⎝⎭图象上每个点的横坐标伸长为原来的2倍得到1πsin 24y x ⎛⎫=- ⎪⎝⎭,故C 错误;将函数()sin f x x =的图象先向右平移π4个单位得到πsin 4y x ⎛⎫=- ⎪⎝⎭,再把πsin 4y x ⎛⎫=-⎪⎝⎭图象上每个点的横坐标伸长为原来的12倍得到πsin 24y x ⎛⎫=- ⎪⎝⎭,故D 错误.故选:A6.已知m ,n 是两条不同的直线,,,αβγ是三个不同的平面,下列命题正确的是()A.若m α⊂,n β⊂,m ∥n ,则α∥βB.若m α⊥,m β⊥,则αβ⊥C.若m α⊂,n β⊂,m n ⊥,则αβ⊥D.若αγ⊥,β∥γ,则αβ⊥【答案】D 【解析】【分析】对于ABC ,举例判断,对于D ,利用面面垂直的性质定理和判定定理分析判断即可.【详解】对于A ,如图当m α⊂,n β⊂,m ∥n 时,α与β相交,所以A 错误,对于B ,如图,当m α⊥,m β⊥时,α∥β,所以B 错误,对于C ,如图当m α⊂,n β⊂,m n ⊥时,α∥β,所以C 错误,对于D ,设l αγ= ,在平面α内作b l ⊥,因为αγ⊥,所以b γ⊥,因为β∥γ,所以b β⊥,因为b α⊂,所以αβ⊥,所以D 正确.故选:D 7.已知π7π,1212x ⎛⎫∈⎪⎝⎭,π5sin 125x ⎛⎫-= ⎪⎝⎭,则πsin 212x ⎛⎫+= ⎪⎝⎭()A.210-B.210C.210D.310【答案】C 【解析】【分析】由π5sin 125x ⎛⎫-= ⎪⎝⎭求出πcos 12x ⎛⎫- ⎪⎝⎭,πππsin 2sin 212124x x ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦利用两角和的正弦公式化简,再利用二倍角公式化简可求得答案.【详解】因为π7π,1212x ⎛⎫∈⎪⎝⎭,所以ππ0,122x ⎛⎫-∈ ⎪⎝⎭,因为π5sin 125x ⎛⎫-= ⎪⎝⎭,所以2ππ25cos 1sin 12125x x ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,所以πππsin 2sin 212124x x ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππsin 2cos cos 2sin124124x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭2ππsin 2cos 221212x x ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22πππ2sin cos 2cos 12121212x x x ⎡⎤⎛⎫⎛⎫⎛⎫=--+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦225552212555⎡⎤⎛⎢⎥=⨯+⨯- ⎢⎥⎝⎭⎣⎦210=.故选:C8.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知cos cos 2sin sin B C A B +=,a =,则C =()A.π6B.π4C.π3D.π2【答案】D 【解析】【分析】利用两角和与差的余弦展开式化简可得2B A =,由正弦定理得sin A B =,再利用正弦的二倍角公式可得答案.【详解】因为()cos cos cos cos +=-+B C B A B cos cos cos sin sin 2sin sin =-+=B A B A B A B ,所以()cos cos cos sin sin cos =+=-B A B A B A B ,因为0,πA B <<,所以B A B =-,或B A B =-+舍去,可得2B A =,因为a =,由正弦定理得sin A B =,所以sin 22sin cos B B B B ==,因为0πB <<cos B =,可得π6B =,π23A B ==,所以π2C =.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =-,21i z =+,其中i 为虚数单位,下列说法正确的是()A.12z z =B.12||||z z =C.12i z z = D.2212122z z z z +≥【答案】AB 【解析】【分析】根据题意,由共轭复数的概念即可判断A ,由复数的模长公式即可判断B ,由复数的四则运算,即可判断CD【详解】对A 因为复数11i z =-,21i z =+,则121i z z =+=,故A 正确;对B,12z z ====12||||z z =,故B 正确;对C,()()()()121i 1i 1i 2i i 1i 1i 1i 2z z ----====-++-,故C 错误;对D,()()2222121i 1i 2i 2i 0z z +=++-=-=,()()12221i 1i 4z z =-+=,所以2212122z z z z <+,故D 错误;故选:AB10.已知正方体1111ABCD A B C D -,,E M分别为AB ,1BD 的中点,下列说法正确的是()A.//EM BCB.EM MC⊥C.直线EM 与直线1CC 所成角的大小为45D.直线EM 与平面11BB D 所成角的大小为30【答案】BCD【解析】【分析】根据异面直线的定义可判断A ;连接BD ,取BD 中点O ,设正方体1111ABCD A B C D -的棱长为2,在MEC 中由余弦定理求出cos ∠EMC 可判断B ;设正方体1111ABCD A B C D -的棱长为2,直线EM 与直线1CC 所成的角即为EMO ∠,求出EMO ∠可判断C ;连接BD 、AC 相交于点O ,利用线面垂直的判定定理得1AD O ∠即为EM 与平面11BB D 所成的角,设正方体1111ABCD A B C D -的棱长为2,求出1sin ∠AD O 可判断D .【详解】对于A ,因为E ∈平面ABCD ,BC ⊂平面ABCD ,E BC ∉,M ∉平面ABCD ,所以EM 与BC 是异面直线,故A 错误;对于B ,连接BD ,取BD 中点O ,连接,,,MO EO OC EC ,可得1//MO DD ,所以OM ⊥平面ABCD ,设正方体1111ABCD A B C D -的棱长为2,则11,22====OE OM OC BD ,225=+=CE EB BC ,222=+=ME OM OE ,223=+=MC OM OC 由余弦定理得222235cos 02223+-∠===⋅⨯⨯ME MC CE EMC ME MC ,所以90∠= EMC ,所以EM MC ⊥,故B正确;对于C ,由B ,1//MO DD ,11//DD CC ,所以1//MO CC ,设正方体1111ABCD A B C D -的棱长为2,所以直线EM 与直线1CC 所成的角即为EM 与直线MO 所成的角,即为EMO ∠,因为1==OE OM ,OM ⊥平面ABCD ,所以45∠= EMO ,即直线EM 与直线1CC 所成角的大小为45 ,故C 正确;对于D ,连接1AD ,因为,E M 分别为AB ,1BD 的中点,所以1//EM AD ,连接BD 、AC 相交于点O ,则AO BD ⊥,因为1DD ⊥平面ABCD ,AO ⊂平面ABCD ,所以1DD AO ⊥,且1DD BD D =I ,1、⊂DD BD 平面11BB D ,所以AO ⊥平面11BB D ,所以1AD O ∠等于EM 与平面11BB D 所成的角,设正方体1111ABCD A B C D -的棱长为2,则122AD =,2AO =,所以111sin 2AO AD O AD ∠==,1π02<∠<AD O ,所以130AD O ∠= ,所以EM 与平面11BB D 所成的角大小为30 ,故D正确.故选:BCD.11.已知向量a ,b 满足()2a b a +⊥ ,则以下说法正确的是()A.若()2,a m = ,(3b =- ,则0m =或23-B.若||5a b += ,则||5b = C.若||5a = ||2b =r ,则向量b 在向量a 5D.向量b 在向量a 上的投影向量为2a - 【答案】ABD【解析】【分析】A选项,计算出(20,a m b =++ ,根据向量垂直得到方程,求出0m =或-,A 正确;B选项,||a b +=||b = C 选项,根据垂直关系得到21522a b a ⋅=-=- ,从而根据投影向量的模长公式求出C 正确;D 选项,在C 选项基础上,根据投影向量的公式进行求解.【详解】A选项,(20,a m b =++ ,因为()2a b a +⊥ ,所以()(()(20,2,0b m a a m m m +⋅=+⋅+== ,解得0m =或-,A 正确;B选项,||a b += 两边平方得,2225a a b b +⋅+= ,因为()2a b a +⊥ ,所以()2220a a a a b b +⋅=+⋅= ,故25b =,则||b = B 正确;C 选项,因为()2a b a +⊥ ,所以()2220a a a a b b +⋅=+⋅=,||a = 21522a b a ⋅=-=- ,则向量b 在向量a上的投影数量为252b a a-⋅==- ,C 错误;D 选项,由C 选项知,212a b a ⋅=- ,向量b 在向量a 上的投影向量为2b a a a a a⋅⋅=- ,D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.【答案】2π【解析】【分析】由轴截面得到圆锥的底面半径和母线,利用侧面积公式求出答案.【详解】由题意得,圆锥的底面半径为1r =,母线长为2l =,故圆锥的侧面积为ππ122πrl =⨯⨯=.故答案为:2π13.已知()tan αβ-,tan β是方程22310x x --=的两根,则tan α=________.【答案】1【解析】【分析】先利用根与系数的关系,再利用两角和的正切公式可求得答案.【详解】因为()tan αβ-,tan β是方程22310x x --=的两根,所以()3tan tan 2αββ-+=,()1tan tan 2αββ-⋅=-,所以()tan tan αββ⎡⎤=-+⎣⎦()()tan tan 1tan tan αββαββ-+=--321112==⎛⎫-- ⎪⎝⎭.故答案为:114.在△ABC 中,22AC AB ==,AB BC ⊥,点M 满足2π3AMC BMC ∠=∠=,则AM BM CM ++=________.【解析】【分析】设,,AM x BM y CM z ===,根据ABC AMB BMC AMC S S S S =++ 可得2xy xz yz ++=,在,,ABM BMC ACM 中分别利用余弦定理可得2223x y z ++=,再求出2()x y z ++可得答案.【详解】设,,AM x BM y CM z ===,因为22AC AB ==,AB BC ⊥,所以BC =,因为2π3AMC BMC ∠=∠=,所以2π3AMB ∠=,因为ABC AMB BMC AMC S S S S =++ ,所以11()24xy xz yz ⨯⨯=++,得2xy xz yz ++=,在,,ABM BMC ACM 分别由余弦定理得221x y xy ++=,223y z yz ++=,224x z xz ++=,所以2222()8x y z xy xz yz +++++=,所以2222()28x y z +++=,得2223x y z ++=,所以2222()2()347x y z x y z xy xz yz ++=+++++=+=,所以7x y z ++=,即7AM BM CM ++=.故答案为:7【点睛】关键点点睛:此题考查余弦定理的应用,考查三角形的面积公式的应用,解题的关键是在,,ABM BMC ACM 中分别利用余弦定理找出,,AM BM CM 的关系,再结合ABC AMB BMC AMC S S S S =++ 又得到,,AM BM CM 的关系,考查数形结合的思想和计算能力,属于较难题.四、解答题:本题共5个小题,共77分.解答应写出说明文字、证明过程或演算步骤.15.已知复数()2322i z a a a =-++-,其中i 为虚数单位,R a ∈.(1)若z 为纯虚数,求|2|z +;(2)若复数z 在复平面内对应的点在第四象限,求实数a 的取值范围.【答案】(15(2)1a <.【解析】【分析】(1)由已知求出a ,再由模的意义求出结果.(2)由给定条件列出不等式组,求解即可得范围.【小问1详解】由z 为纯虚数,得232020a a a ⎧-+=⎨-≠⎩,解得1a =,则i z =-,所以|2||2i |z +=-=.【小问2详解】由复数z 在复平面内对应的点在第四象限,得232020a a a ⎧-+>⎨-<⎩,解得1a <,所以实数a 的取值范围是1a <.16.如图,在ABCD Y 中,E ,H 分别是AD ,BC 的中点,2AF FB = ,G 为DF 与BE 的交点.(1)记向量AB a =,AD b = ,试以向量a ,b 为基底表示BE ,DF ;(2)若AC mBE nDF =+,求m ,n 的值;(3)求证:A ,G ,H 三点共线.【答案】(1)12BE b a =- ,23DF a b =- (2)59,24m n =-=-(3)证明见解析【解析】【分析】(1)根据向量的减法法则结合题意求解;(2)对AC mBE nDF =+ 结合(1)化简用a ,b 表示,而A C a b =+ ,然后列方程组可求得结果;(3)设BG BE λ= ,DG DF μ= ,由AG AB BG =+ ,AG AD DG =+ ,用用a ,b 表示,列方程组求出,λμ,从而可得12AG AH = ,进而证得结论.【小问1详解】因为在ABCD Y 中,E ,H 分别是AD ,BC 的中点,2AFFB = ,所以1122BE AE AB AD AB b a =-=-=-uu u r uu u r uu u r uuu r uu u r r r ,2233DF AF AD AB AD a b =-=-=- .【小问2详解】由(1)知12BE b a =- ,23DF a b =- ,所以12212332AC mBE nDF m b a n a b n m a m n b ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为A C a b =+ ,所以213112n m m n ⎧-=⎪⎪⎨⎪-=⎪⎩,解得5294m n ⎧=-⎪⎪⎨⎪=-⎪⎩;【小问3详解】12AH AB BH a b =+=+ ,设BG BE λ= ,DG DF μ= ,则()11122AG AB BG a b a a b λλλ⎛⎫=+=+-=-+ ⎪⎝⎭,又()22133AG AD DG b a b a b μμμ⎛⎫=+=+-=+- ⎪⎝⎭ ,所以213112μλμλ⎧=-⎪⎪⎨⎪-=⎪⎩,解得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,所以1124AG a b =+ ,∴111222AG a b AH ⎛⎫=+= ⎪⎝⎭ ,∴AG AH,即A ,G ,H三点共线.17.如图,直三棱柱111ABC A B C -中,1B C 与1BC 交于点O ,M 为线段AC 的中点,1B C AB ⊥,1222AB BC AA ===.(1)求证://OM 平面11ABB A ;(2)求证:平面1ABC ⊥平面11BCC B ;(3)求三棱锥1B BOM -的体积.【答案】(1)证明见解析(2)证明见解析(3)112.【解析】【分析】(1)根据线面平行判定定理证明;(2)应用面面垂直判定定理证明;(3)等体积法求三棱锥的体积.【小问1详解】连接1AB ,因为直三棱柱111ABC A B C -,1BB AB ⊥,1BB BC ⊥,又11BB AA BC ==∴11BB C C 是正方形且O 为线段1B C 的中点,又M 为线段AC 中点,∴1//MO AB ,又OM ⊄平面11ABB A ,1AB ⊂平面11ABB A ,∴//OM 平面11ABB A ;【小问2详解】∵1BB AB ⊥,1B C AB ⊥,1111,BB B C B B C ⋂=⊂平面111,BCC B BB ⊂平面11BCC B ,∴AB ⊥平面11BCC B ,又AB ⊂平面1ABC ,∴平面1ABC ⊥平面11BCC B ;【小问3详解】∵M 为线段AC 中点,∴111111111111222362212B BOM M BB O A BB O BB O V V V S AB ---===⨯⋅=⨯⨯⨯⨯=△,即三棱锥1B BOM -的体积为112.18.已知函数()π2cos cos sin26f x x x x ⎛⎫=-+ ⎪⎝⎭.(1)求函数()f x 的单调区间;(2)关于x 的方程()f x a =在区间π[0,]2有两个不相等的实数根,求实数a 的取值范围;(3)不等式()204m mf x ⎛⎫-+ ⎪ ⎪⎝⎭≥对R m ∈恒成立,求实数x 的取值范围.【答案】(1)()f x 的单调递增区间为πππ,π36⎡⎤-+⎢⎣⎦k k ,单调递减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Z k ∈.(2)2(3)ππππ,ππ,π632k k k k ⎡⎤⎡⎤-+⋃++⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)先化简,再根据正弦函数的单调性求解;(2)根据函数两个不相等的实数根,结合正弦单调性及值域求参;(3)把恒成立问题转化为解三角不等式即可.【小问1详解】()333π3cos2sin2222262f x x x x ⎛⎫=++=++ ⎪⎝⎭令()πππ2π22πZ 262k x k k -≤+≤+∈,解得()ππππZ 36k x k k -≤≤+∈,令()ππ3π2π22πZ 262k x k k +≤+≤+∈,解得()π2πππZ 63k x k k +≤≤+∈,故函数()f x 的单调递增区间为πππ,π36⎡⎤-+⎢⎥⎣⎦k k ,单调递减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Z k ∈.【小问2详解】由(1)知函数()f x 在区间π[0,]6单调递增,在区间ππ[,]62单调递减,又()0f =π3362f ⎛⎫= ⎪⎝⎭,π02f ⎛⎫= ⎪⎝⎭,结合()f x 图象可知a 的取值范围是2.【小问3详解】即不等式2π3sin 20616m x ⎛⎫++≥ ⎪⎝⎭对R m ∈恒成立,有2π31π1Δ3sin 20,sin 264262x x ⎛⎫⎛⎫=+-≤-≤+≤ ⎪ ⎪⎝⎭⎝⎭,所以πππ2π22π+666k x k -+≤+≤或5ππ7π2π22π666k x k +≤+≤+解得πππ6k x k -+≤≤,或ππππ32k x k +≤≤+故x 的取值范围是ππππ,ππ,π632k k k k ⎡⎤⎡⎤-+⋃++⎢⎥⎢⎥⎣⎦⎣⎦.19.已知球O 半径为2,A ,B ,C ,D 是球面上的点,平面OAC ⊥平面ABC ,四边形OACD 为平行四边形.(1)证明:AB BC ⊥;(2)若AB BC =,求点O 到平面BCD 的距离;(3)求BD 与平面OAC 所成角的余弦值的最小值.【答案】(1)证明见解析(2)7(3)1434⎛⎫ ⎪⎝⎭.【解析】【分析】(1)作出辅助线,得到平行四边形OACD 为菱形,AOC 为等边三角形,则OEAC ⊥,由面面垂直得到线面垂直,故OE BE ⊥,故1BE ==,又因为1AE BE CE ===,得到AB BC ⊥;(2)求出AB BC ==BE OE ⊥,得到线面垂直,线线垂直,求出BD =,由余弦定理和同角三角函数关系得到sin 4BCD ∠=,得到△BCD 外接圆的半径,进而得到点到平面的距离;(3)作出辅助线,得到0BDE ∠为BD 与平面OAC 所成的角,设π0,2ACB θ⎛⎫∠=∈ ⎪⎝⎭,表达出02cos sin BE θθ=,202cos CE θ=,由余弦定理求出0DE =,得到0tan BDE ∠=由基本不等式,求出线面角的正切值的最大值,从而得到余弦值的最小值为1434⎛⎫ ⎪⎝⎭.【小问1详解】证明:取AC 中点E ,连接BE ,OE ,OC ,因为2OA OB OC OD ====,所以平行四边形OACD 为菱形,AOC 为等边三角形,则2AC CD ==,60OAC ∠=︒,故OE AC ⊥,且OE =又平面OAC ⊥平面ABC ,平面OAC 平面ABC AC =,OE ⊂平面OAC ,所以OE ⊥平面ABC ,因为BE ⊂平面ABC ,所以OE BE ⊥,故221BE OB OE =-=,又因为1AE BE CE ===,所以,ABE BAE CBE BCE ∠=∠∠=∠,因为180ABE BAE CBE BCE ∠+∠+∠+∠=︒,所以90ABE CBE +=︒∠∠,AB BC ⊥.【小问2详解】因为AB BC =,2AC =,又AB BC ⊥,所以2AB BC ==BE AC ⊥,又3OE =1BE =,2OB =,故222BE OE OB +=,故BE OE ⊥,又AC OE E = ,,AC OE ⊂平面OAC ,所以BE ⊥平面OAC ,因为DE ⊂平面OAC ,所以BE DE ⊥,在ODE 中,OE ⊥AC ,故OE ⊥OD ,由勾股定理得222237DE OE OD =+=+=在△BDE 中,由勾股定理得2222BD BE DE +=,所以在△BCD 中,易知2222cos 24222BC CD BD BCD BC CD +-∠==-⋅⨯,则214sin 1cos 4BCD BCD ∠=-∠,记△BCD 外接圆的半径为r ,故872sin 8BD r BCD ==∠,即477r =,所以点O 到平面BCD距离7d ==.【小问3详解】作0BE AC ⊥于0E ,因为平面OAC ⊥平面ABC ,平面OAC 平面ABC AC =,0BE ⊂平面ABC ,所以0BE ⊥平面OAC ,因为0DE ⊂平面OAC ,所以00BE DE ⊥,故0BDE ∠为BD 与平面OAC所成的角,设π0,2ACB θ⎛⎫∠=∈ ⎪⎝⎭,其中cos 2cos BC AC θθ==,0sin 2cos sin BE BC θθθ==,20cos 2cos CE BC θθ==,在0CDE 中,0120E CD ∠=︒,由余弦定理得222420002cos12044cos 4cos E D CD E C CD E C θθ=+-⋅︒=++,故0DE =,故000tan BE BDE DE ∠===≤当且仅当2tan θ=时,等号成立,143cos4BDE⎛⎫∠=≥ ⎪⎝⎭,故BD与平面OAC所成角的余弦值的最小值为1434⎛⎫⎪⎝⎭.【点睛】方法点睛:立体几何中最值问题,一般可从三个方面考虑:一是构建函数法,即建立目标函数,转化为函数的最值问题进行求解;二是借助基本不等式求最值,几何体变化过程中两个互相牵制的变量(两个变量之间有等量关系),往往可以使用此种方法;三是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值.。

