第9节 函数模型及其应用

合集下载

函数模型及应用教案

函数模型及应用教案

函数模型及应用教案函数模型是基于数学函数的一种建模方法,通过将现实问题抽象为数学函数的形式来描述、分析和解决问题。

函数模型的应用非常广泛,涉及到许多领域,包括物理、经济、生物等。

一、函数模型的基本概念1. 函数的定义:函数是一个映射关系,将输入映射到唯一的输出,通常用f(x)表示。

2. 自变量和因变量:函数的自变量是输入值,通常用x表示;函数的因变量是输出值,通常用y表示。

3. 函数图像:函数图像是函数在坐标系中的几何表示,可以通过计算和绘制得到。

4. 函数的性质:函数可以有多个性质,包括定义域、值域、单调性、奇偶性等。

二、函数模型的应用1. 物理学中的应用:物理学中许多自然现象都可以用函数模型来描述,如运动学中的位移函数、速度函数和加速度函数,力学中的万有引力函数等。

2. 经济学中的应用:经济学中常常用函数模型来描述供求关系、成本函数、效用函数等,以便分析经济现象和制定经济政策。

3. 生物学中的应用:生物学中常常用函数模型来描述生物体的生长、代谢和进化过程,以便研究和预测生物现象。

4. 工程学中的应用:工程学中常常用函数模型来描述电路、信号处理、控制系统等,以便分析和设计工程系统。

5. 数据分析中的应用:数据分析中常常用函数模型来描述数据的分布和趋势,以便预测和优化数据。

三、函数模型的教学内容1. 函数的基本概念和性质:教学内容包括函数的定义、自变量和因变量的概念、函数图像的绘制和函数的性质分析等。

2. 函数的分类和常见函数模型:教学内容包括线性函数、二次函数、指数函数、对数函数、三角函数等的定义、图像和性质分析等。

3. 函数的应用实例分析:教学内容包括物理、经济、生物、工程等领域的函数模型实例分析,以及数据分析中的函数模型应用实例。

4. 函数模型的建立和求解:教学内容包括根据实际问题建立函数模型、利用函数模型求解问题等。

四、函数模型的教学方法1. 理论讲解:通过讲解基本概念、定理和性质,帮助学生理解函数模型的基本原理和方法。

函数模型及其应用

函数模型及其应用

演 实 战


∵R(x)在[0,210]上是增函数,∴x=210时,
场 点


搏 核 心
R(x)有最大值为-15(210-220)2+1 680=1 660.


∴年产量为210吨时,可获得最大利润1 660万元.
课 时



菜单
高三总复习·数学(理)


考向二 指数函数模型的应用
养 满




[典例剖析]
高三总复习·数学(理)
















第九节 函数模型及其应用
战 沙










ห้องสมุดไป่ตู้





菜单
高三总复习·数学(理)










考纲要求:1.了解指数函数、对数函数以及幂函数的增

纲 考
长特征,知道直线上升、指数增长、对数增长等不同函数类



型增长的含义.2.了解函数模型(如指数函数、对数函数、幂

考 向
数模型和实验数据,可以得到最佳加工时间为(
)
演 实













第9节函数模型及其应用

第9节函数模型及其应用

第9节函数模型及其应用
函数模型是数学中的一个重要概念,它是一种关系,将一个集合的元
素映射到另一个集合的元素。

在数学中,函数模型被广泛应用于各种领域,如物理学、经济学、工程学等。

在物理学中,函数模型可以描述物理现象中的关系。

例如,牛顿第二
定律F=ma中的加速度a可以看作是力F和质量m之间的函数关系。

通过
函数模型,我们可以推导出物体在受到力作用下的运动轨迹和速度变化。

在经济学中,函数模型可以描述供求关系、价格弹性和成本效益等。

例如,需求曲线和供应曲线的交点可以表示市场均衡状态,价格弹性可以
用来衡量消费者对价格变化的敏感度,成本效益模型可以帮助企业决策时
做出合理的成本分析。

在工程学中,函数模型经常用于设计和优化过程。

例如,一个工程师
可以使用函数模型来描述一个机械系统的运动,分析其动力学和静力学特性,从而进行设计和改进。

另外,函数模型还可以用来优化一些参数,使
系统在给定约束条件下达到最佳性能。

除了以上领域之外,函数模型还广泛应用于计算机科学、统计学和生
物学等领域。

在计算机科学中,函数模型用于数据处理、算法设计和模拟
等方面。

在统计学中,函数模型用于描述变量之间的关系和概率分布。


生物学中,函数模型用于描述生物体的生理过程和遗传机制。

总之,函数模型是描述现实世界中各种关系的数学工具。

它不仅提供
了定量分析的方法,还可以帮助我们理解和预测复杂的现象。

通过函数模
型的应用,我们可以深入研究问题,做出合理的决策,并推动各个领域的
发展。

第九节 函数模型及其应用

第九节 函数模型及其应用

万元.
教材研读 栏目索引
6.某城市客运公司确定客票价格的方法:如果行程不超过100 km,那么票价是
0.5元/km,如果超过100 km,那么超过100 km的部分按0.4元/km定价,则客运票
价y(元)与行程千米数x(km)之间的函数关系式是
.
答案
0.5x,0 x 100
y=0.4x 10,x 100
教材研读 栏目索引
2.三种增长型函数模型的图象与性质
函数性质
y=ax (a>1)
y=logax (a>1)
在(0,+∞) 上的增减性
① 增函数
② 增函数
增长速度
④ 越来越快
⑤ 越来越慢
图象的变化
随x增大逐渐表现为与⑥ y轴 平行
随x增大逐渐表现为与⑦ x轴 平行
值的比较
存在一个x0,当x>x0时,题时,要正确理解题意,分清条件和结论,理清数量 关系,将文字语言转化为数学语言,建立适当的函数模型,求解过程中不要忽 略实际问题对变量的限制.
考点突破 栏目索引
3-1 (1)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系 y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间 是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 (C) A.16小时 B.20小时 C.24小时 D.28小时
考点突破 栏目索引
考点突破
考点一 二次函数、分段函数模型
典例1 某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60 吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为120 6t 吨(0≤t ≤24). (1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨? (2)当蓄水池中水量少于80吨时,就会出现供水紧张现象,则在一天的24小时 内,有几小时出现供水紧张现象?

高中数学 函数模型及其应用

高中数学 函数模型及其应用

高中数学:函数模型及其应用在数学的世界里,函数是一个重要的概念,它描述了一个变量与另一个变量之间的关系。

而在高中数学中,函数模型及其应用成为了学生们必须掌握的重要内容。

一、函数模型的理解函数,对于很多人来说,可能是一个复杂的概念。

但实际上,函数却是极其普遍的存在。

在我们的日常生活中,函数无处不在。

比如,身高随着年龄的增长而增长,这就是一个函数关系。

在这个例子中,年龄是自变量,身高是因变量。

再比如,购买商品时,价格随着数量的增加而增加,这里数量是自变量,价格是因变量。

函数模型,就是用来描述这种变量之间关系的数学工具。

它将生活中的各种关系,转化为数学公式,使我们能更好地理解和分析这些关系。

二、函数模型的应用函数模型的应用广泛存在于我们的生活中。

比如,在商业领域,公司需要根据市场需求和价格来决定生产量。

这就需要使用函数模型来预测市场的趋势,从而做出最佳的决策。

在物理学中,牛顿的第二定律就是一个函数模型,它描述了力、质量和加速度之间的关系。

而在生物学中,细胞分裂的模型也是一个函数,它描述了细胞数量随时间的变化情况。

三、高中数学中的函数模型在高中数学中,我们主要学习了一些基本的函数模型,如线性函数、二次函数、指数函数和对数函数等。

这些函数模型可以帮助我们解决生活中的很多问题。

比如,线性函数可以帮助我们解决速度和时间的问题,二次函数可以帮助我们解决几何图形的问题,而指数函数和对数函数则可以帮助我们解决增长和衰减的问题。

四、总结函数模型是高中数学中的一个重要内容。

它不仅可以帮助我们解决生活中的问题,还可以帮助我们更好地理解这个世界。

因此,学生们应该积极学习函数模型及其应用,努力提高自己的数学素养。

高中数学函数的概念课件课件标题:高中数学函数的概念课件一、引言函数是高中数学的核心概念,是数学学习中不可或缺的一部分。

函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。

本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。

9函数模型及其应用

9函数模型及其应用

泰州二中高三数学教学案第9课时函数模型及其应用(一)目标要求:①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会中普遍使用的函数模型)的广泛应用.了解指数函数、对数函数、幂函数、分段函数等函数模型的意义,并能进行简单应用。

一、基础知识:1.常用的函数模型有: (一次函数),二次函数, (指数函数),(对数函数),幂函数。

2.指数函数、对数函数、幂函数的增长速度的比较:一般地,在区间),(∞+0上,尽管函数)1(>=a a y x ,)1(log >=a x y a 和)0(>=n x y n 都是增函数,但是它们的 (增长速度)不同,而且不在同一个“档次上”。

