折叠问题经典题

合集下载

折叠数学练习题

折叠数学练习题

折叠数学练习题一、折纸问题折纸问题是一个有趣而又富有挑战性的数学问题。

假设我们有一张纸,初始状态下它是平铺在桌子上的。

现在我们要对这张纸进行一系列的折叠操作。

1. 折叠一次:将纸的左下角折叠到右上角。

这样纸上面会有两个角,下面会有一个角。

2. 折叠两次:再将纸的左下角折叠到右上角。

这样纸上面会有四个角,下面会有一个角。

3. 折叠三次:再将纸的左下角折叠到右上角。

这样纸上面会有八个角,下面会有一个角。

以此类推,我们可以发现每次折叠,纸上面的角的数量都是前一次折叠的两倍。

假设我们折叠纸的次数为n,那么最终纸上面的角的数量是2^n。

二、应用折纸问题不仅仅是一个数学问题,它还有许多实际应用。

1. 地图折叠:在地图制作过程中,为了将较大的地图装入更小的空间,常常需要对地图进行折叠。

折纸问题可以帮助我们计算折叠后地图上角的数量,从而设计更紧凑的地图。

2. 空间展开:在一些工程领域,为了研究或测试某些结构的性质,需要将其展开成平面状态进行观察。

折纸问题可以帮助我们计算展开后的结构上角的数量,从而为工程设计提供参考。

3. 材料优化:通过折纸问题的研究,我们可以探索如何将一定面积的材料最大限度地利用起来。

根据角的数量,我们可以计算出所需材料的面积,并进行优化。

三、拓展问题除了折纸问题,还有一些与之相关的数学拓展问题。

1. 折纸长度:相信许多人在小时候都玩过将一张长方形纸张对折,然后剪开,得到两个等长的矩形纸张的游戏。

那么问题来了,如果我们有一张长方形纸张,以及一段给定的长度,该如何通过折叠来得到这段给定长度的纸张呢?这个问题可以通过折纸问题的原理进行解答。

2. 折纸形状:如果我们将一张纸对折多次,能否得到一个特定的形状?比如三角形、正方形或者五角星等。

这个问题可以帮助我们更深入地理解折纸问题,并进行进一步的研究。

折纸数学练习题就介绍到这里,希望能够帮助你对折纸问题有一个更深入的理解,并激发你对数学的兴趣和探索欲望。

勾股定理折叠问题

勾股定理折叠问题

CB ADE一、折叠问题1、如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?2、折叠矩形ABCD 的一边AD ,使D 落在BC 边上的F 处,得折痕AE ,若AB =8,BC=10, 求CE,CF,EF3、如图,将矩形ABCD 纸片沿直线AE 折叠,顶点D 恰好落在边BC 的F 处,已知3,CE cm =8AB cm =,求图中阴影部分的面积.4、如图,已知长方形ABCD 中AB =8 cm,BC =10 cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.5、如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于________ 。

A CD F /E图56、将矩形ABCD(A B﹤AD)沿对角线BD折叠,使点C落在C′处,BC′交AD于E,AD=8㎝,AB=4㎝,求三角形BED的面积。

7、如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC'交AD于E,AD=8,AB=4,则DE的长为8、如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长。

9、P为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE为边长的正方形的面积.二、生活应用D ˊABCD A ˊ B ˊC ˊ1、将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm , 在无风的天气里,彩旗自然下垂,如右图. 求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm ).2、八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面。

