直线与圆、圆与圆位置关系

合集下载

高中理科数学 直线与圆、圆与圆的位置关系

高中理科数学 直线与圆、圆与圆的位置关系
1 a
1 b
解析 将x2+y2+2ax+a2-4=0和x2+y2-4by-1-4b2=0化为标准方程得(x+a)2+y2
a 2 4b 2 =1+2=3,即a2+4b2=9,所 =4,x2+(y-2b)2=1,依题意得两圆相外切,故
a 2 4b 2 1 1 a 2 4b 2 1 1 1 a 2 4b 2 4 5 2 =1,当且 2 = 以 + = + ≥ +2 2 + 2 + 2 2 9 b 9 a 9 b 9a 9 a 2 b2 9 9 9 9 a b a 2 4b 2 1 1 2 2 仅当 = , 即 a =2 b 时等号成立 , 故 + 的最小值为1. 9b 2 9a 2 a 2 b2
答案 1
方法 3 解决与圆有关的切线和弦长问题的方法
1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线所在直线的斜率,当斜率不存在时,切线方程为y=y
0
;当斜率存在时,设为k,①k≠0时由垂直关系知切线斜率为- ,由点斜式
1 k
方程可求出切线方程,②k=0时切线方程为x=x0. 2.求过圆外一点(x0,y0)的圆的切线方程(切线斜率存在) (1)几何法:设切线斜率为k,则切线方程为y-y0=k(x-x0),即kx-y+y0-kx0=0.由 圆心到直线的距离等于半径,求得k,即可得出切线方程. (2)代数法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到
4 结合图形可得kAB= =-1, 4 | 4 2k | 3 又由 2 =2可得k=- , 4 1 k 3 即kAT=- , 4

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆、圆与圆的位置关系―知识讲解提高

直线与圆相交于一点 直线与圆相切于一点 直线与圆相离于一点 直线与圆相交于两点
判断直线与圆的位置关系,可以通过比较圆心到直线的距离与圆的半径大小来实现。
圆心到直线的距离小于半径,则直线与圆相交;等于半径,则直线与圆相切;大于半径,则 直线与圆相离。
判断圆与圆的位置关系,可以通过比较两圆的圆心距与两圆半径之和或半径之差的大小来实 现。
圆心到直线的距离:利用圆心到直 线的距离判断圆与直线的关系
弦长:通过比较弦长来判断圆与圆 的位置关系
添加标题
添加标题
添加标题
添加标题
圆的半径:比较两圆的半径大小, 判断圆与圆的位置关系
切线:利用切线性质判断圆与直线 的关系
距离公式:利用两点间的距离公式求解直线与圆之间的距离 角度公式:利用三角函数或余弦定理求解直线与圆之间的夹角 代数运算:利用代数方法简化计算过程,提高解题效率
交通路线规划:利用直线与圆的位置关系,确定最佳路线。 股市分析:通过分析股票价格与均线的位置关系,判断股票走势。 地球科学:利用圆与圆的位置关系,研究地球与其他天体的相对位置。 建筑学:在建筑设计时,利用直线与圆、圆与圆的位置关系,实现美观与实用的统一。
直线与圆的位置关系在解析几何中的应用 圆与圆的位置关系在几何证明题中的应用 利用直线与圆、圆与圆的位置关系解决数学竞赛中的难题 在数学竞赛中,直线与圆、圆与圆的位置关系常作为考点和难点
特殊情况处理:针对直线与圆相切、相交等特殊情况,采用相应的方法进行求解
理解数形结合的概念,将数学问题转化为图形问题 掌握常见的数形结合方法,如坐标法、向量法等 学会利用图形直观地分析问题,找到解题思路 练习数形结合的题目,提高解题能力
掌握直线与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 掌握圆与圆的位置关系的基本题型,包括相切、相交和相离等,并掌握相应的解题方法。 熟悉不同题型的特点和解题方法,能够根据题目的具体要求选择合适的解题方法。 掌握解题技巧,如利用几何性质、数形结合等方法,提高解题效率。

直线与圆的位置关系

直线与圆的位置关系

直线与圆、圆与圆的位置关系【知识梳理】1.点与圆的位置关系: 有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d ,两圆的半径分别为R 和r ,则①两圆外离⇔d >R+r ;有4条公切线;②两圆外切⇔d=R +r ;有3条公切线;③两圆相交⇔R -r <d <R+r (R >r )有2条公切线;④两圆内切⇔d=R -r (R >r )有1条公切线;⑤两圆内含⇔d <R —r (R >r )有0条公切线.(注意:两圆内含时,如果d 为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )例题2图A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;• 当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,P A 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交P A 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是 例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15 B. 30 C. 45 D.604. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移个单位长. OD C B Ax y M B A O C l B A 例题3图 例题8图 例题9图 •A B P C EF •O 例题10图 第3题图 第4题图 第5题图 第6题图OO2O16. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC =1,,则⊙O的半径等于()A.45B.54C.43D.657.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( ) A.相离 B.相交 C.相切 D.不能确定8.如图,在ABC△中,12023AB AC A BC=∠==,°,,A⊙与BC相切于点D,且交AB AC、于M N、两点,则图中阴影部分的面积是(保留π).9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30º,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm,∠P=60°.求弦AB的长.中考题型一、选择题1.(2009年·宁德中考)如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A.43 B.4 C.23 D.2(第1题图)(第2题图)2.(2009年·潍坊中考)已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若∠CAB=30°,则BD的长为()A.2R B.3R C.R D.32RBPAOC第8题图第9题图第11题图第10题图第12题图第13题图3.(2009年·襄樊中考)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C,若∠A=25°则∠D 等于( )A .40°B .50°C .60° D.70°(第3题图) (第4题图)4.(2009年湖南省邵阳市)如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =450,则下列结论正确的是( ) A.AD =21BC B.AD =21AC C.AC >AB D.AD >DC二、填空题5.(2009年·綦江县中考)如图,AB 与⊙O 相切于点B ,AO 的延长线交O ⊙于点C ,连结BC ,若34A ∠=°,则C ∠= .(第5题图) (第6题图)6.(2009年·庆阳市中考)如图直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.三、解答题7.(2009桂林百色)如图,△ABC 内接于半圆,AB 是直径,过A 点作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线; (2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG =3,GC =4,试求△BCG 的面积.课后练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、R T⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。