随着x 的增大,)1(>=a a y x 增长速度 ,(越来越快)会越过并且远远大于)0(>=n x y n的 ;(增长速度)而)1(log >=a x y a 的增长速度会 ,(越来越慢)因此,总会存在一个0x ,当0x x >时,有 。

(x n a a x x <<log )。

3.函数模型的应用实例的基本题型:(1)给定函数模型解决实际问题;(2)建立(确定性)的函数模型解决实际问题;(3)建立拟合函数模型解决实际问题。

4.解应用题的基本步骤:审题、设量、建模、解模、还原.二、基础练习:1.某种商品,现在定价每件p 元,每月卖出n 件,根据市场调查显示:定价每上涨x 成,卖出的数量将会减小y 成,如果涨价后的销售总金额是现在的2.1倍,则用x 来表示y 的函数关系式为 。

102010+-=x x y 解:根据题意可列式np y n x p 2.1)101()101(=-+。

∴2.1)101)(101(=-+y x , 从而102010+-=x x y 。

2.某公司租地建仓库,每月土地占有费1y 与仓库到车站的距离成反比;而每月库存货物的运费2y 与到车站的距离成正比。

第2章---第9节

第2章---第9节

高 考 体 验 · 明 考 情
课 时 知 能 训 练
【思路点拨】 分析题意知,C(0)=8由此得出k的值;由隔热层建造 费与20年的能源消耗费相加得f(x)的表达式;可用求导函数或基本不等 式判断函数的单调性求f(x)的最小值.
菜 单
新课标 ·数学(文)(广东专用)
自 主 落 实 · 固 基 础Leabharlann 典 例 探 究 · 提 知 能


新课标 ·数学(文)(广东专用)
自 主 落 实 · 固 基 础
1.三种函数模型之间增长速度的比较
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 时 知 能 训 练


新课标 ·数学(文)(广东专用)
2.常用的几类函数模型
自 主 落 实 · 固 基 础
(1)指数函数模型y=a·bx+c(a≠0,b>0且b≠1) (2)对数函数模型y=mlogax+n(a>0且a≠1,m≠0) (3)幂函数模型y=axn+b,(a≠0) 3.解函数应用问题的步骤(四步八字)
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最 低? (2)该单位每月能否获利?如果获利,求出最大利润;如果不获利, 则国家至少需要补贴多少元才能使该单位不亏损?
课 时 知 能 训 练


新课标 ·数学(文)(广东专用)
【解】
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
D.150 太贝克 t 1 【解析】 由题意,M′(t)=M0· 2- (- )ln 2, 30 30 1 - ∴M′(30)=M0· 1(- )ln 2=-10 ln 2, 2 30

讲函数模型及其应用课件

讲函数模型及其应用课件

土木工程、航空航天工程等,通过建立数学模型,可以模拟和分析各种
工程系统的性能和行为。
函数模型在人工智能领域的应用
机器学习 机器学习是人工智能领域的一个重要分支,函数模型在机 器学习中扮演着重要的角色,如线性回归、逻辑回归、支 持向量机等算法都是基于函数模型的。
深度学习 深度学习是机器学习的一种,它通过建立复杂的神经网络 模型来模拟人类的学习过程,神经网络的训练和优化过程 实际上就是求解一系列的函数模型。
函数模型可以用来描述自然规律 和现象,例如气候变化、生态平
衡、物种繁衍等。
科学研究
在自然科学领域中,函数模型广 泛应用于各种科学实验和研究中,
例如物理学、化学、生物学等。
预测和预防
通过建立函数模型,科学家可以 预测自然灾害和环境变化,并采
取相应的预防措施。
工程领域中的应用
机械设计
在机械设计中,函数模型可以用来描述力学、热 学等物理现象,例如压力、温度等。
函数模型的优化与改进
参数调整
根据实际需求和数据反馈,调整 模型中的参数以优化模型性能。
模型融合
将多个模型进行融合,综合多个模 型的优点,提高模型的预测精度。
模型泛化
通过增加数据集、改进模型结构等 方式,提高模型对未知数据的预测 能力。
04
函数模型的实际应用案例
经济领域中的应用
描述经济现象
投资决策分析
三角函数模型的应用
三角函数模型在物理学中有广 泛应用,如描述简谐振动、交 流电等周期性变化的现象。
在解决几何问题时,三角函数 也常被用于计算角度、长度等 量,如正弦定理、余弦定理等。
三角函数模型还可以用于信号 处理、图像处理等领域,如傅 里叶变换等。

高考数学 2.9 函数模型及其应用

高考数学 2.9 函数模型及其应用

租0元.一个月的本地网内通话时间t(分钟)与电话
费s(元)的函数关系如图所示,当通话150分钟时,这
两种方式电话费相差( )
A.10元
B.20元
C.30元
D. 4 0 元
3
(2)(2015·昆明模拟)在如图所示的锐角三角形空地中,欲建一个面积
最大的内接矩形花园(阴影部分),则其边长x为
m.
【解题提示】(1)根据对应点的坐标分别求出两条直线方程. (2)根据相似三角形的性质,找出比例关系,列出以x为变量的二次函数 式表示出阴影部分的面积。
2.教材改编 链接教材 练一练
(1)(必修1P107A组T1改编)在某个物理实验中,测量得变量x和变量y的
几组数据,如下表:
x 0.50 0.99 2.01 3.98
y -0.99 0.01 则x,y最适合的函数的是( )
0.98
2.00
A.y=2x
B.y=x2-1
C.y=2x-2
D.y=log2x
考点1 一次函数、二次函数模型 知·考情
以一次函数、二次函数为模型的应用题常出现在高考试题中,尤 其是二次函数,考查较多,既有选择题、填空题,也有解答题,难度适中, 属中档题.
明·角度
命题角度1:单一考查一次函数或二次函数模型
【典例1】(1)(2015·西安模拟)某电信公司推出两
种手机收费方式:A种方式是月租20元,B种方式是月
【解析】选B.由题意知h=20-5t(0≤t≤4),故选B.
3.真题小试 感悟考题 试一试
(1)(2015·泉州模拟)某产品的总成本y(万元)与产量x(台)之间的函
数关系是y=3000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25