折叠问题题型梳理

折叠问题题型梳理

折叠问题题型梳理题型1 折痕为对角线1.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为A .66°B .104°C .114°D .124°【解析】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =12∠1=22°∴∠B =180°–∠2–∠BAC =180°–44°–22°=114°;选C . 2.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A . 102B . 112C . 122D . 92 【解析】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===, 又ABD 48∠=, A 1802048112∠=--=,E A 112∠∠∴==,选B3.如图,在矩形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A . 3B . 154C . 5D . 152【解析】根据题意易证BE =DE ,设ED =x ,则AE =8﹣x ,在△ABE 中根据勾股定理得到关于线段AB 、AE 、BE 的方程x 2=42+(8﹣x )2, 解方程得x =5,即ED =5,故选C .题型2 折痕过一顶点4.如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为 .【解析】连接BF ,∵BC =6,点E 为BC 的中点,∴BE =3又∵AB =4,∴AE ==5,∴BH =,则BF =∵FE =BE =EC ,∴∠BFC =90°根据勾股定理得,CF ===5.如图,矩形纸片ABCD ,对角线为BD ,沿过点D 的直线折叠,使点A 落在对角线BD 上的点E 处,折痕DG ,若4,3AB BC ==,则AG 的长是( )A . 43B . 32C . 125D . 23【解析】根据题意可得:∠GDA =∠GDB ,AD =ED ,∵四边形ABCD 是矩形,∴∠A =90°,AD =BC =3,∴AG =EG ,ED =3,∵AB =4,BC =3,∠A =90°,∴BD =5,设AG =x ,则GE =x ,BE ==2,BG =4-x ,在Rt △BEG 中,EG 2+BE 2=BG 2,即:x 2+4=(4-x )2,解得:x =32,∴AG =32,选B . 6.如图,在平行四边形ABCD 中,E 为边CD 上一点,将ADE 沿AE 折叠至AD E '处,AD '与CE 交于点F .若54B ∠=︒,20DAE ∠=︒,则FED '∠的大小为( )A . 27°B . 32°C . 36°D . 40°【解析】∵四边形ABCD 是平行四边形,54B ∠=︒,∴54D B =∠=︒∠又∠DAE =20°,∴∠AED =180°-∠D -∠DAE =106°,根据折叠可得:106AED AED ∠=∠='︒ 又∠AEF =180°-∠AED =74°,∴32FED AED AEF ∠∠'=∠-='︒,选B7.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A . 3B . 3-C . 2D . 3【解析】∵四边形ABCD 为正方形,AB =2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB =AB =2,BM =12BC =1,BF =BA =2,∠BMF =90°,则在Rt △BMF 中,FM =∴2FN MN FM =-=设AE =FE =x ,则EN =1x -,∵Rt △EFN 中,222NE NF EF +=,∴()(22212x x -+=,解得:4x =-EN =13x -=,选A 8.如图,在正方形ABCD 中,E 为BC 上一点,将△ABE 沿AE 折叠至AB E '∆处,B E '与AC 交于点F ,若∠EFC =67°,则∠CAE 的度数为____.【解析】由正方形性质知:∠ACE =45°,∵∠EFC =67°,∴在△FEC 中,由外角定理有:∠BEF =∠EFC +∠ACE =67°+45°=112°,由折叠的性质可知:∠BEA =12∠BEF =56°,∴∠BAE =90°-∠BEA =90°-56°=34°, ∴∠EAC =45°-34°=11°.故答案为:11°.9.已知,如图:一张矩形纸片ABCD ,6AB =,8AD =,E 为AD 边上一动点,将矩形沿BE 折叠,要使点A 落在BC 上,则折痕BE 的长度是________;若点A 落在AC 上,则折痕BE 与AC 的位置关系是__________.若翻折后A 点的对应点是A '点,连接DA ',则在点E 运动的过程中,DA '的最小值是______.【解析】如图,由折叠的性质可知,,AB A B EAB BA E ''=∠=∠ ,∵四边形ABCD 是矩形,∴90ABA '∠=︒ ,∴四边形ABA E '是正方形,6AE AB ∴==,BE ∴==若点A 落在AC 上,根据折叠的性质可知,BE 垂直平分,所以折痕BE 与AC 的位置关系是垂直;如图,当A '在BD 上时,DA '的长度最小,6,8AB AD ==,10BD ∴== .6BA BA '== ,4DA BD BA ''∴=-= ,∴DA '的最小值是4.10..如图,在矩形ABCD 中,2,AB AD m ==,动点P 从点D 出发,沿射线DA 以每秒1个单位的速度向点A 方向运动,连接CP ,把PDC △沿PC 翻折,得到PEC .设点P 的运动时间为()t s .(1)若3m =,当P E B 、、三点在同一直线上时,求t 的值;(2)若点E 到直线BC 的距离等于1,求t 的值;(3)若AE 的最小值为1,直接写出m 的值.【解析】(1)如图1中,设PD =t .则P A =3-t∵P 、B 、E 共线,∴∠BPC =∠DP C ,∵AD ∥BC ,∴∠DPC =∠PCB ,∴∠BPC =∠PCB ,∴BP =BC =3,在Rt △ABP 中,∵AB 2+AP 2=BP 2,∴22+(3-t )2=32,∴t =3 +5(舍去)或3-5∴当t =3 P E B 、、三点在同一直线上.,2, 过点E 作MN ⊥BC ,交AD 于点M∵四边形ABCD 是矩形,MN ⊥BC ,∴MN ⊥AD∵点E 到直线BC 的距离等于1,∴EN =1,∵MN =AB =2, EC =CD =2,∴EN =MN -EN =2-1=1∴在Rt △ENC 中,NC MD = NC∵由题意得:MP =MD -PD -t ,ME =MN -EN =2-1=1,EP =PD =t∴在Rt △MPE 中,222=ME MP PE +,即:)2221=t +,解得:t ,3,如图,当点A ,点E ,点C 在同一条直线上时,AE 最短.由题意得:AE =1,EC =CD =AB =2,∴在Rt △ABC 中,BC∴m =AD =BC 题型3 不过顶点,折痕在内11.如图,将一个边长为4和8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( )A .B .C .D . 【解析】根据折叠的性质知,四边形AFEB 与四边形FDCE 全等,有EC =AF =AE ,由勾股定理得,AB 2+BE 2=AE 2即42+(8﹣AE )2=AE 2,解得,AE =AF =5,BE =3,作EG ,AF 于点G ,则四边形AGEB 是矩形,有AG =3,GF =2,GE =AB =4,由勾股定理得EF =D12.如图,在矩形ABCD 中,9,3,AD cm AB cm ==将其折叠,使点D 与点B 重合, 则重叠部分()BEF ∆的面积为( )2cmA . 15B . 152C . 6D . 5【解析】设DE =x .由翻折的性质可知D E =EB =x ,∠DEF =∠BEF ,则AE =(9﹣x )cm .由勾股定理得;BE 2=EA 2+AB 2,即x 2=(9﹣x )2+32,解得:x =5 ,DE =5cm ,,四边形ABCD 为矩形,,BC ∥AD .,∠BF E =∠DEF .,∠BFE =∠FEB , ,FB =BE =5cm .,,BEF 的面积=12BF •AB =12×3×5=152(cm 2),选B 13.如图,将矩形ABCD 沿EF 折叠,使点C 恰好落在AB 边的中点C '上,点D 落在D '处,C 'D '交AE 于点M .若AB =6,BC =9,求线段ED .【解析】如图,连接C 'E设DE =D'E =x ,∵在矩形ABCD 中,AB =6,BC =9∴CD =AB =6,AD =BC =9,∠A =∠D =90°,,AE =AD -DE =9-x∵折叠,∴∠D'=∠D =90°,C 'D '=CD =6,∵点C '为AB 边的中点∴AC '=12AB =3,在Rt ,AEC'中,C 'E 2=AE 2+AC '2=32+(9-x )2 在Rt △C'D'E 中,C 'E 2=C 'D '2+D 'E 2=62+x 2,∴32+(9-x )2=62+x 2,解得x =3 ∴线段ED 的长为3。

专题04 折叠问题(解析版)

专题04 折叠问题(解析版)

