机械零件的强度计算

合集下载

机械设计课件第3章机械零件的强度

机械设计课件第3章机械零件的强度

低,甚至比屈服极限低
不管脆性材料或塑性材料,
▲ 疲劳断口均表现为无明显塑性变形的脆性突然断裂
▲ 疲劳断裂是微观损伤积累到一定程度的结果
▲ 断裂面累积损伤处表面光滑,而折断区表面粗糙
中国地质大学专用
作者: 潘存云教授
三、 —N疲劳曲线
σmax
用参数σmax表征材料的疲 σB A B C
劳极限,通过实验,可得出如
图所示的疲劳曲线。称为:
潘存云教授研制
—N疲劳曲线
在原点处,对应的应力 N=1/4 103 104
N
循环次数为N=1/4,意味着在 σ
加载到最大值时材料被拉断。
潘存云教授研制
显然该值为强度极限σB 。
t
在AB段,应力循环次数
<103 σmax变化很小,可以近似 看作为静应力强度。
BC段,N=103~104,随着N ↑ → σmax ↓ ,疲劳现象明显。
中国地质大学专用
作者: 潘存云教授
当循环应力参数( σm,σa )落在OA’G’C以内 时,表示不会发生疲劳破坏。 σa
当应力点落在OA’G’C以外 时,一定会发生疲劳破坏。
A’
D’ G’
σ-1 σ0 /2
而正好落在A’G’C折线上
潘存云教授研制
时,表示应力状况达到疲 劳破坏的极限值。
45˚
45˚
0
中国地质大学专用
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 几何不连续处的圆角半径 r/mm
作者: 潘存云教授
轴肩圆角处的理论应力集中系数 ασ
r
d
D
应力 公称应力公式
ασ (拉伸、弯曲)或ατ(扭转、剪切)

第三章 机械零件的疲劳强度计算

第三章 机械零件的疲劳强度计算

m

max min
2

200 100 2

50
a

max min
2

200 100 2
150

200
a
50
0
-100
min
max
m
t
机械设计 第三章 机械零件的疲劳强度计算
机械设计
3.2 材料的疲劳特性
3.2.1 材料的疲劳曲线
表示N次循环和疲劳极限间的关系曲线,称为疲劳曲线。
机械设计
曲线的BC段,随着循环次数的增加, 使材料疲劳破坏的最大应力不断下降。 C点相应的循环次数大约为104。把这一 阶段的疲劳现象称为应变疲劳。由于 应力循环次数相对很少,所以也叫低 周疲劳。
机械设计 第三章 机械零件的疲劳强度计算
机械设计
当N≥104时,称为高周循环疲劳。曲
线CD代表有限疲劳阶段。D点对应的 疲劳极限ND称为循环基数,用N0表示。 曲线CD段上任何一点所代表的疲劳极 限,称为有限寿命疲劳极限。
机械设计
1.稳定循环变应力
1) 对称循环变应力
最大应力σmax和最小应力σmin的
绝对值相等而符号相反
即σmax=-σmin
例如,转动的轴上作用一方向 不变的径向力,则轴上各点的弯曲 应力都属于对称循环变应力
机械设计 第三章 机械零件的疲劳强度计算
机械设计
2) 脉动循环变应力 脉动循环变应力中
σmin=0
劳极限。连接A′、D′得
直线A′D′
机械设计 第三章 机械零件的疲劳强度计算
机械设计
取C点的坐标值等于材料的 屈服极限σS,并自C点作一直 线与直线CO成45°的夹角, 交A′D′的延长线于 G′, 则CG′上的任何一

03_疲劳强度计算

03_疲劳强度计算

m
1 N0
n
m i
n
i
i 1
Sca
1 e
S
2. 当量循环次数Ne计算法:
取不稳定循环诸变应力中数值最大的应力或循环次
数最多的应力(对疲劳损伤影响最大的那个应力),
作为计算基准应力,而将诸变应力i所对应的循环次
数ni转化为当量循环次数Ne,使得应力循环Ne次后,
对材料所造成的损伤与诸应力i各自循环ni次对材料所
lim m ax ae m e s
按静应力计算:
M m e, ae M m, a
Sca
lim
m ax max
s m a
S
N
N
H
工作应力分布在: OAGH :疲劳强度计算 HGC :静强度计算
3.变应力的最小应力保持不变,即 min C(如受轴向变载荷的紧螺栓)
4)计算安全系数:Sca
lim
m ax max
S
零件的极限应力
lim m ax m e ae
零件的极限应力点的确定:
按零件的载荷变化规律不同分:
• 变应力的应力比保持不变,即:r = C • 变应力的平均应力保持不变,即:m = C • 变应力的最小应力保持不变,即:min = C
M m e, ae M m, a
1)如果此线与AG线交于M( me ,ae ),则有:
m e m
,
ae
1
m
K
lim m ax ae m e 1
K
K
m
Sca
lim
m ax max
1
K
K m m a
S
2)如果此线与GC线交于N( me ,ae ),则有:

