广东省罗定艺术高级中学2018_2019学年高二数学3月月考试题
罗定市实验中学2018-2019学年高二上学期第二次月考试卷数学
罗定市实验中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()A.h()B.h()C.h()D.h()2.函数y=(x2﹣5x+6)的单调减区间为()A.(,+∞)B.(3,+∞)C.(﹣∞,)D.(﹣∞,2)3.已知函数y=x3+ax2+(a+6)x﹣1有极大值和极小值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>24.“1<x<2”是“x<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知m、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m⊥α,n⊥α,则m∥n D.若m∥α,m∥β,则α∥β6.已知向量=(1,),=(,x)共线,则实数x的值为()A.1 B.C.tan35°D.tan35°7.(理)已知tanα=2,则=()A.B.C.D.8.袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为()A.B.C.D.9.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.1310.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-2 11.如图可能是下列哪个函数的图象( )A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=12.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题二、填空题13x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.14.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 18.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.三、解答题19.已知函数f (x )=|2x+1|+|2x ﹣3|. (Ⅰ)求不等式f (x )≤6的解集;(Ⅱ)若关于x 的不等式f (x )﹣log 2(a 2﹣3a )>2恒成立,求实数a 的取值范围.20.已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0} (1)求A∩B(2)若A∪C=C,求实数m的取值范围.21.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)22.已知向量,满足||=1,||=2,与的夹角为120°.(1)求及|+|;(2)设向量+与﹣的夹角为θ,求cosθ的值.23.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.24.如图,边长为2的正方形ABCD绕AB边所在直线旋转一定的角度(小于180°)到ABEF的位置.(Ⅰ)求证:CE∥平面ADF;(Ⅱ)若K为线段BE上异于B,E的点,CE=2.设直线AK与平面BDF所成角为φ,当30°≤φ≤45°时,求BK的取值范围.罗定市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.2.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.3.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.4.【答案】A【解析】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.5.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.6.【答案】B【解析】解:∵向量=(1,),=(,x)共线,∴x====,故选:B.【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题.7.【答案】D【解析】解:∵tanα=2,∴===.故选D.8.【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P==,故选:B.【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.9.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.10.【答案】B【解析】考点:向量共线定理.11.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.12.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.二、填空题13.【答案】7.5【解析】解:∵由表格可知=9,=4,∴这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,∴4=0.7×9+,∴=﹣2.3,∴这组数据对应的线性回归方程是=0.7x﹣2.3,∵x=14,∴=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.14.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.15.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >->⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 16.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.答案:417.【答案】 【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,1b b b b b b b b a =⇒=>⇒==,a b +=考点:指对数式运算 18.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.三、解答题19.【答案】【解析】解:(Ⅰ)原不等式等价于或或,解得:<x ≤2或﹣≤x ≤或﹣1≤x <﹣, ∴不等式f (x )≤6的解集为{x|﹣1≤x ≤2}.(Ⅱ)不等式f (x )﹣>2恒成立⇔+2<f (x )=|2x+1|+|2x ﹣3|恒成立⇔+2<f (x )min 恒成立,∵|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4, ∴f (x )的最小值为4, ∴+2<4,即,解得:﹣1<a <0或3<a <4.∴实数a 的取值范围为(﹣1,0)∪(3,4).20.【答案】【解析】解:由合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0}.∴A={x|﹣1<x <6},,C={x|m <x <m+9}.(1),(2)由A ∪C=C ,可得A ⊆C .即,解得﹣3≤m ≤﹣1.21.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.22.【答案】【解析】解:(1)=;∴=;∴;(2)同理可求得;;∴=.【点评】考查向量数量积的运算及其计算公式,根据求的方法,以及向量夹角余弦的计算公式.23.【答案】【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.24.【答案】【解析】解:(Ⅰ)证明:正方形ABCD中,CD BA,正方形ABEF中,EF BA.…∴EF CD,∴四边形EFDC为平行四边形,∴CE∥DF.…又DF⊂平面ADF,CE⊄平面ADF,∴CE∥平面ADF.…(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE为直角三角形,BE⊥BC,…又BE⊥BA,BC∩BA=B,BC、BA⊂平面ABCD,∴BE⊥平面ABCD.…以B为原点,、、的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系,则B(0,0,0),F(0,2,2),A(0,2,0),=(2,2,0),=(0,2,2).设K(0,0,m),平面BDF的一个法向量为=(x,y,z).由,,得可取=(1,﹣1,1),…又=(0,﹣2,m),于是sinφ==,∵30°≤φ≤45°,∴,即…结合0<m<2,解得0,即BK的取值范围为(0,4﹣].…【点评】本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.。
广东省罗定艺术高级中学2018-2019学年高二英语3月月考试卷【word版】.doc
广东省罗定艺术高级中学2018-2019学年高二英语3月月考试题学校:___________姓名:___________班级:___________考号:___________ 一.选择题(共20小题)1.He argued smoking,and insisted that it was argument that smoking was harmful to health.()A.for;beyond B.against;overC.for;over D.against;beyond2.E﹣mail,as well as telephones,an important part in daily communication.()A.is playing B.have playedC.was playing D.play3.Though having lived abroad for years,many Chinese still ____ the traditional customs.()A.perform B.possess C.observe D.support4.Having been ill in bed for nearly a month,he had a hard time in ________the exam.()A.pass B.to pass C.passed D.passing5.﹣We have decided to go for a picnic tomorrow,Dick.Are you going with us?﹣Well,________ you are going,so will I.()A.when B.since C.if D.while6.John is the tallest boy in the class,____ according to himself.()A.5 feet 8 as tall as B.as tall as 5 feet 8C.as 5 feet 8 tall as D.as tall 5 feet 8 as7.The discovery of new evidence led to .()A.the thief having caughtB.catch the thiefC.the thief being caughtD.the thief to be caught8.Sorry I'm late.I _____________ have turned off the alarm clock and gone back to sleep again.()A.might B.should C.can D.will9.Just be patient.You expect the world to change so soon.()A.can't B.needn't C.may not D.will not 10.Scientists are convinced ________ the positive effect of laughter _______ physical and mental health.()A.of;at B.by;in C.of;on D.on;at11.﹣Why did she spend so much time searching shop after shop for a blouse?﹣Oh,she was very _______about her clothes()A.crazy B.curious C.particular D.careful12.Finding her car stolen,____________.()A.a policeman was asked to helpB.the area was searched carefullyC.it was looked for everywhereD.she hurried to a policeman for help13.﹣Have you moved into the new house?﹣Not yet,the rooms .()A.are being painting B.are paintingC.are painted D.are being painted14.Eating too much fat can ________ heart disease and cause high b lood pressure.()A.result from B.contribute toC.attend to D.devote to15.Amie Salmon,disabled,is attended throughout her school days by a nurse ______to guard her.()A.to appoint B.appointingC.appointed D.having appointed16.When the group discussion is nearing its end,make sure to ________ it with important points.()A.conclude B.lead C.avoid D.hold17.They argued________the matter the whole day and at last they agreed________the date for the next meeting.()A.with;with B.on;on C.about;on D.over;over18.The southern part of Ireland was unwilling and _______ to form its own government.()A.broke down B.broke out C.broke away D.broke up19.Any help from you will be greatly appreciated.Please give me a reply at your earliest ____.()A.interruption B.instructionC.consideration D.convenience20.The living room is clean and tidy,with a dining table already ______ for a meal to be cooked.()A.laid B.laying C.to lay D.being laid二.完形填空(共1小题)21.The tourist bus winded its way into a mountainous area.It was(1)to makea turn when two passengers﹣a(2)of young lovers﹣were so attracted by thebeautiful scenery that they(3) a stop to get down.They were left behind and the bus went(4).Suddenly they heard a loud boom(5)of the road.It was a huge rock rolling down in the landslide that hit the bus and fell with it into a deep valley.The lovers were greatly(6)by the news that no passengers on board(7).When they calmed down they(8)and expressed their feelings in a few words.The above story was told by a guide when we were riding a tourist(9)to a scenic mountain.He asked us to guess what the lovers said immediately after thedisaster that they had(10)escaped.Often we read reports about traffic accidents,among which there were(11)ones who missed the bus and(12)the disaster.Those people usually said with a sigh of(13)"Fortunately I was not on board."On our bus the passengers'(14)to the guide were various.But the answer was quite out of our expectation."If we hadn't got down and(15)the bus,it would have(16)the dangerous spot and all the passengers would have survived."The story passed from person to person as a sort of wit (智慧)test,but I think (17).It actually serves as a(n)(18)of a person's mind.I pay my heart﹣felt respect to the couple who,instead of feeling lucky,(19)themselves for causing the loss of lives.People all have heart for(20),but it is often a flashing thought across one's mind that decides wether it is good or evil (邪恶的).(1)A.ready B.time C.asked D.about(2)A.couple B.group C.party D.row(3)A.got to B.called for C.caught sight of D.looked for(4)A.away B.in C.on D.by(5)A.along B.ahead C.across D.opposite(6)A.shocked B.scared C.moved D.confused(7)A.died B.saved C.survived D.witnessed(8)A.shouted B.screamed C.fought D.sighed(9)A.car B.bike C.road D.bus(10)A.immediately B.even C.only D.ever(11)A.lazy B.selfish C.lucky D.strange(12)A.missed B.avoided C.caused D.remarked(13)A.sorrow B.innocence C.relief D.regret(14)A.emotions B.expressions C.replies D.attitudes(15)A.caught B.delayed C.missed D.took(16)A.seen B.passed C.jumped D.overlooked(17)A.otherwise B.more C.whatever D.seriously(18)A.examination B.change C.quality D.state(19)A.thought B.blamed C.enjoyed D.helped(20)A.happiness B.excuse C.honor D.mercy三.