String Theory Formulation of anti-de Sitter Black Holes

合集下载

脂质体作为药物载体应用的研究进展

脂质体作为药物载体应用的研究进展

[131储茂泉,古宏晨,,刘国杰.喷雾干燥法制备丹参酮前体脂质体的研究【J】.中国药学杂志,2002,37(1):32—35.脂质体作为药物载体应用的研究进展王晴,王英姿’,冯艾灵,孙秀玉,张胜海,李彩霞,段飞鹏,张秀婷(北京中医药大学,北京100102)摘要:脂质体作为靶向制剂的载体在提高药物疗效和降低药物毒副作用等方面具有广阔的应用前景。

本文通过查阅分析国内外近十年的相关文献,综述了脂质体作为药物载体的研究现状,重点介绍了其在抗肿瘤药、抗感染药,免疫药等不同类型药物中的研究及应用,并展望了脂质体的发展前景。

关键词:脂质体;抗感染药;抗肿瘤药The research progr ess of l ip os ome s ap plied a s drug carriersWang Qing,Wang Yingzi,Feng Ailing,Sun Xiuy u,Zh an g Sheng hai,LI Caixia Duan Feipeng,Zhang Xiu yu(Beijing University of Chinese Medicine,Academy Traditional Chines e Medicine,Beijing 100102)Abstract:As carriers targ et in g agents,liposomes has broad application prospects in improvingdrug eff ic ac y and reducing negative effects of dru gs,e cta.Thi s paper analy zed a c c e s s to dom esticand foreign literature of near ly a decade,summarized the research status of liposomes as-drug carriers.focuses—on—its—research—and-application·in—the—different—types—of—drugs-such·as antineoplastic,anti—infective,immune drugs,and look forward to the prospect of lil:}osomes.Key WOrd s:li pos om es;a nti—inf ec tiv es;a nt ine op las ti c脂质体是一种新型药物载体,源于Banghman等【l】对磷脂悬浮水的研究,是人工制备的由磷脂双分子定向排列而成的微球,其结构类似于生物膜,可包封水溶性和脂溶性药物。

Boundary States and Black p-branes边界状态与黑P膜

Boundary States and Black p-branes边界状态与黑P膜

We can rewrite the boundary condition with using the oscillators.
X
(z)
i
n
n
z n1
,
z exp(i ).
X|0 BX 0(0,1,..p.),
Xi|0 BX xi (ip1,..D .,1)
(n~ n)BX 0;(ni ~in)BX 0,n0, (nS~ n)BX 0,S(,ij)
▪ D-brane inflation ▪ Black hole evaporation
→ Application to physics at Planck scale
Trials to dynamical D-brane systems
▪ Via ‘non-perturbative’ string theory
27p 2 2
p3 (7 p)(p5)
9 p2 p3 2 2 (8 p)
d9pki eikix
(2)9p | ki |p5
Id1x 0 g 2 12R (,h)1 2g ˆˆ8(p1 2)e ! x p p 23ˆ |F ˆp2|2 ,
g2h, h& AA
ΦΦh
+
A AΦ
k1 Φ
A
k1
D-brane
▪ Open string endpoints can stick to
D-brane
X(0,1,..p .),:X|00(Neum ) aXn0 n
Xi(ip1,..D .,1):Xi |0xi(Diri)chleσt=0
▪ D-branes carry
RR charges
σ=π τ

语言学重要概念梳理(中英文对照版)

语言学重要概念梳理(中英文对照版)

语⾔学重要概念梳理(中英⽂对照版)第⼀节语⾔的本质⼀、语⾔的普遍特征(Design Features)1.任意性 Arbitratriness:shu 和Tree都能表⽰“树”这⼀概念;同样的声⾳,各国不同的表达⽅式2.双层结构Duality:语⾔由声⾳结构和意义结构组成(the structure ofsounds and meaning)3.多产性productive: 语⾔可以理解并创造⽆限数量的新句⼦,是由双层结构造成的结果(Understand and create unlimited number withsentences)4.移位性 Displacemennt:可以表达许多不在场的东西,如过去的经历、将来可能发⽣的事情,或者表达根本不存在的东西等5.⽂化传播性 Cultural Transmission:语⾔需要后天在特定⽂化环境中掌握⼆、语⾔的功能(Functions of Language)1.传达信息功能 Informative:最主要功能The main function2.⼈际功能 Interpersonal:⼈类在社会中建⽴并维持各⾃地位的功能establish and maintain their identity3.⾏事功能 performative:现实应⽤——判刑、咒语、为船命名等Judge,naming,and curses4.表情功能 Emotive Function:表达强烈情感的语⾔,如感叹词/句exclamatory expressions5.寒暄功能 Phatic Communion:应酬话phatic language,⽐如“吃了没?”“天⼉真好啊!”等等6.元语⾔功能 Metalingual Function:⽤语⾔来谈论、改变语⾔本⾝,如book可以指现实中的书也可以⽤“book这个词来表达作为语⾔单位的“书”三、语⾔学的分⽀1. 核⼼语⾔学 Core linguistic1)语⾳学 Phonetics:关注语⾳的产⽣、传播和接受过程,着重考察⼈类语⾔中的单⾳。

超弦理论与宇宙学要点

超弦理论与宇宙学要点
超弦理论与宇宙学
李淼 中国科学院理论物理研究所
String Theory and Cosmology
Miao Li Institute of Theoretical Physics Chinese Academy of Sciences
String theory is widely believed to be a theory of quantum gravity.
For example, in type IIB theory, a string is mapped to a D-string, the new theory is Dstrings is again a type IIB theory:
However, it has proven very difficult to study string theory in a time-varying background.
So far, string theorists are faced with this very challenging problems:
(a) To formulate string theory on a timevarying background.
(b) To find a formalism reflecting directly the holographic principle.
However, this conservative, poor man’s approach must miss some of most important ingredients of a theory of quantum gravity.
One such ingredient is the so-called holography, motivated by quantum physics of black holes.

斯普林格数学研究生教材丛书

斯普林格数学研究生教材丛书

《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《Topological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard BealsGTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and Operator Theory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos(希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys(线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abstract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.FritzsheGTM039《An Invitation to C*-Algebras》William Arveson(C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, urie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probability TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》Wilhelm Klingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra(黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport(乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru IitakaGTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters(遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surfaces Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway(泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Breöcker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson(2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL₂ (R)》Serge Lang(SL₂ (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael RangeGTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen(现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel(线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《Tensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》m(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris(代数几何)GTM134《Coding and Information Theory》Steven RomanGTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic Number Theory》Henri Cohen(计算代数数论教程)GTM139《Topology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gröbner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang WalterGTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》m(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to Topological Manifolds》John M.LeeGTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward CheneyGTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek(离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre(矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee(光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjröner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《Topics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal(哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠTools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAnalytic and Modern Tools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki HibiGTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。

Toda Lattice Hierarchy and the Topological Description of the c=1 String Theory

Toda Lattice Hierarchy and the Topological Description of the c=1 String Theory
Tohru Eguchi Department of Physics, Faculty of Science
University of Tokyo Tokyo 113, Japan
and
Hiroaki Kanno Department of Mathematics
Hiroshima University Higashi-Hiroshima 724, Japan
We first point out that the integrable structure of the c = 1 string theory is described by the Toda lattice hierarchy when special constraints are imposed on the Toda system (see eqs.(24),(25) below). These constraints are the analogues of the string equations in the minimal theories which select special solutions of the KP hierarchy. Our conditions reproduce the W1+∞ constraints discovered in [8, 9]. It turns out that the constrained Toda hierarchies are described in terms of a pair of Lax-like operators L, W which are the analogues of the P, Q operators [11] of the c < 1 minimal theories. In the Landau-Ginzburg description one may regard W (L) as the superpotential and L(W ) as the Landau-Ginzburg field. W has an expansion in terms of L and has the form of a U(1) current W = ∂φ/∂L where φ(L) is a free scalar field φ = µ log L + tnLn − ∂/n∂tnL−n. Here tn is the coupling constant of the positive tachyon field Tn and µ is the cosmological constant (∂/∂tn acts on the partition function and is replaced by the 1-point function < Tn > at genus=0). Similarly the operator L is expanded in terms of W and has the form of a U(1) current. From these expressions W1+∞ symmetry follows