考点41 直线与圆、圆与圆的位置关系

考点41 直线与圆、圆与圆的位置关系

考点四十一直线与圆、圆与圆的位置关系知识梳理1.直线与圆的位置关系(1) 直线与圆相交,有两个公共点;(2) 直线与圆相切,只有一个公共点;(3) 直线与圆相离,无公共点.2. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.3.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则4.(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.5.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题. 6.相交两圆公共弦所在直线方程求法设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).将两圆方程相减,得到关于x 和y 的一次方程,即为公共弦所在直线方程.典例剖析题型一 判断直线与圆的位置关系例1 直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是__________. 答案 相交解析 ∵直线y =ax +1恒过定点(0,1),又点(0,1)在圆(x -1)2+y 2=4的内部,故直线与圆相交. 变式训练 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆D 的位置关系是__________. 答案 相交解析 由点M 在圆外,得a 2+b 2>1, ∴圆心D 到直线ax +by =1的距离d =1a 2+b 2<1=r ,则直线与圆O 相交. 解题要点 判断直线与圆的位置关系常见的方法: (1)几何法:利用d 与r 的关系. (2)代数法:联立方程随后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题. 题型二 直线与圆相交弦长问题例2 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 因为圆心(2,-1)到直线x +2y -3=0的距离d =|2-2-3|5=35,所以直线x +2y -3=0被圆截得的弦长为24-95=2555. 变式训练 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是__________. 答案 -4解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2= 2.由r 2=d 2+⎝⎛⎭⎫422,得2-a =2+4,所以a =-4.题型三 直线与圆相切问题例3 过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________; 答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意; 当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d =|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0,即4x -3y +4=0.综上,所求切线方程为x =2或4x -3y +4=0.变式训练 过坐标原点且与圆x 2-4x +y 2+2=0相切的直线方程为________________. 答案 y =±x解析 圆的标准方程为(x -2)2+y 2=2.则圆心(2,0),半径r = 2.设直线方程为y =kx .则|2k |k 2+1=2,解得k =±1,所以直线方程为y =±x .例4 过点P (4,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 答案 3x +y -4=0解析 方法1:如图所示,A 点的坐标为(1,1),∵AB ⊥PC ,k PC =13,∴k AB =-3,∴直线AB 的方程为y -1=-3(x -1),即3x +y -4=0.方法2:把点P 代入切点弦公式,得方程为:(4-1) ·(x -1) +1·y =1,即方程为3x +y -4=0.解题要点 过某点求圆的切线时,要注意分清该点在圆上还是在圆外.如果过圆外一点求切线,还需讨论切线斜率是否存在.当斜率存在时,设为k ,切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可得出切线方程.当斜率不存在时要加以验证.另外,记住一些常见的结论,有助于快速解题. ①过圆(x -a )2+(y -b )2=r 2外一点P (x 0,y 0)作圆的两条切线,则切点弦方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2. ②过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则切点弦方程为x 0x +y 0y =r 2. 题型四 圆与圆的位置关系问题例5 圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 答案 相交解析 两圆圆心分别为(-2,0)和(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.变式训练 过两圆x 2+y 2+6x +4y =0及x 2+y 2+4x +2y -4=0的交点的直线方程是________. 答案 x +y +2=0解析 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为x 2+y 2+6x +4y -(x 2+y 2+4x +2y -4)=0,即x +y +2=0.解题要点 求相交两圆公共弦所在直线方程,只需将两圆方程相减,得到关于x 和y 的一次方程,即为公共弦所在直线方程.当堂练习1.设直线l 过点P (-2,0),且与圆x 2+y 2=1相切,则l 的斜率是________. 答案 ±33解析 设l :y =k (x +2),即kx -y +2k =0,又l 与圆相切,∴|2k |1+k 2=1,∴k =±33.2.直线x -y +3=0被圆(x +2)2+(y -2)2=2截得的弦长等于________.答案解析 圆心为(-2,2),2=由勾股定理求出弦长的一半为2,3. 直线x -ky +1=0与圆x 2+y 2=1的位置关系是________. 答案 相交或相切解析 直线x -ky +1=0过定点(-1,0),而点(-1,0)在圆上,故直线与圆相切或相交. 4.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为________. 答案 x -3y +2=0解析 设所求切线方程为y -3=k (x -1).⎩⎨⎧x 2+y 2-4x =0y =kx -k +3⇒x 2-4x +(kx -k +3)2=0.该二次方程应有两个相等实根,则Δ=0,解得k =33.∴y -3=33(x -1),即x -3y +2=0. 5.直线y =x +b 与曲线y =1-x 2有两个公共点,则b 的取值范围是________. 答案 1≤b < 2解析 曲线为x 2+y 2=1(y ≥0),表示单位圆的上半圆,由数形结合法,知1≤b <2.课后作业一、 填空题1.将圆x 2+y 2-2x -4y +1=0平分的直线是________. 答案 x -y +1=02.过两圆x 2+y 2+3x +2y =0及x 2+y 2+2x +6y -4=0的交点的直线方程是________. 答案 x -4y +4=0解析 过两圆交点的直线就是两圆公共弦所在直线,因此该直线方程为x 2+y 2+3x +2y -(x 2+y 2+2x +6y -4)=0,即x -4y +4=0.3.已知直线l :y =k (x -1)-3与圆x 2+y 2=1相切,则直线l 的倾斜角为________. 答案5π6解析 由题意知,|k +3|k 2+1=1,∴k =-33.∴直线l 的倾斜角为5π6.4.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且被直线x +2y =0截得的弦长为4,则圆C 的方程是________. 答案 (x +5)2+y 2=5解析 设圆心为(a,0)(a <0),因为截得的弦长为4,所以弦心距为1,则d =|a +2×0|12+22=1,解得a =-5,所以,所求圆的方程为(x +5)2+y 2=5.5.若过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=________. 答案3解析 如图所示,∵P A ,PB 分别为圆O :x 2+y 2=1的切线,∴OA ⊥AP . ∵P (1,3),O (0,0),∴|OP |=1+3=2.又∵|OA |=1,∴在Rt △APO 中,cos ∠AOP =12. ∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP =3.6.过点(1,1)的直线与圆(x -2)2+(y -3)2=9相交于A ,B 两点,则|AB |的最小值为________. 答案 4解析 ∵点在圆内,由圆的几何性质可知,当点(1,1)为弦AB 的中点时,|AB |的值最小, 此时|AB |=2r 2-d 2=29-5=4.7.已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则________. 答案 l 与C 相交解析 ∵32+0-4×3=9-12=-3<0,∴点P (3,0)在圆内,∴直线l 与圆C 相交.8.在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于________. 答案 2 3解析 圆心到直线3x +4y -5=0的距离d =|-5|32+42=1,∴弦AB =2r 2-d 2=2 3.9.设直线l 截圆x 2+y 2-2y =0所得弦AB 的中点为(-12,32),则直线l 的方程为________;|AB |=________.答案 x -y +2=0 2解析 设A (x 1,y 1),B (x 2,y 2),则x 21+y 21-2y 1=0,x 22+y 22-2y 2=0,两式相减得(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)-2(y 1-y 2)=0,k AB =y 1-y 2x 1-x 2=1. 故l 的方程为y -32=1·(x +12),即x -y +2=0. 又圆心为(0,1),半径r =1,故|AB |=2.10.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是________. 答案 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8 解析 由题意可设圆心A (a ,a ),如图,则22+22=2a 2,解得a =±2,r 2=2a 2=8. 所以圆C 的方程是(x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8. 11.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 方程x 2+y 2+2ay -6=0与x 2+y 2=4.相减得2ay =2,则y =1a .由已知条件22-(3)2=1a,即a =1.二、解答题12.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程. 解析 ∵所求圆的圆心在直线x -3y =0上,且与y 轴相切,∴设所求圆的圆心为C (3a ,a ),半径为r =3|a |. 又圆在直线y =x 上截得的弦长为27, 圆心C (3a ,a )到直线y =x 的距离为d =|3a -a |12+12. ∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 13.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.解析 将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.。