阅读理解(共5小题)22.London UndergroundThe world's first subway was built in London in 1863.At the time,the government was looking for a way to reduce traffic problems in the city of London.The poor areas of the city were so crowded with people that it was almost impossible for horse carriages to get through.The city officials were interested in trying to make it possiblefor workers to live outside of London and travel easily to work each day.If people had a cheap and convenient way that they could depend on to go to and from work,they would relocate their homes outside of the city.This would help ease(减轻)the pressure of too many people living in the poor parts of London.From these problems,the idea of the London Underground,the first subway system,was born.The plans for building the Underground met with several problems and delays,but the fast track was finally opened in January 1863.A steam train pulled the cars along the fast underground track which was 6 kilometers (3.7 miles)long.About 30,000 people got on the subway the first day.Riders were treated to comfortable seats (standing up while the train was moving was not allowed),and pleasant decorations inside each of the cars.However,the smoke from the engine soon filled the air in the tunnels with ash and soot(煤灰),as well as chemical gases.Fans had to be put in the tunnels later to keep the air clean enough for people to breathe.Even with its problems,riding in the Underground did catch on.It carried 9 million riders in its first year.(1)What led the British government to build the London Underground?A.Traffic jams and pollution.B.Population and pollution.C.Overcrowding and traffic jams.D.The poverty and subway problems.(2)How did the London Underground solve the smoke problem?A.It made the tunnels larger.B.It put fans in the tunnels.C.It cleaned the chemical gases in the tunnels.D.It reduced the number of passengers riding in the train.(3)The underlined phrase"catch on"most probably means" ".A.be troublesomeB.become popular and fashionableC.keep up withD.seize(4)Which of the following is TRUE?A.To relocate the workers'homes outside London,the government built the subway.B.There were so many problems and delays that in 18th century the first subway opened.C.The subway greatly eased the pressure of traffic.D.There were not enough seats for the passengers the first day the subway opened.23.Don't talk to me;I'm busy with my iPhoneRiding a London subway,a person from China will notice one major difference:in London,people do not look at each other.In fact,eye contact is avoided at all times.That's not rudeness﹣people are just too busy to bother looking.Busy doing what,you ask?Well,they're certainly not using the time for a momentof quiet reflection,nor are they reading a book.New technology has replaced quiet habits.Today the only acceptable form of book on the London underground is an e﹣book.Apple must earn a fortune from London commuters(乘车上下班的人).Since the launch of the iPhone in 2007,over 40,000﹣yes,that's 40,000﹣"apps"(programs downloaded for the iPhone)have been designed.Commuters love them because they are the perfect time﹣fillers.One"app",called iShoot,is a game that features tanks.Another one,Tube Exits,tells passengers where to sit on the train to be closest to the exit of their destination.ISteam clouds the iPhone screen when you breathe into the microphone.You can then write in the"steam"on your phone screen.For those without an iPhone,another Apple product,the iPod,may be another choice.It's not just teenagers who"plug in"to their music﹣iPods are a popular way to pass the time for all ages.And if games,e﹣books and music aren't enough to keep you occupied.Then perhaps you would prefer a film.The development of palm DVD technology means many commuters watch their favorite TV show or film on the way to work.With all this entertainments,it's amazing that people still remember to get off the train.(1)People in London do not make eye contact on the subway because they are busy .A.going to workB.reading booksC.thinking private thingsD.playing games,reading e﹣books,listening to music or watching films.(2)Those who like war games can download to their iPhones.A.iShootB.Tube ExitsC.ISteamD.iPod(3)The underlined word"occupied"in the last paragraph probably means .A.delightedB.busyC.amusedD.controlled(4)The article tells us that .A.London commuters are unfriendly to strangersB.Apple has earned a lo of money from selling 40,000 iPhonesC.technology is changing the way London commuters spend their traveling time.D.with all the new time﹣fillers,London commuters often forget to get off the train.24.As kids,my three brothers and I fought over the normal things:baseball,board games,baths.But our sibling rivalry(兄弟间争斗)reached a fever point at the dinner table.Who got the largest hamburger?Who finished the eating fastenough to get seconds?Who got the biggest slice of pie?Our mother cut the portions so equally that it would have taken a micrometer to tell them apart,but her efforts were in vain.Whether longing for the last hot dog,snatching an extra piece of crispy skin from the roast chicken,or writing who had the most cherries in his fruit cocktail,each of us struggled,constantly,to get his fair share.But for adults,mealtime strategies practiced in childhood have occasionally led to trouble.When my older brother,Harry,traveling in India,was stricken with a mysterious disease and lost 14 kilos,he took something he found on the street as a halfeaten chicken and quickly put it into his mouth before someone else got it.Our younger brothers,Ned and Mark,hilled up their food in allyoucaneat Chinese buffets from childhood fears that there'd be nothing left on the serving plate.I once was watching man oeuvres(军事演习)performed on me while swallowing fistsized prawns (对虾).Some believe that siblings who express rivalry during their youth end up more closely bonded in adulthood than siblings who experienced no rivalry.At our family dinners these days,my brothers and I tend toward harmony.We still eat as if we were in a race,but there is no fighting for chicken skin,no wrestling over the last piece of pie.This may be because we four brothers are likely to be the ones cooking.Not only do we love working in the kitchen together,but this way we can also make sure there will be more than enough food for us all.(1)Although the mother cut the portions equally,siblings the childhood may .A.didn't get their fair shareB.still wanted a whole chickenC.didn't think it's necessaryD.didn't stop struggling for their food(2)The third paragraph mainly tells us the habit formed in .A.lead to successB.cause problemsC.destroy a personD.bring a bright future(3)What does the author think of the sibling rivalry?A.It breaks up the brothers.B.It benefits the brotherhood.C.They can get more food.D.They can improve cooking skills.(4)What can we learn from the passage?A.More children mean more problems.B.Hunger education makes children brave.C.Everything has its advantage and disadvantage.D.Mothers are to blame for children's behavior.25.California Condor's Shocking RecoveryCalifornia condors are North America's largest birds,with wind﹣length of up to 3meters.In the 1980s,electrical lines an d lead poisoning(铅中毒)nearly drove them to dying out.Now,electric shock training and medical treatment are helping to rescue these big birds.In the late 1980s,the last few condors were taken from the wild,and there are now more than 150flying over California and nearby Arizona,Ut ah and Baja in Mexico.Electrical lines have been killing them off."As they go in to rest for the night,they just don't see the power lines," says Bruce Rideout of San Diego Zoo.Their wings can bridge the gap between lines,resulting in electrocution(电死)if they touch two lines at once.So scientists have come up with a shocking idea.Tall poles,placed in large training areas,teach the birds to stay clear of electrical lines by giving them a painful but undeadly electric shock.Before the training was introduced,66% of set﹣freed condors died of electrocution.This has now dropped to 18%.Lead poisonous has proved more difficult to deal with.When condors eat dead bodies of other animals containing lead,they absorb large quantities of lead.This affects their nervous systems and ability to produce baby birds,and can lead to kidney(肾)failures and death.So condors with high levels of lead are sent to LosAngeles Zoo,where they are treated with calcium EDTA,a chemical that removes lead from the blood over several days.This work is starting to pay off.The annual death rate for adult condors has dropped from 38% in 2000 to 5.4% in 2011.Rideout's team thinks that the California condors' average survival time in the wild is now just under eight years."Although these measures are not effective forever,they are vital for now," he says."They are truly good birds that are worth every effort we put into recovering them."