第9讲 函数模型及其应用

第9讲 函数模型及其应用

第9讲函数模型及其应用一、知识梳理1.几种常见的函数模型“对勾”函数f (x )=x +ax(a >0)的性质(1)该函数在(-∞,-a ]和[a ,+∞)上是增加的,在[-a ,0)和(0,a ]上是减少的.(2)当x >0时,x =a 时取最小值2a ; 当x <0时,x =-a 时取最大值-2a . 二、教材衍化某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元答案:D一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比一次函数增长更快.()(2)在(0,+∞)内,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=xα(α>0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()答案:(1)×(2)√(3)√二、易错纠偏常见误区(1)忽视实际问题中实际量的单位、含义、范围等; (2)建立函数模型出错.1.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行驶千米数x (km)之间的函数关系式是 .解析:由题意可得y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >1002.生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为 万件.解析:设利润为L (x ),则利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18 时,L (x )有最大值.答案:18用函数图象刻画变化过程(师生共研)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油【解析】根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.【答案】 D判断函数图象与实际问题变化过程相吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.(2020·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.二次函数、分段函数、“对勾”函数模型(师生共研)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? 【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝⎛⎭⎫13x 2+x -3=-13x 2+4x -3; 当x ≥8时,L (x )=5x -⎝⎛⎭⎫6x +100x -38-3=35-⎝⎛⎭⎫x +100x . 所以L (x )=⎩⎨⎧-13x 2+4x -3,0<x <8,35-⎝⎛⎭⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值L (6)=9万元. 当x ≥8时,L (x )=35-⎝⎛⎭⎫x +100x ≤35-2 x ·100x =35-20=15,当且仅当x =100x时等号成立,即x=10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.建模解决实际问题的三个步骤(1)建模:抽象出实际问题的数学模型.(2)推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.(3)评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.即:[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f (x )=ax +bx求解最值时,注意取得最值时等号成立的条件.1.某养殖场需定期购买饲料,已知该养殖场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.则该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.解:设该养殖场x (x ∈N +)天购买一次饲料能使平均每天支付的总费用最少,设总费用为y 元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x 天饲料的保管费与其他费用共是6(x -1)+6(x -2)+…+6=(3x 2-3x )元.从而有y =1x (3x 2-3x +300)+200×1.8=300x+3x +357≥2300x·3x +357=417,当且仅当300x =3x ,即x =10时,y 有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.2.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为时间t (h)内台风所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由题图可知,直线OA 的方程是v =3t ,直线BC 的方程是v =-2t +70. 当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是 s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.指数、对数函数模型(师生共研)(1) (2020·陕西商洛一模)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( )A .6B .5C .4D .3(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为 级;9级地震的最大振幅是5级地震最大振幅的 倍.【解析】 (1)设这种放射性物质最初的质量为1,经过x (x ∈N )年后,剩余量是y .则有y =⎝⎛⎭⎫14x ,依题意得⎝⎛⎭⎫14x≤1100,整理得22x ≥100,解得x ≥4,所以至少需要的年数是4,故选C.(2)M =lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A 1,A 2,则9=lg A 1-lg A 0=lg A 1A 0,则A 1A 0=109, 5=lg A 2-lg A 0=lgA 2A 0,则A 2A 0=105,所以A 1A 2=104. 即9级地震的最大振幅是5级地震最大振幅的10 000倍. 【答案】 (1)C (2)6 10 000指数型、对数型函数模型(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? 解:(1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 故a +b log 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.核心素养系列6 数学建模——函数建模在实际问题中的妙用数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来年利润y (百万元)与年投资成本x (百万元)变化的一组数据:年份 2008 2009 2010 2011 … 投资成本x 3 5 9 17 … 年利润y1234…给出以下31);③y =log a (x +b )(a >0,且a ≠1).(1)选择一个恰当的函数模型来描述x ,y 之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型. 【解】 (1)将(3,1),(5,2)代入y =kx +b (k ≠0),得⎩⎪⎨⎪⎧1=3k +b ,2=5k +b ,解得⎩⎨⎧k =12,b =-12,所以y =12x -12.当x =9时,y =4,不符合题意;将(3,1),(5,2)代入y =ab x (a ≠0,b >0,且b ≠1),得⎩⎪⎨⎪⎧1=ab 3,2=ab 5,解得⎩⎪⎨⎪⎧a =24,b =2,所以y =24·(2)x =2x -32.当x =9时,y =29-32=8,不符合题意;将(3,1),(5,2)代入y =log a (x +b )(a >0,且a ≠1),得⎩⎪⎨⎪⎧1=log a (3+b ),2=log a (5+b ),解得⎩⎪⎨⎪⎧a =2,b =-1,所以y =log 2(x -1). 当x =9时,y =log 28=3;当x =17时,y =log 216=4.故可用③来描述x ,y 之间的关系. (2)令log 2(x -1)>6,则x >65.因为年利润665<10%,所以该企业要考虑转型.根据实际问题选择函数模型时应注意以下几点(1)若能够根据实际问题作出满足题意的函数图象,可结合图象特征选择.(2)当研究的问题呈现先增长后减少的特点时,可以选用二次函数模型y =ax 2+bx +c (a ,b ,c 均为常数,a <0);当研究的问题呈现先减少后增长的特点时,可以选用二次函数模型y =ax 2+bx +c (a ,b ,c 均为常数,a >0).(3)对数函数(底数大于1时)增长越来越慢,而指数函数(底数大于1时)增长越来越快.某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:根据上表数据,Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求:(1)西红柿种植成本最低时的上市天数是 ; (2)最低种植成本是 元/100 kg.解析:因为随着时间的增加,种植成本先减少后增加,而且当t =60和t =180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎪⎨⎪⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎪⎨⎪⎧a =0.01,m =80,所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg. 答案:(1)120 (2)80[基础题组练]1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.故选C.2.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是()解析:选D.依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知D项符合要求.3.成都市某物流公司为了配合“北改”项目顺利进行,决定把三环内的租用仓库搬迁到北三环外重新租地建设.已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站()A.5千米处B.4千米处C.3千米处D.2千米处解析:选A.设仓库应建在离车站x千米处.因为仓库每月占用费y1与仓库到车站的距离成反比,所以令反比例系数为m(m>0),则y1=mx.当x=10时,y1=m10=2,所以m=20.因为每月车载货物的运费y2与仓库到车站的距离成正比,所以令正比例系数为n(n>0),则y2=nx.当x=10时,y2=10n=8,所以n=45.所以两项费用之和为y=y1+y2=20x+4x5≥220x·4x5=8,当且仅当20x=4x5,即x=5时取等号.所以要使这两项费用之和最小,仓库应建在离车站5千米处.故选A.4.某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1 300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2 000万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年解析:选B.若2018年是第一年,则第n年科研费为1 300×1.12n,由1 300×1.12n>2 000,可得lg 1.3+n lg 1.12>lg 2,得n×0.05>0.19,n>3.8,n≥4,即4年后,到2021年科研经费超过2 000万元.故选B.5.(2019·高考北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=52lgE1E2,其中星等为m k的星的亮度为E k(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A. 1010.1B. 10.1C. lg 10.1D. 10-10.1解析:选A.根据题意,设太阳的星等与亮度分别为m1与E1,天狼星的星等与亮度分别为m 2与E 2,则由已知条件可知m 1=-26.7,m 2=-1.45,根据两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,把m 1与m 2的值分别代入上式得,-1.45-(-26.7)=52lg E 1E 2,得lg E 1E 2=10.1,所以E 1E 2=1010.1,故选A. 6.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.在这段时间内,该车每100千米平均耗油量为 升. 解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是 步、 步.(注:240平方步为1亩,圆周率按3近似计算)解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.答案:20 608.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N +)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为____________,该工厂的年产量为________件时,所得年利润最大(年利润=年销售总收入-年总投资).解析:当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N +).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故当x =16时取得最大年利润.答案:y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N +) 16 9.如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解:(1)作PQ ⊥AF 于点Q ,所以PQ =8-y ,EQ =x -4,在△EDF 中,EQ PQ =EF FD ,所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎫10-x 2 =-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其开口向下,对称轴为x =10,所以当x ∈[4,8]时,S (x )是增加的,所以当x =8时,矩形BNPM 面积取得最大值48平方米.10.某公司对营销人员有如下规定:①年销售额x (单位:万元)在8万元以下,没有奖金;②年销售额x (单位:万元),x ∈[8,64]时,奖金为y 万元,且y =log a x ,y ∈[3,6],且年销售额越大,奖金越多;③年销售额超过64万元,按年销售额的10%发奖金.(1)求奖金y 关于x 的函数解析式;(2)若某营销人员争取奖金y ∈[4,10](单位:万元),则年销售额x (单位:万元)在什么范围内?解:(1)依题意,y =log a x 在x ∈[8,64]上为增函数,所以⎩⎪⎨⎪⎧log a 8=3,log a 64=6,解得a =2,所以y =⎩⎪⎨⎪⎧0,0≤x <8,log 2x ,8≤x ≤64,110x ,x >64. (2)易知x ≥8,当8≤x ≤64时,要使y ∈[4,10],则4≤log 2x ≤10,解得16≤x ≤1 024,所以16≤x ≤64;当x >64时,要使y ∈[4,10],则40≤x ≤100,所以64<x ≤100.综上所述,当年销售额x ∈[16,100]时,奖金y ∈[4,10].[综合题组练]1.(创新型)我们定义函数y =[x ]([x ]表示不大于x 的最大整数)为“下整函数”;定义y={x }({x }表示不小于x 的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x 小时,则李刚应付费为(单位:元)( )A .2[x +1]B .2([x ]+1)C .2{x }D .{2x }解析:选C.如x =1时,应付费2元,此时2[x +1]=4,2([x ]+1)=4,排除A ,B ;当x =0.5时,付费为2元,此时{2x }=1,排除D ,故选C.2.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过 min ,容器中的沙子只有开始时的八分之一.解析:当t =0时,y =a ;当t =8时,y =a e -8b =12a ,故e -8b =12. 当容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min 容器中的沙子只有开始时的八分之一.答案:163.某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N +,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N +,且1≤x ≤6,160x,x ∈N + 且7≤x ≤12. (1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2019年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N +时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式. 所以f (x )=-3x 2+40x (x ∈N +,且1≤x ≤12).(2)第x (x ∈N +)个月的旅游消费总额为g (x )=⎩⎪⎨⎪⎧(-3x 2+40x )(35-2x ),x ∈N +,且1≤x ≤6,-480x +6 400,x ∈N +,且7≤x ≤12.①当1≤x ≤6,且x ∈N +时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去). 当1≤x ≤5时,g ′(x )≥0,当5<x ≤6时,g ′(x )<0,所以g (x )max =g (5)=3 125;②当7≤x ≤12,且x ∈N +时,g (x )=-480x +6 400是减函数,所以g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大月旅游消费总额为3 125万元.4.某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:资金y (单位:万元)随投资收益x (单位:万元)的增加而增加且资金不超过5万元,同时资金不超过投资收益的20%.(1)若建立函数模型y =f (x )制定奖励方案,请你根据题意,写出奖励函数模型应满足的条件;(2)现有两个奖励函数模型:(ⅰ)y =120x +1; (ⅱ)y =log 2x -2.试分析这两个函数模型是否符合公司要求.解:(1)设奖励函数模型为y =f (x ),则该函数模型满足的条件是:①当x ∈[10,100]时,f (x )是增函数;②当x ∈[10,100]时,f (x )≤5恒成立;③当x ∈[10,100]时,f (x )≤x 5恒成立. (2)(a)对于函数模型(ⅰ)y =120x +1, 它在[10,100]上是增函数,满足条件①;但当x =80时,y =5,因此,当x >80时,y >5,不满足条件②;故该函数模型不符合公司要求.(b)对于函数模型(ⅱ)y =log 2x -2,它在[10,100]上是增函数,满足条件①,x =100时,y max =log 2100-2=2log 25<5,即f (x )≤5恒成立.满足条件②,设h (x )=log 2x -2-15x ,则h ′(x )=log 2e x -15, 又x ∈[10,100],所以1100≤1x ≤110, 所以h ′(x )≤log 2e 10-15<210-15=0, 所以h (x )在[10,100]上是减少的,因此h (x )≤h (10)=log 210-4<0,即f (x )≤x 5恒成立,满足条件③,故该函数模型符合公司要求.综上所述,函数模型(ⅱ)y =log 2x -2符合公司要求.。