直线与圆圆与圆的位置关系

直线与圆圆与圆的位置关系
首先,需要知道圆的半径和直线与圆的交点,然后通过交点 构造半径,最后根据公式计算面积。
圆与直线周长的计算
首先,需要知道圆的半径和直线与圆的交点,然后通过交点 构造半径,最后根据公式计算周长。
05
应用举例
实际应用
制造加工
在制造工业中,可以利用直线 与圆的方程来设计机器设备, 例如数控机床的轨迹控制、圆
《直线与圆圆与圆的位置关 系》
xx年xx月xx日
目录
• 直线与圆的位置关系 • 圆与圆的位置关系 • 判定方法和性质 • 面积和周长的计算 • 应用举例
01
直线与圆的位置关系
相交
垂直相交
直线与圆心到直线的垂线段相等,即圆心到直线的距离小于 圆的半径。
斜交
直线与圆心到直线的垂线段不相等,即圆心到直线的距离大 于圆的半径。
解析几何中的运用
研究轨迹
直线与圆的方程可以用于研究一些点的轨迹,例如动点在平面直角坐标系中的运 动轨迹、动点在空间直角坐标系中的运动轨迹等。
解决最值问题
利用直线与圆的位置关系可以求解一些最值问题,例如距离、角度等最值。
THANKS
感谢观看
弧形零件的加工等。
航海航天
在航海和航天领域,直线与圆的 方程可以用于计算航行器的轨道 、飞行路径等。
防洪抗灾
在防洪抗灾方面,可以利用直线与 圆的位置关系来计算洪水淹没范围 、预测洪水发展趋势等。
几何题中的运用
证明定理
利用直线与圆的位置关系可以证明一些几何定理,例如勾股定理、蝴蝶定理 等。
求解面积
直线与圆的位置关系可以用于求解一些几何图形的面积,例如扇形、弓形、 三角形等。
圆与圆的判定方法
d-r 法则
对于两个圆,可以计算它们之间的距离 d 和两个圆的半径 r1 和 r2,如果 d<min(r1,r2),则两个圆相交,如果 d=min(r1,r2),则两个圆相切,如果 d>min(r1,r2),则两个圆相离。