(1)California condors attract researchers' interest because they .A.are active at nightB.had to be bred in the wildC.are found only in CaliforniaD.almost died out in the 1980s(2)Researchers have found electrical lines are .A.blocking condors' journey homeB.big killers of California condorsC.rest places for condors at nightD.used to keep condors away(3)According to Paragraph 5,lead poisoning .A.makes condors too nervous to flyB.has little effect on condors' kidneysC.can hardly be gotten rid of form condors' bloodD.makes it different for condors to produce baby birds(4)The passage shows that .A.the average survival time of condors is satisfactoryB.Rideout's research interest lies in electric engineeringC.the efforts to protect condors have brought good resultsD.researchers have found the final answers to the problem26.Surviving Hurricane Sandy(飓风桑迪)Natalie Doan,14,has always felt lucky to live in Rockaway,New York.Living just a few blocks from the beach,Natalie can see the ocean and hear the wave from her house."It's the ocean that makes Rockaway so special," she says.On October 29,2012,that ocean turned fierce.That night,Hurricane Sandy attacked the East Coast,and Rockaway was hit especially hard.Fortunately,Natalie's family escaped to Brooklyn shortly before the city's bridge closed.When they returned to Rockaway the next day,they found their neighborhood in ruins.Many of Natalie's friends had lost their homes and were living far away.All around her,people were suffering,especially the elderly.Natalie's school was so damaged that she had to temporarily attend a school in Brooklyn.In the following few days,the men and women helping Rockaway recover inspired Natalie.Volunteers came with carloads of donated clothing andtoys.Neighbors devoted their spare time to helping others rebuild.Teenagers climbed dozens of flights of stairs to deliver water and food to elderly people trapped in powerless high﹣rise buildings."My mom tells me that I can't control what happens to me," Natalie says."but I can always choose how I deal with it."Natalie's choice was to help.She created a website page matching survivors in need with d onors who wanted to help.Natalie posted introduction about a boy named Patrick,who lost his baseball card collecting when his house burned down.Within days,Patrick's collection was replaced.In the coming months,her website page helped lots of kids:Christopher,who received a new basketball;Charlie,who got a new keyboard.Natalie also worked with other organizations to bring much﹣need supplies to Rockaway.Her efforts made her a famous person.Last April,she was invited to the White House and honored as a Hurricane Sandy Champion of Change.Today,the scars(创痕)of destruction are still seen in Rockaway,but hope is in the air.The streets are clear,and many homes have been rebuilt."I can't imagine living anywhere but Rockaway," Natalie declares."My neighborhood will be back,even stronger than before."(1)When Natalie returned to Rockaway after the hurricane ,she found .A.some friends had lost their livesB.her neighborhood was destroyedC.her school had moved to BrooklynD.the elderly were free from suffering(2)According to paragraph 4,who inspired Natalie most?A.The people helping Rockaway rebuildB.The people trapped in high﹣rise buildingC.The volunteers donating money to survivorsD.Local teenagers bringing clothing to elderly people(3)How did Natalie help the survivors?A.She gave her toys to the kidsB.She took care of younger childrenC.She called on the White House to helpD.She built an information sharing platform(4)What does the story intend to tell us?A.Little people can make a big differenceB.A friend in need is a friend indeedC.East or West,home is bestD.Technology is power四.书面表达(共1小题)27.最近你班将举行一场题为Life in the future 的讨论会,请根据以下要点,写一篇100左右的发言稿.1.随着医学的发展,人类的平均寿命将会达到120岁.2.由于新能源的出现,污染问题将得到控制.3.人们的日常生活也将有很大的变化.如机器人可以为你做家务;椅子的也按色能够随着你所穿的衣服而改变;手机可以带在手腕上,通话时可以看到对方;可以乘坐新型的电梯进入太空度假.五.短文改错(共1小题)28.假如英语课上老师要求同桌之间交换修改作文,请你修改你同桌的以下作文,文中共有10处语言错误,每句中最多有两处.每处错误仅涉及一个单词的增加,删除或修改.增加:在缺词处加一个漏字符号(∧),并在其下面写出该加的词.删除:把多余的词用斜线(\)划掉.修改:在错的词下划一横线,并在该词下面写出修改后的词.注意:1.每处错误及其修改均仅限一词;2.只允许修改10处,多者(从第11处起)不计分.I just came back from Britain last week.I was luckily enough to be one of the students from different country to visit the UK from Feb.16to 28.We paid a visit to a good many of places,like London,Oxford or the Lake District.I learned much about British culture and history in London,where was my favorite.I also liked Oxford,in which I saw much more old buildings.The Lake District was beautiful,but it was pity that it rained heavily when they were there.The most excited thing for me in Britain was that I make a lot of friends there.六.信息匹配(共1小题)29.Everyone knows that the Frenchmen are romantic,the Italians are fashionable and the Germans are serious.Are these just stereotypes or is there really such a thing as national character?And if there is,can it affect how a nation succeed or fail?At least one group of people is certain that it can.A recent survey of the top 500 entrepreneurs(企业家)in the UK found that 70% felt that their efforts were not appreciated by the British public.Britain is hostile(敌意的)to success,they said.It has a culture of jealousy(嫉妒).(1)Jealousy is sometimes known as the "green﹣eyed monster" and the UK is its home.Scientists at Warwich University in the UK recently tested this idea.They gathered a group of people together and gave each an imaginary amount of money.(2)Those given a little were given the chance to destroy the large amount of money given to others﹣but at the cost of losing their own.Two thirds of the people tested agreed to do this.(3)But there is also opposite evidence.The Organization for Economic Cooperation and Development recently reported that the UK is now the world's fourth largest economy.That is not bad for people who are supposed to hate success.People in the UK also work longer hours than anyone else in Europe.So the British people are not lazy,either."It is not really success that the British dislike," says Carey Cooper,a professor of management at the University of Manchester Institute of Science and Technology."It's people using their success in a way that seems proud or unfair or which separates them from their roots."(4)They set out to do things in their way.They work long hours.By their own efforts they become millionaires.(5)It hardly seems worth following their example.If they were more friendly,people would like them more.And more people want to be like them.A.This seems to prove that the entrepreneurs were right to complain.B.The one who owns most money in the end is the winner.C.A s a result,the survey said,entrepreneurs were "unloved,unwanted and misunderstood".D.It is not true that British people are born jealous of others' success.E.Some were given a little,others a great deal.F.But instead of being happy they complain that nobody loves them.G.Perhaps it is the entrepreneurs who are the problem.七.语法填空(共1小题)30.What on earth does happiness mean?I can't give you its exact definition,but I'm sure if you love and help (1),you'll get it.I'll never forget an old lady.She lives in (2)small house alone.It is said that her husband and her son(3)(die)in a road accident years ago.Her life is bitter,but she often helps others (4) a smile.Whenever it snows,she is always the first to clean the paths.She looks after several children living nearby.I am one of them.I often remember the stories she told us and her kind smile.Perhaps she is unlucky,but I think she is a happy person.Her life is full of (5)(laugh)and love.But I'm sad to see some people getting their happiness in bad ways.They talk (6)(noisy)in cinemas and meeting rooms;they destroy trees to enjoy themselves and they laugh at others'shortcomings.Perhaps they feel happy at that time,(7)they will never get true happiness because they(8)(lose)their personality already.Now I know what happiness is.(9)means kindness,love and unselfishness.Above all,I have come to understand that (10)(bring)happiness to others is getting ourselves happiness.2018-2019学年罗定艺术高级中学3月份高中英语考试试题(含解析)参考答案与试题解析一.选择题(共20小题)1.【解答】考查介词.句意:他坚持反对吸烟,认为吸烟有害身体健康是无可争辩的.argue against因反对……争辩;beyond argument无可争辩.故选:D.2.【解答】答案为A.as well as连接主语时,谓语动词与其前面的名词在人称和数上保持一致,因E﹣mail是单数,故排除BD,又因本题讲述一个现存的事实情况,故用现在的某种时态,综上所述答案应为A.3.【解答】答案:CA.perform 执行;履行;B.possess 拥有;掌握;C.observe 遵守;保持;D.support 支持;维持;根据句意可知,此处表达的是:许多居住在国外的中国人仍保持着传统的习俗;故选C4.【解答】根据句意和结构可知这句话使用have a hard time in doing sth做某事有困难.所填空处作介词in的宾语.故选:D.5.【解答】答案:B.考查连词.since意为"既然",指显而易见的原因.when指时间;if 指条件;while指时间或表示前后对比关系.故选B.6.【解答】答案:B.根据句意可知这里需要短语as tall as高达,后面搭配基数词+单位,B符合这个搭配,其它选项搭配错误,结合句意可以得出答案.故选B.7.【解答】C 考察非谓语动词现在分词的用法.lead to…导致引起,to为介词后加动名词.