机械设计 第03章 强度

机械设计 第03章  强度

m rN
N
C ( N C
N
ND)
疲劳曲线2
D点以后——无限寿命疲劳阶段
rN r (N N D )
σr∞ 称为持久疲劳
-N疲劳曲线
由于ND很大,所以在作疲劳试验时,常规定一个循环次数 N0(称为循环基数),用N0及其相对应的疲劳极限σr来近似代表ND
和 σr∞ ,于是有:
有限寿命区间内循环次数N与疲劳极限rN的关系为:
D′点: σm = σa = σ0/2,为脉动循环点。
σa A'(0, 1 )
D'(20
,
0
2
)
G
' m
' a
r
2
0
2
45° O
45°
σm
C( S , 0) B
则A′D′G′C即为简化极限应力图。
返回目录
前一页
后一页
退出
3、材料极限应力图的画法
已知: σ-1,σ0, σs;
σa A'(0, 1) D'( 0 , 0 )
即 σa=cσm 同理σa′=cσm ′
C值取决于应力比r
所以,极限应力点为经过坐标原点O点和工作点M的直线上。
σa
A
计算安全系数:
M'( m e , ae )
Sca lim
' max
' ae
' me
max
max
a m
极限应力点M′的坐标值可以用图解
M( m , a )
G 和解析两种方法求解。 解析法:联立AG和OM两条直线的方
M(σm,σa)
2)如果工作点M在AB范围外,则工作点处于不安全工作 区,材料在该应力作用下会发生破坏。

第三章 机械零件的强度

第三章 机械零件的强度

o
每点纵坐标值(应力幅值)
σS
按同一比例缩小(除以一
个大于 1 的系数 K )
A→ A D → D
A( 0 , 1 )
A( o, 1 ) D( 0 , 0 )
K
22
45° C m
D( 0 , 0 )
2 2K
根据A、D 两点的坐标:
A( o, 1 ) D( 0 , 0 )
a
max
max
min
t min
min max a
r=-1 (对称)
3.2.2 材料疲劳的类别 ★依作用在零件上的变应力循环次数的不同,零件材料的疲劳 分为两种。
低周疲劳(应变疲劳) 循环次数低于103次 或104次 ; 高周疲劳 循环次数高于 104次 。
R N 1 F N0
t

R

(t)dt
e 0
★浴盆曲线 —描述机械产品典型的失效率λ(t)与时间 t 的关系的曲线。
dN
(t )
(t) dt
N



第Ⅰ阶段:早期失效阶段;
第Ⅱ阶段:正常使用阶段;
第Ⅲ阶段:损坏阶段。
0
t
图1.1 失效率曲线
3.2 机械零件的强度计算
静载荷 不随时间变化或变化缓慢的载荷 变载荷 随时间变化的载荷
名义载荷—根据额定功率用力学公式计算出的
按照计算要求分
载荷。
计算载荷—考虑各种因素综合影响计算的载荷。
2.应力分类
静应力— 不随时间变化或变化缓慢的应力称为静应力;
变应力—随时间变化的应力称为变应力。