江西省上饶市2023-2024学年高一下学期期末考试 数学含答案

江西省上饶市2023-2024学年高一下学期期末考试 数学含答案

上饶市2023—2024学年度下学期期末教学质量检测高一数学试卷(答案在最后)1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I 卷时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效.4.本试卷共19题,总分150分,考试时间120分钟,第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 1i z -=+,其中i 为虚数单位,则z =()A.iB.i- C.1i+ D.1i-2.ABC 是边长为1的正三角形,那么ABC 的斜二测平面直观图'''A B C 的面积()A.B.68C.38D.343.已知向量()()1,cos ,2,sin a b θθ== ,若a b,则tan θ=()A.2B.-2C.12D.12-4.已知,m n 是空间中两条不同的直线,,αβ为空间中两个互相垂直的平面,则下列命题正确的是()A.若m α⊂,则m β⊥B.若,m n αβ⊂⊂,则m n ⊥C.若,m m αβ⊄⊥,则//m αD.若,m n m αβ⋂=⊥,则n α⊥5.向量()1,0,a a = 与非零向量b的夹角为60 ,则a在b上的投影数量为()A.12B.2C.1D.6.已知G 为ABC 的重心,则()A.2133BG AB AC=-uuu r uu u r uuu r B.2133BG AB AC=-+u uuu r u ur uuu r C.1233BG AB AC=-+uuu r uu ur uuu r D.1233BG AB AC=-7.根据下列情况,判断三角形解的情况,其中正确的是()A .8a =,16b =,30A =︒,有两解B.18b =,20c =,60B =︒,有一解C.30a =,25b =,150A =︒,有一解D .5a =,2c =,90A =︒,无解8.若函数()sin cos f x a x x ωω=+的对称轴方程为ππ4x k =+,k ∈Z ,则π4f ω⎛⎫= ⎪⎝⎭()A.2B.2-C. D.二、多选题(本题共3小硕,每小题6分,共18分.在每小䝠给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.若复数12,z z 是方程2250x x -+=的两根,则()A.12,z z 虚部不同B.12,z z 在复平面内所对应的点关于实轴对称C.1z =D.122iz z +-在复平面内所对应的点位于第三象限10.关于函数()π2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,下列结论正确的是()A.π,06⎛⎫⎪⎝⎭是()f x 的一个对称中心B.函数()f x 在π0,6⎛⎫ ⎪⎝⎭上单调递增C.函数()f x 图像可由函数()2cos21g x x =+的图像向右平移5π12个单位得到D.若方程()20f x m -=在区间π12π,2⎡⎤⎢⎥⎣⎦上有两个不相等的实根,则2,6m ⎡⎤∈+⎣⎦11.如图,若正方体1111ABCD A B C D -的棱长为2,线段11B D 上有两个动点,,E F EF =则下列结论正确的是()A.直线1AC 与平面ABCD 的夹角的余弦值为63B.当E 与1D 重合时,异面直线AE 与BF 所成角为π3C.平面1C BD 平面AEFD.1A C ⊥平面AEF第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.若tan 2θ=,则()sin cos sin θθθ-=__________.13.设1e 与2e 是两个不共线向量,1232AB e e =+ ,12CB ke e =+ ,1232CD e ke =-.若A ,B ,D 三点共线,则k 的值为________.14.ABC 中,8AB AC ==,延长线段AB 至D ,使得2A D ∠=∠,则BD BC +的最大值为__________.四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.已知()()()2,,3,5,a m b m m ==--∈R(1)若a b a b +=-,求实数m 的值.(2)已知向量,a b的夹角为钝角,求实数m 的范围.16.已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图像如图所示.(1)求函数()f x 的解析式及对称中心;(2)求函数()f x 在ππ,122⎡⎤⎢⎥⎣⎦上的值域.(3)先将()f x 的图像纵坐标缩短到原来的12倍,再向左平移π12个单位后得到()g x 的图像,求函数()y g x =在π,π2x ⎡⎤∈-⎢⎥⎣⎦上的单调减区间.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2b C c a +=.(1)求角B ;(2)若D 为AC 的中点,且52BD =,b =3,求ABC 的面积.18.如图1,四边形ABCD 为菱形,60,ABC PAB ︒∠=△是边长为2的等边三角形,点M 为AB 的中点,将PAB 沿AB 边折起,使3PC =,连接PD ,如图2,(1)证明:AB PC ⊥;(2)求异面直线BD 与PC 所成角的余弦值;(3)在线段PD 上是否存在点N ,使得PB ∥平面MCN ﹖若存在,请求出PNPD的值;若不存在,请说明理由.19.我们把由平面内夹角成60︒的两条数轴Ox ,Oy 构成的坐标系,称为“创新坐标系”.如图所示,1e,2e分别为Ox ,Oy 正方向上的单位向量.若向量12OP xe ye =+,则称有序实数对{},x y 为向量OP的“创新坐标”,可记作{},OP x y =.(1)已知{}1,1a = ,{}2,3b = ,{}1,2c =- ,设c xa yb =+,求x y +的值.(2)已知{}11,a x y = ,{}22,b x y = ,求证://a b 的充要条件是12210x y x y -=.(3)若向量a ,b的“创新坐标”分别为{}sin ,1x ,{}cos ,1x ,已知()f x a b =⋅ ,x ∈R 求函数()f x 的最小值.上饶市2023—2024学年度下学期期末教学质量检测高一数学试卷1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第I 卷时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效.4.本试卷共19题,总分150分,考试时间120分钟,第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 1i z -=+,其中i 为虚数单位,则z =()A.iB.i- C.1i+ D.1i-【答案】A 【解析】【分析】利用复数的除法直接求出z .【详解】因为()1i 1i z -=+,所以()()()()1i 1i i 1i 1i z ++==-+.故选:A2.ABC 是边长为1的正三角形,那么ABC 的斜二测平面直观图'''A B C 的面积()A.16B.8C.8D.4【答案】A 【解析】【分析】先求出原三角形的面积,再根据原图和直观图面积之间的关系即可得解.【详解】以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,画对应的'x 轴,'y 轴,使'''45x O y ∠=︒,如下图所示,结合图形,ABC 的面积为113312224ABC S AB OC =⨯⨯=⨯⨯=,作C D AB ⊥''',垂足为D ,则22122224C D O C OC OC ==⨯=''',''AB A B =,所以'''A B C 的面积11222244A B C ABC S A B C D OC AB S =⨯⨯=⨯⨯⨯= '''''',即原图和直观图面积之间的关系为2=4S S 直观图原图,所以,'''A B C 的面积为2364416A B C S =⨯='''.故选:A.【点睛】本题考查斜二测画法中原图和直观图面积的关系,属于基础题.3.已知向量()()1,cos ,2,sin a b θθ== ,若a b,则tan θ=()A.2B.-2C.12D.12-【答案】A 【解析】【分析】利用坐标法来判断两向量共线即可得到结果.【详解】由a b得,()()1,cos //2,sin 2cos sin tan 2θθθθθ⇒=⇒=,故选:A.4.已知,m n 是空间中两条不同的直线,,αβ为空间中两个互相垂直的平面,则下列命题正确的是()A.若m α⊂,则m β⊥B.若,m n αβ⊂⊂,则m n ⊥C.若,m m αβ⊄⊥,则//m αD.若,m n m αβ⋂=⊥,则n α⊥【答案】C 【解析】【分析】根据空间线面位置关系的判定定理、性质定理,逐项判定,即可求解.【详解】由直线,m n 是空间中两条不同的直线,,αβ为空间中两个互相垂直的平面,对于A 中,若m α⊂,可能//m α,所以A 不正确;对于B 中,若,m n αβ⊂⊂,则//m n 或相交或异面,所以B 不正确;对于C 中,由m β⊥,可得m α⊂或//m α,又由m α⊄,所以//m α,所以C 正确;对于D 中,由面面垂直的性质,可知只有n β⊂时,才有n α⊥,所以D 不正确.故选:C.5.向量()1,0,a a = 与非零向量b的夹角为60 ,则a在b上的投影数量为()A.12B.2C.1D.【答案】A 【解析】【分析】根据给定条件,利用投影数量的定义计算即得.【详解】依题意,a 在b 上的投影数量为1||cos ,1cos 602a ab 〈〉=⨯=.故选:A6.已知G 为ABC 的重心,则()A.2133BG AB AC=-uuu r uu u r uuu r B.2133BG AB AC=-+u uuu r u ur uuu r C.1233BG AB AC=-+uuu r uu ur uuu r D.1233BG AB AC=-【答案】B 【解析】【分析】根据重心的性质及向量的线性运算可得解.【详解】如图所示,设D 为AC 中点,又G 为ABC 的重心,则23B B G D = ()13BA BC =+ 1133BA BC =+uu r uu u r 111333BA BA AC =++uu r uu r uuu r 2133BA AC =+uu r uuu r 2133AB AC =-+uu ur uuu r ,故选:B.7.根据下列情况,判断三角形解的情况,其中正确的是()A.8a =,16b =,30A =︒,有两解B.18b =,20c =,60B =︒,有一解C.30a =,25b =,150A =︒,有一解D.5a =,2c =,90A =︒,无解【答案】C 【解析】【分析】利用正弦定理和余弦定理依次判断A ,B ,C ,D 即可.【详解】A 中,因为sin sin a b A B=,所以16sin 30sin 18B ⨯︒==,又0150B ︒<<︒,所以90B =︒,即只有一解,故A 错误;B 中,因为sin sin b c B C=,所以20sin 60sin sin 189C B ︒==>,且c b >,所以C B >,故有两解,故B 错误;C 中,因sin sin a b A B =,所以12552sin sin 3012B A ⨯==>,又b a <,所以角B 只有一解,故C 正确;D 中,因为90A =︒,5a =,2c =,所以b =,有解,故D 正确.故选:C.8.若函数()sin cos f x a x x ωω=+的对称轴方程为ππ4x k =+,k ∈Z ,则π4f ω⎛⎫= ⎪⎝⎭()A.2B.2-C.D.【答案】D 【解析】【分析】根据三角恒等变换可化简函数解析式,进而可得1π4ωϕ=⎧⎪⎨=⎪⎩,代入即可得解.【详解】由已知()()sin cos f x a x x x ωωωϕ=+=+,且1tan aϕ=,sin 0ϕ=>,由对称轴为ππ4x k =+,则相邻两条对称轴间距离为π,即函数的最小正周期为2πT =,令2π12πω==,()()f x x ϕ=+,令1ππ2x k ϕ+=+,1k ∈Z ,则1ππ2x k ϕ=-+,即1ππππ24k k ϕ-+=+,k ∈Z ,1k ∈Z ,则()1ππ4k k ϕ=+-,k ∈Z ,1k ∈Z ,又sin 0ϕ=>,所以2ππ4k ϕ=+,2k 为偶数,则()2πππ44f x x k x ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,则ππππ4444f f ω⎛⎫⎛⎫⎛⎫==+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选:D.二、多选题(本题共3小硕,每小题6分,共18分.在每小䝠给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.若复数12,z z 是方程2250x x -+=的两根,则()A.12,z z 虚部不同B.12,z z 在复平面内所对应的点关于实轴对称C.1z =D.122iz z +-在复平面内所对应的点位于第三象限【答案】ABC 【解析】【分析】利用一元二次方程的虚根是共轭,并加以计算,就可以判断各选项.【详解】由方程2250x x -+=的求根公式可得:1224i12i 12i ,2z z +==+=-,故A 正确;由12,z z 在复平面内所对应的点分别为()()1,2,1,2-,显然关于实轴对称,故B 正确;由112i z =+,故C 正确;由()()()1222i 242i 42=i 2i 2i 2i 2i 555z z +++===+---+,它对应的点位于第一象限,故D 错误;故选:ABC .10.关于函数()π2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,下列结论正确的是()A.π,06⎛⎫⎪⎝⎭是()f x 的一个对称中心B.函数()f x 在π0,6⎛⎫⎪⎝⎭上单调递增C.函数()f x 图像可由函数()2cos21g x x =+的图像向右平移5π12个单位得到D.若方程()20f x m -=在区间π12π,2⎡⎤⎢⎥⎣⎦上有两个不相等的实根,则2,6m ⎡⎤∈+⎣⎦【答案】BC 【解析】【分析】根据三角函数图像性质分别判断各选项.【详解】A 选项:由()π2sin 213f x x ⎛⎫=-+ ⎪⎝⎭,令π2π3x k -=,Z k ∈,解得ππ62k x =+,Z k ∈,所以其对称中心为ππ,162k ⎛⎫+⎪⎝⎭,所以π,06⎛⎫⎪⎝⎭不是其对称中心,A 选项错误;B 选项:令πππ2π22π232k x k -≤-≤+,Z k ∈,解得π5πππ1212k x k -≤≤+,Z k ∈,即函数的单调递增区间为π5ππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈,又ππ5π0,π,π61212k k ⎛⎫⎡⎤⊆-+ ⎪⎢⎥⎝⎭⎣⎦,Z k ∈,B 选项正确;C 选项:由()π2cos212sin 212g x x x ⎛⎫=+=++ ⎪⎝⎭,向右平移5π12可得()5πππ2sin 212sin 211223y x x f x ⎡⎤⎛⎫⎛⎫=-++=-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,C 选项正确;D 选项:()π24sin 2203f x m x m ⎛⎫-=-+-= ⎪⎝⎭,即2sin 243m x π-⎛⎫=- ⎪⎝⎭,设π23t x =-,则π2π,63t ⎡⎤∈-⎢⎥⎣⎦,即函数24m y -=与函数sin y t =在π2π,63t ⎡⎤∈-⎢⎥⎣⎦上有两个交点,做出函数图像,如图所示,所以可得2π2sin 134m -≤<,解得26m +≤<,D 选项错误;故选:BC.11.如图,若正方体1111ABCD A B C D -的棱长为2,线段11B D 上有两个动点,,E F EF =则下列结论正确的是()A.