逻辑主语thief与caught构成被动关系,应使用being done.句意为:新证据的发现导致小偷被抓了.故选:C.8.【解答】答案:A.分析句子的意思及结构可知,本句表达的是对过去事实的一种委婉的猜测,所以用might have done表示过去可能做过某事;故选A.should have done表示本应该做某事而没有做;can have done通常只用于否定句和疑问句.用于否定句时表否定推断,推测肯定没做;用于疑问句时意为"难道真的做了吗",表示怀疑.例如:Can he have done such a foolish thing?(=Is it possible …?)他会做这样的傻事吗?(表怀疑)He can't have taken it home.他不可能把它带回家了.(表不可能);will have done表示将来完成.9.【解答】答案A.can't"不能,不可能";needn't"不需要,没必要";may"一般用于肯定句中,表示可能";will"意愿或习惯性动作".根据句意,要耐心点,你"不能"期望世界变得如此之快,故选A.10.【解答】答案C根据句意,第一个空考查固定短语be convinced of,意为"对…确信";第二空考查短语effect on"对…产生影响".11.【解答】答案C.考查形容词.A疯狂的;B 好奇的;C挑剔的;D仔细的.根据句意:﹣哦,她对衣服很挑剔.be particular about是固定搭配"对…挑剔"所以答案选C.12.【解答】分析前面的现在分词短语可知,这是属于现在分词短语作时间状语,后面的主句的主语必须和分词的逻辑主语保持一致句子的结构才完整,所以D项符合句式结构和句意.故选:D.13.【解答】分析句子的语境可知,我目前还没有搬进新房子,是因为'房间正在被粉刷‘,无法入住,表示动作正在被进行,因此用现在进行时的被动语态.故选:D.14.【解答】答案选B.考查动词短语.result from 由…引起,后接原因;contribute to起…作用,有助于,引起;attend to专注,注意,照顾,护理;devote to献身于,致力于,把…奉献给…..根据语境以及句意可知此处表达"导致,引起"的意思,因此答案选B.15.【解答】答案是C.本题考查非谓语动词做定语;题干中缺少的是a nurse的定语,appoint 任命,指派;这里a nurse与appoint(任命)之间是被动关系,ABD均没有被动的含义,过去分词短语作定语表示被动故选:C.16.【解答】答案:Aconclude总结;lead导致,带领;avoid避免;hold掌握,把握.题干中important points 要点,与前面的小组讨论之间,应该是总结的含义.故选A.17.【解答】答案:C 考查固定短语.句意:他们就这件事争论了一整天,最后商定了下次会议的日期.argue about sth是固定短语,关于某事进行讨论,.agree on sth 在某事上达成一致意见.agree with 与观点一致,相符.所以答案选C.18.【解答】答案C.break down (机器或车辆)出毛病,损坏;分解;break out(战争、打斗等不愉快事件)突然发生,爆发;break away摆脱(束缚或控制);挣脱;逃脱;break up结束;(使)破碎;分手.句子表达的意思是"爱尔兰南部地区心有不甘要摆脱英联邦去形成一个自己的政府";故答案选C.19.【解答】答案:Dinterruption打扰;instruction指导;consideration考虑;convenience方便.根据本题的语境"感谢对方的帮助,请给与我回复"可知应该是在对方方便的情况之下,结合名词的词义和搭配"at one's earliest…",并结合语境,故选答案D.20.【解答】答案A.本题考查的是with的独立主格结构,with+sb./sth.+doing 表示sb/sth的主动;with+sb./sth.+done 表示sb/sth的被动;with+sb./sth.+to do 表示sb/sth需要被做.根据句意餐桌是"被摆放好了",故选A.二.完形填空(共1小题)21.【解答】41﹣45 DABCB 46﹣50 ACDDA 51﹣55 CBCCB 56﹣60 BAABD 41.D.考查固定搭配;从故事情节看,这里说的是客车行驶在路上,不能用it was time to do sth.表示"做某事的时间到了",而应用it was about to do sth.表示"正准备做某事";故选D.42.A.考查名词辨析.这里说的是一对恋人,因此用couple表示"一对";故选A.43.B.考查动词短语辨析.这里说的是这对恋人要求下车,故用call for表示"要求",故选B.44.C.考查介词辨析.这里用go on表示"继续".客车继续往前行驶;故选C.45.B.考查动词辨析.此处表示客车往前开,然后被山上的落石击中了.因此这里用ahead表示"向前,往前",故选B.46.A.考查形容词辨析.客车掉进了深谷,无人生还,听到这个消息,他们应该是感到震惊.故选shocked;故选A.47.C.考查动词辨析.根据上题解析可知,应选C,表示"幸存";故选C.48.D.看到悲剧的发生,这对恋人感到惋惜和难过,因此选D,表示"叹息".本题答案在后面的第48空处也有提示;故选D.49.D.考查名词辨析.根据定语tourist可知,这里应用bus表示送游客的游览车.下文的"On our bus"也是提示;故选D.50.A.考查副词辨析.他让作者猜测他们这对恋人在侥幸逃脱这场灾难之后说了什么,narrowly,狭窄地;勉强地;故选A.51.C.考查形容词辨析.有些人错过了车,结果躲过了灾难,这样的乘客可谓"幸运".故选C项.52.B.考查动词辨析.根据上题解析可知,此处应用avoid表示"躲避,避免",故选B.53.C.考查动词辨析.自己躲过劫难,觉得很幸运,因此当然会如释重负了,故选relief;故选C.54.C.考查名词辨析.根据后面的various可判断选C.游客的回答五花八门;故选C.55.B.考查动词辨析.这对恋人要求下车,结果耽搁了时间.故选B项.56.B.考查动词辨析.如果不是他们要求下车耽误了时间,这辆车就能开出那个危险地带了.因此选B,表示"过去,经过",故选B.57.A.考查副词辨析.别人听这个故事感受到的是智慧,但作者的想法却不同;故选A.58.A.考查名词辨析.作者认为这个故事其实是在考验一个人的思想境界.故用examination"考察";故选A.59.B.考查动词辨析.从前面的叙述可知,这对恋人非常自责,故选B.60.D.考查名词辨析.根据语境可知,此处表示人都有怜悯之心;故选D.三.阅读理解(共5小题)22.【解答】71.C 细节理解题.根据第一段第一行the government was looking for a way to reduce traffic problems in the city of London.The poor areas of the city were socrowded with people that it was almost impossible for horse carriages to get through.可知,是交通拥挤问题使政府建造地铁.故选C.72.B 细节理解题.根据第二段倒数第二行Fans had to be put in the tunnels later to keep the air clean enough for people to breathe.可知,伦敦地铁通过在隧道里安装风扇来解决人民吸烟问题.故选B.73.B 猜测词义题.根据文章最后一句It carried 9 million riders in its first year.第一年承载了9百万人可知,catch on意为变得流行了起来.故选B.74.C 推断判断题.根据At the time,the government was looking for a way to reduce traffic problems in the city of London.可知,建立地铁就是为了减轻交通压力,故地铁减轻了交通压力.故选C.23.【解答】56.D 细节理解题.根据Today the only acceptable form of book on the London underground is an e﹣book.和For those without an iPhone,another Apple product,the iPod,may be another choice.It's not just teenagers who"plug in"to their music以及The development of palm DVD technology means many commuters watch their favorite TV show or film说明A 项中的三个方法是伦敦地铁上的人经常做的事情.故D正确.57.A 推理判断题.根据One"app",called iShoot,is a game that features tanks.可知iShoot,是一款游戏.故喜欢游戏的人应该喜欢这个App.故A正确.58.B 推理判断题.根据And if games,e﹣books and music aren't enough to keep you occupied,可知如果游戏,音乐以及电子书都不能让你忙碌,那么看电影也许会适合你.因为这些多种娱乐的方式能够让我们忙碌得很充实.故B正确.59.C 主旨大意题.本文主要讲述的就是在伦敦坐地铁的人总是忙于使用自己的手机,。
罗定市三中2018-2019学年高二上学期第二次月考试卷数学
罗定市三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:乙校:则x,yA、12,7B、10,7C、10,8D、11,92.在等比数列中,,前项和为,若数列也是等比数列,则等于()A .B.C.D.3.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.4.随机变量x1~N(2,1),x2~N(4,1),若P(x1<3)=P(x2≥a),则a=()A.1 B.2 C.3 D.45.若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)6.下列命题中的假命题是()A.∀x∈R,2x﹣1>0 B.∃x∈R,lgx<1 C.∀x∈N+,(x﹣1)2>0 D.∃x∈R,tanx=27.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A.n≤8?B.n≤9?C.n≤10?D.n≤11?8.将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.B.C.D.9.A={x|x<1},B={x|x<﹣2或x>0},则A∩B=()A.(0,1)B.(﹣∞,﹣2)C.(﹣2,0)D.(﹣∞,﹣2)∪(0,1)10.线段AB在平面α内,则直线AB与平面α的位置关系是()A.AB⊂αB.AB⊄αC.由线段AB的长短而定D.以上都不对11.已知等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2=0,S2m﹣1=38,则m等于()A.38 B.20 C.10 D.912.函数f(x)=有且只有一个零点时,a的取值范围是()A.a≤0 B.0<a<C.<a<1 D.a≤0或a>1二、填空题13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .15.若函数f (x )=x 2﹣2x (x ∈[2,4]),则f (x )的最小值是 .16.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.17.在(2x+)6的二项式中,常数项等于 (结果用数值表示).18.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .三、解答题19.(本小题满分12分)已知圆M 与圆N :222)35()35(r y x =++-关于直线x y =对称,且点)35,31(-D 在圆M 上.(1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,)35,1(-A ,)35,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x)>恒成立,求实数k 的取值范围.21.本小题满分12分如图,在边长为4的菱形ABCD 中,60BAD ∠=,点E 、F 分别在边CD 、CB 上.点E 与点C 、D 不重合,EF AC ⊥,EFAC O =,沿EF 将CEF ∆翻折到PEF ∆的位置,使平面PEF ⊥平面ABFED .Ⅰ求证:BD ⊥平面P O A ;Ⅱ记三棱锥P A B D -的体积为1V ,四棱锥P B D E F -的体积为2V ,且1243V V =,求此时线段PO 的长.PACDOEF FEO DCA22.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C的方程;(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.23.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.24.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号.(Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.罗定市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B=60人,【解析】1从甲校抽取110× 1 2001 200+1 000=50人,故x=10,y=7.从乙校抽取110× 1 0001 200+1 0002.【答案】D【解析】设的公比为,则,,因为也是等比数列,所以,即,所以因为,所以,即,所以,故选D答案:D3.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.4.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.5.【答案】C【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.6.【答案】C【解析】解:A.∀x∈R,2x﹣1=0正确;B.当0<x<10时,lgx<1正确;C.当x=1,(x﹣1)2=0,因此不正确;D.存在x∈R,tanx=2成立,正确.综上可知:只有C错误.故选:C.【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.7.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.8.【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D.【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.9.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.10.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.11.【答案】C【解析】解:根据等差数列的性质可得:a m﹣1+a m+1=2a m,则a m﹣1+a m+1﹣a m2=a m(2﹣a m)=0,解得:a m=0或a m=2,若a m等于0,显然S2m﹣1==(2m﹣1)a m=38不成立,故有a m=2,∴S2m﹣1=(2m﹣1)a m=4m﹣2=38,解得m=10.故选C12.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a >1或a ≤0; 故选D .【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++.14.【答案】.【解析】解:因为y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,即y'=0有解,即y'=在x >0时有解,所以3(a ﹣3)x 3+1=0,即a ﹣3<0,所以此时a <3.函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则f'(x )≤0恒成立,即f'(x )=3x 2﹣2ax ﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.15.【答案】 0 .【解析】解:f (x ))=x 2﹣2x=(x ﹣1)2﹣1, 其图象开口向上,对称抽为:x=1, 所以函数f (x )在[2,4]上单调递增, 所以f (x )的最小值为:f (2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.16.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
罗定市第三中学校2018-2019学年高二上学期第二次月考试卷数学
罗定市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )A .B .C .D .2. 在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣3. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b 4. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则ba的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 5. 若,则下列不等式一定成立的是( ) A . B .C .D .6. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .47. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4D .y=﹣x8. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或9. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .10.一空间几何体的三视图如图所示,则该几何体的体积为(A.12B.6C.4D.211.已知集合M={0,1,2},则下列关系式正确的是()A.{0}∈M B.{0}∉M C.0∈M D.0⊆M12.集合A={1,2,3},集合B={﹣1,1,3},集合S=A∩B,则集合S的子集有()A.2个B.3 个 C.4 个 D.8个二、填空题13.已知nS是数列1{}2nn-的前n项和,若不等式1|12n nnSλ-+<+|对一切n N*∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.14.在(x2﹣)9的二项展开式中,常数项的值为.15.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为.16.设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.17.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.18.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f(x)=3x+1 ②f(x)=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)三、解答题19.【无锡市2018届高三上期中基础性检测】已知函数()()2ln1.f x x mx m R=--∈(1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
罗定市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