4 第4讲 直线与圆、圆与圆的位置关系

4 第4讲 直线与圆、圆与圆的位置关系

第4讲直线与圆、圆与圆的位置关系1.直线与圆的位置关系设直线l:Ax+By+C=0(A2+B2≠0),圆:(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).常用知识拓展1.过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.2.过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y -b)=r2.3.过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y =r2.4.直线与圆相交时,弦心距d ,半径r ,弦长的一半12l 满足关系式r 2=d 2+⎝⎛⎭⎫12l 2.判断正误(正确的打“√”,错误的打“×”)(1)若直线与圆组成的方程组有解,则直线与圆相交或相切.( )(2)若两个圆的方程组成的方程组无解,则这两个圆的位置关系为外切.( ) (3)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( ) (4)联立两相交圆的方程,并消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( )答案:(1)√ (2)× (3)× (4)√直线y =x +1与圆x 2+y 2=1的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离解析:选B.因为圆心(0,0)到直线y =x +1的距离d =12=22,而0<22<1,所以直线和圆相交,但不过圆心.圆Q :x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=0解析:选D.因点P 在圆上,且圆心Q 的坐标为(2,0), 所以k PQ =-32-1=-3,所以切线斜率k =33,所以切线方程为y -3=33(x -1), 即x -3y +2=0.若圆C1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则实数m =________. 解析:圆C 1的圆心是原点(0,0),半径r 1=1,圆C 2:(x -3)2+(y -4)2=25-m ,圆心C 2(3,4),半径r 2=25-m ,由两圆外切,得|C 1C 2|=r 1+r 2=1+25-m =5,所以m =9.答案:9(2018·高考全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由题意知圆的方程为x 2+(y +1)2=4,所以圆心坐标为(0,-1),半径为2,则圆心到直线y =x +1的距离d =|-1-1|2=2,所以|AB |=222-(2)2=2 2.答案:2 2直线与圆的位置关系(典例迁移)(1)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定(2)(一题多解)圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是________. 【解析】 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,从而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b2=1a 2+b2<1,所以直线与圆相交.(2)法一:将直线方程代入圆方程,得(k 2+1)x 2+4kx +3=0,直线与圆没有公共点的充要条件是Δ=16k 2-12(k 2+1)<0,解得k ∈(-3,3).法二:圆心(0,0)到直线y =kx +2的距离d =2k 2+1,直线与圆没有公共点的充要条件是d >1,即2k 2+1>1,解得k ∈(-3,3). 【答案】 (1)B (2)k ∈(-3,3)[迁移探究] (变条件)若将本例(1)的条件改为“点M (a ,b )在圆O :x 2+y 2=1上”,则直线ax +by =1与圆O 的位置关系如何?解:由点M 在圆上,得a 2+b 2=1,所以圆心O 到直线ax +by =1的距离d =1a 2+b2=1,则直线与圆O 相切.判断直线与圆的位置关系常用的方法[提醒] 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.1.直线x sin θ+y cos θ=1+cos θ与圆x 2+(y -1)2=12的位置关系是( )A .相离B .相切C .相交D .以上都有可能解析:选A.因为圆心到直线的距离d =|cos θ-1-cos θ|sin 2θ+cos 2θ=1>22,所以直线与圆相离.2.(2019·四川教育联盟考试)若无论实数a 取何值时,直线ax +y +a +1=0与圆x 2+y 2-2x -2y +b =0都相交,则实数b 的取值范围为( )A .(-∞,2)B .(2,+∞)C .(-∞,-6)D .(-6,+∞)解析:选C.因为x 2+y 2-2x -2y +b =0表示圆,所以2-b >0,即b <2. 因为直线ax +y +a +1=0过定点(-1,-1),所以点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部,所以6+b <0,解得b <-6. 综上,实数b 的取值范围是(-∞,-6).故选C.圆的切线与弦长问题(多维探究)角度一 圆的切线问题过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0【解析】 因为过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条, 所以点(3,1)在圆(x -1)2+y 2=r 2上, 因为圆心与切点连线的斜率k =1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0.故选B. 【答案】 B角度二 圆的弦长问题(1)(2019·湖北省重点中学联考(二))设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3),且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0(2)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.【解析】 (1)当直线l 的斜率不存在时,直线l 的方程为x =0,联立方程得⎩⎪⎨⎪⎧x =0,x 2+y 2-2x -2y -2=0,得⎩⎪⎨⎪⎧x =0,y =1-3或⎩⎪⎨⎪⎧x =0,y =1+3,所以|AB |=23,符合题意.当直线l 的斜率存在时,设直线l 的方程为y =kx +3,因为圆x 2+y 2-2x -2y -2=0,即(x -1)2+(y -1)2=4,其圆心为C (1,1),圆的半径r =2,圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+⎝⎛⎭⎫|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0.故选B.(2)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,所以圆心C (2,1)在直线x +ay -1=0上,所以2+a -1=0,所以a =-1,所以A (-4,-1).所以|AC |2=36+4=40.又r =2,所以|AB |2=40-4=36.所以|AB |=6. 【答案】 (1)B (2)6(1)求直线被圆截得的弦长的常用方法①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB |=2r 2-d 2;②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB |=1+k 2|x 1-x 2|.(2)圆的切线方程的求法①几何法:设切线方程为y -y 0=k (x -x 0),利用点到直线的距离公式表示出圆心到切线的距离d ,然后令d =r ,进而求出k ;②代数法:设切线方程为y -y 0=k (x -x 0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k .1.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x +y +5=0或2x +y -5=0 B .2x +y +5=0或2x +y -5=0 C .2x -y +5=0或2x -y -5=0 D .2x -y +5=0或2x -y -5=0解析:选A.设直线方程为2x +y +c =0,由直线与圆相切,得d =|c |5=5,c =±5,所以所求方程为2x +y +5=0或2x +y -5=0.2.(2019·广西两市联考)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.解析:设圆心为(a ,b )(a >0,b >0),半径为r ,则由题可知a =2b ,a =r ,r 2=b 2+3,解得a =r =2,b =1,所以所求的圆的方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4圆与圆的位置关系(典例迁移)(1)已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1相外切,则ab的最大值为( )A.62B.32C.94D .2 3(2)两圆C 1:x 2+y 2+4x +y +1=0,C 2:x 2+y 2+2x +2y +1=0相交于A ,B 两点,则|AB |=________.【解析】 (1)由圆C 1与圆C 2相外切,可得(a +b )2+(-2+2)2=2+1=3,即(a +b )2=a 2+2ab +b 2=9,根据基本不等式可知9=a 2+2ab +b 2≥2ab +2ab =4ab ,即ab ≤94,当且仅当a =b 时,等号成立.故选C.(2)由(x 2+y 2+4x +y +1)-(x 2+y 2+2x +2y +1)=0得弦AB 所在直线方程为2x -y =0. 圆C 2的方程为(x +1)2+(y +1)2=1, 圆心C 2(-1,-1),半径r 2=1. 圆心C 2到直线AB 的距离 d =|2×(-1)-(-1)|5=15.所以|AB |=2r 22-d 2=21-15=455. 【答案】 (1)C (2)455[迁移探究] (变条件)若本例(1)条件中“外切”变为“内切”,求ab 的最大值. 解:由C 1与C 2内切, 得(a +b )2+(-2+2)2=1.即(a +b )2=1, 又ab ≤⎝ ⎛⎭⎪⎫a +b 22=14,当且仅当a =b 时等号成立,故ab 的最大值为14.(1)几何法判断圆与圆的位置关系的步骤 ①确定两圆的圆心坐标和半径;②利用平面内两点间的距离公式求出圆心距d ,并求r 1+r 2,|r 1-r 2|; ③比较d ,r 1+r 2,|r 1-r 2|的大小,然后写出结论. (2)两圆公共弦长的求法两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d ,半弦长l2,半径r 所在线段构成直角三角形,利用勾股定理求解.1.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定解析:选C.由C 1(m ,-2),r 1=3;C 2(-1,m ),r 2=2; 则两圆心之间的距离为|C 1C 2|=(m +1)2+(-2-m )2=2+3=5,解得m =2或-5.故选C.2.圆C 1:x 2+y 2-4x +1=0与圆C 2:x 2+y 2-2x -2y +1=0的公共弦长为( ) A .2 B. 3 C .3D .4解析:选A.两圆联立错误!解得x -y =0.圆C 1可写成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y =0的距离为d =|2|12+12=2,故公共弦长为2(3)2-(2)2=2.直观想象——解决直线与圆的综合问题直观想象是发现和提出数学问题、分析和解决数学问题的重要手段,是探索和形成论证思路、进行逻辑推理、构建抽象结构的思维基础。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、直线与圆的位置关系1. 如何判断直线与圆的位置关系直线与圆一共有三种位置关系,相离、相切、相交,判断直线与圆的位置关系有两种方法,一种的比较圆心到直线的距离与半径大小,一种是联立方程组,看判别式与0的关系。