The Mode III Crack Problem

The Mode III Crack Problem

H.G.GeorgiadisMechanics Division, National Technical University of Athens,1Konitsis Street, Zographou GR-15773,Greece e-mail:georgiad@central.ntua.grMem.ASME The Mode III Crack Problem in Microstructured Solids Governed by Dipolar Gradient Elasticity: Static and Dynamic AnalysisThis study aims at determining the elastic stress and displacementfields around a crack in a microstructured body under a remotely applied loading of the antiplane shear(mode III)type.The material microstructure is modeled through the Mindlin-Green-Rivlin dipo-lar gradient theory(or strain-gradient theory of grade two).A simple but yet rigorous version of this generalized continuum theory is taken here by considering an isotropic linear expression of the elastic strain-energy density in antiplane shearing that involves only two material constants(the shear modulus and the so-called gradient coefficient).In particular,the strain-energy density function,besides its dependence upon the standard strain terms,depends also on strain gradients.This expression derives from form II of Mindlin’s theory,a form that is appropriate for a gradient formulation with no couple-stress effects(in this case the strain-energy density function does not contain any rotation gradients).Here,both the formulation of the problem and the solution method are exact and lead to results for the near-tipfield showing significant departure from the predictions of the classical fracture mechanics.In view of these results,it seems that the conventional fracture mechanics is inadequate to analyze crack problems in microstructured materials. Indeed,the present results suggest that the stress distribution ahead of the tip exhibits a local maximum that is bounded.Therefore,this maximum value may serve as a measure of the critical stress level at which further advancement of the crack may occur.Also,in the vicinity of the crack tip,the crack-face displacement closes more smoothly as com-pared to the classical results.The latter can be explained physically since materials with microstructure behave in a more rigid way(having increased stiffness)as compared to materials without microstructure(i.e.,materials governed by classical continuum me-chanics).The new formulation of the crack problem required also new extended defini-tions for the J-integral and the energy release rate.It is shown that these quantities can be determined through the use of distribution(generalized function)theory.The boundary value problem was attacked by both the asymptotic Williams technique and the exact Wiener-Hopf technique.Both static and time-harmonic dynamic analyses are provided.͓DOI:10.1115/1.1574061͔1IntroductionThe present work is concerned with the exact determination of mode III crack-tipfields within the framework of the dipolar gra-dient elasticity͑or strain-gradient elasticity of grade two͒.This theory was introduced by Mindlin͓1͔,Green and Rivlin͓2͔,and Green͓3͔in an effort to model the mechanical response of mate-rials with microstructure.The theory begins with the very general concept of a continuum containing elements or particles͑called macromedia͒,which are in themselves deformable media.This behavior can easily be realized if such a macro-particle is viewed as a collection of smaller subparticles͑called micromedia͒.In this way,each particle of the continuum is endowed with an internal displacementfield,which is expanded as a power series in internal coordinate variables.Within the above context,the lowest-order theory͑dipolar or grade-two theory͒is the one obtained by retain-ing only thefirst͑linear͒term.Also,since these theories introduce dependence on strain and/or rotation gradients,the new material constants imply the presence of characteristic lengths in the ma-terial behavior,which allow the incorporation of size effects into stress analysis in a manner that the classical theory cannot afford. The Mindlin-Green-Rivlin theory and related ideas,after afirst development and some successful applications mainly on stress concentration problems during the sixties͑see,e.g.,Mindlin and Eshel͓4͔,Weitsman͓5͔,Day and Weitsman͓6͔,Cook and Weits-man͓7͔,Herrmann and Achenbach͓8͔,and Achenbach et al.͓9͔͒, have also recently been employed to analyze complex problems in materials with microstructure͑see,e.g.,Vardoulakis and Sulem ͓10͔,Fleck et al.͓11͔,Lakes͓12͔,Vardoulakis and Georgiadis ͓13͔,Wei and Huthinson͓14͔,Begley and Huthinson͓15͔,Exa-daktylos and Vardoulakis͓16͔,Huang et al.͓17͔,Zhang et al.͓18͔,Chen et al.͓19͔,Georgiadis and Vardoulakis͓20͔,Georgia-dis et al.͓21,22͔,Georgiadis and Velgaki͓23͔,and Amanatidou and Aravas͓24͔͒.More specifically,recent work by the author and co-workers͓13,20–23͔,on wave-propagation problems showed that the gradient approach predicts types of elastic waves that are not predicted by the classical theory͑SH and torsional surface waves in homogeneous materials͒and also predicts dispersion of high-frequency Rayleigh waves͑the classical elasticity fails to predict dispersion of these waves at any frequency͒.Notice that all these phenomena are observed in experiments and are also predicted by atomic-lattice analyses͑see,e.g.,Gazis et al.͓25͔͒.Contributed by the Applied Mechanics Division of T HE A MERICAN S OCIETY OFM ECHANICAL E NGINEERS for publication in the ASME J OURNAL OF A PPLIED M E-CHANICS.Manuscript received by the ASME Applied Mechanics Division,Apr.28,2002;final revision,Dec.19,2002.Associate Editor:B.M.Moran.Discussion onthe paper should be addressed to the Editor,Prof.Robert M.McMeeking,Depart-ment of Mechanical and Environmental Engineering University of California–SantaBarbara,Santa Barbara,CA93106-5070,and will be accepted until four months afterfinal publication of the paper itself in the ASME J OURNAL OF A PPLIED M ECHAN-ICS.Copyright©2003by ASMEJournal of Applied Mechanics JULY2003,Vol.70Õ517Thus,based on existing gradient-type results,one may conclude that the Mindlin-Green-Rivlin theory extends the range of appli-cability of continuum theories in an effort towards bridging the gap between classical͑monopolar or nongeneralized͒theories of continua and theories of atomic lattices.In the present work the concept adopted,following the afore-mentioned ideas,is to view the continuum as a periodic structure like that,e.g.,of crystal lattices,crystallites of a polycrystal or grains of a granular material.The material is composed wholly of unit cells͑micromedia͒having the form of cubes with edges of size2h.This size is therefore an intrinsic material length.We further assume͑and this is a rather standard assumption in studies applying the Mindlin-Green-Rivlin theory to practical problems͒that the continuum is homogeneous in the sense that the relative deformation͑i.e.,the difference between the macrodisplacementgradient and the microdeformation—cf.Mindlin͓1͔͒is zero andthe microdensity does not differ from the macrodensity.Then,weformulate the mode III crack problem by considering an isotropicand linear expression of the strain-energy density W.This expres-sion in antiplane shear and with respect to a Cartesian coordinatesystem Ox1x2x3reads Wϭ␮␧p3␧p3ϩ␮c(ץs␧p3)(ץs␧p3),where the summation convention is understood over the Latin indices,which take the values1and2only,(␧13,␧23)are the only iden-tically nonvanishing components of the linear strain tensor,␮is the shear modulus,c is the gradient coefficient͑a positive con-stant accounting for microstructural effects͒,andץs()ϵץ()/ץx s.The problem is two-dimensional and is stated in the plane(x1,x2).The above strain-energy density function is the simplest possible form of case II in Mindlin’s͓1͔theory and is appropriate for a gradient formulation with no couple-stress ef-fects,because W is completely independent upon rotation gradi-ents.Indeed,by referring to a strain-energy density function that depends upon strains and strain gradients in a three-dimensional body͑the Latin indices now span the range͑1,2,3͒͒,i.e.,a func-tion of the form Wϭ(1/2)c pqs j␧pq␧s jϩ(1/2)d pqs jlm␬pqs␬jlm with (c pqs j,d pqs jlm)being tensors of material constants and␬pqs ϭץp␧qsϵץp␧sq,and by defining the Cauchy͑in Mindlin’s nota-tion͒stress tensor as␶pqϭץW/ץ␧pq and the dipolar stress tensor ͑a third-rank tensor͒as m pqsϭץW/ץ(ץp␧qs),one may observe that the relations m pqsϭm p(qs)and m p[qs]ϭ0hold,where()and ͓͔as subscripts denote the symmetric and antisymmetric parts of a tensor,respectively.Accordingly,couple stresses do not appear within the present formulation by assuming dipolar͑internal͒forces with vanishing antisymmetric part͑more details on this are given in Section2below͒.A couple-stress,quasi-static solution of the mode-III crack problem was given earlier by Zhang et al.͓18͔. Note in passing that in the literature one mayfind mainly two types of approaches:In thefirst type͑couple-stress case͒the strain-energy density depends on rotation gradients and has no dependence upon strain gradients of the kind mentioned above ͑see,e.g.,͓11,17–19,23͔͒,whereas in the second type the strain-energy density depends on strain gradients and has no dependence upon rotation gradients͑see, e.g.,͓13,16,20–22͔͒.Exceptions from this trend exist of course͑see,e.g.,͓5–7͔͒and these works employ a more complicated formulation based on form III of Mindlin’s theory,͓1͔.Here,in addition to the quasi-static case,we also treat the time-harmonic dynamical case,which is pertinent to the problem ofstress-wave diffraction by a pre-existing crack in the body.In thelatter case,besides the standard inertia term in the equation ofmotion,a micro-inertia term is also taken into account͑in a con-sistent and rigorous manner by considering the proper kinetic-energy density͒and this leads to an explicit appearance of theintrinsic material length h.We emphasize that quasi-static ap-proaches cannot include explicitly the size of the material cell intheir governing equations.In these approaches,rather,a charac-teristic length appears in the governing equations only through the gradient coefficient c͑which has dimensions of͓length͔2)in the gradient theory without couple-stress effects or the ratio͑␩/␮͒͑which again has dimensions of͓length͔2)in the couple-stress theory without the effects of collinear dipolar forces,where␩is the couple-stress modulus and␮is the shear modulus of the ma-terial.Of course,one of the quantities c or͑␩/␮͒also appears within a dynamic analysis,which therefore may allow for an in-terrelation of the two different characteristic lengths͑the one in-troduced in the strain energy and the other introduced in the ki-netic energy—see relative works by Georgiadis et al.͓22͔and Georgiadis and Velgaki͓23͔͒.Indeed,by comparing the forms of dispersion curves of Rayleigh waves obtained by the dipolar ͑‘‘pure’’gradient and couple-stress͒approaches with the ones ob-tained by the atomic-lattice analysis of Gazis et al.͓25͔,it can be estimated that c is of the order of(0.1h)2,͓22͔,and␩is of the order of0.1␮h2,͓23͔.The mathematical analysis of the dynamical problem here pre-sents some novel features related to the Wiener-Hopf technique not encountered in dealing with the static case.The Wiener-Hopf technique is employed to obtain exact solutions in both cases,and also the Williams technique is employed for an asymptotic deter-mination of the near-tipfields.Also,since the gradient formula-tion exhibits a singular-perturbation character,the concept of a boundary layer is employed to accomplish the solution.On the other hand,the gradient formulation demands extended definitions of the J-integral and the energy release rate.It is further proved, by utilizing some theorems of distribution theory,that both energy quantities remain bounded despite the hypersingular behavior of the near-tip stressfield.Finally,physical aspects of the solution are discussed with particular reference to the closure of the crack faces and the nature of cohesive tractions.2Fundamentals of the Dipolar Gradient ElasticityA brief account of the Mindlin-Green-Rivlin theory,͓1–3͔,per-taining to the elastodynamics of homogeneous and isotropic ma-terials is given here.If a continuum with microstructure is viewed as a collection of subparticles͑micromedia͒having the form of unit cells͑cubes͒,the following expression of the kinetic-energy density͑kinetic energy per unit macrovolume͒is obtained with respect to a Cartesian coordinate system Ox1x2x3,͓1͔,Tϭ12␳u˙p u˙pϩ16␳h2͑ץp u˙q͒͑ץp u˙q͒,(1)where␳is the mass density,2h is the size of the cube edges,u p is the displacement vector,ץp()ϵץ()/ץx p,(˙)ϵץ()/ץt with t de-noting the time,and the Latin indices span the range͑1,2,3͒.We also notice that Georgiadis et al.͓22͔by using the concept of internal motions have obtained͑1͒in an alternative way to that by Mindlin͓1͔.In the RHS of Eq.͑1͒,the second term representing the effects of velocity gradients͑a term not encountered within classical continuum mechanics͒reflects the greater detail with which the dipolar theory describes the motion.Next,the following expression of the strain-energy density is postulated:Wϭ12c pqs j␧pq␧s jϩ12d pqs jlm␬pqs␬jlm,(2)where(c pqs j,d pqs jlm)are tensors of material constants,␧pq ϭ(1/2)(ץp u qϩץq u p)is the linear strain tensor,and␬pqsϭץp␧qs is the strain gradient.Notice that in the tensors c pqs j and d pqs jlm ͑which are of even rank͒the number of independent components can be reduced to yield isotropic constitutive relations.Such an isotropic behavior is considered here.Again,the form in͑2͒can be viewed as a more accurate description of the constitutive re-sponse than that provided by the classical elasticity,if one thinks of a series expansion for W containing higher-order strain gradi-ents.Also,one may expect that the additional term͑or terms͒will be significant in the vicinity of stress-concentration points where the strain undergoes very steep variations.Then,pertinent stress tensors can be defined by taking the variation of W518ÕVol.70,JULY2003Transactions of the ASME␶pq ϭץWץ␧pq,(3a )m pqs ϭץW ץ␬pqs ϵץWץ͑ץp ␧qs ͒,(3b )where ␶pq ϭ␶qp is the Cauchy ͑in Mindlin’s notation ͒stress tensor and m pqs ϭm psq is the dipolar ͑or double ͒stress tensor.The latter tensor follows from the notion of multipolar forces,which are antiparallel forces acting between the micro-media contained in the continuum with microstructure ͑see Fig.1͒.As explained by Green and Rivlin ͓2͔and Jaunzemis ͓26͔,the notion of multipolar forces arises rather naturally if one considers a series expansion for the mechanical power M containing higher-order velocity gra-dients,i.e.,M ϭF p u ˙p ϩF pq (ץp u ˙q )ϩF pqs (ץp ץq u ˙s )ϩ...,where F p are the usual forces ͑monopolar forces ͒within classical con-tinua and (F pq ,F pqs ,...)are the multipolar forces ͑dipolar or double forces,triple forces and so on ͒within generalized con-tinua.In this way,the resultant force on an ensemble of subpar-ticles can be viewed as being decomposed into external and inter-nal forces with the latter ones being self-equilibrating ͑see Fig.1͒.However,these self-equilibrating forces ͑which are multipolar forces ͒produce nonvanishing stresses,the multipolar stresses.Ex-amples of force systems of the dipolar collinear or noncollinear type are given,e.g.,in Jaunzemis ͓26͔and Fung ͓27͔.As for the notation of dipolar forces and stresses,the first index of the forces denotes the orientation of the lever arm between the forces and the second index the orientation of the pair of the forces;the same meaning is attached to the last two indices of the stresses,whereas the first index denotes the orientation of the normal to the surface on which the stress acts.The dipolar forces F pq have dimensions of ͓force ͔͓length ͔;their diagonal terms are double forces without moment and their off-diagonal terms are double forces with moment.The antisymmetric part F [pq ]ϭ(1/2)(x p F q Ϫx q F p )gives rise to couple stresses.Here,we do not consider couple-stress effects emphasizing that this is compat-ible with the particular choice of the form of W in ͑2͒,i.e.,a form dependent upon the strain gradient but completely independent upon the rotation gradient.Further,the equations of motion and the tractionboundary con-ditions along a smooth boundary can be obtained either from Hamilton’s principle ͑Mindlin ͓1͔͒or from the momentum balance laws and their application on a material tetrahedron ͑Georgiadis et al.͓22͔͒:ץp ͑␶pq Ϫץs m spq ͒ϭ␳u ¨q Ϫ␳h 23͑ץpp u¨q ͒,(4)n q ͑␶qs Ϫץp m pqs ͒ϪD q ͑n p m pqs ͒ϩ͑D l n l ͒n p n q m pqs ϩ␳h 23n r ͑ץr u ¨s͒ϭP s (n ),(5a )n q n r m qrs ϭR s (n ),(5b )where body forces are absent,D p ()ϭץp ()Ϫn p D (),D ()ϭn l ץl (),n s is the unit outward-directed vector normal to theboundary,P s(n )is the surface force per unit area ͑monopolar trac-tion ͒,and R s (n )is the surface double force per unit area ͑dipolar traction ͒.Finally,it is convenient for calculations to introduce another quantity,which is a kind of ‘‘balance stress’’͑see Eq.͑7͒below ͒,and is defined as␴pq ϭ␶pq ϩ␣pq ,(6)where ␣qs ϭ(␳h 2/3)(ץq u¨s )Ϫץp m pqs .With this definition,Eq.͑4͒takes the more familiar formץp ␴pq ϭ␳u ¨q .(7)Notice that ␴pq is not an objective quantity since it contains the acceleration terms (␳h 2/3)(ץq u ¨s ).These micro-inertia terms also are responsible for the asymmetry of ␴pq .This,however,does not pose any inconsistency but reflects the role of micro-inertia and the nonstandard nature of the theory.In the quasi-static case,where the acceleration terms are absent,␴pq is an objective tensor.On the other hand,the constitutive equations should definitely obey the principle of objectivity ͑cf.Eqs.͑9͒and ͑10͒below ͒.Now,the simplest possible form of constitutive relations is ob-tained by taking an isotropic version of the expression in ͑2͒in-volving only three material constants.This strain-energy density function readsW ϭ12␭␧pp ␧qq ϩ␮␧pq ␧pq ϩ12␭c ͑ץs ␧pp ͒͑ץs ␧qq ͒ϩ␮c ͑ץs ␧pq ͒͑ץs ␧pq ͒,(8)and leads to the constitutive relations␶pq ϭ␭␦pq ␧ss ϩ2␮␧pq ,(9)m spq ϭc ץs ͑␭␦pq ␧j j ϩ2␮␧pq ͒,(10)where ͑␭,␮͒are the standard Lame´’s constants,c is the gradient coefficient ͑material constant with dimensions of ͓length ͔2),and ␦pq is the Kronecker delta.Equations ͑9͒and ͑10͒written for a general three-dimensional state will be employed below only for an antiplane shear state.In summary,Eqs.͑4͒,͑5͒,͑9͒,and ͑10͒are the governing equa-tions for the isotropic dipolar-gradient elasticity with no couple bining ͑4͒,͑9͒,and ͑10͒leads to the field equation of the problem.Pertinent uniqueness theorems have been proved for various forms of the general theory ͑Mindlin and Eshel ͓4͔,Achenbach et al.͓9͔,and Ignaczak ͓28͔͒on the basis of positive definiteness of the strain-energy density.The latter restriction re-quires,in turn,the following inequalities for the material con-stants appearing in the theory employed here ͑Georgiadis et al.͓22͔͒:(3␭ϩ2␮)Ͼ0,␮Ͼ0,c Ͼ0.In addition,stability for the field equation in the general inertial case was proved in ͓22͔and to accomplish this the condition c Ͼ0is a necessary one ͑we notice incidentally that some heuristic gradient-like approaches not employing the rigorous Mindlin-Green-Rivlin theory appeared in the literature that take a negative c —their authors,unfortu-nately,do not realize that stability was lost in their field equation ͒.Finally,the analysis in ͓22͔provides the order-of-magnitude esti-mate (0.1h )2for the gradient coefficient c ,in terms of the intrin-sic material length h.Fig.1Monopolar …external …and dipolar …internal …forces act-ing on an ensemble of subparticles in a material with micro-structureJournal of Applied MechanicsJULY 2003,Vol.70Õ5193Formulation of the Quasi-Static Mode III Crack Problem,the J -Integral,and the Energy Release RateConsider a crack in a body with microstructure under a quasi-static antiplane shear state ͑see Fig.2͒.As will become clear in the next two sections,the semi-infinite crack model serves in a boundary layer type of analysis of any crack problem provided that the crack faces in the problem under consideration are trac-tion free.It is assumed that the mechanical behavior of the body is determined by the Eqs.͑4͒,͑5),(9),and ͑10͒of the previous section.An Oxyz Cartesian coordinate system coincident with the system Ox 1x 2x 3utilized previously is attached to that body,and an antiplane shear loading is taken in the direction of z -axis.Also,a pure antiplane shear state will be reached,if the body has the form of a thick slab in the z -direction.In such a case,the follow-ing two-dimensional field is generated:u x ϭu y ϭ0,(11a )u z ϵw 0,(11b )w ϵw ͑x ,y ͒,(11c )and Eqs.͑8)–(10͒take the formsW ϭ␮͑␧xz 2ϩ␧yz 2͒ϩ␮cͫͩץ␧xz ץx ͪ2ϩͩץ␧xzץyͪ2ϩͩץ␧yzץxͪ2ϩͩץ␧yz ץyͪ2ͬ,(12)␶xz ϭ␮ץw ץx ,(13a )␶yz ϭ␮ץw ץy,(13b )m xxz ϭ␮c ץ2wץx 2,(14a )m xyz ϭ␮cץ2wץx ץy ,(14b )m yxz ϭ␮c ץ2wץx ץy ,(14c )m yyz ϭ␮c ץ2wץy2.(14d )Further,͑4͒provides the equation of equilibriumץץx ͩ␶xz Ϫץm xxz ץx Ϫץm yxz ץy ͪϩץץy ͩ␶yz Ϫץm xyz ץx Ϫץm yyzץyͪϭ0,(15)which along with ͑13͒and ͑14͒leads to the following field equa-tion of the problem c ٌ4w Ϫٌ2w ϭ0,(16)where ٌ2ϭ(ץ2/ץx 2)ϩ(ץ2/ץy 2)and ٌ4ϭٌ2ٌ2.Finally,one may utilize ␴pq defined in ͑6͒for more economy in writing some equa-tions in the ensuing analysis.The antiplane shear components of this quantity are as follows:␴xz ϭ␮ͩץw ץx ͪϪ␮c ٌ2ͩץwץx ͪ,(17a )␴yz ϭ␮ͩץw ץy ͪϪ␮c ٌ2ͩץwץyͪ.(17b )Assume now that the cracked body is under a remotely applied loading that is also antisymmetric about the x -axis ͑crack plane ͒.Also,the crack faces are traction-free.Due to the antisymmetry of the problem,only the upper half of the cracked domain is consid-ered.Then,the following conditions can be written along the plane (ϪϱϽx Ͻϱ,y ϭ0):t yz ϵ␶yz Ϫץm xyz ץx Ϫץm yyz ץy Ϫץm yxzץxϭ0for ͑ϪϱϽx Ͻ0,y ϭ0͒,(18)m yyz ϭ0for ͑ϪϱϽx Ͻ0,y ϭ0͒,(19)w ϭ0for ͑0Ͻx Ͻϱ,y ϭ0͒,(20)ץ2wץy 2ϭ0for ͑0Ͻx Ͻϱ,y ϭ0͒,(21)where ͑18͒and ͑19͒directly follow from Eqs.͑5͒͑notice also that ͑18͒can be written as ␴yz Ϫ(ץm yxz /ץx )ϭ0by using the ␴pq quantity ͒,t yz is defined as the total monopolar stress,and ͑20͒together with ͑21͒always guarantee an antisymmetric displace-ment field w.r.t.the line of the crack prolongation.The definition of the stress t yz follows from ͑5a ͒.The problem described by ͑11)–(21͒will be considered by both the asymptotic Williams method and the exact Wiener-Hopf technique.Notice finally that no difficulty will arise by having zero boundary conditions along the crack faces since,eventually,the solution will be matched at regions where gradient effects are not dominant ͑i.e.,for x ӷc 1/2)with the K III field of the classical theory and in this way the remote loading will appear in the solution.Next,we present the new extended definitions of the J -integral and the energy release rate G .These definitions of the energy quantities are pertinent to the present framework of dipolar gradi-ent elasticity and to the aforementioned case of a crack in a quasi-static antiplane shear state.By following relative concepts from Rice ͓29,30͔,we first introduce the definitionJ ϭ͵⌫ͩWdy ϪP ¯z(n )ץw ץx d ⌫ϪR ¯z(n )D ͩץw ץxͪd ⌫ͪ,(22)where ⌫is a two-dimensional contour surrounding the crack tip͑see Fig.2͒,whereas the monopolar and dipolar tractions P ¯z (n )and R ¯z (n )on ⌫are given asP ¯z (n )ϭn q ͑␶qz Ϫץp m pqz ͒ϪD q ͑n p m pqz ͒ϩ͑D l n l ͒n p n q m pqz ,(23a )R ¯z (n )ϭn p n q m pqz .(23b )In the above expressions,n p with components (n x ,n y )is the unit outward-directed vector normal to ⌫,the differential operators D and D p were defined in Section 2,W is the strain-energy density function given by ͑12͒,and the indices (l ,p ,q )take the values x and y only.Of course,the above expressions for the tractions on ⌫are compatible with Eqs.͑5͒.Further,it can be proved that the inte-gral in ͑22͒is path independent by following Rice’s,͓29͔,proce-dure.Path independence is of great utility since it permits alter-nate choices of integration paths that may lead to adirectFig.2A crack under a remotely applied antiplane shear load-ing.The contour ⌫surrounding the crack tip serves for the definition of the J -integral.520ÕVol.70,JULY 2003Transactions of the ASMEevaluation of J .We should mention at this point that ͑22͒is quite novel within the present version of the gradient theory ͑i.e.,a form without couple stresses ͒,but expressions for J within the couple-stress theory were presented before by Atkinson and Leppington ͓31͔,Zhang et al.͓18͔,and Lubarda and Markenscoff ͓32͔.In particular,the latter work gives a systematic derivation of conser-vation integrals by the use of Noether’s theorem.Finally,we no-tice that the way the J -integral will be evaluated below is quite different than that by Zhang et al.͓18͔.Indeed,use of the theory of distributions in the present work leads to a very simple way to evaluate J ͑see Section 7below ͒.As for the energy release rate ͑ERR ͒now,we also modify the classical definition in order to take into account a higher-order term that is compatible with the present strain-gradient frameworkG ϭlim⌬x →0͵0⌬x ͫt yz ͑x ,y ϭ0͒•w ͑x ,y ϭ0͒ϩm yyz ͑x ,y ϭ0͒•ץw ͑x ,y ϭ0͒ץyͬdx⌬x,(24)where ⌬x is the small distance of a crack advancement.Of course,any meaningful crack-tip field given as solution to an associated mathematical problem,should result in a finite value for the energy quantities defined above.Despite the strong singu-larity of the stress field obtained in Sections 5and 6,the results of Section 7prove that J and G are indeed bounded.4Asymptotic Analysis by the Williams MethodAs is well known,Williams ͓33,34͔͑see also Barber ͓35͔͒de-veloped a method to explore the nature of the stress and displace-ment field near wedge corners and crack tips.This is accom-plished by attaching a set of (r ,␪)polar coordinates at the cornerpoint and by expanding the stress field as an asymptotic series in powers of r .By following this method here we are concerned,in a way,only with the field components in the sharp crack at very small values of r ,and hence we imagine looking at the tip region through a strong microscope so that situations like the ones,e.g.,on the left of Fig.3͑i.e.,a finite length crack,an edge crack or a crack in a strip ͒appear to us like the semi-infinite crack on the right of this figure.The magnification is so large that the other surfaces of the body,including the loaded remote boundaries,ap-pear enough far away for us to treat the body as an ‘‘infinite wedge’’with ‘‘loading at infinity.’’The field is,of course,a com-plicated function of (r ,␪)but near to the crack tip ͑i.e.,as r →0)we seek to expand it as a series of separated variable terms,each of which satisfies the traction-free boundary conditions on the crack faces.In view of the above,we consider the following separated form w (r ,␪)ϭr ␻ϩ1u (␪),where the displacement satisfies ͑16͒.Fur-ther,if only the dominant singular terms in ͑16͒are retained,the PDE of the problem becomes ٌ4w ϭ0,where ٌ4ϭٌ2ٌ2ϭ(ץ2/ץr 2ϩ1/r ץ/ץr ϩ1/r 2ץ2/ץ␪2)2.Also,in view of the defini-tions of stresses as combinations of derivatives of w and by re-taining again only the dominant singular terms,the boundary con-ditions t yz (x ,y ϭϮ0)ϭ0and m yyz (x ,y ϭϮ0)ϭ0will give at ␪ϭϮ␲ͩץ2ץr 2ϩ1r 2ץ2ץ␪2ϩ1r 2ͪץwץ␪ϭ0,(25a )ͩ1r ץץr ϩ1r 2ץ2ץ␪2ͪw ϭ0.(25b )In addition,the pertinent antisymmetric solution ͑i.e.,with odd behavior in ␪͒to the equation ٌ4w ϭ0has the following general form:w ϭr ␻ϩ1͑A 1sin ͓͑␻ϩ1͒␪͔ϩA 2sin ͓͑␻Ϫ1͒␪͔͒,(26)where ␻is ͑in general ͒a complex number and (A 1,A 2)are un-known constants.Now,͑25͒and ͑26͒provide the eigenvalue prob-lem͑␻ϩ1͒cos ͓͑␻ϩ1͒␲͔•A 1Ϫ3͑␻Ϫ1͒cos ͓͑␻Ϫ1͒␲͔•A 2ϭ0,(27a )͑␻ϩ1͒sin ͓͑␻ϩ1͒␲͔•A 1ϩ͑␻Ϫ3͒sin ͓͑␻Ϫ1͒␲͔•A 2ϭ0.(27b )For a nontrivial solution to exist,the determinant of the coeffi-cients of (A 1,A 2)in the above system should vanish and this gives the result:sin(2␻␲)ϭ0⇒␻ϭ0,1/2,1,3/2,2,....Next,by observing from ͑12͒that the strain-energy density W behaves at most as (ץ2w /ץr 2)or,by using the form w (r ,␪)ϭr ␻ϩ1u (␪),no worse than r ␻Ϫ1,we conclude that the maximum eigenvalue al-lowed by the integrability condition of the strain-energy density is ␻ϭ1/2.The above analysis suggests that the general asymptotic solu-tion is of the form w (r ,␪)ϭr 3/2u (␪),which by virtue of ͑26͒and ͑27b ͒becomesw ͑r ,␪͒ϭAr 3/2͓3sin ͑␪/2͒Ϫ5sin ͑3␪/2͔͒,(28)where A ϵϪA 1and the other constant in ͑26͒is given by ͑27b ͒as A 2ϭ3A 1/5.The constant A ͑amplitude of the field ͒is left un-specified by the Williams technique but still the nature of the near-tip field has been determined.Finally,the total monopolar stress has the following asymptotic behavior:t yz ͑x ,y ϭ0͒ϭO ͑x Ϫ3/2͒as x →ϩ0.(29)This asymptotic behavior will also be corroborated by the results of the exact analysis in the next section.5Exact Analysis by the Wiener-Hopf MethodAn exact solution to the problem described by ͑11͒–͑21͒will be obtained through two-sided Laplace transforms ͑see,e.g.,van der Pol and Bremmer ͓36͔and Carrier et al.͓37͔͒,theWiener-Fig.3William’s method:the near-tip fields of …i …a finite length crack,…ii …an edge crack,and …iii …a cracked strip correspond to the field generated in a body with a semi-infinite crackJournal of Applied MechanicsJULY 2003,Vol.70Õ521。