罗定市第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .2. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .103. 已知等比数列{a n }的前n 项和为S n ,若=4,则=( ) A .3B .4C .D .134. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .B .C .D .5. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)6. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )AB D7.某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,则m的值为()A.5 B.7 C.9 D.118.设{}n a是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1 B.2 C.4 D.6 9.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96 B.48 C.24 D.010.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()A.0 B.0或C.或D.0或11.已知函数f(x)=m(x﹣)﹣2lnx(m∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)<g (x0)成立,则实数m的范围是()A.(﹣∞,] B.(﹣∞,)C.(﹣∞,0] D.(﹣∞,0)12.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1 B.﹣1 C.﹣2 D.0二、填空题13.在矩形ABCD中,=(1,﹣3),,则实数k=.14.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为.15.下列四个命题:①两个相交平面有不在同一直线上的三个公交点②经过空间任意三点有且只有一个平面③过两平行直线有且只有一个平面④在空间两两相交的三条直线必共面其中正确命题的序号是.16.曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.17.已知复数,则1+z50+z100=.18.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.三、解答题19.由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x=5,其中能被5整除的共有多少个?(2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.20.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.21.如图,点A是单位圆与x轴正半轴的交点,B(﹣,).(I)若∠AOB=α,求cosα+sinα的值;(II)设点P为单位圆上的一个动点,点Q满足=+.若∠AOP=2θ,表示||,并求||的最大值.22.已知抛物线C:y2=2px(p>0)过点A(1,﹣2).(Ⅰ)求抛物线C的方程,并求其准线方程;(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.23.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.24.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.罗定市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.2.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.3.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D.【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.4.【答案】C【解析】解:设g(x)=xe x,y=mx﹣m,由题设原不等式有唯一整数解,即g(x)=xe x在直线y=mx﹣m下方,g′(x)=(x+1)e x,g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),结合函数图象得K PA≤m<K PB,即≤m <,,故选:C .【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.5. 【答案】B【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0, 在(﹣1,0)上小于0,∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0). 故选B .6. 【答案】C 【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而 ()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭.7. 【答案】C【解析】解:若果树前n 年的总产量S 与n 在图中对应P (S ,n )点 则前n 年的年平均产量即为直线OP 的斜率 由图易得当n=9时,直线OP 的斜率最大 即前9年的年平均产量最高, 故选C8. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 9. 【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.10.【答案】D【解析】解:∵f(x)是定义在R上的偶函数,当0≤x≤1时,f(x)=x2,∴当﹣1≤x≤0时,0≤﹣x≤1,f(﹣x)=(﹣x)2=x2=f(x),又f(x+2)=f(x),∴f(x)是周期为2的函数,又直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,其图象如下:当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].由得:x2﹣x﹣a=0,由△=1+4a=0得a=﹣,此时,x0=x=∈[0,1].综上所述,a=﹣或0故选D.11.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.12.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.二、填空题13.【答案】4.【解析】解:如图所示,在矩形ABCD中,=(1,﹣3),,∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),∴•=1×(k﹣1)+(﹣3)×1=0,解得k=4.故答案为:4.【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.14.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.15.【答案】③.【解析】解:①两个相交平面的公交点一定在平面的交线上,故错误;②经过空间不共线三点有且只有一个平面,故错误;③过两平行直线有且只有一个平面,正确;④在空间两两相交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③,故答案为:③16.【答案】②③④.【解析】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|∴|PA|+|PB|≥2=2k,③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.17.【答案】i.【解析】解:复数,所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;故答案为:i.【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.18.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.三、解答题19.【答案】【解析】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21×A21×A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.20.【答案】【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…由消y并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】解:(Ⅰ)点A是单位圆与x轴正半轴的交点,B(﹣,).可得sinα=,cosα=,∴cosα+sinα=.(Ⅱ)因为P(cos2θ,sin2θ),A(1,0)所以==(1+cos2θ,sin2θ),所以===2|cosθ|,因为,所以=2|cosθ|∈,||的最大值.【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力.22.【答案】【解析】解:(I)将(1,﹣2)代入抛物线方程y2=2px,得4=2p,p=2∴抛物线C的方程为:y2=4x,其准线方程为x=﹣1(II)假设存在符合题意的直线l,其方程为y=﹣2x+t,由得y2+2y﹣2t=0,∵直线l与抛物线有公共点,∴△=4+8t≥0,解得t≥﹣又∵直线OA与L的距离d==,求得t=±1∵t≥﹣∴t=1∴符合题意的直线l存在,方程为2x+y﹣1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想.23.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a﹣c,利用正弦定理化简得:2sinBcosC=2sinA﹣sinC=2sin(B+C)﹣sinC=2sinBcosC+2cosBsinC﹣sinC,整理得:2cosBsinC﹣sinC=0,∵sinC≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.24.【答案】【解析】解:(1)圆C的直角坐标方程为(x﹣2)2+y2=2,代入圆C得:(ρcosθ﹣2)2+ρ2sin2θ=2化简得圆C的极坐标方程:ρ2﹣4ρcosθ+2=0…由得x+y=1,∴l的极坐标方程为ρcosθ+ρsinθ=1…(2)由得点P的直角坐标为P(0,1),∴直线l的参数的标准方程可写成…代入圆C得:化简得:,∴,∴t1<0,t2<0…∴…。
广东省罗定艺术高级中学2018-2019学年高二3月月考地理试题 含解析
2018-2019学年下学期第一次月考(3月)高二地理(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教必修3+选修3、选修6。
第Ⅰ卷本卷共22小题,每小题2分,共44分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
民居一般指传统的居住建筑。
由于我国各地区自然环境和人文环境的差异,民居呈现出不同的地域特点。
下图中a、b分别为西南吊脚楼和北方黄土窑洞景观。
据此完成下列各题。
1. 造成a、b两地民居差异的主要因素是()A. 地形B. 植被C. 气候D. 土壤2. a、b所在地区共同面临的主要环境问题是()A. 水土流失B. 土地盐渍化C. 红色荒漠D. 湿地萎缩3. 上述环境问题形成的共同原因是()A. 围湖造田B. 全球变暖C. 植被破坏D. 不合理灌溉【答案】1. C 2. A 3. C【解析】【1题详解】本题主要考查自然环境对人类活动的影响。
我国西南地区,主要为亚热带季风气候,水热资源丰富,气候潮湿,因此因地制宜,传统民居主要是吊脚楼;黄土高原,属于温带季风候区,降水较少,气候干燥,土体直立,因此发展的是黄土窑洞,所以造成a, b 两地民居差异的主要因素是气候,故答案选C项。
【2题详解】本题主要考查区域环境问题。
西南地区,地形崎岖,雨热同期,降水集中,再加上植被的破坏,容易导致水土流失,黄土高原地区,降水也较为集中,而且多暴雨,再加上土质疏松,主要的环境问题也为水土流失,故答案选A。
【3题详解】由上题分析可知,两地出现的共同问题为水土流失,两地共同的原因为地表植被的破坏,导致水土流失加剧,故答案选C项。
罗定市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
罗定市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知条件p:x2+x﹣2>0,条件q:x>a,若q是p的充分不必要条件,则a的取值范围可以是()A.a≥1 B.a≤1 C.a≥﹣1 D.a≤﹣32.已知等差数列{a n}中,a6+a8=16,a4=1,则a10的值是()A.15 B.30 C.31 D.643.下列函数在(0,+∞)上是增函数的是()A.B.y=﹣2x+5 C.y=lnx D.y=4.设0<a<b且a+b=1,则下列四数中最大的是()A.a2+b2B.2ab C.a D.5.不等式x(x﹣1)<2的解集是()A.{x|﹣2<x<1} B.{x|﹣1<x<2} C.{x|x>1或x<﹣2} D.{x|x>2或x<﹣1}6.已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为()A.1 B.2 C.3 D.47.若a<b<0,则下列不等式不成立是()A.>B.>C.|a|>|b| D.a2>b28.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( ) A5B4C3D29.复数的虚部为()A.﹣2 B.﹣2i C.2 D.2i10.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+11.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .12.已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <0二、填空题13.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .14.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .15.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .16.定义:分子为1且分母为正整数的分数叫做单位分数.我们可以把1拆分为无穷多个不同的单位分数之和.例如:1=++,1=+++,1=++++,…依此方法可得:1=++++++++++++,其中m ,n ∈N *,则m+n= .17.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .18.81()x x的展开式中,常数项为___________.(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.三、解答题19.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.20.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.21.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.22.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .23.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.24.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望;(Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.罗定市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵条件p:x2+x﹣2>0,∴条件q:x<﹣2或x>1∵q是p的充分不必要条件∴a≥1故选A.2.【答案】A【解析】解:∵等差数列{a n},∴a6+a8=a4+a10,即16=1+a10,∴a10=15,故选:A.3.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C.【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.4.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a2+b2故选A5.【答案】B【解析】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x﹣2)(x+1)<0,∴﹣1<x<2,即不等式的解集为{x|﹣1<x<2}.故选:B6.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.7.【答案】A【解析】解:∵a<b<0,∴﹣a>﹣b>0,∴|a|>|b|,a2>b2,即,可知:B,C,D都正确,因此A不正确.故选:A.【点评】本题考查了不等式的基本性质,属于基础题.8.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.9.【答案】C【解析】解:复数===1+2i的虚部为2.故选;C.【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.10.【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.11.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A .12.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B二、填空题13.【答案】(3,1).【解析】解:由(2m+1)x+(m+1)y﹣7m﹣4=0,得即(2x+y﹣7)m+(x+y﹣4)=0,∴2x+y﹣7=0,①且x+y﹣4=0,②∴一次函数(2m+1)x+(m+1)y﹣7m﹣4=0的图象就和m无关,恒过一定点.由①②,解得解之得:x=3 y=1 所以过定点(3,1);故答案为:(3,1)14.【答案】5﹣4.【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.15.【答案】9.【解析】解:平均气温低于22.5℃的频率,即最左边两个矩形面积之和为0.10×1+0.12×1=0.22,所以总城市数为11÷0.22=50,平均气温不低于25.5℃的频率即为最右面矩形面积为0.18×1=0.18,所以平均气温不低于25.5℃的城市个数为50×0.18=9.故答案为:916.【答案】33.【解析】解:∵1=++++++++++++,∵2=1×2,6=2×3,30=5×6,42=6×7,56=7×8,72=8×9,90=9×10,110=10×11,132=11×12,∴1=++++++++++++=(1﹣)+++(﹣)+,+==﹣+﹣=,∴m=20,n=13, ∴m+n=33, 故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题.17.【答案】 .【解析】解:由得,所以.又由f (x )g'(x )>f'(x )g (x ),即f (x )g'(x )﹣f'(x )g (x )>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.18.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r r r r r rr T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.三、解答题19.【答案】【解析】解:(1)∵y=+,∴,解得x ≥﹣2且x ≠﹣2且x ≠3,∴函数y 的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].20.【答案】【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.21.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.22.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.23.【答案】【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.24.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.。