F

机械零件的强度

机械零件的强度

机械零件的强度引言机械零件是由材料制成的组成机械装置的部件。

为了保证机械装置的可靠性和安全性,机械零件的强度是一个非常重要的指标。

本文将介绍机械零件的强度及其相关知识。

机械零件的强度概述机械零件的强度是指零件能够承受的最大外力或最大应力。

在设计和制造机械零件时,需要考虑零件将承受的作用力和应力,以确保零件的强度能够满足设计要求。

强度与材料的关系机械零件的强度与所选用的材料有密切关系。

不同的材料具有不同的强度特性,如延性、硬度和可塑性等。

在选择材料时,需要考虑零件的工作环境、载荷和特殊要求,以确定适用的材料。

强度计算计算机械零件的强度是设计过程中的重要一环。

通常,强度计算可以采用材料的力学性质和几何尺寸进行分析。

以下是一些常用的强度计算方法:应力计算在机械零件的设计过程中,常常需要计算零件内的应力分布。

应力是作用在材料上的力与材料截面积的比值,可以用公式σ=F/A计算。

失效判据机械零件的强度设计还需要考虑零件的失效情况。

常见的失效模式有弯曲、疲劳和断裂等。

为了避免失效,需要采用适当的失效判据来进行强度设计。

安全系数在进行强度计算时,通常还应考虑安全系数。

安全系数是指实际工作载荷与零件所能承受的最大载荷的比值。

合理的安全系数能够确保零件在工作过程中不会超过其强度极限。

强度测试为了验证机械零件的强度设计是否合理,常常需要进行强度测试。

强度测试可以通过实验室测试、数值模拟和现场监测等方法进行。

测试结果可以用于评估零件的强度性能和寿命预测。

强度改进和优化在机械设计中,强度改进和优化是一个不断进行的过程。

通过不断改进材料的选择、结构设计和加工工艺等方面,可以提高机械零件的强度性能,延长零件的使用寿命。

结论机械零件的强度是确保机械装置可靠运行的关键因素之一。

了解机械零件的强度特性、强度计算、强度测试和强度改进等知识,对于机械设计工程师和制造工程师来说,都是非常重要的。

只有通过合理的强度设计和优化,才能保证机械零件在工作过程中不会出现失效和故障,从而保证机械装置的正常运行和使用寿命。

机械设计中的强度计算方法

机械设计中的强度计算方法

机械设计中的强度计算方法机械设计是一门综合性很强的学科,强度计算是其中的重要内容之一。

在机械设计中,强度计算的目的是确保设计的零件能够承受各种静态和动态载荷,并保持其结构完整。

本文将介绍机械设计中常用的强度计算方法。

一、静态强度计算方法静态强度计算是指对设计零件在静态载荷下的强度进行评估和计算。

常用的静态强度计算方法包括材料的强度学理论、挤压、拉伸和剪切等。

1. 材料的强度学理论材料的强度学理论是静态强度计算的基础。

常用的理论有最大应力理论、最大应变理论和能量方法等。

最大应力理论认为当材料受力时,其应力不能超过材料的屈服极限;最大应变理论认为当材料的应变超过其屈服点时,材料将发生破坏;能量方法根据材料在受力时的应力和应变关系来计算强度。

2. 挤压、拉伸和剪切挤压、拉伸和剪切是常见的静态强度计算方法。

挤压计算主要用于轴上的零件,其计算原则是在轴上施加的载荷与零件的强度进行匹配;拉伸计算主要用于拉杆、螺栓等零件,其计算原则是在零件上施加的拉力与零件的抗拉强度进行匹配;剪切计算主要用于薄板、焊缝等零件,其计算原则是在零件上施加的剪力与零件的剪切强度进行匹配。

动态强度计算是指对设计零件在动态载荷下的强度进行评估和计算。

常用的动态强度计算方法包括疲劳寿命计算、冲击载荷计算和振动计算等。

1. 疲劳寿命计算疲劳寿命计算用于评估设计零件在长期循环加载下的寿命。

常用的疲劳寿命计算方法有Wöhler曲线法和应力寿命法。

Wöhler曲线法建立了材料的应力与寿命关系曲线,通过对应力幅与平均应力的比值进行计算;应力寿命法通过疲劳试验获取材料的应力寿命曲线,并根据实际应力进行计算。

2. 冲击载荷计算冲击载荷计算用于评估设计零件在瞬态载荷下的强度。

常用的冲击载荷计算方法有冲击动力学分析法和能量法。

冲击动力学分析法通过分析冲击过程中的应力、应变和位移等参数,以及材料的冲击性能来计算强度;能量法基于能量守恒定律,将冲击能量与零件吸收能量进行比较。

机械零件的强度计算

机械零件的强度计算

第三章 机械零件的强度计算第0节 强度计算中的基本定义 一. 载荷1. 按载荷性质分类:1) 静载荷:大小方向不随时间变化或变化缓慢的载荷。

2) 变载荷:大小和(或)方向随时间变化的载荷。

2. 按使用情况分:1)公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。

2) 计算载荷:设计零件时所用到的载荷。

计算载荷与公称载荷的关系:F ca =kF n M ca =kM n T ca =kT n3) 载荷系数:设计计算时,将额定载荷放大的系数。

由原动机、工作机等条件确定。

二. 应力2.按强度计算使用分1) 工作应力:由计算载荷按力学公式求得的应力。

2) 计算应力:由强度理论求得的应力。

3) 极限应力:根据强度准则、材料性质和应力种类所选择的机械性能极限值σlim 。

4) 许用应力:等效应力允许达到的最大值。

[σ]=σlim /[s σ]稳定变应力 非稳定变应力对称循环变应力脉动应力 规律性非稳定变应力随机性非稳定变应力 静应力 对称循环变应力 脉动应力σ周期变应力第1节 材料的疲劳特性一. 疲劳曲线 1. 疲劳曲线给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。

2. 疲劳曲线方程1) 方程中参数说明a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107b) 指数m :c) 不同γ,σ-N 不同;γ越大,σ也越大。

…二、 限应力线图1) 定义:同一材料,对于不同的循环特征进行试验,求得疲劳极限,并将其绘在σm -σa坐标系上,所得的曲线称为极限应力线图。

CN N m m N ==0γγσσr N N k mNN σσσγγ==0mNN k N 0=整理:即:其中:N 0--循环基数σγ--N 0时的疲劳极限k N --寿命系数用线性坐标表示的疲劳曲线ND2)简化曲线3)σ-N与σm-σa关系a) σ-N曲线:同一循环特征下、不同循环次数。