直线1AC 与平面ABCD 的夹角的余弦值为63B.当E 与1D 重合时,异面直线AE 与BF 所成角为π3C.平面1C BD 平面AEFD.1A C ⊥平面AEF【答案】ACD 【解析】【分析】利用正方体的性质,结合中位线,勾股定理,可计算和证明各选项,并加以判断.【详解】对于A ,在正方体1111ABCD A B C D -中,有1CC ⊥平面ABCD ,所以直线1AC 与平面ABCD 所成的角就是1CAC ∠,且1CC AC ⊥,又由正方体1111ABCD A B C D -的棱长为2,所以1AC AC ==,则116cos 3AC CAC AC ∠==,故A正确;对于B ,当E 与1D重合时,由于11EF B D ==F 为11B D 的中点,如上图,连接11,BC C F ,在正方体1111ABCD A B C D -中,易由11//AB C D 且11AB C D =可得:四边形11ABC D 是平行四边形,所以11//AD BC ,所以异面直线AE 与BF 所成角就是1C BF ∠或其补角,由于1BB ⊥平面1111D C B A ,1B F ⊂平面1111D C B A ,所以11B B B F ⊥,则BF ===又因为11BC C F =所以13cos 2C BF ∠===,因为()10πC BF ∠∈,,所以1π=6C BF ∠,故B 错误;对于C ,在正方体1111ABCD A B C D -中,易由11//AB C D 且11AB C D =可得:四边形11ABC D 是平行四边形,所以11//AD BC ,又因为1AD ⊄平面1BDC ,1BC ⊂平面1BDC ,所以1//AD 平面1BDC ,同理可证明1AB //平面1BDC ,又因为11AD AB A ⋂=,11,AD AB ⊂平面11AB D ,所以平面11//AB D 平面1BDC ,而平面AEF 与平面11AB D 共面,所以平面1C BD 平面AEF ,故C 正确;对于D ,由于11A B ⊥平面11ADD A ,1AD ⊂平面11ADD A ,所以111A B AD ⊥,又因为11AD DA ⊥,1111DA A B A = ,111DA A B ⊂,平面11DA B C ,所以1AD ⊥平面11DA B C ,又因为1AC ⊂平面11DA B C ,所以11A C AD ⊥,同理可证明:11A C AB ⊥,又因为11AB AD A ⋂=,11AB AD ⊂,平面11AB D ,所以1A C ⊥平面11AB D ,而平面AEF 与平面11AB D 共面,则1A C ⊥平面AEF ,故D 正确;故选:ACD.第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.若tan 2θ=,则()sin cos sin θθθ-=__________.【答案】25-##0.4-【解析】【分析】根据同角三角函数关系式,结合齐次式可得解.【详解】由已知()sin cos sin θθθ-2sin cos sin θθθ=-222sin cos sin sin cos θθθθθ-=+22tan tan tan 1θθθ-=+22222215-==-+,故答案为:25-.13.设1e 与2e 是两个不共线向量,1232AB e e =+ ,12CB ke e =+ ,1232CD e ke =-.若A ,B ,D 三点共线,则k 的值为________.【答案】94-【解析】【分析】根据三点共线,转化为向量AB BD λ= ,计算向量BD后,再转化为向量相等,即可求解k 的值.【详解】因为A ,B ,D 三点共线,所以必存在一个实数λ,使得AB BD λ=.又1232AB e e =+,12CB ke e =+,1232CD e ke =-,所以()121232BD CD CB e ke ke e =-=--+ ,化简为()()12321BD k e k e =--+ ,所以()()121232321e e k e k e λλ+=--+ ,又1e 与2e 不共线,所以()()33221k k λλ⎧=-⎪⎨=-+⎪⎩解得94k =-.故答案为:94-14.ABC 中,8AB AC ==,延长线段AB 至D ,使得2A D ∠=∠,则BD BC +的最大值为__________.【答案】18【解析】【分析】分别在ABC 与ACD 中用正弦定理,可得BD BC +,再利用二倍角公式化简,结合二次函数性质可得最值.【详解】如图所示,设22A D θ∠=∠=,在ABC 中,由8AB AC ==,则ππ22A ABC ACB θ-∠∠=∠==-,再由正弦定理得sin sin BC ABA ACB=∠,即8πsin 2sin 2BCθθ=⎛⎫- ⎪⎝⎭,则8sin 216sin cos BC θθθ==,又在ACD 中,由正弦定理得sin sin AD ACACD D=∠∠,即()8sin π2sin AD θθθ=--,即()()2284sin cos sin 8sin cos 2sin 2cos 8sin 332cos 8sin sin sin AD θθθθθθθθθθθθ-+====-,所以2232cos 16sin 1632sin 16sin 16BD BC AD BC AB θθθθ+=+-=+-=-++,又0π02π0π3πθθθ<<⎧⎪<<⎨⎪<-<⎩,即π03θ<<,sin 0,2θ⎛⎫∈ ⎪ ⎪⎝⎭,设sin 0,2t θ⎛⎫=∈ ⎪ ⎪⎝⎭,则22132161632184BD BC t t t ⎛⎫+=-++=--+ ⎪⎝⎭,所以当1sin 4t θ==时,BD BC +取得最大值为18,故答案为:18.四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.已知()()()2,,3,5,a m b m m ==--∈R(1)若a b a b +=-,求实数m 的值.(2)已知向量,a b的夹角为钝角,求实数m 的范围.【答案】(1)67m =(2)6{|7m m >且5}m ≠.【解析】【分析】(1)对a b a b +=- 两边平方化简可得0a b ⋅= ,然后将坐标代入可求出实数m 的值;(2)由题意可得0a b ⋅<且,a b不共线,从而可求出实数m 的范围.【小问1详解】因为a b a b +=- ,所以22a b a b +=- ,所以222222aa ab b a b b -= ,所以0a b ⋅=,因为()()2,,3,5a m b m ==--,所以6250a b m m ⋅=--= ,解得67m =;【小问2详解】根据题意,向量a 与b的夹角为钝角,则有()6701030a b m m m ⎧⋅=-<⎪⎨---≠⎪⎩.解得:67m >且5m ≠,即m 的取值范围为6{|7m m >且5}m ≠.16.已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图像如图所示.(1)求函数()f x 的解析式及对称中心;(2)求函数()f x 在ππ,122⎡⎤⎢⎥⎣⎦上的值域.(3)先将()f x 的图像纵坐标缩短到原来的12倍,再向左平移π12个单位后得到()g x 的图像,求函数()y g x =在π,π2x ⎡⎤∈-⎢⎥⎣⎦上的单调减区间.【答案】(1)()π2sin 23f xx ⎛⎫=- ⎪⎝⎭ ,ππ,0,Z 62k k ⎛⎫+∈ ⎪⎝⎭(2)[]1,2-(3)πππ5π,,,2636⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)根据题意,求得()π2sin 23f xx ⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解;(2)由2ππ,12x ⎡⎤∈⎢⎥⎣⎦,可得22[,33ππ6π-∈-x ,根据三角函数的性质,求得函数()f x 的最值,即可求解;(3)根据三角函数的图象变换,求得()πsin 26g x x ⎛⎫=-⎪⎝⎭,求得函数()f x 的单调递减区间,结合π,π2x ⎡⎤∈-⎢⎥⎣⎦,即可求解.【小问1详解】解:根据函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图像,可得32π5ππ2,4123A ω=⋅=+,所以2ω=,再根据五点法作图,可得5ππ22π,Z 122k k ϕ⨯+=+∈,又因为π<ϕ,可得π3ϕ=-,所以()π2sin 23f xx ⎛⎫=- ⎪⎝⎭ ,令π2π,3x k k Z -=∈,解得ππ,Z 62k x k =+∈,故函数()f x 对称中心为ππ,0,Z 62k k ⎛⎫+∈ ⎪⎝⎭.【小问2详解】解:因为2ππ,12x ⎡⎤∈⎢⎥⎣⎦,可得22[,33ππ6π-∈-x ,当ππ236x -=-时,即π12x =,min π()112f x f ⎛⎫==- ⎪⎝⎭;当ππ232x -=时,即5π12x =,max 5π()212f x f ⎛⎫== ⎪⎝⎭,所以函数()f x 的值琙为[]1,2-.【小问3详解】解:先将()f x 的图像纵坐标缩短到原来的12,可得πsin 23y x ⎛⎫=-⎪⎝⎭的图像,再向左平移π12个单位,得到πππsin 2sin 21236y x x ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图像,即()πsin 26g x x ⎛⎫=- ⎪⎝⎭.令ππ3π2π22π,Z 262k x k k +≤-≤+∈,解得π5πππ,Z 36k x k k +≤≤+∈,可得()g x 的减区间为π5ππ,π,Z 36k k k ⎡⎤++∈⎢⎥⎣⎦,结合π,π2x ⎡⎤∈-⎢⎥⎣⎦,可得()g x 在π,π2⎡⎤-⎢⎥⎣⎦上的单调递减区间为πππ5π,,,2636⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2b C c a +=.(1)求角B ;(2)若D 为AC 的中点,且52BD =,b =3,求ABC 的面积.【答案】(1)3π(2)【解析】【分析】(1)由余弦定理得出角B ;(2)由向量的运算得出2225a c ac ++=,由余弦定理得出229a c ac +-=,进而得出8ac =,最后得出面积.【小问1详解】因为2cos 2b C c a +=,所以222222a b c b a c ab +-⨯=-.即222a cb ac +-=,即2221cos 22a cb B ac +-==又(0,)B π∈,所以3B π=.【小问2详解】由52BD =,得52BD = ,则由平行四边形法则可得,5BA BC += 则22225BA BC BA BC ++⋅=,即2225a c ac ++=①又2222cos b a c ac B =+-,即229a c ac +-=②由①②可得8ac =.则1sin 422ABC S ac B ==⨯=△.18.如图1,四边形ABCD 为菱形,60,ABC PAB ︒∠=△是边长为2的等边三角形,点M 为AB 的中点,将PAB 沿AB 边折起,使3PC =,连接PD ,如图2,(1)证明:AB PC ⊥;(2)求异面直线BD 与PC 所成角的余弦值;(3)在线段PD 上是否存在点N ,使得PB ∥平面MCN ﹖若存在,请求出PNPD的值;若不存在,请说明理由.【答案】(1)证明见解析(2)4(3)存在,PN 13PD =【解析】【分析】(1)由等边三角形的性质可得PM AB ⊥,再由四边形ABCD ,60ABC ∠=︒可得CM AB ⊥,再由线面垂直的判定可得AB ⊥平面PMC ,则AB PC ⊥;(2)在PM 上取点Q ,使得2PQ QM =,设DB MC F = ,连接NF ,,BQ QF ,可证得BFQ ∠或其补角为异面直线BD 与PC 所成的角,然后在 BFQ 中利用余弦定理求解即可;(3)设DB MC F = ,连接NF ,则由线面平行的性质可得PB ∥NF ,从而可找出N 点的位置.【小问1详解】连接PM ,因为PAB 是边长为2的等边三角形,点M 为AB 的中点,所以PM AB ⊥.因为四边形ABCD 为菱形,60ABC ∠=︒,所以ABC 为等边三角形,所以CM AB ⊥,因为PM MC M = ,,PM MC ⊂平面PMC ,所以AB ⊥平面PMC ,因为PC ⊂平面PMC ,所以AB PC⊥【小问2详解】在PM 上取点Q ,使得2PQ QM =,设DB MC F = ,连接NF ,,BQ QF ,因为BM ∥CD ,所以12BF MF BM DF CF CD ===,在PMC △中,12MF QM CF PQ ==,所以QF ∥PC ,所以BFQ ∠或其补角为异面直线BD 与PC 所成的角,因为13QF PC =,所以1313QF =⨯=,又13BF BD ====BQ ===,在 BFQ中,由余弦定理得22244133cos 24233BF QF BQ BFQ BF FQ +-+-∠==⋅,所以异面直线BD 与PC 所成角的余弦值为34.【小问3详解】假设线段PD 上存在点N ,使得PB ∥平面MCN ,因为PB ∥平面MNC ,PB ⊂平面PBD ,平面PBD 平面MNC NF =,所以PB ∥NF ,又12BF BM DF CD ==,所以12BF PN FD ND ==.所以线段PD 上存在点N ,使得PB ∥平面MNC ,且PN 13PD =.19.我们把由平面内夹角成60︒的两条数轴Ox ,Oy 构成的坐标系,称为“创新坐标系”.如图所示,1e ,2e分别为Ox ,Oy 正方向上的单位向量.若向量12OP xe ye =+ ,则称有序实数对{},x y 为向量OP 的“创新坐标”,可记作{},OP x y = .(1)已知{}1,1a = ,{}2,3b = ,{}1,2c =- ,设c xa yb =+ ,求x y +的值.(2)已知{}11,a x y = ,{}22,b x y = ,求证://a b 的充要条件是12210x y x y -=.(3)若向量a ,b 的“创新坐标”分别为{}sin ,1x ,{}cos ,1x ,已知()f x a b =⋅ ,x ∈R 求函数()f x 的最小值.【答案】(1)4-(2)证明见解析(3)()min 38f x =【解析】【分析】(1)根据向量线性运算的运算律可得解;(2)根据向量共线定理可得证;(3)根据向量数量积的运算律结合三角函数与二次函数性质可得最值.【小问1详解】由已知{}1,1a = ,{}2,3b = ,{}1,2c =- ,即12a e e =+ ,1223b e e =+ ,122c e e =-+ ,又c xa yb =+,即2132x y x y +=-⎧⎨+=⎩,解得73x y =-⎧⎨=⎩,所以4x y +=-;【小问2详解】由{}11,a x y = ,{}22,b x y = ,则1112a x e y e =+ ,2122b x e y e =+ ,当0b = 时,//a b 的充要条件是12210x y x y -=;当0b ≠ 时,若//a b 时,a b λ= ,即1212x x y y λλ=⎧⎨=⎩,则1221x y x y λλ=,又λ不恒为0,所以1221x y x y =,即12210x y x y -=,所以12210x y x y -=是//a b 的必要条件;若12210x y x y -=时,2211x y x y λ==,则()212211111112b x e y e x e y e x e y e a λλλλ=+=+=+= ,即//a b,所以12210x y x y -=是//a b 的充分条件;综上所述,//a b的充要条件是12210x y x y -=;【小问3详解】1e ,2e 分别为Ox ,Oy 正方向上的单位向量,且夹角成60︒,则12121cos 602e e e e ⋅=⋅⋅︒=,所以2212112122112122a b x x e x y e e x y e e y y e ⋅=+⋅+⋅+ ()1212211212x x x y x y y y =+++,所以()()1sin cos sin cos 12f x a b x x x x =⋅=+++设πsin cos 4x x x t ⎛⎫+=+= ⎪⎝⎭,则t ⎡∈⎣,且21sin cos 2t x x -=,所以当12t =-时,min 38y =,即()min 38f x =.。

辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)

辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)

大连市2023~2024学年度第二学期期末考试高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效;2、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数满足,则( )A B. C.D.2. 已知,则的值为( )A.B. 3C. D. 3. 已知圆锥的底面半径是1,则圆锥的侧面积是( )A. B.C.D. 4. 下列四个函数中,以为最小正周期,且为奇函数的是( )A. B. C. D. 5. 将函数图象上所有点向右平移个单位,得到函数的图象,则图象的一条对称轴为( )A. B. C. D. 6. 设,是两个不重合平面,,是两条不重合直线,则( )A. 若,,则 B. 若,,则C. 若,,,则 D. 若,,,则7. 已知平面直角坐标系内点,为原点,线段绕原点按逆时针方向旋且长度变为原来的一半,得到线段,若点的纵坐标为,则( ).的z ()1i 1z -=z =i1i+1i 211i 22+tan 2α=sin cos sin cos αααα+-1313-3-π4π2πππsin 22y x ⎛⎫=-⎪⎝⎭πcos 22y x ⎛⎫=+⎪⎝⎭()tan 2πy x =+()sin 2πy x =-()sin2f x x =π8()g x ()g x π8x =-π8x =3π16x =5π16x =αβm l //l αm α⊂//m l //m ααβ⊥m β⊥m α⊥l β⊥//m l //αβαβ⊥//m αl //βm l⊥A O OA (0π)αα<<OA 'A '513cos α=A.B.C.D.8. 已知中,,,为所在平面内一点,,则的最小值为( )A B. C. 0 D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知复数,,则下列说法正确是( )A. 若,则的共轭复数为B. 若为纯虚数,则C. 若,则D. 10. 已知角的顶点与坐标原点重合,角的始边落在轴的正半轴上,如果是角终边上不同于坐标原点的任意一点,记,当角的终边不在轴上时,称为角的正割,记作.则下列说法正确的是( )A. B. 函数的最小正周期为,其图象的对称轴为C. (其中和的取值使各项都有意义)D. 在锐角中,角,,的对边分别为,,,则11. 如图,正三棱台上、下底面边长分别为1和3,侧棱长为2,则下列说法正确的是( ).的的ABC V 4AB =3AC =2AB AC +=P ABC V 8AP AB ⋅=PA PC ⋅ 5-14-741z 2z 132i z =+1z 32i -()()()11i m m m -++∈R 1m =12z z =12z z =1212z z z z =ααx (),P x y αr =αy rxαsec απsec23=()sec f x x =2πππ(Z)2x k k =+∈()sec sec sec 1tan tan αβαβαβ+=-αβABC V A B C a b c sec sec b c a B C=+111ABC A B C -A.B. 若过点的平面与平面平行,则平面C. 若点在棱上,则的最小值为D.第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)12. 已知向量,,若,则实数____.13. 已知函数在上单调递增,则的最大值为____.14. 已知矩形中,,,将沿折至,得到三棱锥,则该三棱锥体积的最大值为____;该三棱锥外接球的表面积为____.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知,角,,的对边分别为,,.(1)求角的大小;(2)若,,求的面积.16. 如图,在直三棱柱中,,.(1)求证:平面平面;(2)求证:.17. 如图,某沿海地区计划铺设一条电缆联通,两地,地位于岸边东西方向的直线上,地1C α11ABB A αP 1BB AP CP +()3,a x = ()1,1b =- a b ⊥x =()π2sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π0,4⎡⎤⎢⎥⎣⎦ωABCD 4AB =3AD =ACD V AC ACD '△D ABC '-ABC V A B C a b c cos sin B b A =B 7b =13a c +=ABC V 111ABC A B C -1AB BB =AB BC ⊥1A BC ⊥11ABB A 11AC A B ⊥M N M AB N位于海上一个灯塔处,在地用测角器测得的大小,设,已知.在地正东方向的点处,用测角器测得.在直线上选一点,设,且,先沿线段在地下铺设电缆,再沿线段在水下铺设电缆.已知地下、水下的电缆铺设费用分别为3万元,6万元.(1)求,两点间的距离;(2)设铺设电缆总费用为.①求的表达式;②求铺设电缆总费用的最小值,并确定此时的长度.18. 如图,在四棱锥中,底面为菱形,,,为的中点.(1)证明:平面;(2)若,.①求二面角的余弦值;②求直线与平面所成角的正弦值.19. 已知函数,,若对于任意实数,,,都能构成三角形的三条边长,则称函数为上的“完美三角形函数”.(1)试判断函数是否为上的“完美三角形函数”,并说明理由;(2)设向量,,若函数为上的“完美三角形函数”,求实数的取值范围;M NMB ∠0NMB ∠α=05tan 12α=M 7km 5P π4NPB ∠=AB Q NQB ∠α=0π2αα<≤MQ QN /km /km M N ()f α()fαMQ P ABCD -ABCD 60∠= BAD PA PD ⊥E PC //PA BDE PA PB ==2PD =P AD B --BC ABP ()y f x =x D ∈a b c ∈,,D ()f a ()f b ()f c ()y f x =D ()215cos sin 4f x x x =++R ()2sin 2cos m k x x = ,()cos 2cos n x k x = ,()21g x m n k =⋅-+ π0,4⎡⎤⎢⎥⎣⎦k(3)已知函数为(为常数)上的“完美三角形函数”.函数的图象上,是否存在不同的三个点,满足,?若存在,求的值;若不存在,说明理由.()πsin 26h x x ⎛⎫=+⎪⎝⎭π,6θ⎡⎤⎢⎥⎣⎦θ()h x ()()()111123,A x h x i =,,1322x x x +=()()()132h x h x x +=()13cos x x -大连市2023~2024学年度第二学期期末考试高一数学答案第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】D二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】AC【11题答案】【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)【12题答案】【答案】3【13题答案】【答案】【14题答案】【答案】①.②. 四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)证明略 (2)证明略【17题答案】【答案】(1); (2)①;②万元,.【18题答案】【答案】(1)证明略 (2)①;②【19题答案】【答案】(1)是,理由略(2)(3)不存在,理由略.2324525ππ3B =13km 5()()032cos 36π(5sin 2fααααα-=+<≤365+12513122⎛⎫ ⎪ ⎪⎝⎭。