The Light Cone in String Theory

The Light Cone in String Theory

a rXiv:h ep-th/93437v212A pr1993EFI-93-21The Light Cone in String Theory Emil Martinec*Enrico Fermi Inst.and Dept.of Physics University of Chicago,Chicago,IL 60637The causal boundary of string propagation –defined as the hypersurface in loop space bordering the timelike(spacelike)domains in which two successive measurements of the string field do(do not)interfere with one another –is argued to be 0= dσ δX (σ) 2=∞ ℓ=−∞δx µ−ℓδx µℓ.Some possible consequences are discussed.4/931.IntroductionIn particle field theory,causality is ensured by the fact that a)the commutator of two free fields vanishes in the spacelike region,and b)the interactions are local.Thus,at least in perturbation theory,no two measurements of the field at spacelike separated points can interfere with one another.Surprisingly enough,the analogous question in string theory has not yet been addressed.Here we will calculate the string field commutator in flat spacetime in the light-front gauge.The commutator will indeed vanish outside some hypersurface in loop space.This hypersurface is not simply related to the light cone of the underlying point manifold.We then make an ansatz concerning the covariant generalization of the result,and ask whether causality in string field theory may be quite different than in particle field theory.1.1.Light-Front GaugeAs a warm-up exercise,let us review the computation of the particle-field commutator.We will employ light-front quantization,since in the string case one has a known operator formalism only in light-front gauge.A scalar field is decomposed asφ(x +,x −, x )= ∞−∞d p 2p + a p +, p e [i (p +x −+p −x ++ p · x )]+h.c. ,(1.1)with p −=( p 2+m 2)/2p +,and the particle creation/annihilation operators a p +, p satisfying[a p +, p ,a †p +′, p ′]=p +·2πδp +,p +′·(2π)d −2δ p , p ′.(1.2)One finds the commutatorφ(x +,x −, x ),φ(x +′,x −′, x ′) =∞0dp +2πδx + (d −2)/2exp i −p +δx −+m 22δx +(δ x )2 (1.3)The convergence properties of the p +integral depend crucially on the sign of (δx )2=2δx +δx −−δ x 2.For (δx )2<0,the integration contour can be rotated onto the positive imaginary axis for the first term in the commutator,and onto the negative imaginary axis for the second;both terms are equal and the difference vanishes.For (δx )2>0,the rotation cannot be made so that the integral converges both at p +→0and p +→∞;the two terms in the commutator do not cancel and the measurements of the field interfere.Having completed the exercise,the generalization to string theory is straightforward. We work in light-front gauge because a)there is an obvious operator formalism,and b) the stringfield is a gauge invariant(physical)observable.The light-front gauge stringfield may be decomposed[1][2]Φ(x+,x−0, x(σ))= ∞−∞d p2p+∞ ℓ=1 { nℓ}A p+, p,{ nℓ}e[i(p+x−0+p−x++ p· x0)]H nℓ( xℓ)+h.c. .(1.4)In other words,the string gauge invariance isfixed by the condition X+(σ)=x+,the other longitudinal string coordinate being(classically)determined by the reparametriza-tion constraintX−(σ)=x−0+ σd˜σ X′· P(˜σ);(1.5) the transverse coordinates are expandedX(σ)= x0+∞ℓ=1( xℓe iℓσ+ x∗ℓe−iℓσ)(1.6)(i.e.x−ℓ=x∗ℓ;for open strings,x−ℓ=xℓ=x∗ℓ).The string creation/annihilation opera-tors obey the canonical commutation relations[A p+, p,{ nℓ},A†p+′, p′,{ n′ℓ}]=p+·2πδp+,p+′·(2π)d−2δ p, p′·δ{ nℓ},{ n′ℓ},(1.7)and the H n are the harmonic oscillator wavefunctions of the string transverse normal modes.The mass shell condition is0=2p+p−− p2−∞nℓ=0ℓ nℓ−m20.(1.8)Strictly speaking,of course,the ground state mass m20<0for the bosonic string and our integral expressions will be badly behaved.We will treat this intercept of the leading Regge trajectory as a free parameter to be adjusted according to our wishes;if one is a stickler,one can repeat the calculation in the superstring–the physics is unchanged(even there we will want to keep m20small and positive to separate the poles in the propagator, and tend it to zero only at the end of the calculation).Once again it is straightforward to evaluate the field commutator:Φ(x +,x −0, x ℓ, x ∗ℓ),Φ(x +′,x −0′,x ′, x ∗′ℓ) = ∞0dp +πsin[(ℓδx +)/p +] (d −2)/2×exp −iℓπsinh[(ℓδx +)/p +] (d −2)/2×exp −εℓδx +x ℓ− x ℓ′ 2+O ℓδx +positive,one cannot continue the integral and the two measurements of the stringfield will interfere.Unfortunately,in the string light-front gauge wefind a physical stringfield at the expense of knowing where the string is in the full loop space.Eq.(1.5)says that,if we write the stringfield in position representation(as we must to look for the light cone),its transverse momentum is maximally uncertain and so is X−(σ).One might try to evade this by going to minimal uncertainty wavepackets for the string oscillator modes,but this is only achieved at the expense of smearing out the stringfield over the transverse space. We still lose control over the spacetime location of the strings.Nevertheless there is a natural covariant generalization of the causal boundary,or string light cone(the vanishing locus of the LHS of(1.13));namely0=∞ℓ=−∞δxµ−ℓδxµℓ= dσδX2(σ).(1.14)The restriction of this expression to the light-front gauge X+(σ)=x+is precisely thestring light cone determined above.It suffers from the problem that,while invariant undersimulataneous reparametrizations of the two loops X,X′,it is not invariant under indepen-dent reparametrizations of them.However this perhaps should not be expected given theabove-mentioned reparametrization properties of the light-front gauge causal boundary.Eq.(1.14)has the appealing property that it is Lorentz covariant,in fact it is invariantunder the entire spacetime conformal group,i.e.Lorentz transformations generated by dσX[µPν],dilations generated by dσX·P(σ),and so on.In addition it has invariance under rotating the mode amplitudes among one another,which might be of relevance inthe mythicalα′→0limit of string theory.1.2.Covariant GaugeIn fact there is an ansatz in the covariant(Feynman-Siegel)gauge quantization whichindeed reproduces the light cone(1.14).Infield theory,the commutator of twofields canbe expressed purely in terms of the Green’s function0|[φ(x),φ(x′)]|0 = C dp0(2π)d−1i e ik·xcommutator arises from the closed contour that surrounds both poles in the integrand. Consider this contour to be the difference of two contours,one slightly above and one slightly below the real p0axis.Writing the kernel in the Schwinger representation and doing the p integrals,wefind0|[φ(x),φ(x′)]|0 = ∞0dτ 14τ−m2τ −h.c. .(1.16) In other words we have the same expression as in light-front quantization with the light-front momentum p+replaced by the inverse of the Schwinger proper timeτ.The analyticity properties in the complexτplane are thus determined by the sign of x2,and as before (1.15)vanishes outside the light cone.If we adopt(1.15)as a definition of the stringfield commutator in covariant quan-tization,then even though we have no proper spacetime operator formalism in covariant stringfield theory we can evaluate the commutator of two stringfields(for an evaluation of the relevant world sheet path integrals,see e.g.[3]Φ(X(σ),B(σ),C(σ)),Φ(X′(σ′),B′(σ′),C′(σ′)) =∞dτ K0τ(δxµ0)∞ ℓ=1Kℓτ(xµℓ,xµℓ′)−K0−τ(δxµ0)∞ ℓ=1Kℓ−τ(xµℓ,xµℓ′) .(1.17) with K0τ(δxµ0)the integrand in(1.16)andKℓτ(xµℓ,xµℓ′)= iℓsin(ℓτ)ℓ|xℓ|2+ℓ|x′ℓ|2+(cℓb∗ℓ+c∗ℓbℓ)+(c′ℓb∗′ℓ+c∗′ℓb′ℓ) cos(ℓτ)−2Re(ℓx∗ℓ·x′ℓ)−(cℓb∗′ℓ+c∗ℓb′ℓ)−(c′ℓb∗ℓ+c∗′ℓbℓ) ,(1.18)with B(σ)= bℓe iℓσand C(σ)= cℓe iℓσ;we have suppressed the ghost mode depen-dence in the arguments of(1.18)for convenience.Exactly the same reasoning used above in the analysis of the light-front gauge commutator leads to the conclusion that the causal boundary in covariant quantization is0=δx20+∞ℓ=1 δxℓ·δx∗ℓ+1∂δB(σ)(1.19)The restriction of this expression to the bosonic submanifold of the BRST superspace {X,B,C}is indeed(1.14).1.3.ConsequencesAn interesting issue concerns the relation between the causal boundary(1.14)and the propagation of string mass eigenstates.To pass from the position representation Φ(x0,{xℓ})to mass eigenstatesΦ(x0,{nℓ})one smears the former against harmonic os-cillator wavefunctions H n(xℓ).This entails an uncertainty∆xℓ∼1/ℓand the stringℓwanders logarithmically over all spacetime when all modes are considered.Clearly some renormalized concept of string location is needed.In any case causality for such smeared objects needs to be formulated.The surprising thing about(1.14),(1.19)is that the causal region of string propagation is not the interior of the light cone of the underlying point manifold(defined by the set of pointlike loops).In other words,the region of causal contact of a string is NOT the union of the interiors of the point manifold light cones of the points along the string. Consider the case where one loop is pointlike at the origin and the other has zero extent in X0≡t.Then Eq.(1.14)says that the stringfields at these arguments interfere if the spatial sphere bounded by the radius of gyration R2gyr= ∞1|xℓ|2of the future string obeys t2−r2≥R2gyr(r is the radial coordinate of the center of mass of the second string). But this restriction does not forbid much of the string from being outside this light cone; much of the sphere of radius R gyr centered at r may lie outside the point light cone(since (r+R gyr)2≥r2+R2gyr).Thus Eq.(1.14)could prove of tremendous importance.Since strings interact by join-ing and splitting,one can imagine a process by which a piece of a string causally propagates outside the point light cone of a region of the point spacetime;that part of the string can then split offand influence physics in what to a pointlike observer is the spacelike region, yet string causality is obeyed.Actually this point is confusing.The split offstring does not satisfy the causality condition with respect to the original string.A more conservative possibility is that the information propagated is still carried by the part of the string in-side the point light cone.This would be the case for instance if the interference of the two orders of measurement is the same for the set of all strings which differ only outside one another’s point light cone.Yet another outcome would be that the split offstring still does not interfere with the original string unless it is inside the latter’s string light cone;then it would still not be completely in the point spacelike region.Which of these possibilities is correct is tested when one calculates the commutator in the presence of a string vertex.If(1.14)does reflect the causal structure of string theory,one must ask if there are black hole solutions to string theory having a horizon in the string sense,since the interiorof an ordinary(point spacetime)black hole might in principle be probed by doing sen-sitive interference measurements with strings.Even if wavepackets cannot communicate across point horizons,could there be more subtle effects–for instance,scalar hair(which has profound influence on the horizon structure)?The extension of the analysis to the interacting theory should prove interesting.Acknowledgements:It is a pleasure to thank J.Harvey,D.Kutasov,and P.Windey for discussions.References[1]M.Kaku and K.Kikkawa,Phys.Rev.D10(1974)1110;Phys.Rev.D10(1974)1823.See also J.F.L.Hopkinson,R.W.Tucker,and P.A.Collins,Phys.Rev.D12(1975) 1653;E.Cremmer and J.-L.Gervais,Nucl.Phys.B90(1975)410.[2]P.Goddard,J.Goldstone,C.Rebbi,and C.Thorn,Nucl.Phys.B56(1973)109;S.Mandelstam,Nucl.Phys.B64(1973)205.[3] C.Ord´o˜n ez,M.Rubin,and R.Zucchini,Phys.Lett.215B(1988)103;D.Birmingham and C.G.Torre,Phys.Lett.205B(1988)289.。