机械零件的强度计算

机械零件的强度计算
2 齿轮的强度计算
考虑弯曲应力和接触应力,确定齿轮的耐久性和承载能力。
3 螺纹的强度计算
考虑剪切应力和压紧应力,确定螺纹的稳定性和耐用性。
应力与应变的关系
应力
力对物体单位面积的作用,单 位为帕斯卡(Pa)。
应变
物体在受力下发生的形变,通 常以位移或拉伸比来表示。
弹性模量
反映物体在受力后恢复原状的 能力。
材料的物体抵抗拉伸试验中的最大拉力。 物体开始产生塑性变形的应力。
抗压强度
物体抵抗压缩试验中的最大压力。
设计中的安全系数
1
安全系数
将实际工作应力与材料抗拉强度之比,用于确保设计的安全性。
2
合理选择
根据使用环境、可靠性要求和破坏后果等因素确定合适的安全系数。
3
风险评估
评估潜在风险,确保安全系数能够保护机械零件免受破坏。
机械零件的强度计算
这个演示将介绍机械零件的强度计算。从定义和常见方法到应力应变关系、 材料强度参数以及设计中的安全系数等方面进行讨论。
强度计算的定义
强度计算是指通过确定材料能够承受的最大应力,评估机械零件在使用时能否安全工作的方法。
常见机械零件的强度计算方法
1 轴的强度计算
考虑弯曲应力和剪切应力,确定轴的最大承载能力。
弹性和塑性变形
机械零件在受力时可能发生两种类型的变形:弹性变形和塑性变形。弹性变形是可恢复的,而塑性变形是不可 恢复的。
强度计算的应用范围和局限性
应用范围
适用于设计和评估各种机械零件的强度。
局限性
无法考虑复杂的应力状态和材料的疲劳寿命。

机械零件的强度计算

机械零件的强度计算
2-4 机械零件的强度计算
一、机械零件的强度
强度:零件承受载荷后抵抗发生断裂或发生 超过容许限度的残余变形的能力。
脆性材料 塑性材料
塑性变形 弹性变形
强度就是零件自身抵抗失效的能力, 应该是零件首先满足的要求。
1
二、载荷和应力的分类 1、载荷的分类 静载荷:不随时间变化或变化极缓慢的载荷 变载荷: 循环变载荷 随机变载荷 2、应力的分类 静应力 变应力:循环变应力
极限应力:强度极限 B
强度条件:
ca

[
]

B
s
ca
[ ]

B
s
7
四、机械零件的变应力强度计算
在变应力作用下,脆性与塑性材料的 失效形式统一表现为疲劳断裂。
极限应力:疲劳极限

r

0 1
ቤተ መጻሕፍቲ ባይዱ
ca 2 4 2 [ ] r /[s] ca 2 3 2 [ ] r /[s]
名义应力——由名义载荷产生的应力 ( )
计算应力——由计算载荷产生的应力 ca ( ca )
5
三、机械零件的静应力强度计算
统一公式:
ca
lim
s
塑性材料
失效形式:发生超出容许限度的残余变形
极限应力:屈服极限 s
强度条件:
6
脆性材料与低塑性材料
失效形式:断裂
8
2
注意:静应力只能由静载荷产生,而变应力可能 由变载荷产生,也可能由静载荷产生
a
O t
a O
t
3
稳定循环变应力的基本参数和种类
基本参数

最大应力 max m a

机械零件的强度计算.

机械零件的强度计算.

第三章 机械零件的强度计算第0节 强度计算中的基本定义 一. 载荷1. 按载荷性质分类:1) 静载荷:大小方向不随时间变化或变化缓慢的载荷。

2) 变载荷:大小和(或)方向随时间变化的载荷。

2. 按使用情况分:1)公称载荷(名义载荷): 按原动机或工作机的额定功率计算出的载荷。

2) 计算载荷:设计零件时所用到的载荷。

计算载荷与公称载荷的关系:F ca =kF n M ca =kM n T ca =kT n3) 载荷系数:设计计算时,将额定载荷放大的系数。

由原动机、工作机等条件确定。

二. 应力2.按强度计算使用分1) 工作应力:由计算载荷按力学公式求得的应力。

2) 计算应力:由强度理论求得的应力。

3) 极限应力:根据强度准则、材料性质和应力种类所选择的机械性能极限值σlim 。

4) 许用应力:等效应力允许达到的最大值。

[σ]=σlim /[s σ]稳定变应力 非稳定变应力对称循环变应力脉动应力 规律性非稳定变应力随机性非稳定变应力 静应力 对称循环变应力 脉动应力σ周期变应力第1节 材料的疲劳特性一. 疲劳曲线 1. 疲劳曲线给定循环特征γ=σlim /σmax ,表示应力循 环次数N 与疲劳极限σγ的关系曲线称为疲 劳曲线(或σ-N )。

2. 疲劳曲线方程1) 方程中参数说明a) 低硬度≤350HB ,N 0=107 高硬度>350HB ,N 0=25×107b) 指数m :c) 不同γ,σ-N 不同;γ越大,σ也越大。

…二、 限应力线图1) 定义:同一材料,对于不同的循环特征进行试验,求得疲劳极限,并将其绘在σm -σa坐标系上,所得的曲线称为极限应力线图。

CN N m m N ==0γγσσr N N k mNN σσσγγ==0mNN k N 0=整理:即:其中:N 0--循环基数σγ--N 0时的疲劳极限k N --寿命系数用线性坐标表示的疲劳曲线ND2)简化曲线3)σ-N与σm-σa关系a) σ-N曲线:同一循环特征下、不同循环次数。