2023-2024学年高一下学期期末考试数学试卷

2023-2024学年高一下学期期末考试数学试卷

秘密★启用前【考试时间:2024年6月18日14:00-16:00】2023~2024学年度下期高中2023级期末联考数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1cos 2α=,则cos2α=( )12 D.12−2.MN PQ MP −−=( )A.QNB.NQC.PMD.MP3.在ABC 中,3,4,5AB BC AC ===,则CB CA ⋅=( )A.-16B.16C.32D.-324.一个水平放置的平面图形OABC 按斜二测画法得到的直观图O A B C ′′′′如图所示.知24,O A C B O C A B ′===′′′′′′′,则平面图形OABC 的面积为( )A.3B.6C. 5.把函数()sin f x x =的图象向左平移π6个单位长度,再把横坐标变为原来的6π倍(纵坐标不变),得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A.函数()y g x =的最小正周期6T = B.函数()y g x =在区间()2,8上单调递减C.函数()2y g x =+是奇函数 D.函数()2y g x =+在区间[]3,4上的最大值为126.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24小时降雨量的等级划分如下: 24小时降雨量(精确到0.1)0.1~9.910.024.9∼25.049.9∼50.0~99.9降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱180mm AA =的三棱柱容器收集的24小时的雨水如图所示,当侧面11AA B B 水平放置时,水面恰好过1111,,,AC BC AC B C 的中点.则这24小时的降雨量的等级是( )A.小雨B.中雨C.大雨D.暴雨7.如图,圆锥PO 的底面直径和高均为12,过PO 上一点O ′作平行于底面的截面,以该截面为底面挖去一个圆柱,我们称该圆柱为圆锥的内接圆柱.则该圆锥的内接圆柱侧面积的最大值为( )A.12πB.24πC.36πD.72π8.在ABC 中,4AB AC BC ===,点P 满足BP tBC =,且1AP BC BC⋅=,则t =( ) A.34 B.14 C.34− D.14−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是平面,若m ∥,n αα⊂,则,m n 的关系可能为( )A.平行B.垂直C.相交D.异面10.ABC 的内角,,A B C 的对边分别为,,a b c ,下列结论正确的是( ) A.若222sin sin sin sin sin A B C B C =+−,则角π3A =B.存在,,A B C ,使tan tan tan tan tan tan A B C A B C ++>成立C.若sin2sin2A B =,则ABC 为等腰或直角三角形D.若30ab A ,则ABC 有两解 11.如图,在正方体1111ABCD A B C D −中,E 为棱AB 上的动点,DF ⊥平面1,D EC F 为垂足,下列结论正确的是( )A.1FD FC =B.三棱锥1C DED −的体积为定值C.11ED A D ⊥D.1BC 与AC 所成的角为45三、填空题:本题共3小题,每小题5分,共15分.12.已知,a b为共线向量,且()()()3,1,,2ab x x =∈R ,则x =__________.13.在ABC 中,,D E 分别为,AC BC 的中点,AE 交BD 于点M .若2,4AB AC ==,π3BAC ∠=,则cos EMD ∠=__________.14.降维类比和升维类比主要应用于立体几何的学习,将空间三维问题降为平面二维或者直线一维问题就是降维类比.平面几何中多边形的外接圆,即找到一点,使得它到多边形各个顶点的距离相等.这个点就是外接圆的圆心,距离就是外接圆的半径.若这样的点存在,则这个多边形有外接圆,若这样的点不存在,则这个多边形没有外接圆.事实上我们知道,三角形一定有外接圆,如果只求外接圆的半径,我们可通过正弦定理来求,我们也可以关注九年义教初中《几何》第三册第94页例2.的结论:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.借助求三角形外接圆的方法解决问题:若等腰梯形ABCD 的上下底边长分别为6和8,高为1,这个等腰梯形的外接圆半径为__________;轴截面是旋转体的重要载体,圆台的轴截面中包含了旋转体中的所有元素:高、母线长、底面圆的半径,通过研究其轴截面,可将空间问题转化为平面问题.观察图象,通过类比,我们可以找到一般圆台的外接球问题的研究方法,正棱台可以看作由圆台切割得到.研究问题:如图,正三棱台的高为1,上、下底面边长分别为和一球面上,则该球的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1111ABCD A B C D −是棱长为2的正方体.(1)求三棱锥11D A BC −的体积;(2)若N 是1D C 的中点,M 是1BC 的中点,证明:NM ∥平面ABCD .16.(15分)已知向量,a b 满足,4,a b == ,且a 在b 上的投影向量为b − . (1)求,a b 及a b ⋅ 的值;(2)若()()2a b a b λ−⊥+,求λ的值.17.(15分)记ABC 的内角,,A B C 的对边分别为,,a b c ,若cos πsin 2cos 6BC A=−,且sin 2sin b C B =. (1)求A 及c ;(2)若点D 在边BC 上,且3,BC BD AD ==ABC 的面积. 18.(17分)在平行四边形ABCD 中,2,45,,AB ADA E F == 分别为,AB AD 的中点,将三角形ADE 沿DE 翻折,使得二面角A ED C −−为直二面角后,得到四棱锥A EBCD −.(1)求证:EF ∥平面ABC ;(2)求证:平面AED ⊥平面ACD ; (3)求EC 与平面ACD 所成角的正弦值. 19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于120 的ABC 内部有一点P ,连接,,PA PB PC ,求PA PB PC ++的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将APC 绕点C 顺时针旋转60 ,得到EDC ,连接,PD BE ,则BE 的长即为所求,此时与三个顶点连线恰好三等分费马点P 的周角.同时小组成员研究教材发现:已知对任意平面向量(),AB x y = ,把AB绕其起点沿逆时针方向旋转θ角得到向量()cos sin ,sin cos AQ x y x y θθθθ=−+.(1)已知平面内点()(1,2,12A B +−,把点B 绕点A 沿顺时针方向旋转π4后得到点P ,求点P 的坐标;(2)在ABC 中,30,12,5ACB BC AC ∠===,借助研究成果,直接写出PA PB PC ++的最小值;(3)已知点()()()1,0,1,0,0,2A B C −,求ABC 的费马点P 的坐标.。