药理学专业词汇(中英文对照)

药理学专业词汇(中英文对照)

药理学专业词汇(中英文对照)药理学专业词汇(中英文对照)第一章绪论药理学pharmacology 药物drug药物效应动力学pharmacodynamics药物代谢动力学 pharmacokinetics上市后药物监测post-marketing surveillance第二章药物效应动力学药物作用pharmacological action药理效应pharmacological effect治疗作用therapeutic effect对症治疗symptomatic treatment补充疗法supplement therapy不良反应adverse drug reaction副作用side reaction毒性反应toxic reaction后遗效应after effect变态反应allergic reaction剂量-效应关系dose-effect relationship最小有效量minimal effective dose最小有效浓度minimal effective concentration个体差异individual variability效价强度potency构效关系structure activity relationship激动药agonist拮抗药antagonist配体门控离子通道受体ligand gated ion channel receptor第三章药物代谢动力学吸收absorption首关消除first-pass elimination静脉注射intravenous injection分布distribution 生物转化biotransformation排泄excretion时量关系time-concentration relationship生物利用度bioavailability药物消除动力学过程elimination kinetic process一级消除动力学first-order elimination kinetics零级消除动力学zero-order elimination kinetics半衰期half-life表观分布容积apparentvolume of distribution总体清除率total body clearance稳态浓度steady-state concentration第四章影响药物效应的因素和合理用药的原则控释剂controlled release formulation缓释剂 slow release formulation耐受性 tolerance耐药性resistance药物依赖性drug dependence相互作用 interaction配伍禁忌incompatibility协同 synergism拮抗 antagonism第五章自主神经系统药理总论运动神经somatic motor nervous system自主神经autonomic nervous system胆碱能神经cholinergic nerve 去甲肾上腺素能神经noradrenergic nerve乙酰胆碱acetylcholine乙酰胆碱酯酶 acetylcholinesterase 摄取uptake 单胺氧化酶 mono-amine oxidase儿茶酚氧位甲基转移酶catechol-O-methyl transferase第六章胆碱受体激动药毛果芸香碱pilocarpine烟碱nicotine第七章抗胆碱酯酶药及胆碱酯酶复活药抗胆碱酯酶药 anticholinesteraseagents胆碱酯酶复活药cholinesterase reactivator新斯的明 neostigmine 有机磷酸酯类organophosphate碘解磷定pralidoxime iodine第八章 M胆碱受体阻断药阿托品atropine山莨菪碱anisodamine东莨菪碱 scopolamine第九章N胆碱受体阻断药琥珀胆碱suxamethonium筒箭毒碱d-tubocurarine第十章肾上腺素受体激动药去甲肾上腺素noradrenaline肾上腺素adrenaline多巴胺dopamine异丙肾上腺素isoprenaline第十一章肾上腺素受体阻断药肾上腺素受体阻断药adrenoceptor blocking drugs酚妥拉明phentolamine肾上腺素作用翻转adrenaline reversal酚苄明phenoxybenzamine哌唑嗪prazosin普萘洛尔propranolol第十二章局部麻醉药表面麻醉suiface anesthesia浸润麻醉infiltration anesthesia传导麻醉conduction anesthesia蛛网膜下腔麻醉subarachnoidal anesthesia利多卡因lidocaine普鲁卡因procaine丁卡因tetracaine第十三章全身麻醉药吸入麻醉药inhalational anesthetics氟烷halothane静脉麻醉intravenous anesthetics硫喷妥钠thiopental sodium诱导麻醉 induction of anesthesia第十四章镇静催眠药地西泮Diazepam氯氮卓Chlordiazepoxide奥沙西泮Oxazepam硝西泮Nitrazepam艾司唑仑Estazolam苯巴比妥Phenobarbital水合氯醛Chloral hydrate第十五章抗癫痫药和抗惊厥药抗癫痫药antiepileptic drugs苯妥英钠sodium phenytoin苯巴比妥phenobarbital扑米酮primidone乙琥胺ethosuximide苯二氮卓类benzodiazepine卡马西平carbamazepine丙戊酸钠sodium valproate硫酸镁magnesium sulfate第十六章抗中枢退行性疾病药左旋多巴levodopa, L-dopa卡比多巴Carbidopa司来吉米Selegiline硝替卡朋Nitecapone第十七章抗精神失常药抗精神病药antipsychotic drugs抗躁狂药antimanic drugs抗抑郁药antidepressive drugs抗焦虑药antianxiety drugs吩噻嗪类phenothiazines硫杂蒽类thioxanthenes丁酰苯类butyrophenones氯丙嗪chlorpromazine氯氮平clozapine碳酸锂lithium carbonate丙米嗪imipramine第十八章镇痛药阿片opium吗啡 m orphine哌替啶pethidine美沙酮methadone喷他佐辛pentazocine芬太尼 fentanyl第十九章解热镇痛抗炎药解热镇痛抗炎药antipyretic,analgesics and anti-inflammatory drugs非甾体抗炎药non-steroidal anti-inflammatory drugs花生四烯酸arachidonic acid阿司匹林aspirin非那西丁phenacetin 乙酰氨基酚paracetamol保泰松phenylbutazone吲哚美辛indomethacin布洛芬brufen别嘌醇 allopurinol丙磺舒 probenecid 秋水仙碱colchicines第二十章抗变态反应药组胺histamine抗组胺药antihistamines苯海拉明diphenhydramine异丙嗪promethazine阿司咪唑astemizole西咪替丁cimetidine雷尼替丁ranitidine5-羟色胺5-hydroxytryptamine酮色林 ketans erin昂丹司琼ondansetron第二十一章钙拮抗药钙拮抗药calcium antagonists电压依赖性钙通道voltage dependent Ca2+ channels受体调控性钙通道receptor-operated Ca2+ channels第二信使活化钙通道second messenger operated Ca2+ channels机械活化钙通道mechanically operated Ca2+ channels 硝苯地平nifedipine尼群地平nitrendipine地尔硫卓diltiazem维拉帕米 verapamil第二十二章肾素-血管紧张素-醛固酮系统肾素 rennin血管紧张素原angiotensinogen血管紧张素转化酶angiotensin converting enzyme血管紧张素肽angiotensin peptides血管紧张素受体angiotensin receptor卡托普利 captopril依那普利 enalapril雷米普利ramipril第二十三章抗心律失常药心律失常arrhythmias奎尼丁Quinidine利多卡因Lidocaine普罗帕酮Propafenone胺碘酮Amiodarone维拉帕米Verapamil致心律失常作用proarrhythmia,arrhythmogenesis第二十四章抗慢性心功能不全药卡托普利 Captopril氯沙坦Losartar美托洛尔metoprolol卡维地洛carvedilol地高辛Digoxin米力农Milrinone维司力农vesnarinone第二十五章抗心绞痛药心绞痛angina pectoris硝酸甘油nitroglycerin硝酸异山梨酯isosobide dinitrater戊四硝酯pentaerythrityl tetranitrate普萘洛尔propranolol硝苯地平nifedipine维拉帕米verapamil地尔硫卓diltiazem 卡维地洛carvedilol第二十六章调血脂药与抗动脉粥样硬化药胆固醇cholesterol三酰甘油triglyceride磷脂phospholipid游离脂肪酸free fatty acid胆固醇酯cholesteryl ester游离胆固醇free cholesterol总胆固醇total cholesterol载脂蛋白apoprotein脂蛋白lipoprotein消胆胺cholestyramine, cholesteramine resin 烟酸nicotinic acid普罗布考/丙丁酚probucol 多烯脂肪酸类polyenoic fatty acids多不饱和脂肪酸类polyunsaturated fatty acids二十碳五烯酸eicosapentaenoic acid二十二碳六烯酸docosahexaenoic acidα-亚麻酸α-linolenic acid亚油酸linolenic acidγ-亚麻酸γ-linolenic acid月见草油evening primrose oil亚油酸linolenic acid硫酸乙酰肝素heparan sulfate硫酸皮肤素dermatan sulfate硫酸软骨素chondroitin sulfate第二十七章抗高血压药个体化治疗方案individualized therapy氢氯噻嗪hydrochlorothiazide氨氯地平amlodipine卡托普利captopril氯沙坦losartan 可乐定clonidine 甲基多巴methyldopa莫索尼定moxonidine哌唑嗪prazosin 肼屈嗪hydralazine 米诺地尔minoxidil二氮嗪 diazoxide 硝普钠 sodium nitroprusside第二十八章利尿药及脱水药利尿药diuresis drugs呋噻米furosemide 阿米洛利amiloride 螺内酯spironolactone乙酰唑胺acetazolamide氢氯噻嗪hydrochlorothiazide氨苯蝶啶triamterene第二十九章作用于血液和造血器官的药物肝素heparin鱼精蛋白protamin 低分子量肝素low molacular weight heparin伊诺肝素enoxaparin 水蛭素lepirudin 双香豆素dicoumarin华法林warfarin枸橼酸钠sodium Citrate阿司匹林aspirin利多格雷ridogrel依前列醇epoprostanol双嘧达莫dipyridamole噻氯匹定antigreg链激酶streptokinase,SK阿替普酶alteplase沙芦普酶saruplase 阿尼普酶anistreplase右旋糖酐dexran第三十章作用于呼吸系统的药物平喘药antiasthmatic drugs镇咳药antitussives 祛痰药expectorants倍氯米松beclomethasone dipropionate布地奈德budesonide 曲安奈德triamcinolone acetonide丙酸氟替卡松fluticasone propionate氟尼缩松flunisolide色甘酸钠disodium cromoglycate曲尼司特tranilast 酮替芬ketotifen奈多罗米钠nedocromil sodium沙丁胺醇salbutamol 特布他林terbutaline 克仑特罗clenbuterol 氯丙那林clorprenaline福莫特罗formoterol 沙美特罗salmeterol 氨茶碱aminophylline二羟丙茶碱diprophylline胆茶碱cholinophylline多索茶碱doxofylline 茶碱theophylline异丙托溴铵ipratropium可待因codeine右美沙芬dextromethorphan喷托维林pentoxyverine苯佐那酯benzonatate 苯丙哌林benproperine氯化铵ammonium chloride乙酰半胱氨酸acetylcysteine 溴己新bromhexine第三十一章作用于消化系统的药物西咪替丁cimetidine雷尼替丁ranitidine法莫替丁famotidine丙谷胺proglumide哌仑西平pirenzepine奥美拉唑omeprazole硫糖铝sucralfate三钾二枸橼酸铋tripotassium dicitrate bismuthate昂丹司琼ondansetron苯海拉明diphenhydramine东莨菪碱scopolamine氯丙嗪chloropromazine甲氧氯普胺metoclopramide多潘立酮domperidone西沙必利cisapride硫酸镁magnesium sulfate硫酸钠sodium sulfate乳果糖lactulose酚酞phenolphthalein比沙可啶bisacodyl液体石腊liquid paraffin甘油glycerin 地芬诺酯diphenoxylate洛哌丁胺loperamide联苯双酯bifendate 马洛替酯malotilate 苯丙醇phenylpropanol熊去氧胆酸ursodeoxycholic acid牛胆酸钠sodiumtauroglycocholate去氢胆酸dehydrocholic acid曲匹布通trepibutone第三十二章子宫平滑肌兴奋药和抑制药缩宫素oxytocin 麦角新碱ergometrine麦角胺ergotamine前列腺素prostaglandin第三十三章性激素类药及避孕药雌激素estrogen孕激素progestogen雄激素androgen第三十四章肾上腺皮质激素类药物肾上腺皮质激素adrenocortical hormones糖皮质激素glucocorticoids氢化可的松hydrocortisone可的松cortisone盐皮质激素mineralocorticoids醛固酮aldosterone去氧皮质酮desoxycorticosterone泼尼松prednisone泼尼松龙prednisolone甲泼尼龙methylprednisolone地塞米松dexamethasone倍他米松betamethasone曲安西龙triamcinolone氟氢可的松fludrocortisone氟轻松fluocinolone acetonide糖皮质激素受体glucocorticoid receptor正性糖皮质激素反应成分glucocorticoid response element负性糖皮质激素反应成分negative glucocorticoid response element皮质激素转运球蛋白corticosteroid binding globulin第三十五章甲状腺素和抗甲状腺药甲状腺功能亢进症hyperthyroidism甲状腺素thyroxine三碘甲状腺原氨酸triiodothyronine抗甲状腺药antithyroid drugs 硫脲类thiourease硫氧嘧啶类thiouracils丙硫氧嘧啶propylthiouracil甲硫氧嘧啶methylthiouracil咪唑类imidazoles甲硫咪唑thiamazole他巴唑tapazole 碘iodine 碘化物iodide放射性碘radioiodine第三十六章胰岛素及口服降糖药胰岛素insulin 甲苯磺丁脲tolbutamide氯磺丙脲chlorpropamide格列吡嗪glipizide 格列齐特gliclazide格列波脲glibornuride格列喹酮gliquidone格列美脲glimepiride苯乙福明phenformin丁福明buformin甲福明metformin阿卡波糖acarbose 伏格列波糖voglibose米格列醇miglitol 罗格列酮rosiglitazone环格列酮ciglitazone吡格列酮pioglitazone恩格列酮englitazone第三十七章抗菌药物概论抑菌药inhibitory drugs杀菌药bactericidal drugs抗菌谱antimicrobial spectrum最低抑菌浓度minimalinhibitory concentration最低杀菌浓度minimal bactericidal concentration化学疗法chemotherapy耐药性tolerance抗生素 antibiotics第三十八章β-内酰胺类抗生素青霉素penicillin青霉素结合蛋白penicillin binding proteins头孢噻吩cephalothin头孢孟多cefamandole头孢曲松ceftriaxone第三十九章大环内酯类、林可霉素类及万古霉素类抗生素大环内酯类抗生素macrolides红霉素erythromycin林可霉素lincomycin万古霉素vancomycin螺旋霉素spiramycin第四十章氨基苷类及多黏菌素类氨基苷类aminoglycosides链霉素streptomycin庆大霉素gentamicin卡那霉素kanamycin抗生素后效应postantibiotic effect妥布霉素tobramycin 阿米卡星amikacin奈替米星netilmicin多黏菌素类polymyxins第四十一章四环素类及氯霉素类四环素tetracycline土霉素terramycin氯霉素chloramphenicol广谱抗生素broad-spectrum antibiotics多西环素doxycycline第四十二章人工合成抗菌药喹诺酮类quinolones诺氟沙星norfloxacin吡哌酸pipemidic acid氧氟沙星ofloxacin左氧氟沙星levofloxacin环丙沙星ciprofloxacin司帕沙星sparfloxacin曲伐沙星trovafloxacin磺胺嘧啶sulfadiazine磺胺甲噁唑sulfamethoxazole磺胺异噁唑sulfafurazole呋喃妥因nitrofurantoin呋喃唑酮furazolidone甲硝唑metronidazole第四十三章抗真菌及抗病毒药制霉菌素nystatin两性霉素 B amphotericin B克霉唑clotrimazole阿昔洛韦acyclovir利巴韦林ribavirin金刚烷胺amantadine第四十四章抗结核病及抗麻风病药异烟肼 isoni azid利福平rifampicin乙胺丁醇 ethamb utol吡嗪酰胺pyrazinamide对氨水杨酸钠sodium paraaminosalicylate卷曲霉素 capreo mycin第四十五章抗疟药氯喹chloroquine奎宁quinine本芴醇benflumetol伯氨喹primaquine乙胺嘧啶pyrimethamine第四十六章抗阿米巴病药及抗滴虫病药甲硝唑 metroni dazole二氯尼特diloxanide喹啉quinoline第四十七章抗血吸虫病药和抗丝虫病药吡喹酮 pyquit on乙胺嗪diethylcarbamazine伊维菌素ivermectin第四十八章抗肠蠕虫药甲苯咪唑mebendazole阿苯达唑 albendazole第四十九章抗恶性肿瘤药甲氨蝶呤methotrexate5-氟尿嘧啶 5-fluoro uracil阿糖胞苷cytarabine羟基脲 hyd roxycarbamide氮芥chlormethine环磷酰胺endo xan丝裂霉素mito mycin博莱霉素bleo mycin喜树碱camptothecin长春碱vi nblastin长春新碱vinc ristin第五十章免疫调节药免疫调节药 immunom odulators免疫抑制药immunosuppressive agents免疫激活药immunostimu-lanyts免疫增强药immunopotentiating drugs环孢素ciclos porin抗淋巴细胞球蛋白antilymphocyte globulin左旋咪唑levamisole干扰素 interf eron胸腺素 thy mosin。