机械设计中的强度计算方法

机械设计中的强度计算方法

机械设计中的强度计算方法在机械设计中,强度计算是一个极其重要的环节。

无论是机械产品的设计还是机械结构的分析,都需要对其强度进行计算和验证。

因此,强度计算方法的正确性和准确性在机械工程中具有决定性的作用。

1. 强度计算的基本原理强度计算是机械设计的重要组成部分,目的是为了评估机械部件在使用过程中是否能够承受所受到的所有荷载,并且不会发生破坏。

其基本原理是根据机械零件的几何形状、材料性质、荷载特性以及破坏的准则来进行计算。

在强度计算中,最常用的计算方法是破坏理论和损伤理论。

破坏理论是指在机械零件在受到一定荷载作用后,破坏所能承受的最大值,其包括极限强度和疲劳极限强度两种计算方法。

而损伤理论则是在机械零件在受到很小荷载作用后,随着荷载的不断增大,机械零件逐渐损伤,最终发生破坏。

2. 强度计算的常用方法从强度计算的物理实质来看,其方法多种多样,常用的方法有破坏理论、有限元法和弹性力学法等。

破坏理论破坏理论是强度计算中最常用的方法之一,其基本假设是材料具有弹塑性的本质。

常用的破坏理论有极限强度理论、最大剪应力理论、最大正应力理论等。

其中,极限强度理论认为,材料在某一特定条件下能够承受的最大荷载与其材料的极限强度有关。

而其他破坏理论则更注重不同的应力状态下材料之间的差异,例如最大正应力理论认为,材料受力时发生破坏的条件是正应力达到其正应力极限时。

有限元法有限元法是综合应用物理力学、数学和计算机科学等学科的一种现代计算方法。

在机械工程领域中,有限元法主要用于机械零件的强度计算和疲劳寿命评估。

其步骤包括建立有限元模型、计算应力和应变、确定材料参数和荷载情况,最终得到机械部件的强度计算结果。

弹性力学法弹性力学法是对材料弹性和刚性的研究方法。

在机械工程中,其常用于解决静力学问题,如机械部件受荷时的应变和应力分布。

在弹性力学法中,常用的方法有弯曲理论、材料力学、接触力学和薄板理论等。

3. 常见的强度计算实例强度计算方法的应用范围非常广泛,涉及到各种类型的机械零件和结构。

机械零件的强度和计算准则

机械零件的强度和计算准则

机械零件的强度和计算准则
刚度指标: 伸长,压缩,挠度,扭角,转角 计算准则: 弹性变形量不大于许用值
实际的弹性变形量可以根据不同的零件,依据不同的理 论或实验方法进行确定,而相应的许用值则需要根据不 同的场合,根据理论和经验确定合理的数值。
路漫漫其悠远
机械零件的强度和计算准则
路漫漫其悠远
机床主轴等弹性变形过大将影响加工精度。
E为两接触材料的弹性模量, 为泊松比,
为综合曲率半径 (正号表示外接触,负号表示内接触)
机械零件的强度和计算准则
点接触的情形一般可以归结为两个球体的接触, 接触应力为:
路漫漫其悠远
机械零件的强度和计算准则
----两圆柱体接触,接触面为矩形, 最大接 触应力σHmax∝F1/2,两球体接触,接触面为 圆形, 最大接触应力σHmax∝F1/3
路漫漫其悠远
2020/11/18
机械零件的强度和计算准则
条件性计算 1、滑动速度低、载荷大时限制表面压强
p[p] 2、滑动速度较高时防止润滑失效
pv[pv] 3、高速时防止速度过高加速磨损
v[v]
p----工作表面的压强 v----滑动速度
路漫漫其悠远
机械零件的强度和计算准则
2.5 机械零件的刚度和改进措施
• 提高刚度的方法: • 1)材料对刚度的影响 • 弹性模量大则刚性就大,金属大于非金
(6)环境是否具有腐蚀性。
安全系数的选择原则:
在保证安全、可靠的前提下,尽可能选用较小的
安全系数。
路漫漫其悠远
机械零件的强度和计算准则
2.2.2刚度准则
• 刚度----零件在载荷作用下抵抗变形的能 力 (力,力矩/弹性变形量)
• 柔度----在外力作用下产生变形的能力 (弹性变形量/力,力矩)