专题04 折叠问题1.(2019•江苏扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________ .2.(2019•山东烟台)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼的度数是________.间无缝隙),AOB3.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.4(2019•江苏连云港)如图,在矩形ABCD中,AD=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;AB;⑤点F是△CMP外接圆的圆心.其中正确的个数为③PC;④BP=2A.2个B.3个C.4个D.5个5.(2019•四川资阳)如图,在△ABC中,已知AC=3,BC=4,点D为边AB的中点,连结CD,过点A作AE⊥CD于点E,将△ACE沿直线AC翻折到△ACE′的位置.若CE′∥AB,则CE′=______.6.(2019南通)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE= 4.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()3A. B.C. D.7.(2019•山东潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.8.(2019•海南)如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A .12B .15C .18D .219.(2019•四川攀枝花)如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8CE =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G .连接AG ,现在有如下四个结论:①45EAG ∠=︒;②FG FC =;③FC ∥AG ;④14GFC S ∆=; 其中结论正确的个数是( )A. 1B. 2C. 3D. 410.(2018•成都)如图,在菱形ABCD 中,tanA=,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,的值为 .11.(2018•河南模拟)如图,矩形ABCD 中,AB=8,BC=15,点E 是AD 边上一点,连接BE ,把△ABE 沿BE 折叠,使点A 落在点A′处,点F 是CD 边上一点,连接EF ,把△DEF 沿EF 折叠,使点D 落在直线EA′上的点D′处,当点D′落在BC 边上时,AE 的长为 .12.(2019山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD沿对角线AC所在直线折叠,展开铺平.在沿过点C的直线折叠,使点B,点D都落在对角线AC上.此时,点B与点D重合,记为点N,且点E,点N,点F三点在同一直线上,折痕分别为CE,CF.如图2.第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC的度数是,AEBE的值是;(2)在图5中,请判断四边形EMGF的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形:.专题04 折叠问题1.(2019•江苏扬州)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________ .【答案】128°【解析】延长DC到F,∵矩形纸条折叠,∴∠ACB=∠∠BCF,∵AB∥CD,∴∠ABC=∠BCF=26°,∴∠ACF=52°,∵∠ACF+∠ACD=180°,∴∠ACD=128°.【点睛】矩形的性质,折叠问题,等腰三角形,平行线,平角2.(2019•山东烟台)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼∠的度数是________.间无缝隙),AOB【答案】45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【解析】在折叠过程中角一直是轴对称的折叠,22.5245∠=⨯=,故答案为:45°AOB︒︒【点睛】考核知识点:轴对称.理解折叠的本质是关键.3.(2019•山东青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为cm.【答案】6﹣【解析】设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.4(2019•江苏连云港)如图,在矩形ABCD中,AD=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC =2;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为 A .2个B .3个C .4个D .5个【答案】B【解析】由折叠可知∠MEG=∠A=90°,∠MEC=∠D=90°,故G,M,C 在同一直线上,故②错;由折叠可知∠AMP=∠PME ,∠CME=∠DMC,,且∠AMP+∠PME+∠CME+∠DMC=180°,所以∠PMC=∠PME+∠CME=180°÷2=90°,故①正确;③正确,④错;因为△MPC 为直角,所以PC 是直径,故⑤正确.故选B.【点睛】本题主要考查了折叠的性质,熟练掌握与圆相关的知识求解是解题的关键.5.(2019•四川资阳)如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB 的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE 沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=______.【答案】95【解析】如图,作CH ⊥AB 于H .由翻折可知:∠AE′C=∠AEC=90°,∠ACE=∠ACE′,∵CE′∥AB ,∴∠ACE′=∠CAD ,∴∠ACD=∠CAD ,∴DC=DA , ∵AD=DB ,∴DC=DA=DB ,∴∠ACB=90°,∴AB==5, ∵•AB•CH=•AC•BC ,∴CH=,∴AH==,∵CE ∥AB ,∴∠E′CH+∠AHC=180°,∵∠AHC=90°,∴∠E′CH=90°,∴四边形AHCE′是矩形, ∴CE′=AH=,故答案为.【点睛】本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.6.(2019南通)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠BCE=43.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A. B.C. D.【答案】D【分析】设AB =x ,根据折叠,可证明∠AFB=90°,由tan ∠BCE=43,分别表示EB 、BC 、CE ,进而证明△AFB ∽△EBC ,根据相似三角形面积之比等于相似比平方,表示△ABF 的面积. 【解析】设AB =x ,则AE =EB =12x ,由折叠,FE =EB =12x ,则∠AFB =90°,由tan ∠BCE =43,∴BC =23x ,EC =56x ,∵F 、B 关于EC 对称,∴∠FBA =∠BCE ,∴△AFB ∽△EBC ,∴2()EBCy AB S EC =,∴y =221366×62525x x =,故选D. 【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF 和△EBC 的面积比是解题关键.7.(2019•山东潍坊)如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ′,折痕为DE .若将∠B 沿EA ′向内翻折,点B 恰好落在DE 上,记为B ′,则AB = .【答案】【解析】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.【点睛】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED =∠A'EB=60°.8.(2019•海南)如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A .12B .15C .18D .21【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6, 由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C .【点睛】本题考查了平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题时注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 9.(2019•四川攀枝花)如图,在正方形ABCD 中,E 是BC 边上的一点,4BE =,8CE =,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G .连接AG ,现在有如下四个结论:①45EAG ∠=︒;②FG FC =;③FC ∥AG ;④14GFC S ∆=; 其中结论正确的个数是( )A. 1B. 2C. 3D. 4【答案】B【解析】如图,连接DF .∵四边形ABC 都是正方形,∴AB =AD =BC =CD ,∠ABE =∠BAD =∠ADG =∠ECG =90°,由翻折可知:AB =AF ,∠ABE =∠AFE =∠AFG =90°,BE =EF =4,∠BAE =∠EAF , ∵∠AFG =∠ADG =90°,AG =AG ,AD =AF ,∴Rt △AGD ≌Rt △AGF (HL ), ∴DG =FG ,∠GAF =∠GAD ,设GD =GF =x , ∴∠EAG =∠EAF +∠GAF =12(∠BAF +∠DAF )=45°,故①正确, 在Rt △ECG 中,∵EG 2=EC 2+CG 2,∴(4+x )2=82+(12−x )2,∴x =6, ∵CD =BC =BE +EC =12,∴DG =CG =6,∴FG =GC , 易知△GFC 不是等边三角形,显然FG≠FC ,故②错误, ∵GF =GD =GC ,∴∠DFC =90°,∴CF ⊥DF ,∵AD =AF ,GD =GF ,∴AG ⊥DF ,∴CF ∥AG ,故③正确,∵S△ECG=12×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=35×24=725,故④错误,故选B.【点睛】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.10.(2018•成都)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN 翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.【答案】【解析】解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.【点睛】此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.11.(2018•河南模拟)如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE 沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.【答案】或【解析】∵把△ABE沿BE折叠,使点A落在点A′处,∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°,∵把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,设AE=A′E=x,则DE=ED′=15﹣x,∵AD∥BC,∴∠1=∠EBC,∵∠1=∠2,∴∠2=∠EBD′,∴BD′=ED′=15﹣x,∴A′D′=15﹣2x,在Rt△BA′D′中,∵BD′2=BA′2+A′D′2,∴82+(15﹣2x)2=(15﹣x)2,解得x=,∴AE=或.【点睛】本题考查了轴对称图形性质解题时注意折叠是一种对称变换,根据BD′2=BA′2+A′D′2,列出方程即可解决问题.12.(2019山西)综合与实践动手操作:第一步:如图1,正方形纸片ABCD 沿对角线AC 所在直线折叠,展开铺平.在沿过点C 的直线折叠,使点B ,点D 都落在对角线AC 上.此时,点B 与点D 重合,记为点N ,且点E ,点N ,点F 三点在同一直线上,折痕分别为CE ,CF.如图2.第二步:再沿AC 所在的直线折叠,△ACE 与△ACF 重合,得到图3第三步:在图3的基础上继续折叠,使点C 与点F 重合,如图4,展开铺平,连接EF ,FG ,GM ,ME ,如图5,图中的虚线为折痕.问题解决:(1)在图5中,∠BEC 的度数是 ,AE BE的值是 ; (2)在图5中,请判断四边形EMGF 的形状,并说明理由;(3)在不增加字母的条件下,请你以图中5中的字母表示的点为顶点,动手画出一个菱形(正方形除外),并写出这个菱形: .【答案】(1)67.5°;;(2)四边形EMGF 是矩形,理由见解析;(3)菱形FGCH 或菱形EMCH(一个即可).【解析】(1)∵四边形ABCD 是正方形,∴∠B=90°,∠ACB=12∠BCD=45°,∠BAC=12∠BAD=45°, ∵折叠,∴∠BCE=12∠BCE=22.5°,BE=EN ,∠ENC=∠B=90°, ∴∠BEC=90°-22.5°=67.5°,∠ANE=90°,Rt △AEN 中,sin ∠EAN=EN AE ,∴2EN AE =,∴EN ,∴AE AE BE EN==67.5°; (2)四边形EMGF 是矩形,理由如下:∵四边形ABCD 正方形,∴∠B=∠BCD=∠D=90°,由折叠可知:∠1=∠2=∠3=∠4=22.5°,CM=CG ,∠BEC=∠NEC=∠NFC=∠DFC=67.5°,由折叠可知:MH、GH分别垂直平分EC,FC,∴MC=ME,GC=GF,∴∠5=∠1=22.5°,∠6=∠4=22.5°,∴∠MEF=∠GFE=90°,∵∠MCG=90°,CM=CG,∴∠CMG=45°,又∵∠BME=∠1+∠5=45°,∴∠EMG=180°-∠CMG-∠BME=90°,∴四边形EMGF是矩形;(3) 如图所示,四边形EMCH是菱形,理由如下:由(2)∠BME=45°=∠BCA,∴EM//AC,∵折叠,∴CM=CH,EM=CM,∴EM=CH,∴EM//CH,∴四边形EMCH是平行四边形,又CM=EM,∴平行四边形EMCH是菱形.(同理四边形FGCH是菱形,如图所示).【点睛】本题考查了折叠的性质,正方形的性质,矩形的判定,菱形的判定,解直角三角形等,正确把握相关知识是解题的关键.。