String Theory in Two Dimensions

String Theory in Two Dimensions
These notes are an expanded version of the lectures I gave at the 1991 ICTP Spring School on String Theory and Quantum Gravity. Here I have attempted to review, from my own personal viewpoint, some of the exciting developments in twodimensional string theory that have taken place over the last year and a half. Because of the multitude of new results, and since the field is still developing rapidly, a comprehensive review must await a later date. These notes are mainly devoted to the matrix model approach1 that has truly revolutionized the two-dimensional Euclidean quantum gravity. Recently this approach has led to the exact solution of quantum gravity coupled to conformal matter systems with c ≤ 1.2−6 These lectures are about the c = 1 model5,6 that is both the richest physically and among the most easily soluble. This model is defined by the sum over geometries

弦理论

弦理论
[编辑本段]弦理论与超弦理论
另外,“弦理论”这一用词所指的原本包含了26度空间的玻色弦理论,和加入了超对称性的超弦理论。在近日的物理界,“弦理论” 一般是专指“超弦理论”,而为了方便区分,较早的“玻色弦理论”则以全名称呼。1990年代,爱德华·维顿提出了一个具有11 度空间的M理论,他和其他学者找到强力的证据,证明了当时许多不同版本的超弦理论其实是M理论的不同极限设定条件下的结果。这些发现带动了第二次超弦理论革新
虽然弦理论最开始是要解出强相互作用力的作用模式,但是后来的研究则发现了所有的最基本粒子,包含正反夸克,正反电子,正反中微子等等,以及四种基本作用力“粒子”(强、弱作用力粒子,电磁力粒子,以及重力粒子),都是由一小段的不停抖动的能量弦线所构成,而各种粒子彼此之间的差异只是这弦线抖动的方式和形状的不同而已。
谈到弦论的普及,恐怕没有人能比得上布赖恩·格林。他是哥伦比亚大学的物理学教授,也是弦论研究的一员大将。
他于1999年出版的《优雅的宇宙》(The Elegant Universe)一书在《纽约时报》的畅销书排行榜上名列第四,并入围了普利策奖的最终评选。格林是美国公共电视网Nova系列专辑的主持人,而他近期刚刚完成了一本关于空间和时间本质的书。《科学美国人》的编辑George Musser最近和格林边吃细弦般的意大利面边聊弦论,以下是这次“餐访”的纪要。
[编辑本段]发展历史
弦理论的雏形是在1968年由Gabriele Veneziano发现。他原本是要找能描述原子核内的强作用力的数学公式,然后在一本老旧的数学书里找到了有200年之久的尤拉公式(Euler's Function),这公式能够成功的描述他所要求解的强作用力。然而进一步将这公式理解为一小段类似橡皮筋那样可扭曲抖动的有弹性的“线段”却是在不久后由李奥纳特·苏士侃所发现,这在日后则发展出“弦理论”。

string theory(超弦论)

string theory(超弦论)

Thank you for staring at the screen
azicon corperation
EINSTEIN PODOLSKY ROSEN
back to the topic
• In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by multidimensional objects called strings.
string theory: the ultimte theory
azicon coperation
how is string theory developed
• For decades, scientists are trying desperately to come out with a ultimate theory, a theory that can explain everything, from atoms to galaxies. At first, the father of physics, Isaac Newton constructed the logic of motion and the laws of physics. He claimed that everything is predictable, and already set, and unchangeable. And space is like a stage, and events played out like plays, and time’s flowing is unchangeable and remains static and flows at a same rate for everyone.