福建省漳州市2023-2024学年高一下学期7月期末考试 数学含答案

福建省漳州市2023-2024学年高一下学期7月期末考试 数学含答案

漳州市2023-2024学年(下)期末高中教学质量检测高一数学试题(答案在最后)(考试时间:120分钟满分:150分)考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将答题卡交回.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()1i 2i z +=,其中i 为虚数单位,则z =()A.1C.2D.2.设x ∈R ,向量()(),1,2,4a x b ==- ,且a b ⊥ ,则a b += ()A.3B.5C.9D.253.某校在五四青年节举行了班班有歌声比赛.现从该校随机抽取20个班级的比赛成绩,得到以下数据,由此可得这20个比赛成绩的第80百分位数是()比赛成绩678910班级数35444A.8.5B.9C.9.5D.104.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是()A.若,m αβ⊥∥α,则m β⊥B.若m ∥,n αα⊥,则m n ⊥C.若,m n n α⊥⊥,则m ∥αD.若α∥,,m m βα⊂∥n ,则n ∥β5.某校高一、高二、高三的学生志愿者人数分别为100,100,50.按学生所在年级进行分层,用分层随机抽样的方法从中抽取5名学生去敬老院献爱心.从这5人中随机抽取2人作为负责人,则2名负责人来自不同年级的概率为()A.15B.25C.35D.456.如图,在ABC 中,3AB AD =,点E 是CD 的中点.设,AB a AC b ==,则AE =()A.1162a b +B.1132a b +C.1162a b-+ D.1162a b - 7.如图,A O B ''' 是由斜二测画法得到的AOB 水平放置的直观图,其中2O A O B '=''=',点C '为线段A B ''的中点,C '对应原图中的点C ,则在原图中下列说法正确的是()A.0OC AB ⋅=B.AOB 的面积为2C.OC 在OB 上的投影向量为2OBD.与AB 同向的单位向量为10AB8.威镇阁坐落于漳州市区战备大桥引桥左侧,是漳州市的标志性建筑之一.某同学为测量威镇阁的高度MN ,在威镇阁的正北方向找到一座建筑物AB ,高约为26m ,在地面上点C 处(,,B C N 三点共线)测得建筑物顶部A ,威镇阁顶部M 的仰角分别为30 和45 ,在A 处测得威镇阁顶部M 的仰角为15 ,威镇阁的高度约为()A.65mB.60mC.52mD.45m二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知甲、乙两位同学在高一年六次考试中的数学成绩的统计如图所示,下列说法正确的是()A.若甲、乙两组数据的平均数分别为12,x x ,则12x x >B.若甲、乙两组数据的方差分别为2212,s s ,则2212s s >C.甲成绩的中位数大于乙成绩的中位数D.甲成绩的极差小于乙成绩的极差10.在复平面内,下列说法正确的是()A.复数12i z =-,则z 在复平面内对应的点位于第四象限B.232024i i i i 0++++= C.若复数12,z z 满足1212z z z z +=-,则120z z =D.若1z =,则1i z ++1+11.已知正方体1111ABCD A B C D -的棱长为1,,E F 分别为1,BB BC 的中点,下列说法正确的是()A.直线1A D 与平面1D EF 平行B.直线EF 与平面ABCD 所成的角为60C.异面直线1AC 与BD 所成角的余弦值为2D.若点G 是该正方体表面及其内部的一个动点,且AG ∥平面1BDC ,则线段CG 的长的取值范围是3⎡⎢⎣三、填空题:本题共3小题,每小题5分,共15分.12.,上、下底面半径分别为2,3,则该圆台的体积为__________.13.复数1+是方程()20,x px q p q ++=∈R 的一个根,则p q +=__________.14.二面角l αβ--为π,,,3A l D B C β∈∈、为线段AD 的三等分点,且AD =D 到l 的距离为3.若P 为平面α内一动点,则BPC ∠最大时,cos BPC ∠的值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数()12121i ,12i,z b b z z z =+∈=+R 为纯虚数.(1)求b 的值;(2)在复平面内,若12,z z 对应的向量分别为,OA OB,其中O 为原点,求cos ,OA OB .16.(15分)漳州古城有着上千年的建城史,是国家级闽南文化生态保护区的重要组成部分,并人选首批“中国历史文化街区”.五一假期来漳州古城旅游的人数创新高,单日客流峰值达20万人次.为了解游客的旅游体验满意度,某研究性学习小组用问卷调查的方式随机调查了100名游客,该兴趣小组将收集到的游客满意度分值数据(满分100分)分成六段:[)[)[]40,50,50,60,,90,100⋯得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值,并估计100名游客满意度分值的众数和中位数(结果保留整数);(2)已知满意度分值落在[)70,80的平均数175z =,方差219s =,在[)80,90的平均数为285z =,方差224s =,试求满意度分值在[)70,90的平均数z 和方差2s .17.(15分)如图1,在直角三角形P BC '中,90,,P CB A D ∠=' 分别为,P B P C ''的中点,将P AD ' 沿AD 折起,形成四棱锥P ABCD -,如图2.点,,E F M 分别为,,PB BC PD 的中点,设平面PAB 与平面PCD 的交线为l .(1)求证:l ∥平面AEF ;(2)求证:l BC ⊥;(3)过点,,A E M 的平面交PC 于点N ,求PNNC的值.18.(17分)孟德尔在观察踠豆杂交时发现了以下规律:㱧豆的各种性状是由其遗传因子决定的.以子叶颜色为例,踠豆的子叶分黄、绿两种颜色,其中黄色为显性性状,绿色为隐性性状.我们用DD 表示子叶为黄色的踠豆的遗传因子对,用dd 表示子叶为绿色的踠豆的遗传因子对.当这两种踠豆杂交时,父本的其中一个遗传因子与母本的其中一个遗传因子等概率随机组合,子一代的遗传因子对全部为Dd ,如下图所示,其中D 为显性遗传因子,d 为隐性遗传因子.当生物的遗传因子对中含有显性遗传因子时呈现显性性状,否则呈现隐性性状.例如:DD,Dd 均指示黄色子叶,dd 指示绿色子叶.我们称以上定律为孟德尔定律.已知人的单、双眼皮性状服从孟德尔定律,其中双眼皮是显性性状,记其遗传因子对为AA 或Aa ;单眼皮是隐性性状,记其遗传因子对为aa .若仅考虑眼皮性状,已知甲的母亲、父亲、伯父、姑父、姑母的遗传因子对均为Aa ,伯母为单眼皮.(1)求甲和堂弟都是单眼皮的概率;(2)求甲和堂弟、表妹三人中至少两人为单眼皮的概率.19.(17分)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”有一个题目:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”这就是秦九韶推出的“三斜求积”公式.若ABC 的内角,,A B C 的对应边分别为,,a b c ,面积为S ,则“三斜求积”公式为S =(1)用“三斜求积”公式证明1sin 2S ac B =;(2)若2b =cos B C c ⋅+=,求ABC 面积的最大值;(3)定义:四面体中,若异面棱长相等的四面体为等腰四面体.设等腰四面体E FGH -的外接球表面积为1,S FGH 的外接圆面积为2S .已知,FG a FH b ==,且()()()()()222222222222222222222,xy z y zz x x y y z zx xy x y z x y b ++++=+++++=,222y z a +=,试用,,x y z 表示21S S ,并求21S S 的取值范围.漳州市2023-2024学年(下)期末高中教学质量检测高一数学参芳答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数4.只给整数分数.选择题和填空题不给中间分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)12345678BBCBDADC二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACDBDAD三、填空题:本题共3小题,每小题5分,共15分.12.19π313.114.2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解:(1)因为121i,12i z b z =+=+,所以()()()()2121i 12i 12i i 2i 122i z z b b b b b =++=+++=-++,因为12z z 为纯虚数,所以120,20,b b -=⎧⎨+≠⎩解得12b =.(2)由(1)得111i 2z =+,又212i z =+,所以12,z z 在复平面内对应点的坐标分别为11,2A ⎛⎫⎪⎝⎭和()1,2B ,所以()11,,1,22OA OB ⎛⎫== ⎪⎝⎭cos ,||||OA OBOA OB OA OB ⋅=4.5=16.解:(1)由频率分布直方图可得,()0.0050.0120.020.025101a +⨯+++⨯=,解得0.03a =,由频率分布直方图可估计众数为85.满意度分值在[)40,80的频率为()0.0050.0120.02100.450.5+⨯+⨯=<,在[)40,90的频率为()0.0050.0120.020.03100.750.5+⨯++⨯=>,所以中位数落在区间[)80,90内,所以中位数为0.50.452458010820.33-+⨯=≈.(2)由频率分布直方图得,满意度分值在[)70,80的频率为0.02100.2⨯=,人数为20;在[)80,90的频率为0.03100.3⨯=,人数为30,把满意度分值在[)70,80记为1220,,,x x x ,其平均数175z =,方差219s =,在[)80,90记为1230,,,y y y ,其平均数285z =,方差224s =,所以满意度分值在[)70,90的平均数12203020753085815050z z z +⨯+⨯===,根据方差的定义,满意度分值在[)70,90的方差为()()203022211150i j i j s x z y z==⎡⎤=-+-⎢⎥⎣⎦∑∑()()203022112211150i j i j x z z z y z z z ==⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑由()20201111200iii i x z x z==-=-=∑∑,可得()()()()2020111111220ii i i x z zz z z x z ==--=--=∑∑,同理可得()()3022120jj yz z z =--=∑,因此,()()()()202030302222211221111150i j i i j j s x z z z y z z z====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑()()2222112220305050s z z s z z ⎡⎤⎡⎤=+-++-⎣⎦⎣⎦2220309(7581)4(8581)305050⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦17.解法一:(1)取PC 中点G ,连接,DG EG,如图所示,因为E 是PB 中点,所以EG 为PBC 的中位线,所以EG ∥1,2BC EG BC =,因为AD ∥1,2BC AD BC =,所以AD ∥,EG AD EG =,所以四边形ADGE 是平行四边形,所以AE ∥DG ,因为DG ⊂平面,PCD AE ⊄平面PCD ,所以AE ∥平面PCD ,又AE ⊂平面PAB ,平面PAB ⋂平面PCD l =,所以AE ∥l ,因为AE ⊂平面,AEF l ⊄平面AEF ,所以l ∥平面AEF .(2)在P BC ' 中,,A D 分别为,P B P C ''的中点,所以AD 为P BC ' 的中位线,所以AD ∥BC ,因为90P CB ∠=' ,即P C BC '⊥,所以AD P C ⊥',所以翻折后,,AD PD AD CD ⊥⊥,因为,PD CD D PD ⋂=⊂平面PCD ,CD ⊂平面PCD ,所以AD ⊥平面PCD ,所以BC ⊥平面PCD ,因为平面PAB ⋂平面PCD l =,所以l ⊂平面PCD ,所以l BC ⊥.(3)由(1)知,AE ∥平面PCD ,因为平面AENM ⋂平面PCD MN =,AE ⊂平面AENM ,所以AE ∥MN ,所以MN ∥DG ,因为M 是PD 中点,所以N 是PG 中点,所以13PN NC =.解法二:(1)如图,延长,CD BA 交于点Q ,连接PQ ,则直线PQ 即为交线l .(理由如下:因为CD AB Q ⋂=,所以,Q CD Q AB ∈∈,因为CD ⊂平面,PCD AB ⊂平面PAB ,所以Q ∈平面PCD ,Q ∈平面PAB ,又P ∈平面,PCD P ∈平面PAB ,所以平面PAB ⋂平面PCD PQ =.)在P BC ' 中,,A D 分别为,P B P C ''的中点,所以AD 为P BC ' 的中位线,所以AD ∥BC ,且12AD BC =,所以A 为BQ 中点.因为E 为PB 中点,所以AE 为PBQ 的中位线,所以AE ∥,PQ 因为AE ⊂平面,AEF PQ ⊄平面AEF ,所以PQ ∥平面AEF ,即l ∥平面AEF .(2)同解法一.(3)取PC 中点G ,连接,DG EG ,因为E 是PB 中点,所以EG ∥1,2BC EG BC =,因为AD ∥1,2BC AD BC =,所以,AD EG AD =∥EG ,所以四边形ADGE 是平行四边形,所以AE ∥DG ,因为DG ⊂平面,PCD AE ⊄平面PCD ,所以AE ∥平面PCD ,因为平面AENM ⋂平面,PCD MN AE =⊂平面AENM ,所以AE ∥MN ,所以MN ∥DG ,因为M 是PD 中点,所以N 是PG 中点,所以13PN NC =.18.解:(1)设事件A =“甲为单眼皮”,事件B =“堂弟为单眼皮”,事件,A B 为相互独立事件,事件AB =“甲和堂弟都是单眼皮”,因为甲的母亲、父亲的遗传因子对均为Aa ,所以甲的遗传因子有三种类型:AA,Aa ,aa ,其中AA ,aa 出现的概率都是14,Aa 出现的概率为12,甲为单眼皮时,遗传因子为aa ,所以()14P A =,因为伯父遗传因子对为Aa ,伯母遗传因子对为aa ,所以堂弟的遗传因子有两种类型:Aa ,aa .其中Aa ,aa 出现的概率均为12,所以堂弟为单眼皮的概率()12P B =,故甲和堂弟都是单眼皮的概率()()()111428P AB P A P B ==⨯=.(2)设事件C =“表妹为单眼皮”,则,,,,,A B C A B C 相互独立,事件ABC =“甲和堂弟单眼皮,表妹双眼皮”,事件ABC =“甲和表妹单眼皮,堂弟双眼皮”,事件ABC =“表妹和堂弟单眼皮,甲双眼皮”,事件ABC =“甲和堂弟、表妹都是单眼皮”,则事件,,,ABC ABC ABC ABC 两两互斥,因为1331(),(),(,()4442P C P C P A P B ====,所以1133(()()()42432P ABC P A P B P C ==⨯⨯=,1111()()()()42432P ABC P A P B P C ==⨯⨯=,3113(()()(),42432P ABC P A P B P C ==⨯⨯=,1111()()()(),42432P ABC P A P B P C ==⨯⨯=,所以甲和堂弟表妹三人中至少两人为单眼皮的概率为()()()()()P ABC ABC ABC ABC P ABC P ABC P ABC P ABC +++=+++31311.323232324=+++=19.解法一:(1)证明:由余弦定理得222cos 2a c b B ac+-=,所以2222cos a c b ac B +-=,所以S ===1sin 2ac B ==所以1sin 2S ac B =得证.(2cos B C c ⋅+=,由余弦定理得,22222222a c b a b c c ac ab+-+-⋅+=因为2b =,代入上式化简得22ac =,所以c =,所以S ====所以当2a =时,ABC (3)由题意,等腰四面体可补形成与其共外接球的长方体,设GH c =,则222z x c +=,设等腰四面体的外接球半径为R ,所以R =所以()222214ππS R x y z ==++,在FGH 中,由余弦定理得222cos 2a b c F ab+-=,222222sin 1cos 12a b c F F ab ⎛⎫+-=-=- ⎪⎝⎭()()()()4222222222222221y x y x z y z y z x y y z x y ++=-=++++所以sin F =设FGH 的外接圆半径为r,由正弦定理得2sin c r F =,所以2sin c r F==,所以()()()()22222222222222ππ4y z z x x y S r y z z x x y +++==++,所以()()()()()222222222222222214y z z x x y S S y z z x x y x y z +++=++++,因为()()()()()222222222222222222x y z y z z x x y y z z x x y x y z ++++=++++,所以()()()()()()2222222222222222144y z z x x y S S y z z x x y x y z +++=++++,所以()()()()()()2222222221222222244y z z x x y x y z S S y z z x x y ++++=+++()()()22222222244x y z yz z x x y =++++因为2222222,2,2x y xy y z yz z x xz +++ ,所以()()()2222222228y z z x x y x y z +++ ,所以()()()222222222412x y z y z z x x y +++ ,所以()()()2222222224942x y z yz z x x y ++++ ,当且仅当x y z ==时,等号成立,又因为()()()22222222240x y z y z z x x y >+++,所以()()()222222222444x y z y z z x x y +>+++,所以()()()22222222249442x y z y z z x x y <++++ ,即12942S S < ,所以212194S S < ,所以21S S 的取值范围为21,94⎡⎫⎪⎢⎣⎭.解法二:(1)同解法一.(2)因为2sin sin sin a b c R A B C===,所以2sin ,2sin c R C b R B ==,因为cos b B C c =⋅+=,cos cos B C c ⋅=,2sin cos 2sin cos 2sin R C B R B C R C +=,()sin C B C +=sin A C =,所以22c R R=,所以c =,所以S ===所以当2a =时,ABC(3)由题意,等腰四面体可补形成与其共外接球的长方体,设GH c =,则222z x c +=,设等腰四面体的外接球半径为R ,所以R =所以()222214ππS R x y z ==++,又因为FGH S ===设FGH 的外接圆半径为r ,由正弦定理得2sin c r F =,因为1sin 2FGH S ab F = ,所以2sin FGH S F ab = ,代入,22FGHabcr S ==所以()()()()22222222222222ππ4y z z x x y Sr y z z x x y +++==++,下同解法一.。

高一数学下册期末试卷及答案

高一数学下册期末试卷及答案

高一数学下册期末试卷及答案心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面给大家分享一些关于高一数学下册期末试卷及答案,希望对大家有所帮助。

一.选择题1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为( )A.-1B.0C.3D.不确定[答案] B[解析] 因为f(x)是奇函数,其图象关于原点对称,它有三个零点,即f(x)的图象与x轴有三个交点,故必有一个为原点另两个横坐标互为相反数.∴x1+x2+x3=0.2.已知f(x)=-x-x3,x∈[a,b],且f(a)?f(b)<0,则f(x)=0在[a,b]内( )A.至少有一实数根B.至多有一实数根C.没有实数根D.有惟一实数根[答案] D[解析] ∵f(x)为单调减函数,x∈[a,b]且f(a)?f(b)<0,∴f(x)在[a,b]内有惟一实根x=0.3.(09?天津理)设函数f(x)=13x-lnx(x>0)则y=f(x)( )A.在区间1e,1,(1,e)内均有零点B.在区间1e,1,(1,e)内均无零点C.在区间1e,1内有零点;在区间(1,e)内无零点D.在区间1e,1内无零点,在区间(1,e)内有零点[答案] D[解析] ∵f(x)=13x-lnx(x>0),∴f(e)=13e-1<0,f(1)=13>0,f(1e)=13e+1>0,∴f(x)在(1,e)内有零点,在(1e,1)内无零点.故选D.4.(2010?天津文,4)函数f(x)=ex+x-2的零点所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)[答案] C[解析] ∵f(0)=-1<0,f(1)=e-1>0,即f(0)f(1)<0,∴由零点定理知,该函数零点在区间(0,1)内.5.若方程x2-3x+mx+m=0的两根均在(0,+∞)内,则m的取值范围是( )A.m≤1B.0C.m>1D.0[答案] B[解析] 设方程x2+(m-3)x+m=0的两根为x1,x2,则有Δ=(m-3)2-4m≥0,且x1+x2=3-m>0,x1?x2=m>0,解得06.函数f(x)=(x-1)ln(x-2)x-3的零点有( )A.0个B.1个C.2个D.3个[答案] A[解析] 令f(x)=0得,(x-1)ln(x-2)x-3=0,∴x-1=0或ln(x-2)=0,∴x=1或x=3,∵x=1时,ln(x-2)无意义,x=3时,分母为零,∴1和3都不是f(x)的零点,∴f(x)无零点,故选A.7.函数y=3x-1x2的一个零点是( )A.-1B.1C.(-1,0)D.(1,0)[答案] B[点评] 要准确掌握概念,“零点”是一个数,不是一个点.8.函数f(x)=ax2+bx+c,若f(1)>0,f(2)<0,则f(x)在(1,2)上零点的个数为( )A.至多有一个B.有一个或两个C.有且仅有一个D.一个也没有[答案] C[解析] 若a=0,则b≠0,此时f(x)=bx+c为单调函数,∵f(1)>0,f(2)<0,∴f(x)在(1,2)上有且仅有一个零点;若a≠0,则f(x)为开口向上或向下的抛物线,若在(1,2)上有两个零点或无零点,则必有f(1)?f(2)>0,∵f(1)>0,f(2)<0,∴在(1,2)上有且仅有一个零点,故选C.9.(哈师大附中2009~2010高一期末)函数f(x)=2x-log12x的零点所在的区间为( )A.0,14B.14,12C.12,1D.(1,2)[答案] B[解析] ∵f14=214-log1214=42-2<0,f12=2-1>0,f(x)在x>0时连续,∴选B.10.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为( )x -1 0 1 2 3ex 0.37 1 2.72 7.39 20.09A.(-1,0)B.(0,1)C.(1,2)D.(2,3)[答案] C[解析] 令f(x)=ex-x-2,则f(1)?f(2)=(e-3)(e2-4)<0,故选C.二、填空题11.方程2x=x3精确到0.1的一个近似解是________.[答案] 1.412.方程ex-x-2=0在实数范围内的解有________个.[答案] 2三、解答题13.借助计算器或计算机,用二分法求方程2x-x2=0在区间(-1,0)内的实数解(精确到0.01).[解析] 令f(x)=2x-x2,∵f(-1)=2-1-(-1)2=-12<0,f(0)=1>0,说明方程f(x)=0在区间(-1,0)内有一个零点.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)≈0.46>0.因为f(-1)?f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈-0.03>0.因为f(-1)?f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-0.875,-0.75),x0∈(-0.8125,-0.75),x0∈(-0.78125,-0.75),x0∈(-0.78125,-0.765625),x0∈(-0.7734375,-0.765625).由于|(-0.765625)-(0.7734375)|<0.01,此时区间(-0.7734375,-0.765625)的两个端点精确到0.01的近似值都是-0.77,所以方程2x-x2=0精确到0.01的近似解约为-0.77.14.证明方程(x-2)(x-5)=1有两个相异实根,且一个大于5,一个小于2.[解析] 令f(x)=(x-2)(x-5)-1∵f(2)=f(5)=-1<0,且f(0)=9>0.f(6)=3>0.∴f(x)在(0,2)和(5,6)内都有零点,又f(x)为二次函数,故f(x)有两个相异实根,且一个大于5、一个小于2.15.求函数y=x3-2x2-x+2的零点,并画出它的简图.[解析] 因为x3-2x2-x+2=x2(x-2)-(x-2)=(x-2)(x2-1)=(x-2)(x-1)(x+1),所以函数的零点为-1,1,2.3个零点把x轴分成4个区间:(-∞,-1],[-1,1],[1,2],[2,+∞].在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值(取精确到0.01的近似值)表:x … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 …y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 …在直角坐标系内描点连线,这个函数的图象如图所示.16.借助计算器或计算机用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.(精确到0.1)[解析] 原方程为x3-4x2+x+5=0,令f(x)=x3-4x2+x+5.∵f(-1)=-1,f(0)=5,f(-1)?f(0)<0,∴函数f(x)在(-1,0)内有零点x0.取(-1,0)作为计算的初始区间用二分法逐步计算,列表如下端点或中点横坐标端点或中点的函数值定区间a0=-1,b0=0 f(-1)=-1,f(0)=5 [-1,0]x0=-1+02=-0.5f(x0)=3.375>0 [-1,-0.5]x1=-1+(-0.5)2=-0.75 f(x1)≈1.578>0 [-1,-0.75]x2=-1+(-0.75)2=-0.875 f(x2)≈0.393>0 [-1,-0.875]x3=-1-0.8752=-0.9375 f(x3)≈-0.277<0 [-0.9375,-0.875]∵|-0.875-(-0.9375)|=0.0625<0.1,∴原方程在(-1,0)内精确到0.1的近似解为-0.9.17.若函数f(x)=log3(ax2-x+a)有零点,求a的取值范围.[解析] ∵f(x)=log3(ax2-x+a)有零点,∴log3(ax2-x+a)=0有解.∴ax2-x+a=1有解.当a=0时,x=-1.当a≠0时,若ax2-x+a-1=0有解,则Δ=1-4a(a-1)≥0,即4a2-4a-1≤0,解得1-22≤a≤1+22且a≠0.综上所述,1-22≤a≤1+22.18.判断方程x3-x-1=0在区间[1,1.5]内有无实数解;如果有,求出一个近似解(精确到0.1).[解析] 设函数f(x)=x3-x-1,因为f(1)=-1<0,f(1.5)=0.875>0,且函数f(x)=x3-x-1的图象是连续的曲线,所以方程x3-x-1=0在区间[1,1.5]内有实数解.取区间(1,1.5)的中点x1=1.25,用计算器可算得f(1.25)=-0.30<0.因为f(1.25)?f(1.5)<0,所以x0∈(1.25,1.5).再取(1.25,1.5)的中点x2=1.375,用计算器可算得f(1.375)≈0.22>0.因为f(1.25)?f(1.375)<0,所以x0∈(1.25,1.375).同理,可得x0∈(1.3125,1.375),x0∈(1.3125,1.34375).由于|1.34375-1.3125|<0.1,此时区间(1.3125,1.34375)的两个端点精确到0.1的近似值是1.3,所以方程x3-x-1=0在区间[1,1.5]精确到0.1的近似解约为1.3.。