勾股定理中的折叠问题(分类整理版)

勾股定理中的折叠问题(分类整理版)

勾股定理中的折叠问题
1、如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,求
线段BN的长.
2、在一张直角三角形纸片中,两条直角边BC等于6,AC等于8,将三角形ABC按如图所示的方式折叠,使点A 和点B重合,折痕为DE,求CD的长
3、如图所示,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)
的面积.
变式:如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使AC恰好落在
斜边AB上,且点C与点E重合,求CD的长。

4、如图所示,折叠长方形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10CM,求DE的长
5、在长方形ABCD中,AB=6,BC=8,将长方形ABCD沿CE折叠后,点D恰好在对角线AC上的点F处、求EF的长。

6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,将矩形纸片沿AE折叠,点B恰好落
在CD边上的点G处,求BE的长.
7、如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.。

折叠问题专题练

折叠问题专题练

A B C D M N PQ 折叠问题1.将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为_____ 2.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于______3、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=( )A .110° B.115° C.120° D.130°4、如图,梯形ABCD 中,AD∥BC,DC⊥BC,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A´处,若∠A´BC=20°,则∠A´BD 的度数为( ) A .15° B.20° C.25° D.30°5、如图,将纸片△ABC 沿DE 折叠,点A 落在点A′处,已知∠1+∠2=100°,则∠A 的大小等于____________度.6 、点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________.7.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度.1 A EDCBF8. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于_____________。

9.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C’,D’处,C’E交AF于点G.若∠CEF=70°,则∠GFD’=_____。

10、将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为_________。

《勾股定理》典型例题折叠问题

《勾股定理》典型例题折叠问题

《勾股定理》典型例题折叠问题1、如图,有一张直角三角形纸片,两直角边AC=4 BC=8将△ABCW叠,使点B与点A重合, 折痕为DE则CD等于()A. 25B. 22C. 7D. 54 3 4 32、如图所示,已知△ ABC中,/C=90° , AB的垂直平分线交BC?于M交AB于N,若AC=4MB=2MC求AB的长.3、折叠矩形ABCD勺一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM CF和EC4、如图,在长方形ABCLfr, DC=5在DC边上存在一点E,沿直线AE把△ABCff叠,使点D 恰好在BC边上,设此点为F,若4ABF的面积为30,求折叠的^ AED勺面积5、如图,矩形纸片ABCD勺长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE 的长是多少?6、如图,在长方形ABCDK 将ABCS AC对折至AEC位置, CE与AD交于点F。

(1)试说明:AF=FC (2)如果AB=3, BC=4求AF的长7、如图2所示,将长方形ABCDS直线AE折叠,顶点D正好落在BC边上F点处,已知CE=3cm AB=8cm则图中阴影部分面积为8、如图2-3,把矩形ABCDS直线BD向上折叠,使点C落在C'的位置上,已知AB=?3, BC=7重合部分△ EBD勺面积为.9、如图5,将正方形ABCDT 叠,使顶点A 与CD4上白t 点M 重合,折痕交AD 于E,交BC 于 F,边AB 折叠后与BC 边交于点 G 如果M 为CD 边的中点,求证:DE DM EM=3 4: 5。

2-5,长方形ABCDfr, AB=3, BC=4若将该矩形折叠,使C 点与A 点重合,?则折2-51-3-11 ,有一块塑料矩形模板ABCD 长为10cm,宽为4cm,将你手中足够大的直角三角板PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点 B 与点C?若能,请你求出这时AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点 P 在AD 上移动,直角边PH 始终通过点B,另一 直角边PF 与DC 的延长线交于点Q,与BC 交于点E,能否使CE=2cm 若能,请你求出这时AP 的长;若不能,请你说明理由.10、如图 叠后痕迹 EF 的长为()11、如图 C12、如图所示,△ ABC是等腰直角三角形,AB=AC D是斜边BC的中点,E、F分别是AB AC边上的点,且DEL DF,若BE=12 CF=5.求线段EF的长13、如图,公路MNF口公路PQ&点P处交汇,且/QPN= 30°,点A处有一所中学,AP= 160ml 假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN±?吉PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h, 那么学校受影响的时间为多少秒?《勾股定理》典型复习题一、知识要点:1、勾股定理2、勾股定理的逆定理3、勾股数满足a2+ b2= c2的三个正整数,称为勾股数。