机械零件的疲劳强度计算

机械零件的疲劳强度计算

机械零件的疲劳强度计算1.疲劳强度计算基础疲劳强度计算的基础是疲劳试验数据。

通过疲劳试验,可以得到不同应力水平下的应力与循环寿命的关系,即疲劳试验曲线。

然后通过统计方法,计算出零件在极限寿命设计条件下的疲劳强度。

2.标准疲劳曲线标准疲劳曲线是指确定零件疲劳强度的一种方法。

根据标准疲劳曲线,可以通过查表或计算,得到具体应力水平下的寿命和强度。

3.应力集中系数机械零件在实际工作中常常存在应力集中现象。

应力集中系数是考虑应力集中对零件疲劳强度影响的一个修正系数。

根据零件形状和载荷条件,可以确定相应的应力集中系数,从而修正零件的疲劳强度。

4.疲劳裕度系数疲劳裕度系数是指零件的实际应力与允许应力之比。

疲劳裕度系数是确定零件设计是否合理的一个重要参数。

如果疲劳裕度系数小于1,说明零件存在疲劳强度不足的风险;如果疲劳裕度系数大于1,说明零件在设计寿命内连续运行是安全的。

5.SN曲线法SN曲线法是一种常用的疲劳强度计算方法,通过试验或经验得到不同应力水平下的应力与寿命关系,即SN曲线。

通过与实际应力相比较,可以得到零件的寿命。

6.工程应力法工程应力法是一种简化的疲劳强度计算方法。

该方法根据零件在实际工况中的应力分布情况,选择合适的应力部位,计算得到平均应力,然后根据SN曲线法得到寿命。

7.有限元分析方法有限元分析方法是一种基于数值模拟的疲劳强度计算方法。

通过建立零件的有限元模型,并给定边界条件和载荷条件,可以计算出零件的应力分布情况。

然后通过与SN曲线法相结合,得到零件的疲劳寿命。

总之,机械零件的疲劳强度计算是一个复杂的工作,需要深入研究零件的应力分布、载荷条件、材料性能以及疲劳试验数据等方面,综合运用不同的计算方法和理论,以保证零件在实际工作条件下的安全性和可靠性。

机械零件设计强度校核常用计算公式

机械零件设计强度校核常用计算公式

2
剪切应力计 算
公式
参数
A 强度条件
说明:
说明 剪切应力(Mpa) 剪切力载荷(N)
截面积(mm^2) 许用切应力
计算 71.43 20000.00 280.00 200.00
合格
附注 屈服强度/安全系数
绿色单元格是原始参数需填入,红色单元格是结果来自3冲击载荷计 算
公式
参数 σ W A E h l
说明:
说明 冲击载荷产生的应力(MPa)
冲击力(N) 作用面积(mm^2) 弹性模量(Mpa)
冲击距离(mm) 物体长度(mm)
计算 4.62 4410.00 70650.00 1000.00 1000.00 6000.00
附注 常数
绿色单元格是原始参数需填入,红色单元格是结果
3 轴扭转强度计算
公式
参数
T Wp D d
1 正应力计算 公式 参数 σ W A
强度条件
说明:
机械设计常用计算公式
(或表面压应力)
说明 正应力(Mpa) 拉伸或压缩载荷(N) 截面积(mm^2) 许用压(拉)应力
计算 35.71 10000.00 280.00 200.00
合格
附注 抗拉强度/安全系数
绿色单元格是原始参数需填入,红色单元格是结果
强度条件
说明 扭转切应力(MPa) 施加在轴上的最大扭矩(N*mm) 扭转截面系数(mm^3)
外径(mm) 内径(mm) 许用切应力
计算 117.38 10000000.00 85191.16 80.00 50.00 200.00
合格
附注 屈服强度/安全系数
说明:
绿色单元格是原始参数需填入,红色单元格是结果