29函数模型及其应用-16页文档

29函数模型及其应用-16页文档

[类题通法] 应用指数函数模型应注意的问题
(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有 人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来 解决.
(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再 将已知有关数据代入验证,确定参数,从而确定函数模型.
(3)y=a(1+x)n 通常利用指数运算与对数函数的性质求解.
(1)当 0≤x≤200 时,求函数 v(x)的表达式. (2)当车流密度 x 为多大时,车流量(单位时间内通过桥上
某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,
并求出最大值(精确到 1 辆/小时).
思考1:在车流速度改变的分界点的车流密度是多少? 如何求车流密度20≤x≤200时的车流速度v ?车流 速度函数是什么类型的函数?
幂函数 模型
f(x)=axn+b(a,b,n为常数,a≠0,n≠0)
2.三种函数模型性质比较 y=ax(a>1)
y=logax(a>1)
y=xn(n>0)
在(0,+∞) 上的单调性
_增__函__数___
_增__函__数__
_增__函__数__
增长速度
_越__来__越__快__
_越__来__越__慢__
以上过程用框图表示如下:
1.某电信公司推出两种手机收费方式:A种
方式是月租20元,B种方式是月租0
元.一个月的本地网内通话时间t(分钟)与
电话费s(元)的函数关系如图所示,当通话
150分钟时,这两种方式电话费相差
A.10元
B.20元
C.30元
D.430元
()
解析:依题意可设sA(t)=20+kt,sB(t)=mt, 又sA(100)=sB(100), ∴100k+20=100m, 得k-m=-0.2, 于是sA(150)-sB(150)=20+150k-150m=20+150×(-0.2) =-10, 即两种方式电话费相差10元,选A .

9 第9讲 函数模型及其应用

9 第9讲 函数模型及其应用

相对平稳
图象的变化
随 x 值增大,图象与 随 x 值增大,图象与
__y_轴___接近平行
__x_轴___接近平行
随 n 值变化而不同
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
4
[疑误辨析] 判断正误(正确的打“√”,错误的打“×”) (1)幂函数增长比直线增长更快.( × ) (2)不存在 x0,使 ax0<xn0<logax0.( × ) (3)在(0,+∞)上,随着 x 的增大,y=ax(a>1)的增长速度会超过并远远大于 y=xa(a>1) 的增长速度.( √ ) (4)“指数爆炸”是指数型函数 y=a·bx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比 喻.( × )
()
A.30 元
B.60 元
C.28 000 元
D.23 000 元
上一页Βιβλιοθήκη 返回导航下一页第二章 函数概念与基本初等函数
14
【解析】 设毛利润为 L(p)元,则由题意知 L(p)=pQ-20Q=Q(p-20) =(8 300-170p-p2)(p-20) =-p3-150p2+11 700p-166 000, 所以 L′(p)=-3p2-300p+11 700. 令 L′(p)=0,解得 p=30 或 p=-130(舍去). 当 p∈(0,30)时,L′(p)>0,当 p∈(30,+∞)时,L′(p)<0,故 L(p)在 p=30 时取得极 大值,即最大值,且最大值为 L(30)=23 000. 【答案】 D
上一页
返回导航
下一页
第二章 函数概念与基本初等函数
8
3.(必修 1P107A 组 T4 改编)用长度为 24 的材料围一矩形场地,中间加两道隔墙,要使 矩形的面积最大,则隔墙的长度为______.

第九节 函数模型及其应用

第九节  函数模型及其应用

(2016· 四川高考)某公司为激励创新,计划逐年加大研发资金投 入. 若该公司 2015 年全年投入研发资金 130 万元, 在此基础上, 每年投入的研发资金比上一年增长 12%,则该公司全年投入的 研发资金开始超过 200 万元的年份是 ( )
(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30) A.2018 年 C.2020 年 B.2019 年 D.2021 年
解:(1)由题意知 x 的取值范围为[10,90]. 5 2 (2)y=5x + (100-x)2(10≤x≤90). 2
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
函数模型及其应用 结 束
(3)核电站建在距 A 城多远,才能使供电总费用 y 最少?
5 15 2 15 2 解 :因为 y = 5x + (100 - x) = x - 500x + 25 000 = 2 2 2
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
函数模型及其应用 结 束
以上过程用框图表示如下:
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
函数模型及其应用 结 束
[小题体验]
1.(教材习题改编)一根蜡烛长 20 cm,点燃后每小时燃烧 5 cm,燃 烧时剩下的高度 h(cm)与燃烧时间 t(h)的函数关系用图象表示为 图中的 ( )
越来越快 随x的增大 逐渐表现为 y 轴 平行 与_____
越来越慢 随x的增大 逐渐表现为 x 轴 平行 与_____
存在一个x0,当x>x0时,有logax<xn<ax
课 堂 ·考 点 突 破 课后· 三维演练

2019年第9讲函数模型及其应用.ppt

2019年第9讲函数模型及其应用.ppt
0 元 D.430元
解析 设 A 种方式对应的函数解析式为 s=k1t+20,B 种方式 对应的函数解析式为 s=k2t,当 t=100 时,100k1+20=100k2, ∴k2-k1=15,t=150 时,150k2-150k1-20=150×15-20=10. 答案 A
午 3 时温度为( ).
A.8 ℃
B.78 ℃
C.112 ℃ D.18 ℃
解析 由题意,下午 3 时,t=3,∴T(3)=78(℃).
答案 B
3.生产一定数量的商品的全部费用称为生产成本,某企业一个
月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万
元).一万件售价是 20 万元,为获取更大利润,该企业一个月
平行
近平行
一个防范 特别关注实际问题的自变量的取值范围,合理确定函数的定义域. 一个步骤 解决实际应用问题的一般步骤 (1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系, 把握其中的数学本质. (2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题 转化为数学问题. (3)解模:用数学知识和方法解决转化出的数学问题. (4)还原:回到题目本身,检验结果的实际意义,给出结论.

(1)P=15-t+1102t, +08< ,t2≤0<20t, ≤30.
(t∈N*)
(2)设 Q=at+b(a , b 为常数),把(4,36),(10,30)代入,得
4a+b=36, 10a+b=30.
∴a=-1,b=40.
所以日交易量 Q(万股)与时间 t(天)的一次函数关系式为 Q=-t
双基自测
1.(人教 A 版教材习题改编)f(x)=x2,g(x)=2x,h(x)=log2x, 当 x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选