广东省罗定实验中学---第二学期3月月考理科数学
广东省罗定实验中学---第二学期3月月考高三理科数学一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、在复平面内, 复数1 + i 与31+i 分别对应向量OA 和OB , 其中O 为坐标原点, AB = ( )A 2B 2C 10D 4 2、已知向量a 、b 的夹角为60°且|a |=2,|b |=3,则a 2+a ·b = ( )A 7B 10C 10D 493、设(0,)2πα∈,若3sin 5α=2)4πα+=( ) A 75B15 C 72D 4 4、下列命题中,真命题是( )A ,sin cos 1.5x R x x ∃∈+=B (0,),1xx e x ∀∈+∞>+ C 2,1x R x x ∃∈+=- D (0,),sin cos x x x π∀∈> 5、已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( )A 3B 2C 1D 2-6、如果执行右面的程序框图,那么输出的S =( ) A 22 B 46 C 94D 1907、已知函数2()(32)ln 20082009f x x x x x =-++-,则方程()0f x =在下面哪个范围内必有实根( )A (0,1)B (1,2)C (2,3)D (2,4)8、设O 在ABC ∆的内部,且20OA OB OC ++=,则ABC ∆的面积 与AOC ∆的面积之比为( ) A 3 B 4 C 5 D 6第二卷 非选择题(共110分)二、填空题:本大题共7小题,每小题5分,满分30分.(其中13~15题是选做题,考生只能选做二题,三题全答的,只计算前两题得分.) (一)必做题(9~12题)9、2(21)x dx -⎰=10、二项式6(2x x-展开式中含2x 项的系数是 开始1,1i s ==5?i >1i i =+输出s结束否是第6题2(1)s s =+ABDCOM N 11、已知点P (x ,y )的坐标满足条件1110x y x y ≤⎧⎪≤⎨⎪+-≥⎩22x y +12、函数()y f x =是定义在[,]a b 上的增函数,其中,,a b R ∈且0b a <<-,已知()y f x =无零点,设函数22()()()F x f x f x =+-,则对于()F x 有以下四个说法:①定义域是[,]b b -;②是偶函数;③最小值是0;④在定义域内单调递增。
罗定市高中2018-2019学年高二上学期第一次月考试卷数学
罗定市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 2. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 23. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是( )A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}4. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]5. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧7. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f ()的值为( )A .B .0C .D .8. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .459. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( ) A .16π B .12π C .8π D .4π10.已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 3011.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .12.已知函数f (x )=是R 上的增函数,则a 的取值范围是( ) A .﹣3≤a <0 B .﹣3≤a ≤﹣2 C .a ≤﹣2D .a <0二、填空题13.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .14.方程22x ﹣1=的解x= .15.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .16.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)17.已知函数f (x )=(2x+1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为 .18.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .三、解答题19.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .20.已知函数f (x )=lnx ﹣kx+1(k ∈R ).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.21.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.22.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).23.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.24.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(Ⅰ)证明:AM⊥PM;(Ⅱ)求点D到平面AMP的距离.罗定市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C2.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.3.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.4.【答案】B【解析】解:由M中y=2x,x≤1,得到0<y≤2,即M=(0,2],由N中不等式变形得:(x﹣1)(x+1)≤0,且x+1≠0,解得:﹣1<x≤1,即N=(﹣1,1],则M∩N=(0,1],故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.5.【答案】D【解析】解:根据题意,△ABC中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm,∴由余弦定理,得cos120°=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D.【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.6.【答案】D【解析】考点:命题的真假.7.【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f(x)=sin(2x﹣),故f()=sin(﹣)=sin=,故选:C.【点评】本题主要考查由函数y=Asin(ωx+θ)的部分图象求函数的解析式,属于中档题.8.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.9.【答案】D【解析】考点:几何概型.10.【答案】C【解析】解:a==1+,该函数在(0,)和(,+∞)上都是递减的,n图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.11.【答案】D考点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 12.【答案】B【解析】解:∵函数是R 上的增函数设g (x )=﹣x 2﹣ax ﹣5(x ≤1),h (x )=(x >1)由分段函数的性质可知,函数g (x )=﹣x 2﹣ax ﹣5在(﹣∞,1]单调递增,函数h (x )=在(1,+∞)单调递增,且g (1)≤h (1)∴∴解可得,﹣3≤a ≤﹣2 故选B二、填空题13.【答案】 (﹣2,﹣6) .【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.14.【答案】﹣.【解析】解:22x﹣1==2﹣2,∴2x﹣1=﹣2,解得x=﹣,故答案为:﹣【点评】本题考查了指数方程的解法,属于基础题.15.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.16.【答案】(4)【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.17.【答案】3.【解析】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.18.【答案】50π【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.三、解答题19.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.20.【答案】【解析】解:(1)函数f(x)的定义域为(0,+∞),f′(x)=﹣k=0,∴x=,由ln﹣1+1=0,可得k=1;(2)当k≤0时,f′(x)=﹣k>0,f(x)在(0,+∞)上是增函数;当k>0时,若x∈(0,)时,有f′(x)>0,若x∈(,+∞)时,有f′(x)<0,则f(x)在(0,)上是增函数,在(,+∞)上是减函数.k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,∵f(x)的最大值为f(),要使f(x)≤0恒成立,则f()≤0即可,即﹣lnk≤0,得k≥1.【点评】本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.21.【答案】【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,任意的x∈[1,3],f(x)≤0恒成立,故f(1)=0,即1为函数函数f(x)的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.22.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,由题意可得f′(1)=0,且f(1)=1,即为1﹣a=0,且﹣a﹣b=1,解得a=1.b=﹣2,经检验符合题意.故a=1,b=﹣2;(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;③a≥1,f′(x)<0.f(x)在(1,+∞)递减.综上可得,a≤0,f(x)在(1,+∞)递增;0<a<1,f(x)在(1,)递增,在(,+∞)递减;a≥1,f(x)在(1,+∞)递减.(Ⅲ)f′(x0)=﹣a=﹣a,直线AB的斜率为k===﹣a,f′(x0)<k⇔<,即x2﹣x1<ln[λx1+(1﹣λ)x2],即为﹣1<ln[λ+(1﹣λ)],令t=>1,t﹣1<lnt[λ+(1﹣λ)t],即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,故当t>1时,g′(t)<0,则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,解得1<t<,当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,则有当t∈(1,),g(t)>0不合题意.即有0<λ≤.【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.24.【答案】【解析】(Ⅰ)证明:取CD的中点E,连接PE、EM、EA∵△PCD为正三角形∴PE⊥CD,PE=PDsin∠PDE=2sin60°=∵平面PCD⊥平面ABCD∴PE⊥平面ABCD∵四边形ABCD是矩形∴△ADE、△ECM、△ABM均为直角三角形由勾股定理得EM=,AM=,AE=3∴EM2+AM2=AE2,∴∠AME=90°∴AM⊥PM(Ⅱ)解:设D点到平面PAM的距离为d,连接DM,则V P﹣ADM=V D﹣PAM∴而在Rt△PEM中,由勾股定理得PM=∴∴∴,即点D到平面PAM的距离为。
广东省罗定艺术高级中学2018-2019学年高二3月月考语文试题 Word版含答案
姓名,年级:时间:罗定艺术高级中学2018—2019学年高二3月月考(语文科)[来源:Z。
]本试卷第I卷和第Ⅱ卷均属于必考部分,满分为150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卷的相应位置上。
2.考生务必用黑色字迹的钢笔或签字笔作答,答案不能写在试卷上,必须写在答题卷的各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
第I卷阅读题(70分)一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题.[来源:学#科#网]近来,“岳阳楼将‘承包'给企业经营”的消息在岳阳炸开了锅。
岳阳市政府网相关文件显示,去年11月当地发布公告,对岳阳市辖区内两个重点旅游景区经营权面向社会公开招商,而岳阳楼景区并不在此之列.岳阳楼景区管委会工作人员告诉记者,岳阳楼景区虽不在招商名单内,但眼下景区正在进行经营权转让。
景区景点被商业经营者“托管”的原因不外乎三类。
一类是“公家”经营不善,亏损运营,人工、养护、开发等成本巨大又不堪重负。
第二类不排除有谋发展、做大做强的意思。
一些地方守着景区景点的“金山银山”,因为自身不具有先进的管理和市场经验,亟待引进新的管理思维和运营模式将景区景点做得更好。
当然也有一种迎合潮流的不负责的“托管”--看其他地方有这么干的,自己也“赶个趟",打外包给“私人",结果如何可能根本没有考虑。
将政府的景点景区“托管”他人,结局如何褒贬不一。
“托管"型景区景点,因为托管的逐利因素,经营者往往采取竭泽而渔的方式经营,希望以最短的时间达到最大的目的,一些托管景区景点不注重基础设施建设,对旧有设施设备却过度使用,维护维修资金投入不足,更多的核算为利润等。
这是多数托管景区景点的通病,结果就是一些地方托管出去的景区景点,政府没有赚到多少钱,景区景点却破坏损害严重,最终还得政府收拾“残局”。
广东省云浮市罗定中学2018-2019学年高三数学理模拟试题含解析
广东省云浮市罗定中学2018-2019学年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合是函数的定义域,集合是函数的值域,则()A. B.C.且 D.参考答案:B2. 若复数()为纯虚数,则等于( )A.0 B.1 C.-1 D.0或1参考答案:B3. 已知,则的值为()A.B. C. D.参考答案:D略4. 对于三次函数(),定义:设f″(x)是函数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数的“拐点”.有同学发现:“任、何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,若函数,则=()(A)2010 (B)2011 (C)2012 (D)2013参考答案:A令,,则g(x)=h(x)+m(x).则,令,所以h(x)的对称中心为(,1).设点p(x0,y0)为曲线上任意一点,则点P关于(,1)的对称点P′(1﹣x0,2﹣y0)也在曲线上,∴h(1﹣x0)=2﹣y0 ,∴h(x0)+h(1﹣x0)=y0+(2﹣y0)=2.∴h()+h()+h()+h()+…+h()=[h()+h()]+[h()+h()]+[h()+h()]+…+[h ()+h()]=1005×2=2010.由于函数m(x)=的对称中心为(,0),可得m(x0)+m(1﹣x0)=0.∴m()+m()+m()+m()+…+m()=[m()+m()]+[m()+m()]+[m()+m()]+…+[m ()+m()]=1005×0=0.∴g()+g()+g()+g()+…+g()=h()+h()+h()+h()+…+h()+m()+m()+m()+m()+…+m()=2010+0=2010,选A.5. 已知,若,则ab=A. 1B. -1C. mD. - m参考答案:D6. 复数,,则复数在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A7. 在的展开式中,所有项的二项式系数和为4096,则其常数项为A. B. C. D.参考答案:A8. 函数的最小值为()A. B. C. D.参考答案:C【分析】函数的定义域为,再根据函数单调求得最小值。
罗定市三中2018-2019学年高二上学期数学期末模拟试卷含解析