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EFAF =FHEF ,即EF 2=FH ·AF ,又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ;(3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF ,解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∵∠DCE =∠ADF =90°,∴Rt △DCE ∽Rt △ADF ,∴EC DF =DE AF ,即EC 25=810,∴EC =855,∴BE =BC -EC =1255.02如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F ,若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .证明:(1)在矩形ABCD 中,AB =CD ,∠A =∠C =90°, ∵△BED 是△BCD 对折得到的,∴ED =CD ,∠E =∠C ,∴ED =AB ,∠E =∠A ,(2分)又∵∠AFB =∠EFD ,∴△ABF ≌△EDF (AAS),∴AF =EF ;(4分)(2)在Rt △BCD 中,∵DC =DE =4,BD =8,∴sin ∠CBD =DC BD =12, ∴∠CBD =30°,(5分)∴∠EBD =∠CBD =30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F 重合(E、F两点均在BD上),折痕分别为BH、DG。

初中数学中的折叠问题

初中数学中的折叠问题

初中数学中的折叠问题一、矩形中的折叠折叠后BG 和BH 在再过点A ′折叠使边与对角线BD 重形中根据勾股定合,然后再沿着则∠DFB 等于的位置,已知重合部分是以折痕为底边的等腰三角形理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为折叠前后对应边相等9.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B落在边AD 的中点G 处,求四边形BCFE 的面积注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等 10.如图,将一个边长为1的正方形纸片ABCD 折叠,使点B 落在边AD 上 不与A 、D 重合.MN 为折痕,折叠后B ’C ’与DN 交于P .(1)连接BB ’,那么BB ’与MN 的长度相等吗?为什么?(2)设BM =y ,AB ’=x ,求y 与x 的函数关系式;(3)猜想当B 点落在什么位置上时,折叠起来的梯形MNC ’B ’面积最小?并验证你的猜想. 二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )C题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ 14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是()16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长三、三角形中的折叠实践与运用:(1)将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D’处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中∠α的大小.由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。

七年级折叠问题例题

七年级折叠问题例题

七年级折叠问题例题一、折叠问题例题1。

1. 题目。

- 将一张长方形纸条ABCD沿EF折叠后,点D、C分别落在D'、C'的位置上,ED'与BC的交点为G,若∠EFG = 55°,求∠1和∠2的度数。

2. 解析。

- 因为AD∥BC,所以∠DEF = ∠EFG = 55°(两直线平行,内错角相等)。

- 由折叠可知,∠DEF = ∠D'EF,所以∠D'EF = 55°。

- 那么∠1 = 180° - ∠D'EF - ∠DEF = 180° - 55° - 55° = 70°。

- 又因为AD∥BC,所以∠1+∠2 = 180°(两直线平行,同旁内角互补),所以∠2 = 180° - ∠1 = 180° - 70° = 110°。

二、折叠问题例题2。

1. 题目。

- 如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′处,BC′交AD 于E,已知AB = 3,BC = 4,求AE的长。

2. 解析。

- 因为四边形ABCD是矩形,所以AD = BC = 4,AB = CD = 3,∠A = ∠C = 90°。

- 由折叠可知,∠C′BD=∠CBD。

- 因为AD∥BC,所以∠ADB = ∠CBD,所以∠C′BD = ∠ADB,所以BE = DE。

- 在Rt△ABE中,根据勾股定理AB^2+AE^2=BE^2,即3^2+x^2=(4 - x)^2。

- 展开得9+x^2=16 - 8x+x^2,移项可得8x = 16 - 9 = 7,解得x=(7)/(8),所以AE的长为(7)/(8)。

三、折叠问题例题3。

1. 题目。

- 有一张直角三角形纸片,两直角边AC = 6cm,BC = 8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长。

折叠专题(经典)

折叠专题(经典)

折叠专题(轴对称变换)折叠问题是近几年中考常考题型,但学生往往对折叠的本质理解不透,造成失分严重。

折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题。

考查的着眼点日趋灵活,能力立意的意图日渐明显。

这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.一、折叠本质折叠问题实际就是轴对称变换。

折叠重合部分一定全等,折叠前后对应边和对应角相等。

折痕所在直线就是这两个全等形的对称轴。

二、方法点拨1、考查问题:求折点位置、求线段长度、求重叠面积、求角度。

2、注意有一个等腰三角形。

通常设X,用方程解题。

3、出题位置:选择题、填空压轴题、或22、23题(22题可能性大些)。

4、折叠对象主是三角形和四边形①三角形折叠模型:②四边形折叠模型:三、典例解析【例题1】(2018广西贵港)如图将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD 交于点M,若∠B′MD=50°,则∠BEF的度数为.提示:连接ME可解或设∠EFC=X度,则x+(x-50)=180可解(2018 广西桂林)如图,在正方形ABCD 中,AB=3,点 M 在 CD 的边上,且DM=1,△AEM 与△ADM 关【例题2】于A M 所在的直线对称,将△ADM 按顺时针方向绕点A旋转90°得到△ABF,连接E F,则线段EF 的长为()(提示:EF=BM)A.2B.C.D.【例3】如图,在矩形纸片A BCD 中,AB=4,AD=12,将矩形纸片折叠,使点C落(考点:勾股定理)在A D 边上的点M处,折痕为P E,此时P D=3.(1)求M P 的值;(2)在A B 边上有一个动点F,且不与点A,B 重合.当A F 等于多少时,△MEF的周长最小?(考点:折叠性质将军饮马)总结解题步骤:1、将已知条件标在图上;2、设未知数,将未知数标在图上;3、列方程,多数情况可通过勾股定理解决。

折叠问题练习题(含答案)

折叠问题练习题(含答案)