例题1 判断直线L :(1+m)x+(1-m)y+2m-1=0与圆O :922=+y x 的位置关系。

解析:方法一:直线L :m(x-y+2)+x+y-1=0恒过点)23,21(-p ∵点P 在圆O 内, ∴直线L 与圆O 相交。

方法二:圆心O 到直线L 的距离为当d<3时,)22(9)12(22+<-m m , ∴0174142>++m m ∴m ∈R 所以直线L 与直线O 相交。

2. 求切线方程例题2 已知点),(00y x p 是圆C :222r y x =+上一点,求过点P 的圆C 的切线方程。

解析:∵点),(00y x p 是圆C :222r y x =+上一点,∴22020r y x =+ 当00≠x 且00≠y 时,00x y k cp =,∴00y x k -=, ∴切线方程为)(0000x x y x y y --=-,即2202000r y x y y x x =+=+ (1) ∴切线方程为当P 为(0,r)时,切线方程为y=r ,满足方程(1); 当P 为(0,-r)时,切线方程为t=-r ,满足方程(1); 当P 为(r ,0)时,切线方程为x=r ,满足方程(1); 当P 为(-r ,0)时,切线方程为x=-r ,满足方程(1); 综上,所求切线方程为200r y y x x =+3. 相交弦问题例题3 若点P(2,-1)为圆(x-1)2+y2=25的弦AB 的中点,求直线AB 的方程。

解析:圆心C(1,0),1-=pc k , ∵AB ⊥PC ,∴1-=AB k ,且AB 过点P ,∴直线AB的方程为y+1=x-2即y=x-3 。

高考数学复习:直线与圆、圆与圆的位置关系

高考数学复习:直线与圆、圆与圆的位置关系

当直线y=x+b过点(0,3)时,b=3;
当直线y=x+b与y=3- 4x x2相切时,由点到直线的距离 公式,得2= 2 3 b , 所以|b-1|=2 2 .结合图形知
2
b=1-2 2 . 所以1-2 2 ≤b≤3.
【状元笔记】 求直线被圆截得的弦长的常用方法 (1)几何法:用圆的几何性质求解,运用弦心距、半径及 弦的一半表示的线段构成的直角三角形, 计算弦长|AB|=2 r2 d2 .
2.已知点P(2,2),点Q是曲线C:(x2+y2-1)(x2+y2-2)=0上 一动点,则|PQ|的最小值是________.
【解析】曲线C由两部分组成,圆M:x2+y2=1与圆 N:x2+y2=2,如图,
要使|PQ|最小,需点Q在圆N上且在直线OP上, 此时,|PQ|=|OP|- 2 = 2 , 所以|PQ|的最小值是 2 . 答案: 2
【解析】(1)选A.直线l:mx-y+1-m=0过定点(1,1),因为 点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆相交.
【一题多解微课】 本例题(1)还可以采用以下方法求解: (几何法)选A.由题意知,圆心(0,1)到直线l的距离 d= m 1 5, 故直线l与圆相交.
m2 1
A.[1-2 2 ,1+2 2 ] C.[-1,1+2 2 ]
B.[1- 2 ,3] D.[1-2 2 ,3]
【解析】选D.因为y=3- 4x x2 ,所以1≤y≤3, 所以(x-2)2+(y-3)2=4(1≤y≤3),即曲线y=3- 4x x2 表示以(2,3)为圆心,2为半径的下半圆.直线y=x+b与 曲线y=3- 4x x2 有公共点,表示两曲线至少有一个公共 点.符合条件的直线应是夹在过点(0,3)和与下半圆相切 的两直线之间.

圆的方程、直线与圆的位置关系、圆与圆的位置关系

圆的方程、直线与圆的位置关系、圆与圆的位置关系

3 : 曲线x y 2 2 x 2 2 y 0关于 ( A.直线x 2轴对称
B .直线y x轴对称 D.点( 2, 0 )中心对称
C .点( 2, 2 )中心对称
基础练习: 1 : 方程x y 4kx 2 y k 0表示圆, 则k的取值是(
2 2
THINKME网络教室
圆的方程、直线与圆的位置 关系、圆与圆的位置关系
一.圆的定义与方程
1、 定义: 平面内与定点的距离等于定长的点的集合(或轨迹)是圆. 2、标准方程: ( x a )2 ( y b)2 r 2
圆心
,半径为
2
3、 一般方程:
2 2
x y Dx Ey F 0
D
E
( )当D E - 4F 0时,方程 3
2 2
一.圆的定义与方程
1、 定义: 平面内与定点的距离等于定长的点的集合(或轨迹)是圆. 2、标准方程: ( x a )2 ( y b)2 r 2
圆心 (a , b )
,半径为 | r |
3、 一般方程:
2 2
x y Dx Ey F 0
C)
A.
1 4
k 1 B. k
1 4
或k 1 C . k R D . k
2 2
1 4
或k 1
2 : 已知点P ( a , a 1)在圆x y 25的内部,那么 a的取值范围是( A. 4 a 3 C. 5 a 5
2 2
) B. 5 a 4 D. 6 a 4
例1.求圆心在2 x y 3 0直线上, 且过点A( , 52 ),B( , 2 3 )的圆的方程?