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

广西桂林市2023-2024学年高一下学期期末考试 数学含答案

桂林市2023~2024学年度下学期期末质量检测高一年级数学(答案在最后)(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A .2B.2- C.12D.12-4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.436.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.12-D.12+二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A .12z z = B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D .当容器倾斜如图所示时,2BE BF V ⋅=(定值)三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.14.已知O 为ABC 内一点,且4850OA OB OC ++=,点M 在OBC △内(不含边界),若AM AB AC λμ=+,则λμ+的取值范围是_________.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a =,()2,1b =- .(1)求向量a 与b夹角的余弦值;(2)若向量a b + 与a kb -互相垂直,求k 的值.16.已知函数()π3cos 23f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅=,求ABC 的面积.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.桂林市2023~2024学年度下学期期末质量检测高一年级数学(考试用时120分钟,满分150分)注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的校名、姓名、班级、学号和准考证号填写在答题卡上.将条形码横贴在答题卡的“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i -+在复平面内对应的点所在的象限为()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】由坐标判断象限即可.【详解】复数12i -+在复平面内对应的点的坐标为()1,2-,在第二象限.故选:B2.把2π3弧度化成角度是()A.30︒B.60︒C.90︒D.120︒【答案】D 【解析】【分析】利用弧度制与角度制的转化可得解.【详解】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.已知向量(),1a m = ,()4,2b =- ,且2b a =-r r ,则m =()A.2B.2- C.12D.12-【答案】B 【解析】【分析】将向量坐标代入等式,列出方程,求解即得.【详解】由2b a =-r r 可得(4,2)2(,1)m -=-,解得,2m =-.故选:B .4.已知平面α,β和直线a ,b ,且αβ∥,a α⊂,b β⊂,则a 与b 的位置关系是()A.平行或异面B.平行C.异面D.相交【答案】A 【解析】【分析】结合两平面平行的位置关系,判断两直线没有公共点即得.【详解】因αβ∥,a α⊂,b β⊂,则a 与b 没有公共点,即a 与b 平行或异面.故选:A .5.已知3cos 5α=-,且α为第二象限角,则tan α=()A.34-B.34 C.43- D.43【答案】C 【解析】【分析】应用同角三角函数关系计算求解即可.【详解】因为α为第二象限角,又因为3cos ,5α=-4sin 5α==,所以4sin 45tan 3cos 35ααα===--.故选:C.6.已知圆锥的高为8,底面圆的半径为4,顶点与底面的圆周在同一个球的球面上,则该球的表面积为()A.100πB.68πC.52πD.50π【答案】A 【解析】【分析】根据题意,由条件可得球的半径=5r ,再由球的表面积公式,即可得到结果.【详解】设球的半径为r ,则()22284r r =-+,解得=5r ,所以球的表面积为24π100πr =,故选:A.7.“桂林山水甲天下”,如图,为测量桂林市某公园内一山的高MN ,选择公园内某点A 和另一座山的山顶C 为测量观测点.从A 点测得M 的仰角45MAN ∠=︒,C 点的仰角30CAB ∠=︒以及75MAC ∠=︒,从C 点测得60MCA ∠=︒,已知山高50m BC =,则山高MN =()m .A. B. C.D.【答案】B 【解析】【分析】先由条件求得AC 长,再利用正弦定理求得MA 长,最后在Rt MAN 中求得MN .【详解】在Rt ABC △中,由sin CAB BCAC∠=可得;在MAC △中,由正弦定理,sin sin MA ACMCA AMC =∠∠,即得100sin 60sin(1807560)MA ⨯==--在Rt MAN 中,sin MNMAN AM=∠,则45MN == 故选:B .8.已知圆心角为30︒的扇形AOB 的半径为1,点C 是 AB 上的一点,点D 是线段OA 上的一点,点E 、F 是线段OB 上的两点,且四边形CDEF 为矩形,则该矩形的最大面积为()A.2B.2+C.312-D.12+【答案】C 【解析】【分析】结合图形,设COB θ∠=,将CF ,CD 用θ的三角函数式表示,利用三角恒等变换将矩形面积化成sin(260)2θ+-,利用θ的范围,结合正弦函数的图象特点即可求得其最大值.【详解】如图,设COB θ∠=,则30COA θ∠=- ,(0,30)θ∈ ,sin ,CF θ=由正弦定理,1sin(30)sin150CD θ=- ,解得2sin(30)CD θ=-,故矩形CDEF 的面积为:132sin(30)sin 2(cos sin )sin 22S θθθθθ=-=-213sin cos 3sin 2cos 2)22θθθθθ=-=--3sin(260)2θ=+-,因030θ<< ,则得60260120θ<+< ,故当26090θ+= 时,即15θ= 时,max 312S =-.故选:C.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数11i z =+,21i z =-,则下列说法正确的有()A.12z z =B.12=z z C.12i z z =- D.在复平面内1z ,2z 对应的点关于虚轴对称【答案】AB 【解析】【分析】分别应用共轭复数、复数的模、复数的除法法则和复数的几何意义进行求解.【详解】对于选项A ,121i=z z =-,故选项A 正确;对于选项B ,1112z =+=,221(1)2z =+-=12=z z ,故选项B 正确;对于选项C ,2121i (1i)2i i 1i (1i)(1i)2z z ++====--+,故选项C 错误;对于选项D ,在复平面内1z 对应的点为1(1,1)Z ,2z 对应的点为2(1,1)Z -,点12,Z Z 关于实轴对称,故选项D 错误.故选:AB.10.函数()()sin f x A x ωϕ=+(0A >,0ω>,π2ϕ<)在一个周期内的图象如图所示,则()A.2A =B.2ω=C.π6ϕ=-D.将函数()f x 图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到的函数图象关于y 轴对称【答案】AC 【解析】【分析】对于A ,由图易得;对于B ,利用周期公式即可求得;对于C ,代入特殊点计算即得;对于D ,利用平移变换求得函数式,再利用函数奇偶性即可判定.【详解】对于A ,因()()sin f x A x ωϕ=+,由图知max min22y y A -==,故A 正确;对于B ,设函数的最小正周期为T ,由图知35πππ49182T =-=,解得2π3T =,则2π2π3ω=,解得3ω=,故B 错误;对于C ,由图知函数图象经过点π(,0)18,则得π2sin(3)018ϕ⨯+=,解得π2π,Z 6k k ϕ=-+∈,因π2ϕ<,故得π6ϕ=-,故C 正确;对于D ,将函数()π2sin(36f x x =-图象上所有点的横坐标向右平移π3个单位(纵坐标不变)得到函数为:ππ7ππ2sin[3(]2sin(3)2sin(33666y x x x =--=-=--,不是偶函数,故D 错误.故选:AC.11.如图,向透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,水是定量的(定体积为V ).固定容器底面一边BC 于地面上,1BC =,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.水面EFGH 所在四边形的面积为定值B.没有水的部分始终呈棱柱形C.棱11A D 一定与平面EFGH 平行D.当容器倾斜如图所示时,2BE BF V ⋅=(定值)【答案】BCD 【解析】【分析】画出随着倾斜度得到的图形,根据线面平行的性质及棱柱的定义判断A ,B ,C ,再根据柱体的体积公式判断D.【详解】依题意将容器倾斜,随着倾斜度的不同可得如下三种情形,对于A :水面EFGH 是矩形,线段FG 的长一定,从图1到图2,再到图3的过程中,线段EF 长逐渐增大,则水面EFGH 所在四边形的面积逐渐增大,故A 错误;对于B :依题意,//BC 水面EFGH ,而平面11BCC B 平面EFGH FG =,BC ⊂平面11BCC B ,则//BC FG ,同理//BC EH ,而//BC AD ,BC FG EH AD ===,又BC ⊥平面11ABB A ,平面11//ABB A 平面11CDD C ,因此有水的部分的几何体是直棱柱,长方体去掉有水部分的棱柱,没有水的部分始终呈棱柱形,故B 正确;对于C :因为11////A D BC FG ,FG ⊂平面EFGH ,11A D ⊄平面EFGH ,因此11//A D 平面EFGH ,即棱11A D 一定与平面EFGH 平行,故C 正确;对于D :当容器倾斜如图3所示时,有水部分的几何体是直三棱柱,其高为1BC =,体积为V ,又12BEF S BE BF =⋅ ,BEF V S BC =⋅ ,所以22V BE BF V BC ⋅==,故D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.计算()()1i 2i +-=_________(其中i 为虚数单位).【答案】3i +##i 3+【解析】【分析】把复数应用乘法化简即可.【详解】()()21i 2i 2i 2i i 3i +-=-+-=+.故答案为:3i+13.在正方体1111ABCD A B C D -中,M 为AB 的中点,则直线1AM 与CD 所成角的余弦值为_________.【答案】5【解析】【分析】利用平移得到异面直线所成角,借助于直角三角形求解即得.【详解】在正方体1111ABCD A B C D -中,因//CD AB ,故直线1A M 与AB 所成角即直线1A M 与CD 所成角,即1AMA ∠.设正方体棱长为2,因M 为AB 的中点,则1A M =,于是1cos5AMA ∠==,即直线1A M 与CD 所成角的余弦值为5.故答案为:5.14.已知O 为ABC 内一点,且4850OA OB OC ++= ,点M 在OBC △内(不含边界),若AM AB AC λμ=+ ,则λμ+的取值范围是_________.【答案】13,117⎛⎫⎪⎝⎭【解析】【分析】设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得851717AO AB AC =+uuu r uu u r uuu r ,设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,整理可得8985512171717171717AM x y AB x y AC ⎛⎫⎛⎫=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,进而可得结果.【详解】设,,AO mAB nAC m n =+∈R uuu r uu u r uuu r ,即OA AO mAB nAC =-=--uu r uuu r uu u r uuu r ,可得()()1,1OB OA AB m AB nAC OC OA AC mAB n AC =+=--=+=-+-uu u r uu r uu u r uu u r uuu r uuu r uu r uuu r uu u r uuu r,因为4850OA OB OC ++=,即()()()481510mAB nAC m AB nAC mAB n AC ⎡⎤⎡⎤--+--+-+-=⎣⎦⎣⎦ ,整理可得()()8175170m AB n AC -+-= ,且,AB AC 不共线,则8175170m n -=-=,解得85,1717m n ==,即851717AO AB AC =+uuu r uu u r uuu r ,95812,17171717OB AB AC OC AB AC =-=-+uu u r uu u r uuu r uuu r uu u r uuu r ,又因为点M 在OBC △内(不含边界),设,,OM xOB yOC x y =+∈R ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,可得9851217171717OM x y AB x y AC ⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uu u r uuu r ,则8985512171717171717AM AO OM x y AB x y AC ⎛⎫⎛⎫=+=+-+-+ ⎪ ⎪⎝⎭⎝⎭uuu r uuu r uuu r uu u r uuu r ,可得8981717175512171717x y x y λμ⎧=+-⎪⎪⎨⎪=-+⎪⎩,可得()1341717x y λμ+=++,且01x y <+<,可得()13413,1171717x y λμ⎛⎫+=++∈ ⎪⎝⎭,所以λμ+的取值范围是13,117⎛⎫ ⎪⎝⎭.故答案为:13,117⎛⎫ ⎪⎝⎭.【点睛】关键点点睛:1.设AO mAB nAC =+ ,根据题意结合平面向量基本定理可得85,1717m n ==;2.根据三角形可设OM xOB yOC =+uuu r uu u r uuu r ,且0100x y x y <+<⎧⎪>⎨⎪>⎩,用,x y 表示,λμ,即可得结果.四、解答题:本题共5小题,共77分.解答应给出文字说明、证明过程及演算步骤.15.已知向量()1,3a = ,()2,1b =- .(1)求向量a 与b 夹角的余弦值;(2)若向量a b + 与a kb - 互相垂直,求k 的值.【答案】(1)10.(2)116k =.【解析】【分析】(1)利用平面向量的数量积即可求得结果.(2)利用两向量垂直的条件即可求得结果.【小问1详解】由()1,3a = ,()2,1b =- ,所以1(2)31231a b ⋅=⨯-+⨯=-+=,||a ==b == ,设向量a 与b 的夹角为θ,则cos 10||||a b a b θ⋅=== .【小问2详解】若向量a b + 与a kb - 互相垂直,则22()()(1)10510a b a kb a kb k a b k k +⋅-=-+-⋅=-+-=,所以116k =.16.已知函数()π3cos 23f x x ⎛⎫=+⎪⎝⎭.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合.(3)求()f x 的单调递减区间.【答案】(1)π;(2)最大值为3,π{|π,Z}6x x k k =-+∈;(3)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【解析】【分析】(1)利用周期公式计算即得;(2)将π23x +看成整体角,结合余弦函数的图象,即可求得;(3)将π23x +看成整体角,结合余弦函数的递减区间,计算即得.【小问1详解】2ππ2T ==,故()f x 的最小正周期为π;【小问2详解】当π22π3x k +=,k ∈Z 时,即ππ6x k =-+,k ∈Z 时,πcos 213x ⎛⎫+= ⎪⎝⎭,得()max 3f x =,即()f x 最大值为3.则()f x 的最大值为3,取得最大值时x 的集合为π{|π,Z}6x x k k =-+∈;【小问3详解】由ππ2π22π3k x k ≤+≤+,k ∈Z 得ππππ63k x k -+≤≤+,k ∈Z 所以函数()f x 的单调递减区间是πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .17.已知正方体1111ABCD A B C D -的棱长为2.(1)证明:1AC BD ⊥.(2)求三棱锥1A C BD -的体积.【答案】(1)证明见解析(2)43【解析】【分析】(1)先证BD ⊥平面1ACC ,则可得1AC BD ⊥;(2)利用等体积转化即可求得.【小问1详解】在正方体1111ABCD A B C D -中,BD AC ⊥,1C C ⊥Q 平面ABD ,BD ⊂平面ABD ,1C C BD ∴⊥.又1C C AC C = ,1C C 、AC ⊂平面1ACC ,BD ∴⊥平面1ACC .又1AC ⊂平面1ACC ,1AC BD ∴⊥.【小问2详解】在正方体1111ABCD A B C D -中,1C C ⊥平面ABD ,1111111332A C BD C ABD ABD V V S CC AD AB CC --∴==⨯=⨯⨯⨯⨯ 114222323=⨯⨯⨯⨯=.18.在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin cos sin cos 3cos a A B b A A a C +=.(1)求角C 的大小;(2)若3a =,且1AB AC ⋅= ,求ABC 的面积.【答案】(1)π3(2)2【解析】【分析】(1)根据题意,由正弦定理边化角,代入计算,即可得到结果;(2)根据题意,由余弦定理结合三角形的面积公式代入计算,即可得到结果.【小问1详解】因为sin cos sin cos cos a A B b A A C +=,所以根据正弦定理得sin sin cos sin sin cos cos A A B A B A A C +=,因为sin 0A ≠,所以sin cos sin cos A B B A C +=,即()sin A B C +=,即sin C C =.因为cos 0C ≠,所以tan C =.因为0πC <<,所以π3C =.【小问2详解】cos 1AB AC bc A ⋅== .因为2222cos a b c bc A =+-,所以2292cos 11b c bc A +=+=①.因为2222cos c a b ab C =+-,所以2222π2cos 23cos 3393b c ab C a b b -=-=⨯⨯⨯-=-②.联立①②可得22320b b --=,解得2b =(负根舍去),故ABC 的面积为11333sin 322222ab C =⨯⨯⨯=.19.如图,已知直线12l l ∥,A 是1l ,2l 之间的一点,且1AE l ⊥于点E ,2AF l ⊥于点F ,AE m =,AF n=(m ,n 为常数),点B 、C 分别为直线1l 、2l 上的动点,且AB AC ⊥,设ACF α∠=.(1)若π3α=,求ABC 的面积;(2)当A 恰好EF 中点时,求ABC 的周长的最小值.【答案】(1)33mn (2))221m+.【解析】【分析】(1)由3πBAE α∠==,结合锐角三角函数求出,AB AC ,进而得出三角形面积;(2)由直角三角形的边角关系结合勾股定理得出BC ,进而表示周长,再利用sin cos αα+与sin cos αα的关系,换元并由反比例函数性质得出周长最小值.【小问1详解】由题意,易得3πBAE α∠==,1AE l ⊥ ,2AF l ⊥,且AE m =,AF n =,2co πs 3mAB m ∴==,33sin 3πnAC ==,又AB AC ⊥ ,11232322233ABC S AB AC m n mn ∴=⋅=⨯⨯=△.【小问2详解】由题意有0m n =>,sin m AB α=,cos m AC α=,22222211sin cos sin cos sin cos m m m BC αααααα=+=+,所以ABC 的周长()111sin cos 1sin cos sin cos sin cos f m m ααααααααα++⎛⎫⎛⎫=++= ⎪⎝⎭⎝⎭,其中π0,2α⎛⎫∈ ⎪⎝⎭.设sin cos t αα=+,则πsin cos 4t ααα⎛⎫=+=+ ⎪⎝⎭,ππ3,444πα⎛⎫+∈ ⎪⎝⎭,所以πsin ,142α⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,即(π4t α⎛⎫=+∈ ⎪⎝⎭,所以21sin cos 2t αα-=.所以212112t m y m t t +=⋅=--,(t ∈,于是当t =时,())min 21f m α==+,因此,周长的最小值为)21m +.。