专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片 ABC 使点 C 与点 A 重合,然后展开铺平,得到折痕 DE ;第二步:将△ABC 沿折痕 DE 展开,然后将△DEC 绕点 D 逆时针方向旋转得到△DFG ,点 E ,C 的对应点分别是点 F ,G ,射线 GF 与边 AC 交于点 M(点 M 不与点 A 重合),与边 AB 交于点 N ,线段 DG 与边 AC 交于点 P.数学思考:(1)求 DC 的长;(2)在△DEC 绕点 D 旋转的过程中,试判断 MF 与 ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点 D 旋转的过程中,探究 下列问题:① 如图 2,当 GF ∥BC 时,求 AM 的长;② 如图 3,当 GF 经过点 B 时,AM 的长为③ 当△DEC 绕点 D 旋转至 DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线 GF ,并直接写出 AM 的长(要求:尺规作图 ,不写作法,保留 作图痕迹,标记出所有相应的字母)2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论;②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF 的值.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.4.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=√2AD,那么请直接写出点D'到直线BC的距离.专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(3)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(4)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明见解答.【分析】(1)由折叠可得AB=AB′,BE=B'E,再根据四边形ABCD是正方形,易证B'E=B'F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B'E,∵四边形ABCD是正方形,∴AB=DC=DF,∠CB'E=45°,∴B'E=B'F,∴AF=AB'+B'F,即DF+BE=AF;(5)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B'AE,∴∠B'AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∴∠BAM=∠FAD,AF=AM ∵ΔABE≌AB'E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAE,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合,然后展开铺平,得到折痕DE;第二步:将△ABC 沿折痕DE 展开,然后将△DEC 绕点D 逆时针方向旋转得到△DFG,点E,C 的对应点分别是点F,G,射线GF 与边AC 交于点M(点M 不与点A 重合),与边AB交于点N,线段DG 与边AC 交于点P.数学思考:(1)求DC 的长;(2)在△DEC 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点D 旋转的过程中,探究下列问题:①如图2,当GF∥BC 时,求AM 的长;②如图3,当GF 经过点B 时,AM 的长为③当△DEC 绕点D 旋转至DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线GF,并直接写出AM 的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)【答案】(1) DC=5;(2)相等,理由见解析;(3)①AM=3;②AM=74;③AM=10 3√5【分析】(1)理由勾股定理求出BC即可解决问题.(2)结论:MF=ME.证明Rt△DMF≌Rt△DME(HL),即可解决问题.(3)①如图2中,作AH⊥BC于H,交FG于K.由KM∥CH,推出AK AH =AMAC,求出AK,AH即可解决问题.②证明BM=MC,设BM=MC=x,在Rt△ABM中,根据BM2=AB2+AM2,构建方程即可解决问题.③尺规作图如图4-1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4-1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.【解答】解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC=√AB2+BC2=√62+82=10,∴CD=12BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH=AB⋅ACBC =245,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH-KH=95,∵KM∥CH,∴AKAH =AMAC,∴95245=AM8,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C ,∴∠MBC=∠C ,∴BM=MC ,设BM=MC=x ,在Rt △ABM 中,∵BM 2=AB 2+AM 2,∴62+(8-x )2=x 2,∴x=254∴AM=AC-CM=8-254=74.故答案为74.③尺规作图如图4-1所示.作DR 平分∠CDF ,在DR 上截取DG=DC ,分别以D ,G 为圆心,DE ,CE 为半径画弧,两弧交于点F ,△DFG 即为所求.如图4-1中,连接DM ,设DG 交AC 于T ,作TH ⊥CD 于H ,作DK 平分∠CDG 交TH 于K ,作KJ ⊥DG 于J .易证△DEM ≌△DHK (AAS ),推出EM=HK ,只要求出HK 即可.∵TE ⊥DE ,TH ⊥DC ,DG 平分∠CDE ,∴TE=TH ,设TE=TH=x ,在Rt △TCH 中,x 2+22=(4-x )2,∴x=32, ∴DT =√32+(32)2=32√5, ∵DK 平分∠CDT ,KJ ⊥DT ,KH ⊥CD ,∴KJ=KH ,设KJ=KH=y ,在Rt △KTJ 中,y 2+(32√5−3)2=(32−y)2∴y =3√5−6,∴EM=3√5−6∴AM =AE −EM =4−(3√5−6)=10−3√5.2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.【答案】(1)52;(2)①四边形AE M F 为菱形;②4√109;(3)32. 【分析】试题分析:(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(6)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;【解答】(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴,∴,∴4y2+2xy﹣x2=0,∴,∴(负根已经舍弃),∴.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD ∽△ACB ,∴∠DAE=∠ABC=∠DA′C , ∴∠DA′C+∠A′CB=180°,∴A′D ∥BC , ∴△PA′D ∽△PBC ,∴,∴,即∴PC=1.4.Rt △ABC 中,∠ACB =90°,AC =3,BC =7,点P 是边AC 上不与点A 、C 重合的一点,作PD ∥BC 交AB 边于点D .(1)如图1,将△APD 沿直线AB 翻折,得到△AP 'D ,作AE ∥PD .求证:AE =ED ; (2)将△APD 绕点A 顺时针旋转,得到△AP 'D ',点P 、D 的对应点分别为点P '、D ', ①如图2,当点D '在△ABC 内部时,连接P ′C 和D 'B ,求证:△AP 'C ∽△AD 'B ;②如果AP :PC =5:1,连接DD ',且DD '=√2AD ,那么请直接写出点D '到直线BC 的距离.【答案】(1)见解析;(2)①见解析;②点D '到直线BC 的距离为176或536 【分析】(1)由折叠的性质和平行线的性质可得∠EAD =∠ADP =∠ADP ',即可得AE =DE ;(2)①由题意可证△APD ∽△ACB ,可得APAC =ADAB ,由旋转的性质可得AP =AP ',AD =AD ',∠PAD =∠P 'AD ',即∠P 'AC =∠D 'AB ,,则△AP 'C ∽△AD 'B ;②分点D '在直线BC 的下方和点D '在直线BC 的上方AP′AC =AD′AB两种情况讨论,根据平行线分线段成比例,可求PD =356,通过证明△AMD '≌△DPA ,可得AM =PD =356,即可求点D '到直线BC 的距离.【解答】证明:(1)∵将△APD 沿直线AB 翻折,得到△AP 'D , ∴∠ADP '=∠ADP , ∵AE ∥PD , ∴∠EAD =∠ADP , ∴∠EAD =∠ADP ', ∴AE =DE(2)①∵DP ∥BC ,∴△APD∽△ACB,∴APAC =ADAB,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,AP′AC =AD′AB,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴APAC =PDBC=56,∵BC=7,∴PD=356,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=12D'D,∠ADF=∠AD'F,∵cos∠ADF=DFAD =12D′DAD=√22ADAD√22,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=356,∵CM=AM﹣AC=356﹣3,∴CM =176,∴点D '到直线BC 的距离为176若点D '在直线BC 的上方,如图,过点D '作D 'M ⊥AC ,交CA 的延长线于点M ,同理可证:△AMD '≌△DPA , ∴AM =PD =356,∵CM =AC +AM , ∴CM =3+356=356,∴点D '到直线BC 的距离为356综上所述:点D '到直线BC 的距离为176或536;。