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

直线与圆、圆与圆的位置关系题型归纳总结

直线与圆、圆与圆的位置关系题型归纳总结

直线与圆、圆与圆的位置关系【重难点精讲】重点一、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点. 重点二、几何判定法:设r 为圆的半径,d 为圆心到直线的距离:(1)d >r ⇔圆与直线相离;(2)d =r ⇔圆与直线相切;(3)d <r ⇔圆与直线相交.重点三、代数判定法:由⎩⎪⎨⎪⎧ Ax +By +C =0x -a 2+y -b 2=r 2消元,得到一元二次方程的判别式Δ,则(1)Δ>0⇔直线与圆相交;(2)Δ=0⇔直线与圆相切;(3)Δ<0⇔直线与圆相离.重点四、圆与圆的位置关系:两圆(x -a 1)2+(y -b 1)2=r 21(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)圆心距d 221212()()a a b b -+- d >r 1+r 2⇔两圆外离;d =r 1+r 2⇔两圆外切;|r 1-r 2|<d <r 1+r 2⇔两圆相交;d =|r 1-r 2|⇔两圆内切;0<d <|r 1-r 2|⇔两圆内含,d =0时为同心圆.重点五、两圆的公切线条数:当两圆内切时有一条公切线;当两圆外切时有三条公切线;相交时有两条公切线;相离时有四条公切线;内含时无公切线.【典题精练】考点1、直线与圆的位置关系例1.已知直线320l x y -+=,圆22:4410C x y x y ++--=.(1)判断直线l 与圆C 的位置关系,并证明;(2)若直线l 与圆C 相交,求出圆C 被直线l 截得的弦长;否则,求出圆上的点到直线l 的最短距离.【解析】(1)相交,证明如下;可将圆的一般方程22:4410C x y x y ++--=化为:22(2)(2)9x y ++-=,可得其圆心:(2,2)-,半径为:3,由直线320l x y -+=, 可得圆心到直线l 的距离:2322313d --+==+d r <,可得直线l 与圆C 相交;(2)由(1)得直线l 与圆C 相交,且圆心到直线l 的距离d =故弦长为:==考点2、弦长问题例2.已知圆C 的圆心在直线1y x =+上,且圆C 经过点()3,6P 和点()5,6Q .(1)求圆C 的方程;(2)过点()3,0的直线l 截圆所得弦长为2,求直线l 的方程.【解析】(1)由题意可知,设圆心为(),1a a +,则圆C 为:22()[(1)]2x a y a -+-+=, 圆C 经过点()3,6P 和点()5,6Q ,2222(3)[6(1)]2(5)[6(1)]2a a a a ⎧-+-+=∴⎨-+-+=⎩,解得4a =,则圆C 的方程为:22(4)(5)2x y -+-=; (2)当直线l 的斜率存在时,设直线l 的方程为()3y k x =-,即30k y k --=,∴过点()3,0的直线l 截圆所得弦长为2,1d ∴==,解得125k =, ∴直线l 的方程为125360x y --=,当直线l 的斜率不存在时,直线l 为3x =,此时弦长为2符合题意. 综上,直线l 的方程为3x =或125360x y --=.考点点睛:设直线l 的方程为ax +by +c =0,圆O 的方程为(x -x 0)2+(y -y 0)2=r 2,求弦长的方法通常有以下两种:(1)几何法:由圆的性质知,过圆心O 作l 的垂线,垂足C 为线段AB 的中点.如图所示,在Rt △OCB 中,|BC |2=r 2-d 2,则弦长|AB |=2|BC |=2r 2-d 2.(2)代数法:解方程组222000()()ax by c x x y y r++=⎧⎪⎨-+-=⎪⎩,消元后可得关于x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2的关系式,则|AB |考点3、圆的切线问题例3.已知点1,2P ,点()3,1M ,圆22:124C x y(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程.【解析】由题意得:圆心()1,2C ,半径2r(1)()()22211224+-+= P ∴在圆C 上 1PC k ==-∴切线的斜率11PC k k =-= ∴过点P 的圆C 的切线方程为()21y x --=-,即10x y -+-= (2)()()22311254-+-=> M ∴在圆C 外部若过点M 的直线斜率不存在,直线方程为3x =,是圆C 的切线;若过点M 的切线斜率存在,可设切线方程为:()13y k x -=-,即310kx y k--+=∴圆心C 到切线的斜率2d ===,解得:34k = ∴切线方程为()3413y x -=-,即3450x y --= 综上所述:切线方程为3x =或3450x y --=考点点睛:求过某一点的圆的切线方程,首先判定点与圆的位置关系,以确定切线的条数.(1)求过圆上一点P (x 0,y 0)的圆的切线方程:先求切点与圆连线的斜率k ,则由垂直关系得切线斜率为-1k,由点斜式方程可求得切线方程.如果k =0或斜率不存在,则由图形可直接得切线方程为y =y 0或x =x 0.(2)求过圆外一点P (x 0,y 0)的圆的切线方程时,常用几何方法求解:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0,由圆心到直线的距离等于半径,可求得k ,进而求出切线方程.但要注意,若求出的k 值只有一个时,则另一条切线的斜率一定不存在,切线方程为x =x 0. 考点4、两圆位置关系的判断例4.已知两圆1C :22210100x y x y +-++=和2C :222210x y x y ++++=. (Ⅰ)判断两圆的位置关系;(Ⅱ)求两圆公共弦所在直线方程;(Ⅲ)求两圆公共弦的长度.【解析】(Ⅰ)1C :()()221516x y -++=,()11,5C -,14r =, 2C :()()22111x y +++=,()21,1C --,21r =,∴12C C ==121212r r C C r r <<-+,故1C 与2C 相交. (Ⅱ)因为两圆1C :22210100x y x y +-++=和2C 222210x y x y ++++=,所以两方程相减得:4890x y --=.(Ⅲ)设1C 到4890x y --=的距离为d ,则d ==,弦长AB ==2=. 考点点睛: 判断两圆位置关系的方法有两种,一是代数法,看方程组的解的个数,但往往较繁琐,另外须注意方程组有“一个”解与两圆相切不等价;二是几何法,看两圆连心线的长d ,若d =r 1+r 2,两圆外切;d =|r 1-r 2|时,两圆内切;d >r 1+r 2时,两圆外离;d <|r 1-r 2|时,两圆内含;|r 1-r 2|<d <r 1+r 2时,两圆相交.考点5、由圆与圆的位置关系求参数的值或取值范围例5.已知直线:0l x y m ++=与圆()()22:119C x y ++-=没有公共点,圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,求m 的取值范围.【解析】圆()()22:119C x y ++-=的圆心()1,1C -,半径3r =,由题意可得,圆心C 到直线的距离3d =>,0m >,则m >圆()()221:121O x y -++=与圆()()()2222:420O x y m m -+-=>相交,圆心()11,2O -,圆1O 的半径11R =,圆心()24,2O ,圆2O 的半径2R m =,121212R R OO R R ∴-<<+,即11m m -<<+,解得46m <<.综上所述,实数m 的取值范围是().考点点睛: 两圆相切包括外切与内切,外切时,圆心距等于两圆半径之和,内切时,圆心距等于两圆半径差的绝对值.在题目没有说明是内切还是外切时,要分两种情况进行讨论.解决两圆相切问题,常用几何法.。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系
判断直线与圆的位置关系的常见方法
(1)几何法:利用d与r的关系.
(2)代数法:联立方程之后利用Δ判断.
(3) 点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线
2.(2016· 全国甲卷)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0 的距离为1,则a等于
4 A.-3 3 B.-4
答案 解析
C. 3
D.2
由圆的方程x2+y2-2x-8y+13=0,得圆心坐标为(1,4),
|1×a+4-1| 4 由点到直线的距离公式得 d= =1,解之得 a=-3. 2 1+a
§9.4 直线与圆、圆与圆的位置关系
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d和圆半径r的大小关系. d<r ⇔相交; d=r ⇔相切; d>r ⇔相离.
>0⇔ 相交 ; 判别式 (2)代数法:― ― ― ― ― ― ― →=0⇔ 相切 ; 2 Δ=b -4ac <0⇔ 相离 .
2.圆与圆的位置关系的常用结论
(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;
③相交:2条;④外切:3条;⑤外离:4条.
(2)当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所
在直线的方程.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1) 如 果 两 个 圆 的 方 程 组 成 的 方 程 组 只 有 一 组 实 数 解 , 则 两 圆 外 切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × ) (3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦 所在的直线方程.( × )