机械设计第3章机械零件的强度

机械设计第3章机械零件的强度

根据零件载荷的变化规律以及零件与相邻零件互相约 束情况的不同,可能发生的典型的应力变化规律通常 有下述三种:
a)变应力的应力比保持不变,即r=C(例如绝大 多数转轴中的应力状态);
b)变应力的平均应力保持不变,即σm=C(例如 振动着的受载弹簧中的应力状态);
c)变应力的最小应力保持不变, σmin=C(例如 紧螺栓联接中螺栓受轴向变载荷时的应力状 态)。以下分别讨论这三种情况。
(3—9)
直线CG的方程为
σa'+σm'=σs
(3—10)
式中:σae'——零件受循环弯曲应力时的极限应力幅; σme'——零件受循环弯曲应力时的极限平均应力; e ——零件受循环弯曲应力时的材料常数。
e 可用下式计算
e
K
1 K
2 1 0 0
(3 11)
Kσ——弯曲疲劳极限的综合影响系数
S a
ae a
1 m K a
对应于N点的极限应力由N2'点表示,它位于直线CG上,故 仍只按式(3—18)进行静强度计算,分析图3—7可知,凡是工 作应力点位于CGH区域内时,在σm=C的条件下,极限应力 统为屈服极限,也是只进行静强度计算。
3.σmin=C的情况
当σmin=C时,需找到一个其最小应力与零件工 作应力的最小应力相同的极限应力。因为
分别是: 1 K ae m e
1 K ae m
ae
1
m
K
m ax
ae
m e
1
m
K
m
1
K
K
m
Sca
lim
m ax max
1 (K ) m
K
也有文献上建议,在σm=C的情况下,按照应力幅来 校核零件的疲劳强度,即按应力幅求得安全系数计算 值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 对于大多数黑色金属及其 合金,当应力循环次数N高于 某一数值N0后,疲劳曲线呈现 为水平直线。
m rN
N
C
r
(2) 而对有色合金和高硬度合 O
金钢,无论N值多大,疲劳曲
线也不存在水平部分。
rN
N0称为应力循环基数,它 随材料不同而有不同的数值。
通 常 , 对 HBS≤350 的 钢 ,
N0≈107 ; 对 HBS>350 的 钢 , N0 ≈ 25×107 。
应力集中的影响
有效应力集中系数——材料、尺寸和受载情况都 相同的一个无应力集中试样与一个有应力集中试
样的疲劳极限的比值: k 1 /( 1 )k
绝对尺寸的影响
绝对尺寸系数——直径为d的试样的疲劳极限与
直径d0(=6~110)md m/(的 试1 )样d0的疲劳极限的比值:
表面状态的影响
表面状态系数——试样在某种表面状态下的疲劳 极限与精抛光试样(未经强化处理)的疲劳极限
• 有限寿命计算
材料疲劳极限应力 =材料的疲劳限*寿命系数 > 寿命系数,计算指数m(取决于材料和应力的种类) > N=102-104时,属低循环疲劳破坏 > N<102时, 按静强度处理
材料的极限应力线图及其简化
• 材料的极限应力线图
> 不同r 时试验所得的各极限应力表示在平均应力和 应力幅的坐标系中。
O
N0
N
m rN
N
C
N
有明显水平部分的疲劳曲线可以分 rN
为两个区域:
有限寿命区——N<N0 的部分
无限寿命区——N≥N0的部分
有限寿命区应力循环次数和疲劳极限之
间的关系:
m rN
N
m r
N0
C
O
有限寿命区 无限寿命区
m rN
N
C
r
N0
N
C ——试验常数;m ——随材料和应力状态而定的特性系数,例如对
机械零件的接触应力通常是随时间作周期性变化的,在 载荷重复作用下,首先在表层内约15~25μm处产生初始疲 劳裂纹,在两接触表面的相互运动中,润滑油被挤入裂纹内, 运动表面将裂纹口封死,形成高压油,促使裂纹扩展。当裂 纹扩展到一定深度以后,就导致表层金属呈小片状剥落下来, 而在零件表面形成一些小坑。这种现象称为疲劳点蚀 (fatigue pitting)。
2 平均应力=常数时
稳定变应力时塑性材料零件的强度计算1
• 单向稳定变应力时 > 循环特性 r=常数时 (采用基氏简化折线)
稳定变应力时塑性材料零件的强度计算2 平均应力=常数时 (采用基氏简化折线)
稳定变应力时塑性材料零件的强度计算3 最小应力=常数时 (采用基氏简化折线)
稳定变应力时塑性材料零件的强度计算4 复合稳定变应力时
疲劳断裂不同于一般静
力断裂,它是损伤到一定程 度后,即裂纹扩展到一定程 度后,才发生的突然断裂。 所以疲劳断裂与应力循环次 数(即使用期限或寿命)密 切相关。
Fatigue Limit 疲劳极限
疲劳极限(fatigue limit) rN ——对任一给定的应力循环特征r,
当应力循环N次后,材料不发生疲劳破坏的最大应力
挤压强度计算
磨损强度计算
Surface Contact Strength of Machine Elements
机械零件的表面接触强度
若两个零件在受载前是点接触或线接触,受载 后,由于变形其接触处为一小面积,通常此面积甚 小而表层产生的局部应力却很大,这种应力称为接 触应力(contact stress)。这时零件强度称为接触强 度。如齿轮、滚动轴承等机械零件,都是通过很小 的接触面积传递载荷的,因此它们的承载能力不仅 取决于整体强度,还取决于表面的接触强度。
• 考虑三方面的因素 [S]=S1S2S3
> 计算精确性S1=1~3 > 材料ห้องสมุดไป่ตู้匀性S2 =1.2~2.5 > 零件重要性S3 =1~1.5
零件的极限应力
• 材料的极限应力
> 塑性材料 > 脆性材料 > 高强度材料 # 脉动循环限,对称疲劳限
• 零件的极限应力 • 综合影响系数=有效应力集中系数/尺寸系数/表面状态系数
第5章 机械零件的强度计算 主要内容