折叠问题 完整版

折叠问题  完整版

(第18题图)MA CBC ' E折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。

轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。

压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。

1、(浙江省绍兴市)如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58° 2、(湖北省荆门市)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( ) A .40° B .30° C .20° D .10° 3、(2009年日照市)将三角形纸片(△ABC )按如所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 . 4、(2009年衢州)在△ABC 中,AB =12,AC =10,BC =9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为 A .9.5 B .10.5 C .11 D .15.55、(泰安)如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tanA 的值为 .6、(上海市)在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 14、(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( ) 第2题图A 'BDAC A 图3BMCEDAABC D E G F (17题)F A .AD BC '= B .EBD EDB ∠=∠ C .ABE CBD △∽△ D .sin AE ABE ED∠=16、(东营)如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 ( ) (A )70°(B )65°(C )50°(D ) 25°17、(淄博市)矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为( )A . 8B .112C . 4D .5218、(四川绵阳)如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE ,则DE :AC =( )A .1:3B .3:8C .8:27D .7:2519、(仙桃)将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( ).A 、3B 、2C 、3D 、3223、(温州)如图,已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA 恰好与⊙0相切于点A ′(△EF A ′与⊙0除切点外无重叠部分),延长F A ′交CD 边于点G ,则A ′G 的长是24、(北京市)如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N = ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ≥,且n 为整数),则A ′N = (用含有n 的式子表示)8、(清远)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .E DCBA A'N M B CADE(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?9、(恩施市)如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .(1)用x 表示ADE △的面积;(2)求出05x <≤时y 与x 的函数关系式; (3)求出510x <<时y 与x 的函数关系式; (4)当x 取何值时,y 的值最大?最大值是多少?10、(天津市)已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .BC NM AEA 'DBCAB CA(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设O B x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.11、(湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当xy BO Axy BO Axy BO Ay O xC N BPM A4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.25、(山西省太原市)问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不A DFM与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n=>=,,则AM BN 的值等于 .(用含m n ,的式子表示)方法指导: 为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2图(2)N A B CD EFM。

初二数学培优专题(5)——折叠问题(答案详解)

初二数学培优专题(5)——折叠问题(答案详解)

折叠问题(一)正方形内的十字架结构结论1:在正方形ABCD中,E、F、G、H分别为AB、CD、BC、AD边上的点,若EF⊥GH,则GH=EF【例1】如图,将边长为4的正方形纸片ABCD折叠,使得点A落在CD的中点E处,折痕为FG,点F 在AD边,求折痕FG的长;【变式2】如图,将边长为的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN.(1)求线段CN的长;(2)求以线段MN为边长的正方形的面积;(3)求线段AM的长度.(二)折痕垂直于对称点的连线结论:折痕上的点到对应点距离相等【例2】如图,在矩形ABCD 中,AB=4,AD=3,将矩形折叠使得点D 与BC 上的点E 重合,折痕分别交AB 、CD 于点G 、F ,若BE=1,求AG 的长.【变式1】如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 对应点为A',且,则AM 的长是______________.【变式2】(2016年山东威海中考题)如图,在矩形ABCD 中,4AB = ,6BC = ,点E 为BC 的中点,将ABE ∆沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A.95 B.125 C.165 D.185(三) 折叠中动点轨迹与最值【例3】(2015四川自贡)如图,在矩形ABCD 中,4AB = ,6AD = ,E 是AB 边的中点,F 是线段BC 上的动点,将EBF ∆沿EF 所在直线折叠得到'EB F ∆,连接'B D ,则'B D 的最小值是( )。

A. 2B. 6C. 2-D.4【变式】(2014成都)如图,在边长为2的菱形ABCD 中,60A ∠=︒ ,M 是AD 边的中点,N 是AB 边上的一动点,将AMN ∆ 沿MN 所在直线翻折得到'A MN ∆,连接'A C ,则'A C 长度的最小值是_____ 。