中学数学第九节 函数模型及其应用

中学数学第九节 函数模型及其应用

第九节函数模型及其应用【最新考纲】 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.常见的几种函数模型(1)一次函数模型:y=kx+b(k≠0).(2)反比例函数模型:y=kx(k≠0).(3)二次函数模型:y=ax2+bx+c(a,b,c为常数,a≠0).(4)指数函数模型:y=a·b x+c(b>0,b≠1,a≠0)型.(5)对数函数模型:y=mlog a x+n(a>0,a≠1,m≠0)型.(6)幂函数模型:y=a·x n+b(a≠0)型.2.三种函数之间增长速度的比较(1)函数y=2x的函数值比y=x2的函数值大.()(2)幂函数增长比直线增长更快.()(3)不存在x0,使ax0<x n0<log a x0.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).()答案:(1)×(2)×(3)×(4)√2.某种动物繁殖量y(只)与时间x(年)的关系为y=alog3(x+1),设这种动物第2年有100只,到第8年它们发展到() A.200 只B.300 只C.400 只D.500 只解析:依题意100=alog 3(2+1),得a =100,∴y =100 log 3(8+1)=200 (只).答案:A3.(2015·陕西卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k.据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.答案:C4.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t(年)的函数关系图象正确的是( )解析:前3年年产量的增长速度越来越快,说明呈高速增长,只有A 、C 图象符合要求,而后3年年产量保持不变.产品的总产量应呈直线上升,故选A.答案:A5.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另外每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.解析:设出租车行驶了x km ,付费y 元,由题意得y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15×(x -3)+13<x ≤8,8+2.15×5+2.85×(x -8)+1,x>8.当x =8时,y =19.75<22.6,因此由8+2.15×5+2.85×(x -8)+1=22.6得x =9.答案:9一个程序解决实际应用问题的一般步骤(四步八字)1.审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;2.建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;3.求模:求解数学模型,得出数学结论:4.还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:三点注意1.认真分析题意,合理选择函数模型是解决应用问题的基础.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈,在解决函数模型后,必须验证这个数学结果对实际问题的合理性.一、选择题1.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象是()解析:注意到y为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.答案:D2.(2014·湖南卷)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p +1)(q +1).设这两年生产总值的年平均增长率为x ,则(1+x)2=(p +1)(q +1),解得x =(p +1)(q +1)-1.答案:D3.某个体企业的一个车间有8名工人,以往每人年薪为1万元,从今年起,计划每人的年薪都比上一年增加20%,另外每年新招3名工人,每名新工人的第一年的年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,如果将第n 年企业付给工人的工资总额y(万元)表示成n 的函数,则其表达式为( )A .y =(3n +5)1.2n +2.4B .y =8×1.2n +2.4nC .y =(3n +8)1.2n +2.4D .y =(3n +5)1.2n -1+2.4解析:第一年企业付给工人的工资总额为:1×1.2×8+0.8×3=9.6+2.4=12(万元),而对4个选择项来说,当n =1时,C 、D 相对应的函数值均不为12,故可排除C 、D ,A 、B 相对应的函数值都为12,再考虑第2年企业付给工人的工资总额及A 、B 相对应的函数值,又可排除B.答案:A4.一高为H ,满缸水量为V 的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f(h)的大致图象可能是图中的( )解析:当h =0时,v =0可排除A 、C ;由于鱼缸中间粗两头细,∴当h 在H 2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H 2时,增加越来越慢. 答案:B二、填空题6.A、B两只船分别从在东西方向上相距145 km的甲乙两地开出,A从甲地自东向西行驶.B从乙地自北向南行驶,A的速度是40 km/h,B的速度是16 km/h,经过________小时,AB间的距离最短.解析:设经过x h,A,B相距为y km,则y =(145-40x )2+(16x )2(0≤x ≤298), 求得当函数取最小值时x 的值为258. 答案:2587.(2017·长春模拟)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析:当t =0时,y =a ,当t =8时,y =ae -8b =12a , ∴e -8b =12,容器中的沙子只有开始时的八分之一时, 即y =ae -bt =18a ,e -bt =18=(e -8b )3=e -24b , 则t =24,所以再经过16 min.答案:168.要制作一个容积为4 m 3, 高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元)解析:设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm , 依题意,得y =20×4+10⎝⎛⎭⎪⎫2x +2×4x =80+20⎝ ⎛⎭⎪⎫x +4x ≥80+20×2x ×4x =160⎝ ⎛⎭⎪⎫当且仅当x =4x ,即x =2时取等号,所以该容器的最低总造价为160元.答案:160三、解答题10.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿千瓦时)与(x-0.4)元成反比例.又当x=0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]解析:(1)∵y 与(x -0.4)成反比例, ∴设y =kx -0.4(k ≠0). 把x =0.65,y =0.8代入上式, 得0.8=k0.65-0.4,k =0.2.∴y =0.2x -0.4=15x -2,即y 与x 之间的函数关系式为y =15x -2. (2)根据题意,得⎝ ⎛⎭⎪⎫1+15x -2·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0, 解得x 1=0.5,x 2=0.6.经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75, 故x =0.5不符合题意,应舍去. ∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.B 级 能力提升1.(2017·北京海淀区一模)已知A(1,0),点B 在曲线G :y =lnx 上,若线段AB 与曲线M :y =1x 相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为( )A .0B .1C .2D .4解析:设B(t ,ln t),则AB 的中点为⎝ ⎛⎭⎪⎫1+t 2,ln t 2,所以有ln t 2=21+t ,ln t =41+t ,因此关联点的个数就为方程ln t =41+t 解的个数,由于函数y =ln t ,y =41+t在区间(0,+∞)上分别单调递增及单调递减,所以只有一个交点.答案:B2.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f(n)=12n(n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是______年.解析:设第n(n ∈N *)年的年产量为a n , 则a 1=12×1×2×3=3;当n ≥2时,a n =f(n)-f(n -1)=12n(n +1)·(2n +1)-12n(n -1)(2n -1)=3n 2. 又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n∈N*,故最长的生产期限为7年.答案:73.(2015·江苏卷)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M 到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l1,l2所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=ax2+b(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为l.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b,得⎩⎨⎧a25+b=40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x 2(5≤x ≤20),则点P 的坐标为⎝ ⎛⎭⎪⎫t ,1 000t 2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点, y ′=-2 000x3,则l 的方程为y -1 000t 2=-2 000t3(x -t),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝ ⎛⎭⎪⎫0,3 000t 2. 故f(t)= ⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22 =32t 2+4×106t4,t ∈[5,20].②设g(t)=t2+4×106t4,则g′(t)=2t-16×106t5.令g′(t)=0,解得t=10 2.当t∈(5,102)时,g′(t)<0,g(t)是减函数;当t∈(102,20)时,g′(t)>0,g(t)是增函数;从而,当t=102时,函数g(t)有极小值,也是最小值,所以g(t)min =300,此时f(t)min=15 3.故当t=102时,公路l的长度最短,最短长度为153千米.