石油钻井专业词汇英语翻译

石油钻井专业词汇英语翻译

钻井业专业词汇英语翻译氨基三乙酸(NTA) aminotriacetic acid胺基amino铵基ammonium安全地层safe formation安全试破safe destruction安全钻井safe drilling坳陷down warping region螯合chelation凹陷sag凹陷地层subsidence formation 奥陶系Ordovician systemAPI 模拟法API recommened methodB多靶点multiple target point白沥青white asphalt白油mineral oil白云母white mica半透膜semipermeable membrane包被絮凝剂flocculant包被envelop包被抑制性encapsulating ability饱和度saturation饱和度剖面图profile map of degree of saturation饱和盐水saturated salt water背斜anticlinal钡barium苯环benzene ring苯酚phenyl hydroxide本质区另|J essential difference泵压过高overhigh pumping pressure比表面积specific surface area比吸水量specific absorption比重瓶法density bottle method避免avoid蓖麻油ricinus oil边界摩擦boundary friction扁藻(浮游植物)algae变化趋势variation trend标准化standardization标准粘度测量standard visicosity measure表面粗糙度roughness of the surface表面电位surface electric potential表面活性剂surfactant ,surface active agent表面能interface energy表面粘度surface viscosity表面抛光sample surfaceAibbs 表面弹性Aibbs surface elasticity表面张力surface tension表明verify /reveal表皮系数(S) skin coefficient憋钻bit bouncing宾汉方程bingham equation丙三醇glycerine丙烯情acrylonitrile丙烯酸acrylic acid丙烯酸盐acrylate丙烯酰胺acrylamide薄而韧的泥饼thin,plastic and compacted mud-cake薄片flake薄弱地层weak formation泊松比poisson' s ratio剥离peel off补救remediation不分散泥浆nondispersed mud不干扰地质录井play no role in geological logging不均质储层heterogeneous reservoir不均匀uneven不可逆irreversible不同程度inordinately部分水解聚丙烯酰胺(PHPA) partially hydrolyzed polyacrylamideC参数优选parametric optimization残酸reacted acid残余饱和度residual staturation残渣gel residue , solid residue测量measure侧链side chain侧钻水平井sidetrack horizontal well层间interlayer层间距the distance between the two crystal layer, layer distance 层理bedding层流layer flow差减法minusing尝试trial柴油diesel oil长连缔合物long chain associated matter操作方法operation method超伸井high deep well超深预探井ultradeep prospecting well超声波ultrasonography超高密度泥浆extremely high density mud超细碳酸钙super-fine calcium carbonate产层production/pay zone产层亏空reservoir voidage产量production ,output沉淀precipitation沉降subside沉降速度settling rate沉砂sand setting衬套sleeve程序program成对水平井paired parallel horizontal wells成分ingredient成胶剂gelatinizing agent成膜树脂film-forming resin成岩性差poor diagenetic grade承压bearing pressure承压低lower pressure resistance承压能力loading capacity尺寸dimension斥力repulsion除硫效果sulfur limitation effect除硫剂U sulfur elimination除砂器desander触变性thixotropy触变剂U thixotropic agent垂沉sag垂直井vertical well充气钻井液aerated drilling fluid磁化magnetization次生有机阳离子聚合物secondary organic cationic polymer 冲砂sand removal冲蚀flush冲刷washing out冲洗clean冲洗效率cleaning efficiency冲洗液washing fluid从…角度from the standpoint of丛式井cluster well稠化剂gelling agent稠油区viscous oil area稠油藏high oil reservoir初步分析preliminary analysis初始稠度initial consistency初始粘度initial viscosity初探primary investigation处理剂additive ,treating-agent粗分散泥浆coarse dispersed mud粗泡沫堵漏工艺coarse-foam plugging technology促凝剂accelerating agent醋酸acetate醋酸钠sodium acetate窜流fluid channeling脆裂embrittlement crack脆性brittle/crisp fragility催化剂accelerant , catalyst萃取剂extracting agentD达西定律Darcy’ s equation大段水层thick aqueous formation大分子氢键络合作用polycomplexation of hydrogen bond大灰量mass slurry大井斜角high deviation angle大块岩样big rock sample大块钻屑massive drilling cuttings大类genera大理石marble大砾石层large gravel bed大量分析quantitative analysis大排量洗井high flow rate washover大排量循环high flow rate circulation大位移定向井extended-reach directional well大斜度钻井big inclination/angle drilling大直径井眼large hole代表性岩心representive core sample单宁酸tannate单体monomer单相关分析法analyzing method of single correlation单相关系数加权coefficient weighted method of single correlation单轴抗压强度uniaxial compressive strength氮nitrogenN-羟甲剂胺N-hydroxymethyl amine淡水fresh water单向压力暂堵剂unidirectional pressure temporary plugging additive 导向螺杆钻具stearable assemly导向器guider等温曲线isothermal curve低毒油基low toxicity oil based低返速low return-velocity低固相泥浆low solid drilling fluid低级醛low-grade aldehyde低粘土相泥浆low clay content drilling fluid狄塞尔堵漏剂diacel plugging agent滴定titration底水丰富basal water abundance底水油藏井bottom water reservoir well第二界面second contact surface缔合物associated matter地层formation地层出液量formation fluid production地层破碎straturn breaking地层倾角大higher formation clination地层水formation water地层损害formation damage地面岩心压汞surface core mercury injection test地下水groundwater , subsurface water地应力ground stress地质geology地质构造geologic structure淀粉starch电测electronic logging电导率electric conductivity电荷electricity电化学法electrochemistry method电解质electrolyte电镜分析electronic microscope photos电位potential fall己电位zeta potential电性electric property电泳法electrophoresis method电子探针electron spectrum调查census顶替过程displacing operation定量设计quantitative design定向井direction well定子stator冻胶gel动静弹性模量dynamic and static elasticity modulus动力稳定性settling stability动力学kinetics动态滤失dynamic filtration动切力yield value动塑比ratio of dynamic shear force/yield value to plastic viscosity 堵漏plugging堵塞seal堵塞比(DR) damage ratio堵塞物bulkhead堵水water shutoff毒性大high toxicity毒性污染环境toxicity ruins the environment短过渡short transition time短纤维brief fiber断层发育mature fault断裂带faulted zone对策countermeasure多产层multilayered reservoir多分支侧钻井multi-lateral sidetracking well多功能添加剂multifunction additive多孔介质porons medium多目标定向井multi-target directional well多相稳态胶体悬浮体系polynomial gel suspension system 多元醇polyatomic alcohol多元非线性回归multielement non-linesr regression多元统计multivariate statistics惰性材料inert material惰性润滑剂inert lubricantE二次沉淀secondary precipitation二叠系Permian system二甲月安dimethylamine二甲基二烯丙基氯化铵dimethyl diallyl ammonium chloride 二价阳离子bivalent ion二开second section二氧化碳(CO2)carbon dioxide二元共聚物binary polymerF发气剂gas-development发展趋势development tendency反排解堵plug removal by reverse flow范氏力van der waals force范氏粘度计fann viscosimeter返回go back to方便钻井液复合粉convenient mud compound powder方程equation芳香烃aromatic group防窜水泥anti-fluid-channeling cement防腐anti-corrosion防卡pipe-sticking prevention ,anti-sticking防漏失lost circulation prevention防气窜anti-fluid-channeling防塌机理mechanism of anti-caving防塌剂anti-caving/collapse agent , clay stabilizer防止prevent^from纺织textile放空不返loss of bit load with loss return放射性示踪剂radioactive tracer tritium非均质nonhomogeneity非离子nonionic非牛顿流体non-newtonian fluid非渗透性impervious废泥浆mud disposal沸石zeolite分布distribution分段固井技术stage cementing technology分光度法spectrophotometer分类division分散dispersion分散剂dispersant分散介质dispersion medium分析analysis分形理论fractal theory分形几何fractal geometry分子molecules分子间能量交换energy exchange between molecules分子量molecular weight分子链molecular chain分子形态shape of molecular chain粉尘dust粉煤灰fly ash粉末powder粉砂质aleuritic texture酚羟基的邻位或对位氢p-or o-hydrogen atom of phenolic group 封闭剂sealing agent封闭稳定good isolation封堵formation sealing封堵剂U formation sealant封固段interval isolation扶正器centralizer氟硼酸borofluorhydric浮力效应effect of buoyancy孵化速度incubation浮游植物floating vegetation复合combine复合离子multifunctional ionic复合离子聚合物amphiprotic/amphoteric polymers ,复合金属两性离子聚合物composite metal zwitterionic polymer复合聚合物泥浆compound-polymer mud复配方案compositional formulation复杂地层complex formation, troublesome region ,trick formation复杂度complex rate复杂时效outage time复杂情况down-hole troublesome condition腐蚀corrosion腐蚀电位corrosion potential腐蚀速率corrosion rate 腐殖酸humate ,humic acid 腐殖酸钾(KHm) potassium humic 辅料auxiliary material 负negative负压钻井underbalanced drilling 符合accord with符合率coincidence rate 副产品by-product附加密度addition mud density改善泥饼质量improvement of mud cake改性modification改性淀粉modified starch改性沥青modified asphalt改造refomation钙calcium钙矶石ettringite钙膨润土钠化sodium modified calcium betonite干混拌技术mixing technology干扰interfere with甘油glycerol锆zirconium高分子higher molecular weight高分子聚合物macromoleclar polymer高分子絮凝剂polymer flocculant高负荷high load高级脂肪醇树脂higher fatty alcohol高价金属阳离子high valent cationic高角度微裂缝high angle micro-fracture高矿化度地层水highly mineralized formation brines 高岭土kaolinite 高炉矿渣(BFS) blast furnace slag高密度钻井液high density drilling fluid高难度high challenge高粘度清扫液viscous sweeping fluid高砂比high sand ratio高温静置quiescence in high temperature高温泥浆high-temperature mud高吸水量树脂absorbent resin高温高压流变仪HTHP rheometer高效润滑剂super lubricant高压盐水层high pressured slatwater layer膏岩层gypsolyte膏质泥岩creaming mudstone膏状磺化沥青paste sulphonated asphalt隔离冲洗液spacer/flushing fluid隔离膜isolating membrane各向异性anisotropy工程engineering共聚copolymerization共聚物copolymer共聚物类降粘剂copolymer thinner狗腿dogleg构造裂缝structural fracture固化solidification固化剂hardener , curing agent固井技术cementing technology固体团块solid cake固相solid phase固相含量solid concentration固相颗粒solid particles固相颗粒侵入solid invasion固相控制技术solid control technology固相损害damage of particles固液分离技术centrifugal separation method胍胶guargum瓜尔胶guar挂片失重法weight loss method关掉电机turn off the power光谱spectroscopy硅silicone硅粉silica powder硅氟fluosilicic硅铝比ratio of silicate to aluminium硅酸钠sodium silicate硅酸盐silicate滚轮失重法roller weight loss method国内夕卜home and abroad过渡金属transitional metal过平衡压力over-balanced pressure过剩浓度residual concentration过氧化物peroxide海绿石chlorite 海上offshore 海水泥浆sea water mud 海湾bay海洋生物marine animal 含量content含水量moisture content耗氧量(COD) chemical oxygen demand 耗氧量(BOD520) biological oxygen demand 核桃壳粉walnut shell flour核磁共振(NMR) nuclear magnetic resonance 合成synthesis合成基钻井液synthetic base drilling fluid 合格eligible合理级配reasonable distribution 褐煤lignite赫巴模式Herschel-Buckley model 黑色正电胶(BPG) black positive gel 恒定滤失速率constant filtration rate 葫芦串irregular borehole 护胶齐U colloid protectingresistance 护胶作用colloid stability 互层interbeded红外光谱infrared spectrography 花岗岩granite戈U眼作业reaming operation 化学螯合剂chelating agent 化学冲洗液chemically washing solution 化学结垢(沉淀)chemical precipitation 环保型environment friendly /acceptable 环境保护environment protection 环空当量密度annular equivalent density 环空返速velocity in annular 环空压耗annular pressure lost 环氧丙烷epoxypropare环氧氯丙烷(ECH) epoxy chloropropane ,epichlorohydric 缓蚀剂U corrosion inhibitor 磺化sulfonation磺化酚醛树脂sulfomethal phenolaldehy resin 磺化剂sulfonating agent磺化类处理剂sulfonated additives磺化沥青sulfonated gilsonite磺化沥青泥浆sulfonated-asphalt mud磺甲基酚醛树脂sulfonated methypheuo formald-ehyde磺酸基团sulfonic acid group ,sulfo group灰色关联分析法gray relative analysis method灰岩limestone回归分析regressive analysis回收率recovery percent回填还耕refilling for plowland火成岩igneous rock火山喷发岩volcanic混合金属层状氢氧化物(MMLHC) mixed metal layer hydroxide compound 混合金属氢氧化物(MMH) mixed metal hydroxides混合纤维composite fiber混合盐水mixed salt活动套管moving casing活度water activity活性硅灰activated grammite活性粘土矿物active clayey mineral活性污泥法activated sludge process宏观macroscopic基液base fluid机械力mechanical机械杂质mechanical impurity机械钻速(ROP) rate of penetrate及时反出timely return极限剪切粘度high shear viscosity极限应变ultimate strain极性基团polar group极压润滑剂pressured/extreme lubricator挤堵squeeze激光多普勒测速仪(LDA) laser Doppler anemometer激光粒度仪laser particle analyzer激活剂activator技术措施technical measure技术讲座workshop for technology技术经济效果technical-economic effect技术套管intermediate casing季铵盐quaternary ammonium, anionic group车甲potassium ,kalium钾基石灰泥浆potassium base lime mud甲硅烷基化处理methylsilicane甲基methyl甲基硅油聚磺高密度钻井液methyl silicone oil polysulfonatedrilling fluid with high density甲醛formaldehyde , methanal甲酸盐formate力口量dosage力口重剂heavy weight additive加重泥浆weighted mud加重钻井液“垂沉” sag phenomenon of weighted drilling fluid 架桥粒子bridge particle价数valence监督supervision碱alkali简化泥浆处理simplify mud treatment简介brief description检查井inspection well检测U inspection/monitor减轻剂lightening admixture减阻剂U anti-friction agent , drag reducer剪切破坏shear failure剪切稀释能力shear thinning property , shearing dilution剪切应力shear stress键bond健康,安全与环境(HSE) health , safety and environment间隙clearance降解产物degradation products降粘机理thinning mechanism降粘剂thinner,visbreaker降失水剂U fluid loss agent/additive, filtration reducer胶结强度bonding/consolidation strength胶结疏松weak bonding胶囊破胶剂encapsulated gel breaker胶凝gelatify胶凝性质jellyfication胶乳latex胶体率colloid fraction胶体稳定性colloid stability胶质gum交联cross-linking交联剂cross linker交联冻胶gel cross-linking交换液exchange fluid接近concordant with结垢precipitation, scale deposit , fouling结构可瞬时形成或拆散quick formation and breaking结构强度structural strength结合refer to结晶crystallization结晶水crystal water接触角contact angle接枝共聚物grafting copolymerization解卡剂pipe free agent介质medium界面interface界面胶结interfacial cementation金属metal金属离子metal ions紧密堆积理论theory of high packing近井壁near-well zone近平衡钻井near-balanced drilling浸出液leaching agent浸酸改造acidizing经验性总结分析empirical analysis晶格lattice bond净化技术solid control井壁稳定borehole井壁稳定hole stability ,stable borehole井底downhole井底静止温度低(BHST) low borehole static temperature 井段interval/section井径well/hole gauge井径规贝U regular and consistent borehole gauge井径扩大率hole diameter enlargement rate井口wellhead井漏lost circulation井身结构wellbore configuration井下安全downhole safety井下复杂情况down hole problem井斜inclination井眼well bore ,borehole井眼轨迹well track井眼净化hole cleaning井眼缩径hole shrinkage井眼稳定hole stability井涌kick浸泡时间soak time静切力(结构力)gel strength/static shear force静损害static damage静态挂片法static weight loss method静态滤失static filtration静液柱压差hydrostatic column pressure difference静置quiescence静止消泡时间static defoaming time静置沉淀static settlement居中centralization居中度centralizer聚 a 一烯基polyalphaolifen聚丙烯青铵盐ammonium polyacryhoitril聚丙烯酰胺(PAM) polyacrylamide聚电解质poly-electrolyte聚合醇polyalcohol , polyol聚合物不分散泥浆non dispersed polymer mud聚合物降滤失水剂polymer filtration control agent聚合物三磺盐水泥浆three-sulfonated polymer salt mud 聚合物钻井液polymer drilling fluid聚合物混油钻井液poly-oil mixture drilling fluid聚磺钻井液sulphonated polymer mud聚结稳定性coagulation stability聚乙二醇(PEG) polyethyleneglycol聚乙烯醇(PVA) polyvinyl alcoholK卡森方程Casson equation卡钻pipe-sticking卡钻因子stuck-pipe factor勘探与开发exploration and development开发井development well开钻泥浆spud mud抗冲击韧性toughness抗冲击性impact resistance抗电解质potential resistance to electrolyte contamination抗钙compatibility of calcium抗裂程度rupture strength抗温抗盐heat and salinity tolerance抗压强度compressive strength抗折强度breaking strength 栲胶tannin , quebrocho 克gram 颗粒particle颗粒级配理论theory of granulartity苛亥^ rigorous可变形粒子deformation particle 可靠inerrable 可逆reversible可溶性盐soluble salt可压缩性compressibility 可用性feasibility 可钻性drillability 刻度盘dial scale 坑内密封法seal in a pit 空气湿度air humidity 孑1洞cavern孔喉pore throat孔隙pore孔隙度测井porosity log 孔隙压力pore pressure 孔隙液pore fluid 快钻剂quick drilling 矿化度mineral salt concentration , mineralization 矿石ore 矿物mineral矿物组分mineralogical composation 矿物晶体mineral crystal 矿物油mineral oil 矿渣slag 扩散diffusionL老化时间ageing time老区maturing field雷诺数Renault number类别category累计厚度gross thickness累托石rectorite沥青asphalt ,gilsonite,bitumen沥青类产品gilsonite and similar materials 离心法敏感性评价centrifugation sensitivity evaluation 离心机centrifugal machine离心机固控技术centrifugal solid control离子ionic离子形态ionic forms粒度grain grade粒度分布particles/size distribution粒度分析particles size analysis粒子particle砾石充填gravel pack连通性formation communication连续提取法continuous extraction两凝水泥浆two-stage cementing cement两性离子zwitter ionic裂缝fissure裂缝壁side of fracture plugging裂隙地层fractured formation裂隙滞后效应fracture lag-effect邻井offset/adjacent well林产forestry淋洗量wash out amount磷酸phosphate磷酸氢二铵diammonium phosphate磷酸盐phosphate salt磷酸酯organic phosphate临界点critical point临界环空流速critical annular fluid velocity临界流量critical flow velocity临界盐度critical salinity零点zero point零析水zero free water硫sulfur硫化氢hydrogen sulfide硫化物sulfide硫酸sulfate硫酸钠sodium sulphate流变参数reheological parameter流变模式reheology model流变性rheology behavior流变性能改进剂rheology conditioner流变学rheology流动度fluidity流动介质flow media流动孔喉flowing pore throat流动摩阻压力flowage friction drag流动实验flow test流动阻力flow resistance流沙层drift sand formation流态flow pattern流体力学hydromechanics theory流体输送减阻accelerating fluid feeding流型fluid type漏斗粘度funnel viscosity漏失lost circulation漏失层位location of the thief zone漏失通道porous media陆上onshore卤虫(甲壳类动物)crustacean卤水bitter(luo) chromium络合coordination ,chelate络合行为热效应thermal effect of the coordination 录井log裸眼井段barefoot interval滤饼filter cake滤失量filtration滤饼电性质electro kinetic property滤液filtrate滤液侵入filtrate invasion铝aluminum铝酸盐aluminate氯酚chlophenol氯化钙(CaCl2) calcium chloride氯化物chlorideKCl 溶液potassium chloride solutionM马来酸酐maleic anhydride埋深burial depth满足…需要meet requirement of曼尼希反应Mannick reaction芒硝层chuco毛细管吸收时间测定仪(CST) capillary suction timer 毛细管压力capillary pressure酶enzyme煤层coal bed煤层气储层coalbed methane reservoir镁magnesium门限流动压差threshold differential pressure of flow蒙脱石smectite咪错基imidazoline醚基ether密胺树脂melamine resin密闭液sealing fluid密度density密实dense幕律模式power law method敏感性sensitivity敏感性流动实验flowrate test膜film , membrane磨铳mill摩擦friction摩擦付friction couples摩擦系数friction coefficient摩阻损失friction loss末端毛细管阻力terminal capillary pressure木质素磺酸盐lignosulfonate模拟analog, simulate模式(型)model目meshN纳米材料nano-composite material纳米技术nano-tech钠sodium钠化sodium treatment钠膨润土泥浆sodium bentonite mud 囊衣capsule dressing 囊芯capsule-core内聚力cohesion内摩擦角internal frictional angle 内泥饼internal filter cake 内切圆半径inscribed circle radius 内烯烃isomerised olefins内源和夕卜源颗粒endogenous and exogenous granula 内在因素intermediate factor 能量交换energy exchange泥包bit balling泥饼mud-cake泥饼强度冲刷仪mud filter cake tester泥浆处理mud treatment泥浆是艮踪剂mud tracer泥浆配方mud formula泥浆转化为水泥浆(MTC) mud to cement泥岩mudstone , conglomerate泥页岩shale , argillutite泥质膏岩argillaceous粘度viscosity粘度极大值maximum viscosity粘度计viscosimeter粘附adhere粘附张力adhesive tension粘弹性viscoelastic粘土clay粘土分级评价法method of grading mud-making clay粘土矿物层间距(d001) crystal indices粘土矿物含量clay mineral content粘土片clay latice粘土膨胀clay swelling粘土膨胀倍数swelling ratio of clays粘土稳定性clay stability粘性流体viscous fluid柠檬酸citric acid凝固点freezing point凝析油condensate oil牛顿流体Newtonian fluid扭距torque浓度concentration浓硫酸strong sulfuric浓缩concentration排列line along排驱压力displacement pressure排水water draining剖面图profile map泡沫流体实验装置aerated fluid test simulator泡沫剂foaming agent泡沫衰变机理foam decay mechanism泡沫质量foam quality泡沫钻井液foam drilling fluid酉己方formula ,recipe ,composition配浆时间drilling fluid preparing time配位体ligand配伍性compatibility配制madeup盆地basin喷blowout喷射钻井jet drilling喷嘴粘度nozzle viscosity膨润土bentonite ,montmorillonite膨润土含量bentonite content膨胀swell膨胀剂sweller膨胀率expansion ratio膨胀性堵漏材料expandable plugging additives硼冻胶boracium gel硼砂borax硼酸盐borate偏心度excentricity偏移shift片麻岩gneiss漂珠hollow microsphere品种variety平衡线膨胀率equalibrium linear expansion value平衡压力钻井balanced drilling评价evaluation评价标准evaluation criterion评价井appraisal well平板型层流plate laminar flow平均井深average well depth平均线膨胀率average expansion rate平均直径mean diameter屏蔽环shielding zone屏蔽暂堵技术temporary shielding method ,barrier-building temporary seal incores 破胶剂gel breaker破胶性breaking property破裂压力fracture pressure破裂压力梯度fracture pressure gradient破孚1 break the emulsion 破乳剂demulsifying agent 葡萄糖glucose起至“重要作用play an important role起泡剂frothing agent起下钻阻卡blockage during tripping气液表面能gas-liquid interface energy迁移migration前置液prepad fluid铅(Pb)lead潜在因素implicit factor潜山buried hill浅高压气层shallow high pressure gas formation浅海shallow-water , neritic area浅井shallow well嵌段聚合物block polymer欠饱和盐水钻井液unsaturated salt water drilling fluid欠平衡钻井underbanlanced drilling欠压实uncompaction羟基hydroxy羟基水hydroxy water羟丙基淀粉hydroxypropul starch羟乙基纤维素hydroxyethyl cellulose强造浆软泥岩high mud making soft shale桥堵剂bridge additive切力shearing force侵入深度invasion depth侵蚀erosion亲核化学吸附nucleophyllic chemical adsorption亲水环境hydrophilic environment亲水性hydrophilcity亲油性lipophilic氢hydrogen氢氟酸hydrofluoric acid氢键hydrogen bond氢氧化钠alkali氢氧化钙calcium hydroxide清扫液sweeping fluid清水clear water清洗剂cleaning agent 蜻纶acrylon fiber 蜻纶费丝nitrilon 倾角dip angle 丘陵hill type球形胶束roundness glues 区块block屈服强度shear strength 屈服值yielding point 曲边三角形curved line trangle 取代度substituted ratio 取芯core,coring operation 取芯进尺coring footage 取芯收获率coring recovery rate 曲线curve 去除wipe off 醛aldehydeR热采井thermal production wells热分析thermoanalysis热滚hot aging热滚分散实验roller oven test , hot rolling test热力学thermodynamics热凝橡胶coagulative rubber热效应thermal effect热稳定性temperature resistance ,heat stability ,stabilityat high temperature热重法(TG) thermogravimetry人工神经网络artificial neural network韧性tenacity韧性粒子tenacity particle日产气daily gas融合amalgamation溶洞cave溶胶sol溶解氧dissolved oxygen溶蚀corrode溶蚀性孔洞solution cave溶液solution柔性棒状胶束flexibility claviform glues蠕虫状胶束vermiculate glues孚L滴聚结实验emulsion drop aggregation test孚1化emulsify ,emulsion乳化剂emulsifier乳化钻井液emulsion drilling fluid乳化作用emulsification入井液working fluid软化点沥青softening point asphalt软泥岩soft mudstone软件包software package润滑剂lubricant润滑仪lubricity tester润湿反转wetting transition , wettability reversed 润湿性wettability 弱面weak planeS塞流顶替plug-flow displacement3r/min 读值3r/m reading三高一适当(3H1S) three high and one proper三磺饱和盐水泥浆three-sulfonated-polymer-saturated-brine mud 三钾月安dimethyl amine三甲基单烯丙基氯化铵trimethyl allyl ammonium chloride三维网状结构three-dimensional network structure三乙醇月胺triethavolamine散射scatter铯cesium射孑1 perforation射孔液perforation fluidX-射线计算机层析技术(CT) computerized tomography沙砾岩glutenite砂泥岩sand shale砂岩sand ,sandstone杀菌剂U bacteriostat筛管screen pipe上泵容易easy pumpability上部地层upper formation /segment上古生界upper palaeozoic上升趋势escalating trend上下密度差difference of densities上下限top and bottom limitation上游领域upstream扫描电镜(SEM) scanning electronic microscope 设计design设计原理design principle神经网络nerve network深穿透射孔枪弹deep penetrating bullet深度depth深井钻井deep drilling深探井exploration well渗流phase flow s渗漏leakage渗透peculation '渗透率fluid permeability渗透率各向异性permeability anisotropy 渗透率恢复值return permeability 渗透水化osmotic hydration 渗透性地层permeable formation 渗析纯化purified by dialysis method声波测井sonic logging 声幅值acoustic amplitude 生产能力production capacity 生态环境ecology environment 生物处理biological treatment 生物毒性biotoxicity生物降解biological degradation生物聚合物biological polymer ,xanthan 生物流化床法biological fluid bed method 生物滤池法bio-filter process 生物转盘法biological rotary method 实验trail十八醇octadecanol失水water loss失重weightlessness, weight loss时间推移技术time delaying method石膏gypsolyte, gypsum石灰lime石蜡alpha , paraffin wax石炭系carboniferous system石英quartz石油加工oil refinery石油裂化petroleum cracking process施工作业field operation事故率failure rate湿挤压wet-extrusion室内模拟实验simulating lab test室内实验和现场lab and field室内研究laboratory study室温ambient temperature适量defined amount适应温度reaction temperature示踪分析法mud filtrate tracer analysis释放release收缩shrink疏水性hydrophobicity叔胺盐tertiary ammonium salt数据库data base数学模型mathematical model数字模拟digital analog塑料小球plastic beads树月脂resin, colophony s束缚irreducible束缚水bond water衰变decay瞬时滤失instantaneous filtration , spurt loss瞬时速度instantaneous velocity双层组合套管固井技术pipe-in-pipe casing string双电层斥力double electrode layer repulsion双分支侧钻水平井bi-lateral sidetracking horizontal well 水包油型乳化液oil-in-water fluid 水不溶物water insoluble matter水层water layer水化hydration水化膨胀分散hydrous disintegration水化抑制剂hydrate control水泥环cement sheath水泥浆cement slurry水泥石set cement水泥熟料cement clinker水泥早强剂cement hardener水解hydration水解度hydrolyzing degree水力学hydraulics水基泥浆water-base drilling fluid水敏性water sensitivity水平井段net horizontal section水平井段长extended horizontal depth水平井偏心环空horizontal eccentric annulus水平位移horizontal displacement水溶性water-soluble水溶液aqueous solution水锁water lock水眼粘度bit nozzle viscosity ,Casson high shear viscosity牟思strontium四苯硼酸钠sodium tetraphenyl borate四级固控系统four stage solid control system四球机four-ball instrument松弛测量法relaxation measurement松散地层unconsolidated formation松散吸附水adsorbed water塑性粘度plastic viscosity塑性水泥plastic cement速度场velocity field速敏speed-sensitivity速凝fast setting速凝剂accelerator酸度计滴定法acidometer titration酸酐anhydride酸碱滴定法acid-base titration酸敏acid sensitivity酸溶性acid soluble酸性条件acidic condition酸性粘土acid clay酸渣acid-slug随钻堵漏plugging while drilling顺利go smoothly缩合condensation缩合共聚condensation-copolymerization缩径hole shrinkage羧基carboxylic ,carboxyl竣甲基纤维素钠(Na-CMC) sodium salt of carboxy methyl-celluloseT塔里木盆地tarim basin 太古界archaeozoic 滩海tidal坍塌slough /cave坍塌压力collapse pressure 坍塌页岩sloughing shale 弹塑性plastoelasticity 弹性力学elastic mechanic弹性模量elastic modulus探井prospecting well碳化carbonization碳酸钙calcium carbonate碳酸氢根离子(HCO3-) bicarbonate ion碳酸盐carbonate碳质carbon羰基carboxide陶粒ceramsite套管casing套管壁casing wall套管居中casing centralization套管开窗井段window killing section套管外封隔器external casing packer特低密度ultralow density特性粘度intrinsic viscosity梯度gradient梯度多凝水泥浆gradient multi-setting cement slurry提出propose提取extraction体积分布volume distribution体积分散volume ratio体积恢复当量equivalent volume体系system天然或人造natural and synthetic填充粒子filler particle田青粉sesbania调凝剂thickening time control agent调整井adjustment well铁垢iron dirty铁矿粉hematite铁离子(Fe) ferrous ion铁离子稳定剂ferrous stability铁落木质素磺酸盐fer-rochrome lignosulfonte烃类hydro carbons通井drafting process同时simultaneously同心环空concentric annulus统计statistics统计分析statistics analysis投料比rate of charge土酸clay/mud acid钍thorium途径way 突破breakthroughW外部因素external factors夕卜源exogenous完井液completion fluid完善井improved well 完钻井深total depth 烷基化alkylate烷氧基alkoxy万能显微镜all-powerful microscope 维护简单maintenance is simple 危险区dangerous zone 微观microcosmic微晶micro-crystal 微粒迁移fine migration 微裂缝micro-fissure/fracture, microcrack 微米micron, micrometer微泡沫钻井液micro-foam drilling fluid 微膨胀minimum inflation微生物microbe尾管liner位移与垂深比displacement/vertical depth 未动用石油储藏undeveloped reservoir 文献documents published。