直线与圆圆与圆的位置关系知识点

直线与圆圆与圆的位置关系知识点

1.直线与圆的位置关系设圆O的半径为r(r>0),圆心到直线l的距离为d,则直线与圆的位置关系可用下表表示:位置关系相离相切相交图形方程观点Δ0 Δ0 Δ0 量化几何观点d r d r d r2.圆与圆的位置关系设圆O1,O2的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示: 位置关系外离外切相交内切内含图形数量的关系例1已知直线l:(m2+m+1)x+(3-2m)y-2m2-5=0,圆C:x2+y2-2x=0,则直线l与圆C的位置关系是()A.相离B.相切C.相交D.不确定例2已知直线l过点A(a,0)且斜率为1,若圆x2+y2=4上恰有3个点到l的距离为1,则实数a 的值为()A.3√2B.±3√2C.±2D.±√2例3设点A(-2,3),B(0,a),直线AB关于直线y=a的对称直线为l,已知l与圆C:(x+3)2+(y+2)2=1有公共点,则a的取值范围为.总结反思判断直线与圆的位置关系的常用方法:(1)若易求出圆心到直线的距离d,则用几何法,利用d与半径r的大小关系判断.(2)若方程中含有参数,或圆心到直线的距离的表达式较复杂,则用代数法,联立方程后利用Δ判断,能用几何法求解的,尽量不用代数法.例4 已知直线l:ax+by-r2=0(r>0)与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切例5已知直线y=mx与曲线y=√-x2+8x-12+1有两个交点,则实数m的取值范围为()A.[12,1)B.[12,45)C.(√13-26,12]D.[12,2+√136)例6 “-√2<b<√2”是“圆C:x2+y2=9上有四个不同的点到直线l:y=x-b的距离等于1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件。

直线与圆_圆与圆的位置关系

直线与圆_圆与圆的位置关系
2
圆心距d (两点间距离公式)
0 : 相交 0 :内切或外切 0 : 相离或内含
比较d和r1,r2的 关系,下结论
知识拓展
1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线 上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等; (2)若已知两条切线平行,则圆上两个切点的连线为直径; (3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形; (4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补; (5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
三角形三边 中垂线的交 点
图形
A
性质
1.OA=OB=OC 2.外心不一定 在三角形的内 部.
C
O B
内心: 三角形 内切圆 的圆心
三角形三条 角平分线的 交点
B
A
O
1.到三边的距离 相等; 2.OA、OB、OC 分别平分∠BAC、 ∠ABC、∠ACB C 3.内心一定在三角 形内部.
例题分析与巩固练习 见word文档
定理:圆的切线垂直于经过切点的 半径. 推论1:经过圆心且垂直于切线的直 线必经过切点.
推论2:经过切点且垂直于切线的 直线必经过圆心. 图8-2-2
3、判定直线 与圆的位置关系的两种方法
直线 与圆的公共点 (1)根据定义,由________________
的个数来判断; 圆心到直线的距离d与半径r (2)根据性质,由_________________ 的关系来判断。 在实际应用中,常采用第二种方法判定。

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )方程观点 Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)图形量的|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案: 6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24C .±2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a=±24.6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34 B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

直线与圆的位置关系、圆与圆的位置关系

直线与圆的位置关系、圆与圆的位置关系

栏目 导引
第八章
平面-4x+3=0 有公共点,则直线的倾 π 5π 0, ∪ ,π 6 6 . 斜角的取值范围是_________________
[解析] 由题意,设过原点的直线为 y=kx,即 kx-y=0, 因为过原点的直线与圆 x2+y2-4x+3=0 有公共点, |2k-0| 3 3 所以 2 ≤1, 解得- ≤k≤ , 所以直线的倾斜角的取值 3 3 k +12
π 5π 范围是0,6 ∪ 6 ,π.
栏目 导引
第八章
平面解析几何
直线与圆的位置关系 (1)直线 l:mx-y+1-m=0 与圆 C:x2+(y-1)2=5 的
相交 位置关系是________ .
(2)若直线 x+my=2+m 与圆 x2+y2-2x-2y+1=0 相交, 则实
2.圆与圆的位置关系(两圆半径 r1、r2,d=O1O2) 外离 图形 外切 相交 内切 内含
|r1-r2|< ________ d >r1+r2 ________ d=|r1-r2| d <|r1-r2| d=r1+r2 ________ _________ _________ d<r1+r2 ________ 关系
有意义. ②若两圆相切,所求直线为两圆过切点的公切线.
栏目 导引
第八章
平面解析几何
若⊙O1 : x2 + y2 = 5 与⊙O2 : (x + m)2 + y2 = 20(m∈R)相交于 A, B 两点, 且两圆在点 A 处的切线互相垂直,
4 则线段 AB 的长度是________ .
[解析] 由两圆在点 A 处的切线互相垂直,可知两切线分别过另 一圆的圆心,即 AO1⊥AO2,在直角三角形 AO1O2 中,(2 5)2 2 5× 5 +( 5) =m ,所以 m=± 5,AB=2× =4. 5