基本初等函数与函数的应用指数函数、对数函数是高考考查的热点,题型多以小题的形式出现,中低档难度;二次函数、函数的零点问题是高考考查的重点与热点,题型多以小题或大题的关键一步出现,中高档难度;备考时应理解相关概念,掌握其性质,并切实加强等价转化、数形结合、分类讨论思想的应用意识.强化点1 二次函数(多维探究)三个二次即二次函数、二次方程、二次不等式等知识交汇命题是高考考查的高频考点.常见的命题角度有:(1)二次函数的最值问题;(2)二次函数中恒成立问题;(3)二次函数的零点问题.角度一 二次函数的最值问题1.已知a 是实数,记函数f(x)=x 2-2ax 在区间[0,1]上的最小值为f(x)min ,求f(x)min 的解析式.解:∵f(x)=x 2-2ax =(x -a)2-a 2,对称轴为x =a. ①当a<0时,f(x)在[0,1]上是增函数, ∴f(x)min =f(0)=0.②当0≤a ≤1时,f(x)min =f(a)=-a 2. ③当a>1时,f(x)在[0,1]上是减函数, ∴f(x) min =f(1)=1-2a ,综上所述,f(x)min =⎩⎪⎨⎪⎧0,a<0,-a 2,0≤a ≤1,1-2a ,a>1.角度二 二次函数中恒成立问题2.已知a 是实数,函数f(x)=2ax 2+2x -3在[-1,1]上恒小于零,求实数a 的取值范围.解:2ax 2+2x -3<0在[-1,1]上恒小于0. 当x =0时,适合.当x ≠0时,a<32⎝ ⎛⎭⎪⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a<12.综上,实数a 的取值范围是a<12.角度三 二次函数的零点问题3.(2017·郑州二检)已知函数f(x)=⎩⎪⎨⎪⎧x +2,x>ax 2+5x +2,x ≤a,函数g(x)=f(x)-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解析:由题意知g(x)=⎩⎪⎨⎪⎧2-x ,x>ax 2+3x +2,x ≤a .因为g(x)有三个不同的零点,所以2-x =0在x>a 时有一个解,由x =2得a<2. 由x 2+3x +2=0得x =-1或x =-2, 由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2). 答案:D二次函数图象与性质问题解题策略1.对于二次项系数含参数的二次函数、方程、不等式问题,应对参数分类讨论,应以x 2的系数是否为0为标准分类讨论.2.当二次函数的对称轴不确定时,应分类讨论,分类讨论的标准就是对称轴在区间的左、中、右三种情况.3.求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.强化点2指数函数与对数函数【例2】已知0<a<1,则函数f(x)=a-x与函数g(x)=log a x的图象在同一坐标系中可以是()解析:因为0<a<1,所以1a >1,所以函数f(x)=a -x=⎝ ⎛⎭⎪⎫1a x 的图象过点(0,1)且单调递增,函数g(x)=log a x 的图象过点(1,0)且单调递减.答案:D已知含参函数的解析式,判断其图象的关键是:根据函数解析式明确函数的定义域、值域,函数的单调性、奇偶性、周期性等性质,根据这些性质对函数图象进行具体分析判断,即可得出正确选项.若能熟记基本初等函数图象特征与性质,则解答此类题目就可事半功倍.【变式训练】 已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f(log 47),b =f(log 123),c =f(0.2-0.6),则a ,b ,c 的大小关系是( )A .c<a<bB .c<b<aC .b<c<aD .a<b<c 解析:log 123=-log 23=-1og 49,b =f(log 123)=f(-log 49)=f(log 49),log 47<log 49,0.2-0.6=⎝ ⎛⎭⎪⎫15-35=5125>532=2>log 49,又f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,故f(x)在[0,+∞)上是单调递减的, ∴f(0.2-0.6)<f(log 123)<f(log 47),即c<b<a.答案:B强化点3 函数的应用【例3】 已知函数f(x)=⎩⎪⎨⎪⎧2-x -1,x ≤0,f (x -1),x>0,若方程f(x)=x +a有且只有两个不相等的实数根,则实数a 的取值范围是( )A .(-∞,0]B .[0,1)C .(-∞,1]D .[0,+∞) 解析:函数f(x)=⎩⎪⎨⎪⎧2-x-1,x ≤0,f (x -1),x>0的图象如图所示,当a<1时,函数y =f(x)的图象与函数f(x)=x +a 的图象有两个交点,即方程f(x)=x +a 有且只有两个不相等的实数根.答案:C解决分段函数与函数零点的综合问题的关键在于“对号入座”,即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.【变式训练】 (1)函数f(x)=3x +12x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)解析:因为函数f(x)在定义域上单调递增, 又f(-2)=3-2-1-2=-269<0,f(-1)=3-1-12-2=-136<0,f(0)=30+0-2=-1<0.f(1)=3+12-2=32>0,所以f(0)f(1)<0.所以函数f(x)的零点所在区间是(0,1). 答案:C(2)(2014·湖北卷)已知f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-3x ,则函数g(x)=f(x)-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}解析:令x<0,则-x>0,所以f(-x)=(-x)2+3x =x 2+3x. 因为f(x)是定义在R 上的奇函数,当x<0时,f(x)=-x2-3x.所以当x≥0时,g(x)=x2-4x+3.令g(x)=0,即x2-4x+3=0,解得x=1或x=3.当x<0时,g(x)=-x2-4x+3.令g(x)=0,即x2+4x-3=0,解得x=-2+7>0(舍去)或x=-2-7.所以函数g(x)有三个零点,故其集合为{-2-7,1,3}.答案:D一、选择题1.若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2-ax的零点是()A.0,2B.0,1 2C.0,-12D.2,-12解析:∵2a+b=0,∴g(x)=-2ax2-ax=-ax(2x+1).∴零点为0和-1 2.答案:C2.(2015·山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A .a<b<cB .a<c<bC .b<a<cD .b<c<a解析:因为函数y =0.6x 是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b<a<1.因为函数y =x 0.6在(0,+∞)上是增函数,1<1.5,所以1.50.6>10.6=1,即c>1.综上,b<a<c.答案:C3.已知a ,b ,c ∈R ,函数f(x)=ax 2+bx +c.若f(0)=f(4)>f(1),则( )A .a>0,4a +b =0B .a<0,4a +b =0C .a>0,2a +b =0D .a<0,2a +b =0解析:由f(0)=f(4)知二次函数f(x)=ax 2+bx +c 的对称轴为x =2,即-b2a =2,所以4a +b =0,又f(0)>f(1)且f(0),f(1)在对称轴同侧,故函数f(x)在(-∞,2]上单调递减,则抛物线开口方向朝上,知a>0.答案:A4.已知一元二次不等式f(x)<0的解集为{x|x<-1,或x>12},则f(10x )>0的解集为( )A .{x|-1<x<-lg 2}B .{x|x<-1,或x>-lg 2}C .{x|x>-lg 2}D .{x|x<-lg 2}解析:由题意知,f(x)>0的解集为{x|-1<x<12}.由f(10x)>0,∴-1<10x<12,解得x<lg 12,即x<-lg 2.答案:D5.如图是函数f(x)=x 2+ax +b 的图象,则函数g(x)=ln x +f′(x)的零点所在区间是( )A.⎝ ⎛⎭⎪⎫14,12 B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(2,3) 解析:由f(x)的图象知0<b<1,f(1)=0,从而-2<a<-1,g(x)=ln x +2x +a ,g(x)在定义域内单调递增,g ⎝ ⎛⎭⎪⎫12=ln 12+1+a<0,g(1)=2+a>0,g ⎝ ⎛⎭⎪⎫12·g(1)<0.答案:C6.当x ∈[-2,2]时,a x <2(a>0,且a ≠1),则实数a 的范围是( )A .(1,2) B.⎝ ⎛⎭⎪⎫22,1 C.⎝ ⎛⎭⎪⎫22,1∪(1,2) D .(0,1)∪(1,2) 解析:x ∈[-2,2]时,a x <2(a>0,且a ≠1),若a>1,y =a x 是一个增函数,则a 2<2,得a< 2. 故有1<a< 2.若0<a<1,y =a x是一个减函数,则a -2<2,a>22.故有22<a<1.综上知a ∈⎝ ⎛⎭⎪⎫22,1∪(1,2). 答案:C二、填空题7.(2015·课标全国Ⅱ卷)已知函数f(x)=ax 3-2x 的图象过点(-1,4),则a =________.解析:∵f(x)=ax 3-2x 的图象过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2. 答案:-28.(2015·安徽卷)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.解析:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1. 答案:-19. 已知函数f(x)=ax 2+4x +1在区间(-∞,1)有零点,则实数a 的取值范围为________.解析:当a =0时,f(x)=4x +1,函数f(x)的零点为x =-14,符合题意.当a>0时,只需Δ=16-4a ≥0,即0<a ≤4. 当a<0时,函数f(x)在(-∞,1)上一定有零点.综上知,a ≤4. 答案:(-∞,4] 三、解答题10.函数f(x)=m +log a x(a>0且a ≠1)的图象过点(8,2)和(1,-1).(1)求函数f(x)的解析式;(2)令g(x)=2f(x)-f(x -1),求g(x)的最小值及取得最小值时x 的值.解:(1)由⎩⎪⎨⎪⎧f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数解析式为f(x)=-1+log 2x. (2)g(x)=2f(x)-f(x -1)=2(-1+log 2x)-[-1+log 2(x -1)] =log 2x 2x -1-1(x>1).∵x 2x -1=(x -1)2+2(x -1)+1x -1=(x -1)+1x -1+2≥2 (x -1)·1x -1+2=4.当且仅当x -1=1x -1,即x =2时,等号成立. 而函数y =log 2x 在(0,+∞)上单调递增, 则log 2x 2x -1-1≥log 24-1=1,故当x =2时,函数g(x)取得最小值1.。