考研英语翻译历年真题试卷汇编27_真题-无答案

考研英语翻译历年真题试卷汇编27_真题-无答案

考研英语(翻译)历年真题试卷汇编27(总分60,考试时间90分钟)2. Reading ComprehensionSection II Reading ComprehensionPart CDirections: Read the following text carefully and then translate the underlined segments into Chinese.美国的知识分子——2006年英译汉及详解Is it true that the American intellectual is rejected and considered of no account in his society? I am going to suggest that it is not true. Father Bruckberger told part of the story when he observed that it is the intellectuals who have rejected America. But they have done more than that. They have grown dissatisfied with the role of intellectual. It is they, not America, who have become anti-intellectual.First, the object of our study pleads for definition. What is an intellectual?【F1】I shall define him as an individual who has elected as his primary duty and pleasure in life the activity of thinking in a Socratic way about moral problems.He explores such problems consciously, articulately, and frankly, first by asking factual questions, then by asking moral questions, finally by suggesting action which seems appropriate in the light of the factual and moral information which he has obtained.【F2】His function is analogous to that of a judge, who must accept the obligation of revealing in as obvious a manner as possible the course of reasoning which led him to his decision.This definition excludes many individuals usually referred to as intellectuals—the average scientist, for one.【F3】I have excluded him because, while his accomplishments may contribute to the solution of moral problems, he has not been charged with the task of approaching any but the factual aspects of those problems.Like other human beings, he encounters moral issues even in the everyday performance of his routine duties—he is not supposed to cook his experiments, manufacture evidence, or doctor his reports.【F4】But his primary task is not to think about the moral code which governs his activity, any more than a businessman is expected to dedicate his energies to an exploration of rules of conduct in business.During most of his waking life he will take his code for granted, as the businessman takes his ethics.The definition also excludes the majority of teachers, despite the fact that teaching has traditionally been the method whereby many intellectuals earn their living.【F5】They may teach very well and more than earn their salaries, but most of them make little or no independent reflections on human problems which involve moral judgment.This description even fits the majority of eminent scholars. Being learned in some branch of human knowledge is one thing, living in "public and illustrious thoughts," as Emerson would say, is something else.1. 【F1】2. 【F2】3. 【F3】4. 【F4】5. 【F5】萨皮尔一沃尔夫假说的形成——2004年英译汉及详解The relation of language and mind has interested philosophers for many centuries.【F1】The Greeks assumed that the structure of language had some connection with the process of thought, which took root in Europe long before people realized how diverse languages could be.Only recently did linguists begin the serious study of languages that were very different from their own. Two anthropologist-linguists, Franz Boas and Edward Sapir, were pioneers in describing many native languages of North and South America during the first half of the twentieth century.【F2】We are obliged to them because some of these languages have since vanished, as the peoples who spoke them died out or became assimilated and lost their native languages.Other linguists in the earlier part of this century, however, who were less eager to deal with bizarre data from "exotic" language, were not always so grateful.【F3】The newly described languages were often so strikingly different from the well studied languages of Europe and Southeast Asia that some scholars even accused Boas and Sapir of fabricating their data.Na-tive American languages are indeed different, so much so in fact that Navajo could be used by the US military as a code during World War II to send secret messages.Sapir's pupil, Benjamin Lee Whorf, continued the study of American Indian languages.【F4】Being interested in the relationship of language and thought, Whorf developed the idea that the structure of language determines the structure of habitual thought in a society.He reasoned that because it is easier to formulate certain concepts and not others in a given language, the speakers of that language think along one track and not along another.【F5】Whorf came to believe in a sort of linguistic determinism which, in its strongest form, states that language imprisons the mind, and that the grammatical patterns in a language can produce far-reaching consequences for the culture of a ter, this idea became to be known as the Sapir-Whorf hypothesis, but this term is somewhat inappropriate. Although both Sapir and Whorf emphasized the diversity of languages, Sapir himself never explicitly supported the notion of linguistic determinism.6. 【F1】7. 【F2】8. 【F3】9. 【F4】10. 【F5】人类学研究——2003年英译汉及详解Human beings in all times and places think about their world and wonder at their place in it. Humans are thoughtful and creative, possessed of insatiable curiosity.【F1】Furthermore, humans have the ability to modify the environment in which they live, thus subjecting all other life forms to their own peculiar ideas and fancies.Therefore, it is important to study humans in all their richness and diversity in a calm and systematic manner, with the hope that the knowledge resulting from such studies can lead humans to a more harmonious way of living with themselves and with all other life forms on this planet Earth."Anthropology" derives from the Greek words anthropos "human" and logos "the study of". By its very name, anthropology encompasses the study of all humankind.Anthropology is one of the social sciences.【F2】Social science is that branch of intellectual enquiry which seeks to study humans and their endeavors in the same reasoned, orderly, systematic, and dispassioned manner that natural scientists use for the study of natural phenomena.Social science disciplines include geography, economics, political science, psychology, and sociology. Each of these social scienceshas a subfield or specialization which lies particularly close to anthropology.All the social sciences focus upon the study of humanity. Anthropology is a field-study oriented discipline which makes extensive use of **parative method in analysis.【F3】The emphasis on data gathered first-hand, combined with a cross-cultural perspective brought to the analysis of cultures past and present, makes this study a unique and distinctly important social science.Anthropological analyses rest heavily upon the concept of culture. Sir Edward Tylor's formulation of the concept of culture was one of the great intellectual achievements of 19th century science.【F4】Tylor defined culture as "... **plex whole which includes belief, art, morals, law, custom, and any other capabilities and habits acquired by man as a member of society".This insight, so profound in its simplicity, opened up an entirely new way of perceiving and understanding human life. Implicit within Tylor's definition is the concept that culture is learned, shared, and patterned behavior.【F5】Thus, the anthropological concept of "culture", like the concept of "set" in mathematics, is an abstract concept which makes possible immense amounts of concrete research and understanding.11. 【F1】12. 【F2】13. 【F3】14. 【F4】15. 【F5】历史研究的方法论——1999年英译汉及详解【F1】While there are almost as many definitions of history as there are historians, modern practice most closely conforms to one that sees history as the attempt to recreate and explain the significant events of the past.Caught in the web of its own time and place, each generation of historians determines anew what is significant for it in the past. In this search the evidence found is always incomplete and scattered; it is also frequently partial or partisan. The irony of the historian's craft is that its practitioners always know that their efforts are but contributions to an unending process.【F2】Interest in historical methods has arisen less through external challenge to the validity of history as an intellectual discipline and more from internal quarrels among historians themselves.While history once revered its affinity to literature and philosophy, the emerging social sciences seemed to afford greater opportunities for asking new questions and providing rewarding approaches to an understanding of the past. Social science methodologies had to be adapted to a discipline governed by the primacy of historical sources rather than the imperatives of the contemporary world.【F3】During this transfer, traditional historical methods were augmented by additional methodologies designed to interpret the new forms of evidence in the historical study.Methodology is a term that remains inherently ambiguous in the historical profession.【F4】There is no agreement whether methodology refers to the concepts peculiar to historical work in general or to the research techniques appropriate to the various branches of historical inquiry.Historians, especially those so blinded by their research interests that they have been accused of "tunnel method", frequently fall victim to the"technicist fallacy". **mon in the natural sciences, the technicist fallacy mistakenly identifies the discipline as a whole with certain parts of its technical implementation.【F5】It applies equally to traditional historians who view history as only the external and internal criticism of sources, and to social science historians who equate their activity with specific techniques.16. 【F1】17. 【F2】18. 【F3】19. 【F4】20. 【F5】。

Update on String Theory

Update on String Theory
1.2.1 Problems with String Theory Even though string theory had many attractive qualitative features, it began to un-
ravel when one demanded that it should provide a full-fledged self-consistent theory of the hadrons. The original version of string theory turned out to have several fatal flaws. One was that consistency of perturbation theory, beyond the tree approximation, requires 25 spatial dimensions and one time dimension. A second major shortcoming is that this theory does not contain any fermions. Moreover the perturbative spectrum contains tachyons and massless particles. The former imply an unstable vacuum, and the latter are not part of the hadron spectrum.
1
J. H. Schwarz
of their mass. This point of view was developed as part of the S matrix theory/bootstrap program that was fashionable in the 1960s. The linear Regge trajectories were interpreted in terms of poles of the analytic S matrix in the angular momentum plane. This picture successfully accounted for certain asymptotic properties of scattering amplitudes at high energy. This led Veneziano (1968) to propose a very simple mathematical function (basically the Euler beta function) as an approximate expression for a scattering amplitude that realized these properties. Over the next two years a small community of theorists generalized this to formulas for N-body scattering amplitudes with various interrelated consistency properties. The fact that this could be done suggested the possibility that Veneziano’s formula was not just a phenomenological amplitude (as originally intended) but actually part of a full-fledged theory.

string theory

string theory

FUTURE
___________________________________________________
Einstein came along and dramatically revised our views of space and time and gravity .And quantum mechanics unveiled the inner workings of atoms and molecules, revealing a world that’s bizarre and uncertain. So, far from confirming that we had sorted it all out. We’re getting a glimpse of what may be the next layer , vibrating strings, particles, parallel universes and extra dimensions. It’s a breathtaking vision . We’ll keep going.
爱因斯坦出现戏剧性的揭示了我 们对时空以及引力的看法,量子力学 揭开了原子和分子的内部运动的神 秘面纱,向人们展现了一个变化多 端的奇异世界。 所以,我们离弄清所有的真相还 很遥远。我们下一步的任务已经隐 隐在望,震动的弦,超粒子和平行 空间.以及额外维度,前景是激动人 心的。我们将继续前行。
Wormhole
Figure
____________________________
Isaac Newton
Albert Einstein
Niels Bohr
Lenard susskind
Superstring