折叠问题的处理技巧八道例题

折叠问题的处理技巧八道例题

折叠问题解答技巧八道例题例1. 如图,矩形ABCD 中,AB =2,BC =23,以AC 为轴翻折半平面,使二平面角B —AC —D 为120°,求:(1)翻折后,D 到平面ABC 的距离;(2)BD 和AC 所成的角.解析:研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解 分别过B 、D 作AC 的垂线,垂足是E 、F ,过F 作FB ′∥BE ,过B 作BB ′∥AC ,交点B ′,则四边形EFB ′B 是矩形.∵AC ⊥DF ,AC ⊥B ′F ,∴AC ⊥平面B ′FD ,即∠DF ′B 就是二面角B —AC —D 的平面角,亦即∠DFB ′=120°.过D 作DO ⊥B ′F ,垂足为O.∵DO ⊂平面DFB ′,AC ⊥平面DFB ′.∴DO ⊥AF ,DO ⊥平面ABC. 在Rt ΔADC 中,CD =2,AD =23,∴DF =3,OD =DF ·sin60°=23.(2)在ΔDFB ′中,DB ′=︒⋅'⋅⋅-'+120cos 22F B DF F B DF =3.又由(1)可知,AC ∥BB ′,AC ⊥平面DFB ′⊥平面DFB ′.∴BB ′⊥平面DFB ′,∴ΔDB B ′是直角三角形,又BB ′=EF =2.∴tan ∠DBB ′=23.∵AC ∥BB ′,∴AC 与BD 所成的角就是∠DBB ′,即为arctan 23.例2. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22ANAM+=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =︒⋅-+120cos 222AN AM ANAM=21312)3(122⨯⨯⨯++=34+∵34+<10∴min MN =34+.如图,ABCDEF 为正六边形,将此正六边形沿对角线AD 折叠.(1)求证:AD ⊥EC ,且与二面角F —AD —C 的大小无关; (2)FC 与FE 所成的角为30°时,求二面角F —AD —C 的余弦值. 解析:(1)正六边形ABCDEF ,在折叠前有AD ⊥EC ,设AD 与EC 交于M ,折叠后即有AD ⊥ME ,AD ⊥MC.则AD ⊥平面EMC ,无论∠EMC 的大小如何,总有AD ⊥EC.(2)利用余弦定理,有cos ∠EMC =97例3(2005·湖南)如图7-1,已知A B C D 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴1OO 折成直二面角.(Ⅰ)证明:1ACBO ⊥;(Ⅱ)求二面角1O AC O --的大小.ABOCO 1D解法1(I )证明: 由题设知1O A O O ⊥,1OB OO ⊥.所以A O B ∠是所折成的直二面角的平面角,即O A O B⊥. 故可以O 为原点,1,,O A O B O O 所在直线分别为x 轴、y轴、z 轴建立空间直角坐标系,如图7-2,则相关各点的坐标是(3,0,0)A,(0,3,0)B,C ,1(0,O .从而(3,3)AC =-,1(0,BO =-,130AC BO ⋅=-+=.所以1AC BO ⊥.解法2(I )证明: 由题设知1O A O O ⊥,1OB OO ⊥,所以A O B ∠是所折成的直二面角的平面角,即O A O B ⊥. 从而A O ⊥平面1O B C O ,O C 是A C在面1O B C O 内的射影.因为11tan O B O O B OO ∠==,111tan 3O C O O C O O ∠==,所以13O O B π∠=,16O O Cπ∠=,从而1OC BO ⊥,由三垂线定理得1ACBO ⊥.(II )解 由(I )1OCBO ⊥,1AC BO ⊥,知1BO ⊥平面O A C .设1O C O B E = ,过点E作EFAC⊥于F ,连结1O F (如图7-3),则E F是1O F 在平面A O C 内的射影,由三垂线定理得1O F AC⊥.所以1O FE ∠是二面角1O AC O --的平面角.由题设知113,1OA OO O C ===,所以ABC DFE GA'1O A==,AC ==,从而1332111=⋅=ACCO A O F O ,又11sin62O E O O π==,所以111sin 4O E O FE O F∠==, 即二面角1O ACO --的大小是arcsin 4.一、折叠与展开中的垂直问题例4.如图在ΔABC 中, AD ⊥BC , ED=2AE ,过E 作FG ∥BC , 且将ΔAFG 沿FG 折起, 使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解: ∵FG ∥BC ,AD ⊥BC ∴A 'E ⊥FG ∴A 'E ⊥BC 设A 'E=a ,则ED=2a 由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a 2 ∴ED 2=A 'D 2+A 'E 2 ∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例5如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.EDBAE D CB A解析:过D作DF⊥AB交AB于F,连结EF,计算DF、EF的长,又DE为已知,三边长满足勾股定理,∴∠DFE=090;三、折叠与展开中的距离与体积问题例6.如图,矩形ABCD中,AB=2,BC=23,以AC为轴翻折半平面,使二平面角B—AC—D为120°,求:翻折后,D到平面ABC的距离;解析:研究翻折问题,通常要画出翻折前的平面图形和翻折后的空间图形,对应点的字母要相同.解:分别过B、D作AC的垂线,垂足是E、F,过F作FB′∥BE,过B作BB′∥AC,交点B′,则四边形EFB′B是矩形.∵AC⊥DF,AC⊥B′F,∴AC⊥平面B′FD,即∠DF′B就是二面角B—AC—D的平面角,∠DFB′=120°.过D作DO⊥B′F,垂足为O.∵DO 平面DFB′,AC⊥平面DFB′.∴DO⊥AF,DO⊥平面ABC.3. 在RtΔADC中,CD=2,AD=23,∴DF=3,OD=DF·sin60°=2例7. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点, N 为BC 的中点,在棱柱表面上从点M 到点N 的最短距离是多少?解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22ANAM+=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =︒⋅-+120cos 222AN AM ANAM=21312)3(122⨯⨯⨯++=34+∵34+<10∴min MN =34+.二、折叠与展开中的空间角问题例8. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起, 使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BD-—C 的余弦值。

平行线折叠问题大全

平行线折叠问题大全

平行线
【折叠问题】
第一步:还原
第二步:标出所有相等的角
第三步:找内错角(相等)、同位角(相等)和同旁内角(互补)
第四步:计算
1、如图,有一条直的等宽纸带按图折叠时,则图中∠α=.
2、将一条两边沿互相平行的纸带按如图所示折叠,已知∠1=76°,则∠2的度数为度.
3、如图,有一条等宽纸带,按图折叠时,那么图中∠ABC的度数等于()
4、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()
A 500
B 600
C 750
D 850
5、如下图,把矩形ABCD沿EF对折后使两部分重合,若∠1= 50°,则∠AEF
=
A.110°B.115°
C.120°D.130°
6、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于()
(A)70°(B)65°(C)50°(D)25°
7.
8.。

中考数学复习《折叠问题》

中考数学复习《折叠问题》
2 2 2
EF 6 72 ∴S△BEF=EG· S△BEG=10×24= 5
14.如图,已知在矩形 ABCD 中,点 E 在边 BC 上,BE=2CE,将矩形 沿着过点 E 的直线翻折后,点 C,D 分别落在边 BC 下方的点 C′,D′处,且 点 C′,D′,B 在同一条直线上,折痕与边 AD 交于点 F,D′F 与 BE 交于点 G.设 AB=t,那么△EFG 的周长为 2 3t .(用含 t 的代数式表示)
13.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE
折叠到DF,延长EF交AB于点G,连结DG,求△BEF的面积. 【解析】由折叠和正方形的性质,在Rt△BEG中,由勾股定理求出AG后再 求△BGE的面积,最后由△BEF与△BGE的面积关系求△BEF的面积.
解:DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°. 又∵DG=DG,∴△ADG≌△FDG(HL).∵正方形 ABCD 的边长为 12, BE=EC,∴BE=EC=EF=6.设 AG=FG=x,则 EG=x+6, BG=12-x,在 Rt△BEG 中,由勾股定理,得 EG2=BE2+BG2, 1 1 即(x+6) =6 +(12-x) ,解得 x=4.∵S△BEG=2· BE· BG=2×6×8=24,
(1)求证:△DEC≌△EDA;
(2)求DF的值; (3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶
点Q落在线段AE上,顶点M,N落在线段AC上,当线段PE的长为何值时,
矩形PQMN的面积最大?并求出其最大值.
解:(1)由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA, ∠ACD=∠CAE.在△DEC 与△EDA 中, CE=AD, ∵DE=ED, ∴△DEC≌△EDA(SSS) DC=EA,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档