第9节 函数模型及其应用

第9节 函数模型及其应用

第9节函数模型及其应用知识梳理1.指数、对数、幂函数模型性质比较1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使a x0<x n0<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()答案(1)×(2)×(3)×(4)√解析(1)9折出售的售价为100(1+10%)×910=99(元).∴每件赔1元,(1)错误.(2)中,当x=2时,2x=x2=4.不正确.(3)中,如a=x0=12,n=14,不等式成立,因此(3)错误.2.(多选题)某工厂一年中各月的收入、支出情况的统计图如图所示,则下列说法中正确的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元答案ABC解析由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为16×(40+60+30+30+50+60)=45(万元),故D 错误.3.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A.8 B.9 C.10 D.11答案 C解析 设该死亡生物体内原有的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n ,由⎝ ⎛⎭⎪⎫12n<11 000,得n ≥10.所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.4.(2020·西安一中月考)已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是( ) A.f (x )>g (x )>h (x ) B.g (x )>f (x )>h (x ) C.g (x )>h (x )>f (x )D.f (x )>h (x )>g (x )答案 B解析 在同一坐标系内,根据函数图象变化趋势,当x ∈(4,+∞)时,增长速度大小排列为g (x )>f (x )>h (x ).5.(2020·全国Ⅲ卷)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( )A.60B.63C.66D.69答案 C解析 因为I (t )=K1+e -0.23(t -53),所以当I (t *)=0.95K 时,K 1+e -0.23(t *-53)=0.95K ⇒11+e -0.23(t *-53)=0.95⇒1+e-0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e 0.23(t*-53)=19⇒0.23(t *-53)=ln 19⇒t *=ln 190.23+53≈30.23+53≈66.故选C.6.(2019·北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. (1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元; (2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________. 答案 (1)130 (2)15解析 (1)顾客一次购买草莓和西瓜各1盒,原价应为60+80=140(元),超过了120元可以优惠,所以当x =10时,顾客需要支付140-10=130(元).(2)由题意知,当x 确定后,顾客可以得到的优惠金额是固定的,所以顾客支付的金额越少,优惠的比例越大.而顾客要想得到优惠,最少要一次购买2盒草莓,此时顾客支付的金额为(120-x )元,所以(120-x )×80%≥120×0.7,所以x ≤15.即x 的最大值为15.考点一 利用函数的图象刻画实际问题1.(多选题)(2021·青岛质检)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案BCD解析由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误.其余全部正确.2.(多选题)(2020·北京卷改编)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.则下列结论正确的是()A.在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强B.在t2时刻,甲企业的污水治理能力比乙企业强C.在t3时刻,甲、乙两企业的污水排放都已达标D.甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强答案ABC解析-f(b)-f(a)b-a表示在[a,b]上割线斜率的相反数,-f(b)-f(a)b-a越大治理能力越强.对于A,在[t1,t2]这段时间内,甲企业对应图象的割线斜率的相反数大,故甲企业的污水治理能力比乙企业强,正确;对于B ,要比较t 2时刻的污水治理能力,即看在t 2时刻两曲线的切线斜率,切线斜率的相反数越大,污水治理能力越强,故在t 2时刻,甲企业的污水治理能力比乙企业强,正确;对于C ,在t 3时刻,甲、乙两企业的污水排放量都在污水达标排放量以下,正确; 对于D ,甲在[t 1,t 2]这段时间内的污水治理能力最强,错误.3.(2020·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.答案 ② 103解析 由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y=t +13,当t =1时,代入④中,得y =43,与图不符,易知拟合最好的是②. 将t =8代入②式,得y =13+log 28=103(米).感悟升华 1.当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选出符合实际情况的答案.2.图形、表格能直观刻画两变量间的依存关系,考查了数学直观想象核心素养. 考点二 已知函数模型的实际问题【例1】(2020·新高考山东卷)基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)() A.1.2天 B.1.8天 C.2.5天 D.3.5天答案B解析由R0=1+rT,R0=3.28,T=6,得r=R0-1T=3.28-16=0.38.由题意,累计感染病例数增加1倍,则I(t2)=2I(t1),即e0.38t2=2e0.38t1,所以e0.38(t2-t1)=2,即0.38(t2-t1)=ln 2,∴t2-t1=ln 20.38≈0.690.38≈1.8.故选B.感悟升华 1.求解已知函数模型解决实际问题的关注点.(1)认清所给函数模型,弄清哪些量为待定系数;(2)根据已知利用待定系数法,确定模型中的待定系数.2.利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.【训练1】(2020·广州模拟)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.答案 2 500解析总利润L(Q)=40Q-120Q2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500,则当Q=300时,L(Q)的最大值为2 500万元.考点三构建函数模型的实际问题角度1构建二次函数模型【例2】某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝ ⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( ) A.[4,8] B.[6,10] C.[4%,8%]D.[6%,10%]答案 A解析 根据题意,要使附加税不少于128万元, 需⎝ ⎛⎭⎪⎫30-52R ×160×R %≥128, 整理得R 2-12R +32≤0,解得4≤R ≤8,即R ∈[4,8]. 角度2 构建指数(对数)型函数模型【例3】 (1)(2021·青岛检测)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是( ) A.6 B.5 C.4 D.3答案 C解析 设这种放射性物质最初的质量为1,经过x (x ∈N )年后,剩余量是y ,则有y =⎝ ⎛⎭⎪⎫14x. 依题意得⎝ ⎛⎭⎪⎫14x≤1100.则22x ≥100, 解得x ≥4. 所以至少需要的年数是4.(2)(2021·唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg E =4.8+1.5M .①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为“破坏性地震”,若某次地震释放能量约1012焦耳,试确定该次地震的类型; ②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取10=3.2)解 ①该次地震释放能量约1012焦耳,即E =1012代入lg E =4.8+1.5M ,化简得M =lg 1012-4.81.5=12-4.81.5=4.8.因为4.8>4.7,所以该次地震为“破坏性地震”. ②设汶川地震、日本地震所释放的能量分别为E 1,E 2.由题意知,lg E 1=4.8+1.5×8=16.8,lg E 2=4.8+1.5×9=18.3, 即E 1=1016.8,E 2=1018.3,所以E 2E 1=101.5=1010,取10=3.2,得E 2E 1=32.故2011年日本地震所释放的能量是2008年汶川地震所释放的能量的32倍. 感悟升华 1.数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程.主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论.2.指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.【训练2】 (1)某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A.10.5万元 B.11万元 C.43万元D.43.025万元答案 C解析 设在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32 =-0.1(x -10.5)2+0.1×10.52+32.因为x ∈[0,16]且x ∈N ,所以当x =10或11时,总利润取得最大值43万元. (2)(2021·贵阳调研)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. ①求每年砍伐面积的百分比;②到今年为止,该森林已砍伐了多少年? 解 ①设每年砍伐面积的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110.故每年砍伐面积的百分比为1-⎝ ⎛⎭⎪⎫12110.②设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,把x =1-⎝ ⎛⎭⎪⎫12110代入,即⎝ ⎛⎭⎪⎫12m10=⎝ ⎛⎭⎪⎫1212, 即m 10=12,解得m =5.故到今年为止,该森林已砍伐了5年.A 级 基础巩固一、选择题1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的一个是( )A.y =2x -2B.y =12(x 2-1) C.y =log 2xD.y =log 12x答案 B解析由题中表格可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大得越来越快,分析选项可知B符合,故选B.2.(2020·武汉联考)如图,矩形花园ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形花园的面积为4平方米,墙PQ足够长,则围成该花园所需要篱笆的()A.最大长度为8米B.最大长度为42米C.最小长度为8米D.最小长度为42米答案D解析设BC=a米,CD=b米,则ab=4,所以围成矩形花园所需要的篱笆长度为2a+b=2a+4a≥22a·4a=42,当且仅当2a=4a,即a=2时取等号.故篱笆最小长度为42米.3.(多选题)(2021·济南质检)甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们的路程f i(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x2,f3(x)=x,f4(x)=log2(x+1),则下列结论正确的是()A.当x>1时,甲走在最前面B.当x>1时,乙走在最前面C.当0<x<1时,丁走在最前面,当x>1时,丁走在最后面D.如果它们一直运动下去,最终走在最前面的是甲答案CD解析甲、乙、丙、丁的路程f i(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x2,f3(x)=x,f4(x)=log2(x+1),它们对应的函数模型分别为指数型函数模型、二次函数模型、一次函数模型、对数型函数模型.当x=2时,f1(2)=3,f2(2)=4,所以A不正确;当x=5时,f1(5)=31,f2(5)=25,所以B不正确;根据四种函数的变化特点,对数型函数的增长速度是先快后慢,又当x=1时,甲、乙、丙、丁四个物体走过的路程相等,从而可知,当0<x<1时,丁走在最前面,当x>1时,丁走在最后面,所以C正确;指数型函数的增长速度是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数模型运动的物体,即一定是甲物体,所以D正确.4.(2020·青岛模拟)某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x,y应分别为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14答案A解析由三角形相似得24-y24-8=x20,得x=54(24-y),所以S=xy=-54(y-12)2+180,所以当y=12时,S有最大值,此时x=15.检验符合题意.5.(2021·武汉检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1 000倍答案B解析设老师上课时声音强度,一般两人小声交谈时声音强度分别为x1 W/m2,x2 W/m2,根据题意得d(x1)=9lgx11×10-13=63,解得x1=10-6,d(x2)=9lgx21×10-13=54,解得x 2=10-7,所以x 1x 2=10,因此,老师上课时声音强度约为一般两人小声交谈时声音强度的10倍. 6.(2019·全国Ⅱ卷)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通信联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: M 1(R +r )2+M 2r 2=(R +r )M 1R 3. 设α=r R .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( ) A.M 2M 1RB.M 22M 1RC.33M 2M 1RD.3M 23M 1R答案 D解析 由α=rR 得r =αR , 代入M 1(R +r )2+M 2r 2=(R +r )M 1R 3,整理得3α3+3α4+α5(1+α)2=M 2M 1.