罗定市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.2. 已知函数f (x )的定义域为[a ,b],函数y=f (x )的图象如下图所示,则函数f (|x|)的图象是( )A .B .C .D .3. 已知集合,,则( ){2,1,0,1,2,3}A =--{|||3,}B y y x x A ==-∈A B = A .B .C .D .{2,1,0}--{1,0,1,2}-{2,1,0}--{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.4. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能5. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .26. 设集合A={x||x ﹣2|≤2,x ∈R},B={y|y=﹣x 2,﹣1≤x ≤2},则∁R (A ∩B )等于( )A .RB .{x|x ∈R ,x ≠0}C .{0}D .∅7. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A . B . C . D .8. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤29. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .10.过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .11.“a >b ,c >0”是“ac >bc ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.集合,则A B = (){}{}2|ln 0,|9A x x B x x =≥=<A .()1,3 B .C .[]1,+∞D .[],3e [)1,3二、填空题13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .14.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 . 15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 . 16.要使关于的不等式恰好只有一个解,则_________.x 2064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.17.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 18.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+三、解答题19.如图所示,在四棱锥中,底面为菱形,为与的交点,平P ABCD -ABCD E AC BD PA ⊥面,为中点,为中点.ABCD M PA N BC (1)证明:直线平面;//MN ABCD(2)若点为中点,,,,求三棱锥的体积.Q PC 120BAD ∠=︒PA =1AB =A QCD -20.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,).(1)求a 的值;(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a(x ≥0)的值域.21.已知椭圆C : +=1(a >b >0)的左,右焦点分别为F 1,F 2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,若斜率为k (k ≠0)的直线l 与x 轴,椭圆C 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧)且∠RF 1F 2=∠PF 1Q ,求证:直线l 过定点,并求出斜率k 的取值范围.22.已知,若,求实数的值.{}{}22,1,3,3,31,1A a a B a a a =+-=--+{}3A B =-23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.24.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.罗定市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】由复数的除法运算法则得,,所以的虚部为.i i i i i i i i z z 54531086)3)(3()3)(31(33121+=+=-+-+=++=21z z 542. 【答案】B【解析】解:∵y=f (|x|)是偶函数,∴y=f (|x|)的图象是由y=f (x )把x >0的图象保留,x <0部分的图象关于y 轴对称而得到的.故选B .【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x )|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题. 3. 【答案】C【解析】当时,,所以,故选C .{2,1,0,1,2,3}x ∈--||3{3,2,1,0}y x =-∈---A B = {2,1,0}--4. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系. 5. 【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x ﹣2)2+y 2=2的圆心(2,0),半径为,双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,可得:,可得a 2=b 2,c=a ,e==.故选:B .【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.6.【答案】B【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},∁R(A∩B)={x|x∈R,x≠0},故选B.7.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
罗定市第二中学2018-2019学年高二上学期第二次月考试卷数学
罗定市第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1} 2. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥3. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=4. 复数z=(其中i 是虚数单位),则z的共轭复数=( ) A.﹣iB.﹣﹣i C.+iD.﹣+i5. 下列命题中正确的是( ) (A )若p q ∨为真命题,则p q ∧为真命题( B ) “0a >,0b >”是“2b aa b+≥”的充分必要条件 (C ) 命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠或2x ≠,则2320x x -+≠”(D ) 命题:p 0R x ∃∈,使得20010x x +-<,则:p ⌝R x ∀∈,使得210x x +-≥6. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( ) A.B.C.D.7. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.其中正确的说法的个数是()A.1 B.2 C.3 D.48.已知命题p:∃x∈R,cosx≥a,下列a的取值能使“¬p”是真命题的是()A.﹣1 B.0 C.1 D.29.抛物线y2=8x的焦点到双曲线的渐近线的距离为()A.1 B.C.D.10.给出定义:若(其中m为整数),则m叫做离实数x最近的整数,记作{x},即{x}=m 在此基础上给出下列关于函数f(x)=|x﹣{x}|的四个命题:①;②f(3.4)=﹣0.4;③;④y=f(x)的定义域为R,值域是;则其中真命题的序号是()A.①②B.①③C.②④D.③④11.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣)B.y=sin(2x+)C.y=cos2x D.y=﹣sin2x12.若a>0,b>0,a+b=1,则y=+的最小值是()A.2 B.3 C.4 D.5二、填空题13.函数f(x)=﹣2ax+2a+1的图象经过四个象限的充要条件是.14由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.15.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .16.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .17.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .18.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.三、解答题19.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(Ⅰ)求出f (5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f (n+1)与f (n )的关系式,并根据你得到的关系式求f (n )的表达式.20.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间;(2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.21.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.22.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)23.本小题满分10分选修44-:坐标系与参数方程选讲在直角坐标系xoy中,直线的参数方程为322x y ⎧=-⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C的方程为ρθ=.Ⅰ求圆C 的圆心到直线的距离;Ⅱ设圆C 与直线交于点A B 、,若点P的坐标为(3,,求PA PB +.24.在△ABC 中,D 为BC 边上的动点,且AD=3,B=.(1)若cos ∠ADC=,求AB 的值;(2)令∠BAD=θ,用θ表示△ABD 的周长f (θ),并求当θ取何值时,周长f (θ)取到最大值?罗定市第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .2. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 3. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y -+-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .4. 【答案】C【解析】解:∵z==,∴=.故选:C .【点评】本题考查了复数代数形式的乘除运算,是基础题.5. 【答案】D【解析】对选项A ,因为p q ∨为真命题,所以,p q 中至少有一个真命题,若一真一假,则p q ∧为假命题,故选项A 错误;对于选项B ,2b aab+≥的充分必要条件是,a b 同号,故选项B 错误;命题“若2320x x -+=,则1x =或2x =”的逆否命题为“若1x ≠且2x ≠,则2320x x -+≠”,故选项C 错误;故选D .6. 【答案】C【解析】解:由ln (3a ﹣1)<0得<a <,则用计算机在区间(0,1)上产生随机数a ,不等式ln (3a ﹣1)<0成立的概率是P=, 故选:C .7. 【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确. 故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题.8. 【答案】D【解析】解:命题p :∃x ∈R ,cosx ≥a ,则a ≤1. 下列a 的取值能使“¬p ”是真命题的是a=2. 故选;D .9. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A .【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.10.【答案】B【解析】解:①∵﹣1﹣<﹣≤﹣1+∴{﹣}=﹣1∴f (﹣)=|﹣﹣{﹣}|=|﹣+1|= ∴①正确;②∵3﹣<3.4≤3+∴{3.4}=3∴f (3.4)=|3.4﹣{3.4}|=|3.4﹣3|=0.4 ∴②错误;③∵0﹣<﹣≤0+∴{﹣}=0∴f (﹣)=|﹣﹣0|=,∵0﹣<≤0+∴{}=0∴f ()=|﹣0|=,∴f (﹣)=f () ∴③正确;④y=f (x )的定义域为R ,值域是[0,] ∴④错误. 故选:B .【点评】本题主要考查对于新定义的理解与运用,是对学生能力的考查.11.【答案】D【解析】解:把函数y=sin (2x ﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣]=sin (2x ﹣π)=﹣sin2x .故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.12.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b)=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4.故选:C.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.二、填空题13.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.14.【答案】.【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6,代入回归方程,可得a=﹣,所以=x﹣,当x=8时,y=,估计他的年推销金额为万元.故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.15.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.16.【答案】﹣3<a<﹣1或1<a<3.【解析】解:根据题意知:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,∴2﹣1<|a|<2+1,∴﹣3<a<﹣1或1<a<3.故答案为:﹣3<a<﹣1或1<a<3.【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(y﹣a)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题.17.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞), 故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.18.【答案】(【解析】()231033f x x x ⎛=-+>⇒∈- ⎝'⎭ ,所以增区间是33⎛- ⎝⎭三、解答题19.【答案】【解析】解:(Ⅰ)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (2)﹣f (1)=4=4×1. f (3)﹣f (2)=8=4×2, f (4)﹣f (3)=12=4×3, f (5)﹣f (4)=16=4×4 ∴f (5)=25+4×4=41.…(Ⅱ)由上式规律得出f (n+1)﹣f (n )=4n .… ∴f (2)﹣f (1)=4×1, f (3)﹣f (2)=4×2,f (4)﹣f (3)=4×3, …f (n ﹣1)﹣f (n ﹣2)=4•(n ﹣2), f (n )﹣f (n ﹣1)=4•(n ﹣1)…∴f (n )﹣f (1)=4[1+2+…+(n ﹣2)+(n ﹣1)]=2(n ﹣1)•n , ∴f (n )=2n 2﹣2n+1.…20.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦.(2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.21.【答案】(1)4CE =;(2)13CD =. 【解析】试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =,解得4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 22.【答案】【解析】(Ⅰ)因为网购金额在2000元以上的频率为40., 所以网购金额在2000元以上的人数为10040.⨯=40 所以4030=+y ,所以10=y ,……………………1分15=x ,……………………2分所以10150.,.==q p ……………………4分⑵由题设列联表如下……………………7分 所以))()()(()(d b c a d c b a bc ad n K ++++-=22=5656040257554020351002.)(≈⨯⨯⨯⨯-⨯…………9分因为0245565..>……………………10分所以据此列联表判断,有597.%的把握认为网购金额超过2000元与网龄在三年以上有关.……………………12分 23.【答案】【解析】Ⅰ∵:C ρθ=∴2:sin C ρθ=∴22:0C x y +-=,即圆C的标准方程为22(5x y +-=.直线的普通方程为30x y +=. 所以,圆C=.Ⅱ由22(53x y y x ⎧+-=⎪⎨=-+⎪⎩,解得12x y =⎧⎪⎨=⎪⎩或21x y =⎧⎪⎨=⎪⎩所以 24.【答案】【解析】(本小题满分12分) 解:(1)∵,∴,∴…2分(注:先算∴sin ∠ADC 给1分) ∵,…3分∴,…5分||||PA PB +==(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.。
罗定市高级中学2018-2019学年高二上学期第一次月考试卷数学
罗定市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2-2. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .43. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .184. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 5. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,46. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4} 7. 若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <08. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .41 9. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.10.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数11.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.12.设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)二、填空题13.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .14.已知实数x ,y 满足约束条,则z=的最小值为 .15.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 17.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .18.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .三、解答题19.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围20.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)21.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求数列{a n}的通项公式;(2)令b n=n(a n+1),求数列{b n}的前n项和T n.22.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.23.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.24.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.罗定市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义. 2. 【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n ∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 4. 【答案】B 【解析】111]试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B .考点:几何体的结构特征. 5. 【答案】C 【解析】考点:茎叶图,频率分布直方图. 6. 【答案】C【解析】解:∵≤1=,∴x ≥0, ∴A={x|x ≥0};又x 2﹣6x+8≤0⇔(x ﹣2)(x ﹣4)≤0,∴2≤x ≤4. ∴B={x|2≤x ≤4}, ∴∁R B={x|x <2或x >4}, ∴A ∩∁R B={x|0≤x <2或x >4}, 故选C .7. 