2023-2024学年四川省内江市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省内江市高一下学期期末考试数学试题(含解析)

2023-2024学年四川省内江市高一下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.某高中生创新能力大赛中8位选手的面试得分分别为90,86,93,91,89,95,92,94,其中位数和极差分别为( )A. 90,8B. 91.5,9C. 91,9D. 91.5,82.若复数z 满足z =i1−2i ,则z 的虚部为( )A. i5B. −25C. −i5D. −153.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄的分布饼状图、90后从事互联网行业者的岗位分布条形图,则下列结论中不一定正确的是( )A. 互联网行业从事技术岗位的人数中,90后比80后多B. 90后互联网行业者中从事技术岗位的人数超过整个从事互联网行业者总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业从业人员中90后占一半以上4.已知函数g (x )=2sin 2x ,函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的部分图象如图所示,要得到f (x )的图象,只需将函数g (x )的图象( )A. 向左平移π6个单位B. 向右平移π6个单位C. 向右平移π3个单位D. 向左平移π3个单位5.内江三元塔位于四川省内江市三元村三元山上,是一座具有千年历史的古塔.它始建于唐代,明末倒毁,后在清嘉庆九年(公元1804年)得以重建,历时三年竣工.三元塔的修建寓意着“天开文运,连中三元”,象征着文运昌盛和崇文重教的精神.内江某中学数学兴趣小组准备运用解三角形知识测量塔高时,选取了两个测量基点C与D与塔底B在同一水平面,并测得CD=202米,∠BCD=15∘,∠BDC=120∘,在点C处测得塔顶A的仰角为60∘,则塔高AB=( )A. 106米B. 103米C. 203米D. 60米6.在平行四边形ABCD中,E是对角线AC上靠近点C的三等分点,点F在BE上,若AF=x AB+49AD,则x= ( )A. 45B. 23C. 79D. 587.暑假即将来临,某校为开展学生的社会实践活动,从甲、乙、丙、丁、戊5人中随机选3人去参加“敬老院志愿服务”活动,则乙和丙两人中只有1人入选的概率为( )A. 12B. 23C. 34D. 358.已知向量a,向量b的模长均为2,且|a−b|=|a|.若向量m=a−2c,n=c−b,且m⊥n,则|c|的最大值是( )A. 72+3 B. 52+3 C. 7+32D. 94二、多选题:本题共3小题,共15分。

2023-2024学年湖南省长沙市长郡中学高一下学期期末考试数学试题(含答案)

2023-2024学年湖南省长沙市长郡中学高一下学期期末考试数学试题(含答案)

2023-2024学年湖南省长沙市长郡中学高一下学期期末考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.若复数z 的模为10,虚部为−8,则复数z 的实部为A. −6B. 6C. ±6D. 362.掷两枚质地均匀的骰子,设A =“第一枚出现奇数点”,B =“第二枚出现偶数点”,则A 与B 的关系为( )A. 互斥B. 互为对立C. 相互独立D. 相等3.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O′A′B′C′,且O′A′ // B′C′,O′A′=2B′C′=2,A′B′=1,则该平面图形的高为A.2 B. 1 C. 22 D. 24.已知一组样本数据:8,9,9,11,12,13,15,16,17,18,18,20,则这组样本数据的第70百分位数与中位数之和是A. 29B. 30C. 31D. 325.已知M 是四面体OABC 的棱BC 的中点,点N 在线段OM 上,点P 在线段AN 上,且MN =12ON,AP =34AN ,以OA ,OB ,OC 为基底,则OP 可以表示为( )A. OP =12OA +14OB +14OC B. OP =12OA +13OB +13OC C. OP =14OA +13OB +13OCD. OP =14OA +14OB +14OC6.已知非零向量a ,b 满足|a +b |=|a−2b |,且b 在a 上的投影向量为23a ,则|a ||b |( )A. 12B.32C. 2D.37.如图所示,在三棱柱ABCA 1B 1C 1中,若点E ,F 分别满足AE =23AB ,AF =23AC ,三棱柱高为3,△ABC面积为3 3,则几何体B 1C 1BCFE 的体积为A.8 33B. 33C.10 33 D.11 338.有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p ,录用到能力中等的人的概率为q ,则(p,q)=( )A. (16,16)B. (12,16)C. (12,14)D. (12,13)二、多选题:本题共3小题,共18分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学下册期末考试
高一数学 必修Ⅳ
考试时间:120分钟 试卷满分:150分
命题:尹慧仙 审核:陈文清 校对:郑敏 2009.7.6
第Ⅰ卷(100分)
一、选择题:(每小题5分,共50分)
腰,
= A.(1)(2)(3) B. (2)(3) C. (2)(3) (4) D.(1) (2)(3) (4)
5. 函数y=ta n (x -
4
π
)的定义域是 A. {x≠4
3
π+kπ,k ∈Z} B. {x|x=4
3π+kπ,k ∈Z}
C. {x|x≠4
3π+kπ}
D. {x ∈R |x≠4
3π+kπ,k ∈Z}
6.下列函数中,在区间02⎛
⎫ ⎪⎝⎭
π,上为增函数且以π为周期的函数是
A .sin
2
x y = B .sin y x =
C .tan
2
x
y = D .cos 2y x =- 7. 已知2
21224(,),(x,x ),(x x,)=-==-a b c ,若//,⊥a b a c ,则x=
A. x=0或x =-2或x =4
B. x=0或x =-2
C. x =-2或x =4
D. x =-2
8.若3f (cos x )cos x,=则30f (sin )=
A.-1
B.1
C. 12
D.0
9.与向量a = (12,5) 平行的单位向量为 A .
C . 10
A . 11ω>>,0A 12 13. .
14向
量AB 在向量AC
上的投影为 .
三、解答题(第15题8分、第16题、第17题各9分,,共26题) 15.以填图方式解答变换方法或所得函数解析式.
sin()5
y
x =-π
函数s i n y x =.
第11题
sin(2)5
y x π
=-
.
(2)
A= ; 若x ∈A ,则函数
22233
g(x )cos(x )sin (x )ππ
=---+的最小值为 .
20.已知腰BC=5,底边AC=6的等腰△ABC ,沿高BD 折起成直二面角,
如图,则折成的几何体的体积为 ,二面角B -AC -D 的正切值为 .
五、解答题(每题10分,共30分)
21. (本小题满分10分) △ABC 中三个内角为A 、B 、C ,若关于x 的方程
22
cos cos cos 02
C
x x A B --=有一根为1,试判断△ABC 的形状,并证明你的结论. 22. (本小题满分10分)
设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求tanB 和边长a ;
(Ⅱ)若ABC △的面积10S =,求ABC △的周长l . 23. (本题满分10分)
已知△ABC 的顶点坐标为A (1,0),B (5,8),
C (7, -4),在边AB 上有一点P ,其横坐标为4.
(1)设AB AP λ=
,求实数λ;
(2)在边AC 上求一点Q ,使线段PQ 把△ABC 分成面积相等的两部分.
福州八中2008—2009学年第二学期期末考试
高一数学 必修Ⅳ 试卷参考答案及评分标准
12cos cos cos()
⇒=-+…4分
A B A B
⇒=-+⇒=-…6分;
A B A B A B A B A B
12cos cos cos cos sin sin1cos cos sin sin
∴-=,…7分
cos(A B)
1
又0<A<π, -π<-B<0,得-π<A -B <π, 所以A -B=0,即A=B …….10分 22.解:(1)由cos 3a B =与sin 4b A =两式相除,
有:4sin sin sin tan 3cos cos cos b A A b B b B a B a B b B ====…2分
又tan 0B >, 则3
cos 5
B =……4分,得5a =.……5分 (2)3cos 5B =>0,得4
sin 5
B =, ……6分 由1
sin 2S ac B =
,得到5c =(或11sin (sin )210522
S bc A c b A c c ====⇒=).…7分;
由cos B =。

相关文档
最新文档