又3α3+3α4+α5(1+α)2≈3α3,即3α3≈M 2M 1,所以α≈3M 23M 1,故r =αR ≈3M 23M 1R .二、填空题7.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大的广告效应,投入的广告费应为________(用常数a 表示).答案 14a 2解析 令t =A (t ≥0),则A =t 2, ∴D =at -t 2=-⎝ ⎛⎭⎪⎫t -12a 2+14a 2,∴当t =12a ,即A =14a 2时,D 取得最大值.8.(2020·辽宁协作校模拟)考古学家经常利用碳14的含量来推断古生物死亡的大致时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________. 答案 y =⎝ ⎛⎭⎪⎫12x5 730解析 依题意,设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即12=⎝ ⎛⎭⎪⎫12 5 730a,因此a =15 730,故y =⎝ ⎛⎭⎪⎫12x5 730.9.(2021·重庆调研)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间. 答案 (1)2 (2)40解析 (1)由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2. (2)由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间. 三、解答题10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0. 当耗氧量为90个单位时,速度为1 m/s , 故有a +b log 39010=1,即a +2b =1. 解方程组⎩⎨⎧a +b =0,a +2b =1,得⎩⎨⎧a =-1,b =1.即a ,b 的值分别为-1和1. (2)由(1)知,v =-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则有v ≥2, 故-1+log 3Q10≥2,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s 时,其耗氧量至少要270个单位.11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足P =42a -6,乙城市收益Q 与投入a (单位:万元)满足Q =⎩⎪⎨⎪⎧14a +2,80≤a ≤120,32,120<a ≤160,设甲城市的投入为x (单位:万元),两个城市的总收益为f (x )(单位:万元). (1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大? 解 (1)当x =128,即甲城市投资128万元时,乙城市投资112万元, 所以f (128)=4×2×128-6+14×112+2=88(万元). 因此,此时公司的总收益为88万元.(2)由题意知,甲城市投资x 万元,则乙城市投资(240-x )万元, 依题意得⎩⎨⎧x ≥80,240-x ≥80,解之得80≤x ≤160,当80≤x <120,即120<240-x ≤160时, f (x )=42x -6+32=42x +26<26+1615. 当120≤x ≤160,即80≤240-x ≤120时, f (x )=42x -6+14(240-x )+2 =-14x +42x +56.令t =x ,则t ∈[230,410],所以y =-14t 2+42t +56=-14(t -82)2+88. 当t =82,即x =128时,y 取最大值88. 因为88-(26+1615)=2×(31-815)>0, 故f (x )的最大值为88.因此,当甲城市投资128万元,乙城市投资112万元时,总收益最大,且最大收益为88万元.B 级 能力提升12.(多选题)(2021·威海调研)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎪⎨⎪⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降的最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20% 答案 ABC解析 由函数解析式可知f (x )随着x 的增加而减少,故A 正确; 由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,它就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=2.5(lg E 2-lg E 1).其中星等为m i 的天体的亮度为E i (i =1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r 最接近的是(当|x|较小时,10x≈1+2.3x+2.7x2)()A.1.24B.1.25C.1.26D.1.27答案C解析由题意,得1-1.25=2.5(lg E2-lg E1),∴lg E1E2=110,解得r=E1E2=10110.又10x≈1+2.3x+2.7x2(|x|较小),所以r≈1+2.3×110+2.7×⎝⎛⎭⎪⎫1102=1.257.故与r最接近的是1.26.14.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A菌的个数.现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg 2≈0.3).则正确的说法为________(写出所有正确说法的序号).答案③解析当n A=1时,P A=0,故①错误;若P A=1,则n A=10;若P A=2,则n A=100,故②错误;B菌的个数为n B=5×104,∴n A=10105×104=2×105,则P A=lg(n A)=5+lg 2.又lg 2≈0.3,因此5<P A<5.5,③正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ห้องสมุดไป่ตู้由于
40000 40000 +16x≥2 16 x =1 600, x x
2.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于
y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢. 3.总会存在一个x0,使得当x>x0时,有logax<xn<ax.
数学
夯基自测
1.下列函数中随 x 的增大而增大速度最快的是( A (A)v=
1 x ·e 100
6 x 2 384 x 40,0 x 40, 所以,W= 40000 16 x 7360, x 40. x
数学
(2)当年产量为多少万部时,苹果公司在该款iPhone手机的生产中所获 得的利润最大?并求出最大利润.
解:(2)①当 0<x≤40 时, W=-6(x-32)2+6 104, 所以 Wmax=W(32)=6 104; ②当 x>40 时,W=40000 -16x+7 360, x
解:(2)设总利润为 y 万元,投入 B 品牌为 x 万元, 则投入 A 品牌为(5-x)万元, 则 y= 则 y= 当 t=
1 3 (5-x)+ x (0<x<5),t= x (0<t< 5 ), 4 4 1 1 3 2 29 2 (-t +3t+5)=- (t- ) + , 4 4 2 16 3 9 9 11 29 ,即 x= 时,5- = ,ymax= , 2 4 4 4 16 11 9 万元,B 品牌 万元时,经销该种商品获得利润最大,最大利润为 4 4
400 6 x,0 x 40, 7400 40000 , x 40. 2 x x
(1)写出年利润 W(万美元)关于年产量 x(万部)的函数解析式;
解:(1)当 0<x≤40 时, 2 W=xR(x)-(16x+40)=-6x +384x-40, 当 x>40 时,W=xR(x)-(16x+40)=40000 -16x+7 360. x
B 品牌的销售利润 y2 与投入资金 x 的算术平方根成正比, 设 y2=k2 x (x>0), 又过点(4,1.5),所以 k2= 所以 y2=
3 x (x>0). 4
3 , 4
数学
(2)该商场计划投入5万元经销该种商品,并全部投入A,B两个品牌,问: 怎样分配这5万元资金,才能使经销该种商品获得最大利润,其最大利润 为多少万元?
数学
4.某种细胞在培养过程中正常情况下,时刻t(单位:分钟)与细胞数n(单 位:个)的部分数据如下: t n 0 1 20 2 60 8 140 128 分钟.
t 20
根据表中数据,推测繁殖到1 000个细胞时的时刻t最接近于
解析:由表格中所给数据可知,n 与 t 的函数关系式为 n= 2 , 令 n=1 000,得 2 =1 000, 又 29=512,210=1 024, 所以
数学
第9节 函数模型及其应用
数学
最新考纲 1.了解指数函数、对数函数、 幂函数的增长特征,结合具体实 例体会直线上升、指数增长、 对数增长等不同函数类型增长 的含义. 2.了解函数模型(如指数函数、 对数函数、幂函数、分段函数 等在社会生活中普遍使用的函 数模型)的广泛应用.
数学
知识链条完善 考点专项突破 解题规范夯实
n
数学
(2)三种函数模型性质比较 y=ax(a>1) y=logax(a>1) 单调递增 函数 慢 越来越____ y=xn(n>0) 单调 递增函数 相对平稳
在(0,+∞) 上的单调性
增长速度
单调 递增函数 快 越来越____
数学
2.解答函数应用题的一般步骤 (1)审题 弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型.
t 最接近于 10, 20
t 20
即时刻 t 最接近于 200 分钟.
答案:200
数学
考点专项突破
考点一 二次函数模型
在讲练中理解知识
【例1】 (2015菏泽质检)某商场欲经销某种商品,考虑到不同顾客的 喜好,决定同时销售A,B两个品牌,根据生产厂家营销策略,结合本地区 以往经销该商品的数据统计分析,A品牌的销售利润y1与投入资金x成 正比,其关系如图1所示,B品牌的销售利润y2与投入资金x的算术平方
数学
考点二
指数函数与对数函数模型
【例 2】 (2015 泰兴模拟)我国加入 WTO 后,根据达成的协议,若干年内某产品 的关税与市场供应量 P 的关系允许近似的满足:y=P(x)= 2(1 kt )( x b ) (其中 t 为 关税的税率,且 t∈[0, 量曲线如图. (1)根据图象求 b,k 的值;
数学
知识链条完善
把散落的知识连起来
【教材导读】 1.函数y=2x的函数值在(0,+∞)上一定比y=x2的函数值大吗? 提示:不一定,当x∈(0,2)和(4,+≦)时,2x>x2,当x∈(2,4)时,x2>2x. 2.对于指数型函数y=a· bx+c形容增长速度越来越快时,对参数a,b,c有 什么要求? 提示:要使得指数型函数y=abx+c增长速度越来越快,须a>0,b>1,对于c 为常数没有要求.
答:投入 A 品牌
29 万元. 16
数学
反思归纳
实际生活中的二次函数问题(如面积、利润、产量等),
可根据已知条件确定二次函数模型,结合二次函数的图像、单调性、零
点解决,解题中一定要注意函数的定义域.
数学
【即时训练】 如图所示,已知边长为8米的正方形钢板有一个角被锈蚀, 其中AE=4米,CD=6米.为了合理利用这块钢板,将在五边形ABCDE内截取 一个矩形块BNPM,使点P在边DE上.
解析:由运输效率(单位时间内的运输量)逐步提高得曲线上的点的切线 斜率应该逐渐增大,故选B.
数学
3.(2015泉州模拟)某产品的总成本y(万元)与产量x(台)之间的函数关 系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元, 则生产者不亏本时(销售收入不小于总成本)的最低产量是( C ) (A)100台 (B)120台 (C)150台 (D)180台 解析:设利润为f(x)(万元), 则f(x)=25x-(3 000+20x-0.1x2) =0.1x2+5x-3 000≥0, 所以x≥150.
(2)建模
将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知 识,建立相应的函数模型.
(3)求模
求解函数模型,得出数学结论. (4)还原 将数学问题还原为实际问题的意义. 以上过程用框图表示如下:
数学
【重要结论】 1.在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都 是增函数,但它们的增长速度不同,而且不在同一个“档次”上.
2
x 2 = 1 · 22 x = 1 ·[ 17 - 1 ], 化简得 1-6t= ( x 5)2 2 ( x 5)2 x 5 ( x 5)2 2
令 m=
1 1 (x≥9),所以 m∈(0, ], x5 4
2
设 f(m)=17m -m,m∈(0, 所以 f(x)max=f(
1 1 ],对称轴为 m= , 4 34
1 13 1 )= ,所以,当 m= 时, 4 16 4 1 13 1 13 × ,即 1-6t≤ × , 2 16 2 16
1-6t 取得最大值为 解得 t≥
19 19 ,即税率的最小值为 . 192 192
数学
反思归纳
应用指数函数模型应注意的问题
(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中 有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来 解决. (2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将 已知有关数据代入验证,确定参数,从而确定函数模型. (3)y=a(1+x)n通常利用指数运算与对数函数的性质求解.
数学
知识梳理
1.函数模型及其性质的比较 (1)几种常见的函数模型
函数模型 一次函数模型 反比例函数模型 f(x)= 函数解析式
ax+b
f(x)=
(a,b 为常数,a≠0)
k x
(k≠0)
二次函数模型 指数型函数模型 对数型函数模型 幂函数模型
f(x)=
x
ax2+bx+c
(a,b,c 为常数,a≠0) f(x)=ba +c(a,b,c 为常数, a>0 且 a≠1,b≠0) f(x)=blogax+c (a,b,c 为常数,a>0 且 a≠1,b≠0) f(x)=ax +b (a,b,n 为常数,a≠0,n≠0)
数学
【即时训练】 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,
两岁燕子的飞行速度可以表示为函数 v=5log2 氧量. (1)试计算:燕子静止时的耗氧量是多少个单位?
Q ,单位是 m/s,其中 Q 表示燕子的耗 10
解:(1)由题意知,当燕子静止时,它的速度为 0,代入题目所给公式可得 0=5log2 解得 Q=10, 即燕子静止时的耗氧量为 10 个单位.
数学
(2)若市场需求量为 Q,它近似满足 Q(x)= 2
解:(2)当 P=Q 时, 2(1 6t )( x 5) = 2
11
2
11
x 2
.当 P=Q 时的市场价格称为市场平衡
相关文档
最新文档