【答案】B【解析】解:∵函数y=a x﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a >1,a 0﹣b ﹣1<0,即a >1,b >0, 故选:B8. 【答案】B 【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制 9. 【答案】B【解析】由题意设()()e sin xg x f x kx x kx =-=-,且()0g x ≥在[0,]2x π∈时恒成立,而'()e (sin cos )x g x x x k =+-.令()e (sin cos )x h x x x =+,则'()2e c o s 0xh x x =≥,所以()h x 在[0,]2π上递增,所以21()h x e π≤≤.当1k ≤时,'()0g x ≥,()g x 在[0,]2π上递增,()(0)0g x g ≥=,符合题意;当2e k π≥时,'()0g x ≤,()g x 在[0,]2π上递减,()(0)0g x g ≤=,与题意不合;当21e k π<<时,()g x '为一个递增函数,而'(0)10g k =-<,2'()e 02g k ππ=->,由零点存在性定理,必存在一个零点0x ,使得0'()0g x =,当0[0,)x x ∈时,'()0g x ≤,从而()g x 在0[0,)x x ∈上单调递减,从而()(0)0g x g ≤=,与题意不合,综上所述:k 的取值范围为(,1]-∞,故选B .10.【答案】C【解析】解:∵对任意x 1,x 2∈R 有 f (x 1+x 2)=f (x 1)+f (x 2)+1, ∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1, ∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1], ∴f (x )+1为奇函数. 故选C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.11.【答案】D第Ⅱ卷(共90分)12.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B二、填空题13.【答案】3a≤-【解析】试题分析:函数()f x图象开口向上,对称轴为1x a=-,函数在区间(,4]-∞上递减,所以14,3a a-≥≤-. 考点:二次函数图象与性质.14.【答案】.【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.16.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.17.【答案】.【解析】解:∵=1﹣bi,∴a=(1+i)(1﹣bi)=1+b+(1﹣b)i,∴,解得b=1,a=2.∴|a﹣bi|=|2﹣i|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题.18.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.三、解答题19.【答案】【解析】解:(Ⅰ)一周课外阅读时间在[0,2)的学生人数为0.010×2×100=2人,一周课外阅读时间在[2,4)的学生人数为0.015×2×100=3人,记一周课外阅读时间在[0,2)的学生为A,B,一周课外阅读时间在[2,4)的学生为C,D,E,从5人中选取2人,得到基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共有10个基本事件,记“任选2人中,恰有1人一周课外阅读时间在[2,4)”为事件M,其中事件M包含AC,AD,AE,BD,BC,BE,共有6个基本事件,所以P(M)==,即恰有1人一周课外阅读时间在[2,4)的概率为.(Ⅱ)以该校80%的学生都达到的一周课外阅读时间为t0,即一周课外阅读时间未达到t0的学生占20%,由(Ⅰ)知课外阅读时间落在[0,2)的频率为P1=0.02,课外阅读时间落在[2,4)的频率为P2=0.03,课外阅读时间落在[4,6)的频率为P3=0.05,课外阅读时间落在[6,8)的频率为P1=0.2,因为P1+P2+P3<0.2,且P1+P2+P3+P4>0.2,故t0∈[6,8),所以P1+P2+P3+0.1×(t0﹣6)=0.2,解得t0=7,所以教育局拟向全市中学生的一周课外阅读时间为7小时.【点评】本题主要考查了用列举法计算随机事件的基本事件,古典概型概以及频率分布直方图等基本知识,考查了数据处理能力和运用概率知识解决实际问题的能力,属于中档题.20.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.x f x f x所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.x g′x g x(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0, 则n 的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.21.【答案】解:(1)∵a n+1=2a n +1, ∴a n+1+1=2(a n +1), 又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列, ∴a n +1=2n , ∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .则所求和为12nn 6分22.【答案】【解析】解:(1)当a=1时,依题意得x 2﹣3x+2≤0因式分解为:(x ﹣2)(x ﹣1)≤0, 解得:x ≥1或x ≤2. ∴1≤x ≤2.不等式的解集为{x|1≤x ≤2}.(2)依题意得x 2﹣3ax+2a 2<0∴(x ﹣a )(x ﹣2a )<0… 对应方程(x ﹣a )(x ﹣2a )=0 得x 1=a ,x 2=2a 当a=0时,x ∈∅.当a >0时,a <2a ,∴a <x <2a ; 当a <0时,a >2a ,∴2a <x <a ;综上所述,当a=0时,原不等式的解集为∅; 当a >0时,原不等式的解集为{x|a <x <2a}; 当a <0时,原不等式的解集为{x|2a <x <a};23.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==24.【答案】【解析】解:(1)椭圆C :=1,(a >b >0)的离心率,点(2,)在C 上,可得,,解得a 2=8,b 2=4,所求椭圆C 方程为:.(2)设直线l :y=kx+b ,(k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ),把直线y=kx+b 代入可得(2k 2+1)x 2+4kbx+2b 2﹣8=0,故x M ==,y M =kx M +b=,于是在OM 的斜率为:K OM ==,即K OM k=.∴直线OM 的斜率与l 的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度罗定艺术高级中学高二数学3月份考试试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知函数f(x)=,若对于,,使得f()=g(),则的最大值为()A. B. C. D.2.平面上动点与定点的距离和到直线的距离的比为,则动点的轨迹的标准方程为()A. B. C. D.3.已知函数,若函数的图象在处切线的斜率为,则的极大值是()A. B.C. D.4.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点,且法向量为的直线(点法式)方程为:,化简得.类比以上方法,在空间直角坐标系中,经过点,且法向量为的平面的方程为()A. B.C. D.5.已知函数,则满足的的取值范围是()A.B.C.D.6.欧拉公式为虚数单位是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限7.设的实部与虚部相等,其中为实数,则A.-1 B.-2 C.1 D.28.已知函数的图象上有两对关于轴对称的点,则实数的取值范围是()A. B. C. D.9.若向量,是非零向量,则“”是“,夹角为”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.方程表示的曲线是A.一个圆 B.两个半圆 C.两个圆 D.半圆11.已知双曲线:,,为左,右焦点,直线过右焦点,与双曲线的右焦点交于,两点,且点在轴上方,若,则直线的斜率为()A.B.C.D.12.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A.B.C.D.二、填空题13.已知函数若函数有3个零点,则实数的取值范围是__________.14.已知抛物线的焦点为,其准线与轴的交点为,过点作直线与抛物线交于两点.若以为直径的圆过点,则的值为________.15.椭圆的离心率等于,则椭圆的标准方程为____16.设曲线在点处的切线与直线垂直,则 __________.三、解答题17.已知关于的方程有实数根,求实数的值.18.已知函数(1)当时,求的单调区间;(2)当时,的图象恒在的图象上方,求a的取值范围.19.已知函数.若曲线在点处的切线与x轴平行,且,求a,b的值;若,对恒成立,求b的取值范围.20.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各个城市的大街小巷.为了解共享单车在市的使用情况,某调研机构在该市随机抽取了位市民进行调查,得到的列联表(单位:人)(1)根据以上数据,能否在犯错误的概率不超过的前提下认为使用共享单车的情况与年龄有关?(结果保留3位小数)(2)现从所抽取的岁以上的市民中利用分层抽样的方法再抽取5人(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii)从这5人中,再随机抽取2人赠送一件礼物,求选出的2人中至少有1人经常使用共享单车的概率.参考公式及数据:,.21.设函数,其中为自然对数的底数.(1)当时,求在点处的切线的斜率;(2)若存在,使,求正数的取值范围.22.根据下列条件求双曲线的标准方程.(1)经过点,焦点在轴上;(2)与双曲线有相同的焦点,且经过点.23.已知函数.(1)讨论的单调性;(2)对时,对任意,恒成立,求的取值范围.参考答案1.D【解析】【分析】不妨设f()=g()=a,从而可得的表达式,求导确定函数的单调性,再求最小值即可.【详解】不妨设f()=g()=a,∴=a,∴=ln(a+e),=,故=ln(a+e)-,(a>-e)令h(a)=ln(a+e)-,h′(a),易知h′(a)在(-e,+∞)上是减函数,且h′(0)=0,故h(a)在a处有最大值,即的最大值为;故选:D.【点睛】本题考查了函数的性质应用及导数的综合应用,考查了指对互化的运算,属于中档题.2.D【解析】【分析】由题意得到关于x,y的等式,整理变形即可确定动点的轨迹的标准方程.【详解】由题意可得:,整理变形可得:.本题选择D选项.【点睛】本题主要考查轨迹方程的求解,属于基础题.3.A【解析】【分析】由函数的图象在处切线的斜率为,得,从而得m=0,进而得f(x)的单调性,即可得极大值=.【详解】因为函数,所以,由函数的图象在处切线的斜率为,所以=3e,所以m=0. 即=0的根-2,0,因为,所以函数递增,在递减,在递增,所以函数的极大值=.故选:A.【点睛】本题考查了函数切线斜率的应用和求函数的极大值的问题,利用导数判断函数的单调性是关键,属于中档题.4.A【解析】【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P(x,y,z),则(x﹣1,y﹣2,z﹣3),利用平面法向量为(﹣1,﹣2,1),即可求得结论.【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P(x,y,z),则(x﹣1,y﹣2,z﹣3)∵平面法向量为(﹣1,﹣2,1),∴﹣(x﹣1)﹣2×(y﹣2)+1×(z﹣3)=0∴x+2y﹣z﹣2=0,故选:A.【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.5.B【解析】【分析】构造g(x)=f(x)-(e+e﹣1),利用导数研究其单调性即可得出.【详解】函数f(x)=e x﹣1+e1﹣x,令g(x)==e x﹣1+e1﹣x﹣(e+e﹣1),g′(x)=e x﹣1-e1﹣x,令g′(x)=0,解得x=1.可得:函数g(x)在(﹣∞,1)上单调递减,(1,+∞)上单调递增.g(x)min=g(1)=2﹣(e+e﹣1)<0,又g(0)=g(2)=0.∴0<x<2.故选:B.【点睛】本题考查了利用导数研究函数的单调性与最值,考查了推理能力与计算能力,属于中档题.6.B【解析】【分析】由欧拉公式,可得=cos2+isin2,表示的复数在复平面中的象限.【详解】解:由欧拉公式,可得=cos2+isin2,此复数在复平面中对应的点为(cos2,sin2),易得cos2<0,sin2>0,可得此点位于第二象限,故选B.【点睛】本题主要考查复数几何意义的应用,灵活运用所给条件求解是解题的关键.7.A【解析】【分析】利用复数的乘法运算化简题目所给表达式,根据实部和虚部相等列方程,求得的值.【详解】依题意,由于该复数的实部和虚部相等,故,解得,故选A.【点睛】本小题主要考查复数的运算,考查复数实部和虚部的概念,考查方程的思想,属于基础题. 8.D【解析】【分析】由函数的图象上有两对关于轴对称的点,转化为与在上有两个交点,根据导数的几何意义,确定切线的斜率,再结合函数的图象,即可求解.【详解】由题意,当时,,则关于轴的对称的函数解析式为,因为函数的图象上有两对关于轴对称的点,可转化为与在上有两个交点,设与相切于点,且,由,则,所以,即, (1)又由当时, (2)由(1)(2)联立解得,即又由,且,则,结合图象可知,满足,即,故选D.【点睛】本题主要考查了函数的对称性问题的应用,其中解答中把函数的图象上有两对关于轴对称的点,转化为与在上有两个交点,根据导数的几何意义,再结合函数的图象求解是解答的关键,着重考查了转化思想,以及分析问题和解答问题的能力,属于中档试题.9.C【解析】【分析】根据充分条件和必要条件的定义结合向量的运算进行判断即可.【详解】,向量,是非零向量,,夹角为“”是“,夹角为”的充要条件.故选:C.【点睛】本题主要考查充分条件和必要条件的判断,根据向量的运算是解决本题的关键.10.D【解析】【分析】方程等价于,即可得出结论.【详解】方程等价于,表示的曲线是半个圆.故选:D.【点睛】本题考查曲线与方程,考查圆的知识,属于基础题.11.D【解析】【分析】由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选:D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.12.C【解析】【分析】结合题意可知,代入数据,即可.【详解】A选项,13不满足某个数的平方,故错误;B选项,,故错误;C选项,故正确;D选项,,故错误.故选C.【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.13.【解析】【分析】令,对其求导并判断它的单调性,可以得到函数的单调性,进而画出的图象,当直线与函数的图象有三个交点时,满足题意,求出即可。
【详解】令,求导,当时,,则在上单调递增;当时,,则在上单调递减,在时,取得最大值为.结合单调性,可以画出函数的图象(见下图),当时,函数有3个零点【点睛】已知函数有零点(方程有根)求参数值常用的方法和思路(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解。
14.4【解析】【分析】设直线方程,与抛物线方程联立,借助于求出点A,B的横坐标,利用抛物线的定义,即可求出|AF|﹣|BF|.【详解】解:假设k存在,设AB方程为:y=k(x﹣1),与抛物线y2=4x联立得k2(x2﹣2x+1)=4x,即k2x2﹣(2k2+4)x+k2=0设两交点为A(x2,y2),B(x1,y1),∵以为直径的圆过点,∴∠QBA=90°,∴(x1﹣2)(x1+2)+y12=0,∴x12+y12=4,∴x12+4x1﹣1=0(x1>0),∴x12,∵x1x2=1,∴x22,∴|AF|﹣|BF|=(x2+1)﹣(x1+1)=4,故答案为:4【点睛】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.15.【解析】【分析】根据椭圆的基本概念,结合题意算出a=3,c=,,从而得到b2=6.再根据椭圆的焦点位置,即可确定此椭圆的标准方程.【详解】∵椭圆的长轴为6,离心率是,焦点在x轴上,∴2a=6,e,解得a=3,c=,b2=a2﹣c2=6,又椭圆的焦点在x轴上,其方程为;故答案为.【点睛】本题考查了椭圆的性质的应用,属于基础题.16.1【解析】【分析】对函数求导,利用导数的几何意义可得曲线在点(1,a)处的切线斜率,根据两条直线垂直斜率乘积为-1即可得a值.【详解】,所以切线的斜率,又切线与直线垂直得,解得.故答案为:1【点睛】本题考查导数的几何意义的应用,属于基础题.17.或【解析】【分析】利用复数的运算法则、复数相等即可得出.【详解】设x=是方程的实根,代入方程并整理得(k+2)+(2+k)i=0.由复数相等的条件得k+2=2+k=0,解得,或.∴方程的实根为x或x,相应的k的值为k=﹣2或k=2.【点睛】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题.18.(Ⅰ)详见解析(Ⅱ)【解析】【分析】(1)首先求出f(x)导数,分类讨论a来判断函数单调性;(2)利用转化思想 y=f'(x)的图象恒在y=ax3+x2﹣(a﹣1)x的图象上方,即xe x﹣ax>ax3+x2﹣(a﹣1)x对x∈(0,+∞)恒成立;即 e x﹣ax2﹣x﹣1>0对x∈(0,+∞)恒成立,利用函数的单调性和最值即可得到a 的范围.【详解】(1)f'(x)=xe x﹣ax=x(e x﹣a)当a≤0时,e x﹣a>0,∴x∈(﹣∞,0)时,f'(x)<0,f(x)单调递减;x∈(0,+∞)时,f'(x)>0,f(x)单调递增;当0<a≤1时,令f'(x)=0得x=0或x=lna.(i)当0<a<1时,lna<0,故:x∈(﹣∞,lna)时,f'(x)>0,f(x)单调递增,x∈(lna,0)时,f'(x)<0,f(x)单调递减,x∈(0,+∞)时,f'(x)>0,f(x)单调递增;(ii)当a=1时,lna=0,f'(x)=xe x﹣ax=x(e x﹣1)≥0恒成立,f(x)在(﹣∞,+∞)上单调递增,无减区间;综上,当a≤0时,f(x)的单调增区间是(0,+∞),单调减区间是(﹣∞,0);当0<a<1时,f(x)的单调增区间是(﹣∞,lna)和(0,+∞),单调减区间是(lna,0);当a=1时,f(x)的单调增区间是(﹣∞,+∞),无减区间.(2)由(I)知f'(x)=xe x﹣ax当x∈(0,+∞)时,y=f'(x)的图象恒在y=ax3+x2﹣(a﹣1)x的图象上方;即xe x﹣ax>ax3+x2﹣(a﹣1)x对x∈(0,+∞)恒成立;即 e x﹣ax2﹣x﹣1>0对x∈(0,+∞)恒成立;记 g(x)=e x﹣ax2﹣x﹣1(x>0),∴g'(x)=e x﹣2ax﹣1=h(x);∴h'(x)=e x﹣2a;(i)当时,h'(x)=e x﹣2a>0恒成立,g'(x)在(0,+∞)上单调递增,∴g'(x)>g'(0)=0;∴g(x)在(0,+∞)上单调递增;∴g(x)>g(0)=0,符合题意;(ii)当时,令h'(x)=0得x=ln(2a);∴x∈(0,ln(2a))时,h'(x)<0,∴g'(x)在(0,ln(2a))上单调递减;∴x∈(0,ln(2a))时,g'(x)<g'(0)=0;∴g(x)在(0,ln(2a))上单调递减,∴x∈(0,ln(2a))时,g(x)<g(0)=0,不符合题意;综上可得a的取值范围是.【点睛】本题主要考查了利用导数研究函数的单调性,以及转化思想与分类讨论思想,属中等题型.19.(1);(2)【解析】【分析】(1)对求导,,解方程组求出,即可。