• 机械零件的强度 • 材料的疲劳曲线,材料和零件的极限应力线图,零件极限应力的确定 • 稳定变应力时塑性材料零件的强度计算 • 非稳定变应力时零件的疲劳强度计算 • 机械零件的表面强度计算 • 提高零件强度的措施
机械零件的强度
• 强度的定义 • 强度的分类 • 强度的表达方式 • 零件所受的载荷 • 零件所受的应力 • 零件的许用安全系数 • 零件的极限应力
强度的定义
• 抵抗失效的能力 > 失效:丧失正常工作能力,如零件发生断裂,塑性变形,表面压溃等
强度的分类
• 体积强度 • 表面强度 • 冲击强度
° 静强度 ° 动强度(疲劳强度)
强度的表示方式
• 安全应力表示法 • 安全系数表示法
若材料为塑性材料,应力达到屈服应力(yield stress)时, 材 料 就 发 生 塑 性 变 形 (plastic deformation) , 因 此 , 取
m
max min
2
a
max min
2
r min / max
r 1
r 0
r 1
静应力只能在静载荷作用下产生。
变应力可能由变载荷产生,也可能由静载荷产生, 如图所示,在静载荷作用下,转动心轴上a点的应 力和滚动轴承外圈表面上a点的应力均为变应力。
多向稳定变应力
零件的许用安全系数[S]
规律性非稳定变应力时的疲劳强度计算
• 疲劳损伤累积假说
材料每受到一次变应力的作用, 会造成一定的损伤,积累起来到 一定数量,将使材料发生疲劳破坏。
• 规律性非稳定变应力时 的疲劳强度计算
> 变应力动态系数 kd > 等效稳定变应力
> 强度条件
机械零件的表面强度
• 挤压强度 • 磨损强度 • 接触强度
材料的疲劳
• 疲劳破坏的过程 • 疲劳破坏的特征
通常疲劳断裂具有以下特征:1)疲劳断裂的最大应力远比静应力 下材料的强度极限(strength limit)低,甚至比屈服极限(yield limit)低;2) 不管脆性材料或塑性材料,其疲劳断口均表现为无明显塑性变形的脆 性突然断裂;3)疲劳断裂是损伤的积累,它的初期现象是在零件表面 或表层形成微裂纹,这种微裂纹随着应力循环次数(number of stress cycles)的增加而逐渐扩展,直至余下的未裂开的截面积不足以承受外荷 载时,零件就突然断裂。图示为一旋转弯曲、荷载小和表面应力集中 大并有三个初始裂纹的疲劳断裂截面。在断裂截面上明显地有两个区 域:一个是在变应力重复作用下裂纹两边相互摩擦形成的表面光滑区; 一个是最终发生脆性断裂的粗粒状区。
m
max min
2
a
max min
2
r min / max
工程上为计算方便,常将塑性材料疲劳极限应力图进行简化。具体
方法是:考虑到塑性材料的最大应力不得超过屈服极限,故从横坐标
轴上取S点,由点S作135°斜线与AB连线的延长线交于E,得折线ABES。
在AE线段上任一点的极限应力为
H
11
Fn 1 2
L
1 12
1
2 2
E1
E2
上式称为赫兹(H. Hertz)公式。式中:H —最大接触应力(contact stress)
或赫兹应力;L —接触长度(contact length); “+”号用于外接触(图
如果零件所受的应力状态为双向、三向应力状态时, 需按材料力学的强度理论来计算零件的最大工作应力。
• 名义载荷 • 实际载荷 > 静载荷 > 变载荷 > 冲击载荷 • 载荷系数 • 计算载荷
零件所受的载荷
K为载荷系数,其值一般大于1,有时等 于1。可按具体零件长期设计实践所积 累的经验公式或数据确定。
r rm ra
式中 r、 rm、 ra 分别为循环特性 r 时的疲劳极限、极限平均应力和
极限应力幅。
ES为塑性极限线,在ES线段 上任一点的极限应力均为
rm ra S
若零件工作应力( m, a)
点处于折线以内时,其最 大应力既不超过疲劳极限, 也不超过屈服极限,故为 疲劳和塑性安全区,而在 折线范围以外为疲劳或塑 性失效区。
Stress Diagram of Fatigue Limit 材料疲劳极限应力图
疲劳极限应力图——平均应力 m(横坐标)与应力幅 a(纵坐标)之间
的关系曲线(由实验数据获得),反映相同材料在不同应力循环特性时 疲劳极限的差异。塑性材料的疲劳极限应力图如下图所示,曲线近似呈 抛物线分布。曲线上A点的坐标表示对称循环点,B点的坐标表示脉动循 环点,C点的坐标表示静应力点。
lim=S ( 屈 服 极 限 应 力 ) , lim=S 。 若 材 料 为 脆 性 材 料 (brittle materials),则取lim=B (拉伸静强度极限应力) , lim=B 。
上述强度条件也可用安全系数来表示
S
lim
[S ]
S
lim
[S ]
S 、 S —— 对 应 于 正 应 力 和 切 应 力 的 计 算 安 全 系 数 (calculated safety factor)。
Fatigue Strength of Machine Elements 机械零件的疲劳强度
Characteristics of Fatigue Fracture 疲劳断裂特征
在变应力作用下,机械零件的主要失效形式是疲劳断裂 (fatigue fracture)。表面无缺陷的金属材料,其疲劳断裂过程 分为两个阶段:第一阶段是零件表面上应力较大处的材料发 生剪切滑移,产生初始裂纹,形成疲劳源,疲劳源可以有一 个或数个;第二阶段是裂纹尖端在切应力下发生反复塑性变 形,使裂纹扩展直至发生疲劳断裂。实际上,材料内部的夹 渣、微孔、晶界以及表面划伤、裂纹、腐蚀等都有可能产生 初始裂纹。因此一般说零件的疲劳过程是从第二阶段开始的, 应力集中(stress concentration)促使表面裂纹产生和发展。
相关文档
最新文档