直线与圆、圆与圆的位置关系

直线与圆、圆与圆的位置关系
点A(a,b),则下列说法正确的是(ABD)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
由已知得圆心 C(0,0)到直线 l 的距离 d=
2
2 +2
若点 A(a,b)在圆 C 上,则 a +b =r ,所以 d=
A.相交
B.相切
C.相离
D.不能确定
x2+y2-2ax+2by=0 可化为(x-a)2+(y+b)2=a2+b2,可得圆的圆心坐标为(a,-b),
半径为√2 + 2 .
因为圆心到直线 ax-by=0 的距离 d=
|2 +2 |
2 +2
= √2 + 2 ,
故直线 ax-by=0 与圆 x2+y2-2ax+2by=0 相切.
所以圆心到直线 x-y=0 的距离
|0-2|
d=
√2
所以所求弦长为 2 2 -2 =2√2.
= √2,
A)
5.过点A(3,5)作圆C:x2+y2-2x-4y+1=0的切线,则切线的方程为
.
5x-12y+45=0或x-3=0
圆 C 的标准方程为(x-1)2+(y-2)2=4,圆心为 C(1,2),
当方程组无解时,两圆有外离和内含两种情况.
1.当两圆相交(切)时,两圆方程(x2,y2项的系数相同)相减便可得公共弦(公
切线)所在直线的方程.
2.(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆、圆与圆的位置关系试题
1、如图,PA 、PB 是⊙O 的切线,切点分别为A 、B,且∠APB=50°,点C 是优弧AB 上的一点,则∠ACB 的度数为________.
2、如图,⊙O 为△ABC 的内切圆,D 、E 、F 为切点,∠DOB=73°,∠DOE=120°, 则∠DOF=_______度,∠C=______度,∠A=_______度.
3、如图1,AB 为⊙O 的直径,CD 切⊙O 于D ,且∠A=30°,⊙O 半径为2cm ,则CD=
4、已知直角三角形的一条直角边为6,斜边长为10,那么这个直角三角形的内切圆与外接
圆的圆心距为
5、如图2,AB 切⊙O 于C ,点D 在⊙O 上,∠EDC=30°,弦EF ∥AB ,CF=2,则EF=
6、在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心
A 1),
半径为1,那么⊙O 与⊙A 的位置关系是_____
7、如图,两个半圆中,长为6的弦
CD
与直径
AB 平行且与小半圆相切,那么图中阴影部分的面积等于______
8、如图,⊙M 与x 轴交于A (2,0),B (8,0),与y 轴相切于点C ,则圆心M•的坐标是______
9、如图,EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46
°,∠DCF=32
°,则∠A
的度数是
10.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP=1
2AB ,PC 切半圆O 于点C ,点D 是弧
AC 上和点C 不重合的一点,则D 的度数为
F O
E B A
12、如图,已知∠AOB=30°,M 为OB 边上一点,以M 为圆心、2 cm 为半径作⊙M .若点M
在OB 边上运动,则当OM= cm 时,⊙M 与OA 相切
13、已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为
( )A.1cm B.7cm C.10cm D.1cm 或7cm
14、已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的
位置关系是( ) A.相交 B.相离 C.相切 D.内含
15、若两圆半径分别为R 、r (R>r ),圆心距为d ,且Rr r d R 2222+=+,则两圆的位置关系
为 ( ) A 内切 B.内切或外切 C.外切 D.相交
16、两圆外切时圆心距为10cm ,且这两圆半径之比为2:3,如果内含,那么这两圆的圆心
距为( )A.小于10cm B.小于2cm C.小于5cm D.小于3cm
17、如图,AB 、AC 为⊙O 的切线,B 、C 是切点,延长OB 到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO 等于( ) A. 70° B.64° C.62° D.51°
18、如图,AD 、AE 分别是⊙O 的切线,D 、E 为切点,BC 切⊙O 于F,交AD 、AE 于点B 、C ,
若AD=8.则三角形ABC 的周长是( ) A. 8 B.10 C.16 D.不能确定
19、如图8,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。

(1)求证:DE 为⊙O 的切线
(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长
20、如图,∠PAQ 是直角,半径为5的⊙O 与AP 相切于点T,与AQ 相交于两点B 、C.
(1)BT 是否平分∠OBA?证明你的结论. (2)若已知AT=4,试求AB 的长.
P
21、如图,已知⊙O 1与⊙O 2交于A ,B 两点,过A 的直线交两圆于C ,D 两点,•G•为CD 的中
点,BG 及其延长线交⊙O 1,⊙O 2于E ,F ,连结DF ,CE ,求证:CE=DF .
O C
D B
A
22、如图,已知⊙O1和⊙O2相交于A,B,过A作直线分别交⊙O1,⊙O2于C,D,过B作直线分别交⊙O1,⊙O2于E,F,求证:CE∥DF.
23、(1)如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点:过点C 作CD切⊙O于点D,连结AD交DC于点E.求证:CD=CE.
(2)若将图中的半径OB所在直线向上平行移动交OA于F,交⊙O于B’,其他条件不变(如图9),那么上述结论CD=CE还成立吗?为什么?
(3)若将图中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF 的交点,其他条件不变(如图10),那么上述结论CD=CE还成立吗?为什么?
24、已知⊙O1与⊙O2相交于A、B两点,且O2点在⊙O1上.
(1)如图,AD是⊙O2的直径,连结DB,并延长交⊙O1于C.求证:CO2⊥AD.
(2)如图,如果AD是⊙O2的一条弦,连结DB并延长交⊙O1于C,那么CO2所在的直线是否与AD垂直?证明你的结论.。

相关文档
最新文档