中药专业英语重点词汇

中药专业英语重点词汇

药典• pharmacopoeia 药典• drug standard 药品标准• specifications 检测项目• drug production 药品生存• description 性状• identification 鉴别• purity test 纯度检查• content assay 含量测定• strength 规格• storage 贮藏• preparation 制备• drug substances 药品• dosage forms 剂型• compounded preparations 复方制剂• excipients 辅料• medical devices 医疗器械• dietary supplements 食品补充剂• excipient 辅料• universal test 常规检查• specific test 专属检查• content assay 含量测定• Ginsenoside 人参皂苷• diluent 稀释液• Botanic Characteristics 植物学特征• Histology Characteristics 组织学特征• Foreign Organic Matter 外来有机物• Alcohol-Soluble Extractives 醇溶物• Loss on Drying 干燥失重• Total Ash 总灰分• Acid-Insoluble Ash 酸不溶灰分• Contaminants 毒害物• Heavy Metals 重金属• Pesticide Residues 农药残留• Specified Microorganisms 微生物抑制菌控制• NLT no less than 不少于• NMT no more than 不多于• TLC 薄层色谱法• Standard solution 对照品• Sample solution 供试品• Adsorbent 吸附剂• Application volume 进样量应用体积• Development solvent 展开剂• Spray reagent 显色剂• Acceptance criteria 验收准则• Retention time 保留时间• Extract 提取物extraction 提取• tablet 片剂天然产物化学• natural product 天然产物• chemical compound 化合物• pharmacological activity 药理活性• biological activity 生理活性• drug discovery 药物开发• drug design 药物设计• total synthesis 全合成• semi-synthesis 半合成• marine organism 海洋生物• microorganism fermentation broths 微生物发酵液• compound library 化合物库• pharmacophore 药效团• genomic; proteome 基因组的;蛋白组• chemical diversity 化学多样性• active principle 活性成分• lead compound 先导化合物• secondary metabolite 二级代谢产物• molecule 分子,微粒• synonymous 同义的• bioassay 生物检定• bioassay-guided isolation 生物活性导向的分离• analogue 类似物• HTS 高通量筛选• combinatorial chemistry 组合化学• dereplication 去重复化• formulation 制剂• mimic 模拟物• de novo 创新• synthetic 合成的• bioactivity 生物活性• biodiversity 生物多样性• antimicrobial 抗微生物的• antiviral 抗病毒的• target 生物靶标• extraction 提取• isolation 分离• identification 鉴定• separation 分离,分开• fractionate 分离• in vivo 体内的• in vitro 体外的药理学• pharmacology 药理学• ligand 配体• receptor 受体• mechanism of action 反应机制• absorption 吸收• distribution 分布• biotransformation 吸收,生物转化• metabolism 新陈代谢• excretion 排泄• elimination 消除• medicinal preparation 药物制剂• dosage form 剂型• intelligent prescription 合理的处方• medication 药物治疗• concentration 浓度• active transfer 主动转运• passive transfer 被动转运• Enzymology 酶学• biological membrane 生物膜• pharmacokinetics 药动学• half-life period 半衰期• pharmacodynamics 药效学• preclinical medical science 基础医学• action and effect 作用与影响• structure-activity relationship 构效关系• interspecies variation 种属差异• clinical pharmacology 临床药理学• pharmacotherapeutics 药物治疗学• chemotherapeutic agent 化疗药物• toxicology 毒理学• adverse effect 不良反应• Intoxication 中毒• 心heart cardiac 加粗为形容词• 肝liver hepatic• 脾spleen• 肺lung pulmonary• 肾kidney renal• 肠intestine intestinal• 胃stomach gastric • 胆bile 胆汁• 尿urine• LD50 半数致死量药剂学• pharmaceutics 药剂学• biopharmaceutics 生物药剂学• new chemical entity NCE 新的化学实体分子• medication 治疗药物• route of administration 给药途径• target site 靶部位• formulation 制剂• dosage form; dose 剂型;剂量• DDS drug delivery system 药物传输系统• solid formulation 固体制剂• active ingredient 活性成分• solubility 溶解度• excipient辅料• solutions 溶液剂• aromatic water 芳香水剂• syrups 糖浆剂• tinctures 酊剂• suspensions 混悬剂• injections 注射剂• eye drops 滴眼剂• tablets 片剂• powders 散剂• capsule 胶囊剂• granules 颗粒剂• drop pills滴丸剂• bioavailability 生物利用度• therapeutic response 治疗效果• systemic circulation 体循环• dynamic equilibrium 动态平衡• plasma concentration 血药浓度• unbound drug 游离药物• therapeutic index 治疗指数• unchanged form 原形;intact form 原形• the time course of drug 药时曲线• coadministration 同时服用• composition 处方• formulation 处方• frequency of administration 给药频率• decoction 汤剂• mixtures 合剂• oral liquid 口服液• fluid extracts 流浸膏剂• extracts 浸膏剂• patch 贴膏剂• bolus 丸• powder 散• plaster 膏• pellet 丹药物分析• analytical chemistry 分析化学• qualitative analysis 定性分析• quantitative analysis 定量分析• elements 元素• ions 离子• compounds 化合物• sample composition 样品构成• analysis 分析• analyst 分析者• analyte 分析物• pharmaceutical analysis 药物分析• doping control 兴奋剂检测• formulation analysis 制剂分析• physical and chemical inspection 理化检验• finished drugs 药物成品• quality observation 质量考察• preparation formulated 调配制剂• quality control 质量控制• quality standard 质量标准• selective 选择性的• specific 专属性的• method validation 方法学验证• accuracy 准确度• recovery 回收率• spiked recovery 加样回收率• precision 精密度• specificity 专属性• detection limit 检测限• quantitation limit 定量限• linearity 线性• range 范围• robustness 耐用性• relative standard deviation 相对标准偏差• signal-to-noise ratios 信噪比• HPLC 高效液相色谱法• UPLC 超高效液相色谱法• DAD 二极管阵列检测器• UVD 紫外检测器• ELSD 蒸法光散射检测器• MS 质谱• UV-Vis 紫外-可见分光光度计• GC-MS 气相色谱-质谱联用仪• binary gradient mobile phase 二元梯度流动相• chromatographic column 色谱柱药品说明书• package insert 说明书• drug instructions 药品说明书• prescribing information 处方信息• Indications and usage 适应症• Dosage and administration 用法用量• Dosage forms and strengths 剂型规格• Contraindications 禁忌症• Warnings 警告• Precautions 注意事项• Adverse reactions 不良反应• Drug interactions 药物相互作用• Overdosage 用药过量• Description 药物介绍• Specific populations 特定人群• Pregnancy 孕妇• Nursing Mothers/ Lactation 哺乳期妇女• Pediatric Use 儿童用药• Geriatric Use 老年人用药• Clinical pharmacology 临床药理学• Mechanism of action 反应机制• Pharmacodynamics 药效学• Pharmacokinetics 药动学• Nonclinical toxicology 非临床毒理学• Carcinogenesis 致癌• Mutagenesis 致突变• Impairment of fertility 致畸• Clinical study 临床研究• How supplied/ Package 包装• Storage 贮存• Shelf life 有效期• Black box warning 黑框警告• active ingredient 活性成分• inactive component 非活性成分• failure/insufficiency 不足• damage/impairment 损伤• hepatic/renal impairment 肝/肾损伤• infectious diarrhea 感染性腹泻• delayed-release tablet 缓释片剂• enteric-coated 包有肠溶衣的• 一天两次twice a day• oral administration 口服• ion channel 离子通道• secretion 分泌物• nhibitor 抑制剂• positive patients 阳性患者• area under the curve 曲线下面积• maximum concentration 最大浓度• half-life 半衰期• randomized 随机的• double-blind 双盲• placebo-controlled 安慰剂对照• placebo-free 无安慰剂• multi-center study 多中心研究中医药• Traditional Chinese Medicine TCM 中医学• Science of Chinese Materia Medica 中药学• Chinese Medicinals 中药Chines herbs, minerals and animal products• Chinese herbal medicines 中草药• Crude medicinal materials 中药材• Authentic medicinal materials 道地药材• Processing pieces 中药饮片• Chinese patent medicines 中成药• TCM physician / TCM practitioner 中医医生• Pharmacist of TCM 中药师• University of TCM 中医药大学• properties and actions 药性• processing 炮制• compatibility 配伍• contraindication 禁忌• rehabilitation 康复• health care 保健• harmonious interaction 和谐相互作用• Imbalance 失衡• meridian 经络• symptom 症• syndrome /pattern 证• syndrome differentiation 辩证• pattern discrimination 分型• pathogenic factor 致病因素•four natures 四气寒cold凉cool温warm热hot平neutral•five flavors 五味辛pungent甘sweet苦bitter酸sour咸salty•six excesses 六邪风wind寒cold热fire/heat湿dampness燥dryness暑summer-heat•阴阳yin and yang表里exterior and interior寒热cold and heat虚实deficiency and excess•升降沉浮lifting, lowering, floating and sinking毒性toxicity归经meridian tropism•purifying and cutting 修制•processing with water: softening/rinsing水制:润/漂•processing with fire 火制• stir-baking with liquid adjuvants: honey, wine, vinegar, saline, ginger juice炙:蜜糖,酒,醋,盐,姜汁•processing with both and water: steaming, boiling 水火共制:蒸,煮•compatibility 配伍•incompatibility 相反•mutual reinforcement/ assistance 相须/使•mutual restraint/ detoxication/ inhibition 相胃/杀/恶•18反18 incompatible medicaments19畏19 medicaments of mutual antagonisms•oral/external 内服/外用•decoction 汤剂•decocted first/later 先煎/后下•boiledwith wrapped herbs 包煎• decocted or boiled separately 另煎•解表药CHMs for Relieving Exterior Syndromes •清热药CHMs for Clearing Interior Heat•泻下药Cathartic CHMs•祛湿药CHMs for Removing Dampness•温里药Warming Interior CHMs•理气药CHMs for Regulating Qi•消食药CHMs for Relieving Food Retention•止血药Hemostatic CHMs•活血化瘀药CHMs for Invigorating Circulation and Removing Blood Stasis•外用药CHMs for External Application•化痰止咳药Phlegm Resolving, Antitussive and antiasthmatic CHMs•安神药Tranquillizers•平肝息风药CHMs for Calming the Liver and Stopping Endogenous Wind•开窍药Resuscitative CHMs•补虚药Restorative CHMs•收敛固涩药Astringent CHMs。

膝骨关节炎保膝治疗的研究进展

膝骨关节炎保膝治疗的研究进展

膝骨关节炎保膝治疗的研究进展王逸康1,林石明2 【摘 要】 膝骨关节炎患者日益增加,且年轻化趋势愈加明显,正确有效的保膝治疗能够有效缓解症状,减缓或阻止关节退行性改变,提高患者生存质量,降低后期膝关节置换率。

文章从非手术治疗和手术治疗方面对膝骨关节炎保膝治疗的研究进展进行综述。

【关键词】 骨关节炎,膝;保膝治疗;药物;手术;研究进展;综述 doi:10.3969/j.issn.2095-4174.2020.12.021 膝骨关节炎(knee osteoarthritis,KOA)是一种以膝关节软骨变性和破坏及关节边缘和软骨下骨骨赘形成为特征的慢性关节疾病,以膝关节周围疼痛、关节活动障碍等为主要临床表现。

随着社会经济的发展,KOA患者逐年增加,且呈年轻化趋势。

美国流行病学调查显示,美国KOA患者达1400万,65岁以下患者占比超50%[1]。

TANG等[2]通过中国健康与养老追踪调查统计17 128例(男8367例、女8761例,平均年龄59.8岁),其中8.1%具有症状性KOA。

人工全膝关节置换术(total knee arthroplas-ty,TKA)作为终末期KOA的治疗选择,通过运用人工生物材料对膝关节已破坏的骨与软骨进行置换,达到减轻患膝疼痛,恢复膝关节功能的目的。

但TKA术后仍有很高的膝关节残留疼痛、活动受限等症状的可能性[3],且存在假体生存率、翻修率等问题。

TKA术后仍有20%的患者对术后恢复情况不满意[4],在未达到TKA手术指征前,建议采取积极有效的保守治疗,以减缓或阻止膝关节退行性改变,提高患者生存质量,降低后期膝关节置换率。

1 非手术治疗1.1 非甾体抗炎药(NSAIDs) NSAIDs是治疗KOA最常用的药物,根据其对环氧化酶(COX)的抑制作用,可分为非选择性NSAIDs(双氯芬酸钠、布洛芬)、COX-1抑制剂(阿司匹林、氟比洛芬)及COX-2抑制剂(塞来昔布)三类。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rXiv:h ep-th/981145v23Fe b1998hep-th/9801145String Theory Formulation of anti-de Sitter Black Holes Danny Birmingham 1Department of Mathematical Physics University College Dublin Belfield,Dublin 4,Ireland Abstract It is shown that the five-dimensional anti-de Sitter black hole is a supersymmetric solution of the low-energy field equations of type IIB string theory compactified on an Einstein space.A statistical interpretation of the mass dependence of the entropy can be obtained from considerations of the three-dimensional BTZ black hole.January 19981IntroductionThe study of black holes in string theory has been the source of recent developments in our understanding of the origin of the Bekenstein-Hawking entropy formula[1]-[3].In many cases,an important role is played by supersymmetry,and the observation that D-branes carry chargefor the RRfields of string theory[4].In three dimensions,a particularly interesting example of a black hole,known as the BTZ black hole,has been constructed[5,6],see[7]for a review.Theconstruction is based upon the observation that by performing a quotient of three-dimensional anti-de Sitter space(adS3),one obtains a spacetime with the properties of a black hole.It wasobserved recently[8]that the microscopic entropy can be understood for certain black holeswhose near-horizon geometry is locally equivalent to adS3.This observation is based on the fact that adS3has an asymptotic symmetry algebra consisting of left and right Virasoro algebras[9,10].In particular,the entropy of the extreme BTZ black hole,viewed as a supersymmetric solution of heterotic string theory without the use of RRfields,was computed in[11].In[12],a higher-dimensional generalization of the BTZ construction was provided.Theessential idea is to take a quotient of anti-de Sitter space,yielding a black hole with topologyR d−1×S1,and an explicit construction infive dimensions was presented.An interesting aspect of these higher-dimensional black holes is that the horizon is a circle,and thus one might hope tobe able to understand their entropy from a lower-dimensional point of view.We show that the five-dimensional black hole is a supersymmetric solution of type IIB string theory compactified to adS5×K5,where K5is a compact internal Einstein space,with only thefield strength for the RR4-form excited.At extremality,the black hole has a non-zero horizon length,proportional to the square root of the mass.A statistical interpretation of this mass dependence can be achieved by relating it to the entropy of the three-dimensional BTZ black hole.2Compactification of Type IIB String Theory on adS5Thefive-dimensional anti-de Sitter black hole is obtained as a quotient of adS5,to which it is locally equivalent[12].To obtain thisfive-dimensional black hole as a supersymmetric solution of type IIB string theory,we seek a compactification to adS5×K5,where K5is a compact internal space.The black hole is then obtained by performing the necessary identifications.We write the10-dimensional coordinates as x M=(xµ,y m),withµ=0,1,2,3,4,and m=5,6,7,8,9, and we follow the conventions of[13].The covariantfield equations for type IIB string theory have been determined in[14].As observed in[14],the desired compactification can be obtained by setting all the bosonicfields to zero,except for the metric and anti-self-dual5-formfield strength.In this case,the only non-trivial equation of motion is given byR MN=15!ǫN1N2N3N4N5M1M2M3M4M5F N1N2N3N4N5,(2)withǫ0123456789=1/√The required solution follows by choosing the ansatz[14]Fµ1µ2µ3µ4µ5=Qǫµ1µ2µ3µ4µ5,F m1m2m3m4m5=−Qǫm1m2m3m4m5.(4)It is then straightforward to see thatRµν=−Q24g mn,(5) with Rµm=0,and we note that the10-dimensional Ricci scalar vanishes.In order to establish the supersymmetry of the solution,we must show that the Killing spinor equations are satisfily,we must show that the supersymmetry variations of the fermionicfields vanish in the compactified background.The relevant terms in the supersym-metry transformations take the form[13,14]δψM=∇Mǫ+i96 ΓM1M2M3M−9δM1MΓM2M3 ǫ∗F M1M2M3,(6)δλ=iΓMǫ∗ ∇Mφ24ΓM1M2M3ǫF M1M2M3.(7)A representation of the Dirac matrices which is relevant to the5+5split is given in[15,16]. The10-dimensional Dirac matrices are denoted byΓA and satisfy{ΓA,ΓB}=2ηAB,(8) with signatureηAB=(−+···+).The representation is given byΓA=(Γα,Γa)=(γα⊗14,γ6⊗Σa),(9) where the spacetime matrices are8-dimensional,and the internal matrices are4-dimensional, satisfying{γα,γβ}=2ηαβ,{Σa,Σb}=2δab,(10) with signatureηαβ=(−++++).Theγ6matrix is given explicitly byγ6= 1400−14 ,(11) and satisfies{γ6,γα}=0,(γ6)2=18.(12)The spacetime Dirac matrices can be written as[15,16]γ0= 0iσ1⊗12iσ1⊗120 ,γ1= 0σ3⊗12σ3⊗120,γ2= 0σ2⊗τ2σ2⊗τ20 ,γ3= 0σ2⊗τ1σ2⊗τ10,γ4= 0σ2⊗τ3σ2⊗τ30,(13) whereσi andτi are the Pauli matrices.The internal matrices areΣ5=σ1⊗12,Σ6=σ3⊗12,Σ7=σ2⊗τ2,Σ8=σ2⊗τ1,Σ9=σ2⊗τ3,(14) withΓαβ=γαβ⊗14,Γab=18⊗Σab.(15) A matrix which also enters the analysis is defined byJ= 014140 ,(16) and satisfies[J,γα]=0.We write the10-dimensional spinor asǫ(x,y)=η(x)⊗χ(y).The Killing spinor equations then becomeδψµ=0⇒∇µη=Q8Σmχ,(17)with the constraint iJγ6η=η.The integrability conditions implied by(17)are then precisely the conditions(5).Thus,we have obtained adS5×K5as a supersymmetric solution of the low-energy equations of motion of type IIB string theory.The amount of supersymmetry present in five dimensions is then determined by the holonomy of the internal space K5.One should also note that the constraint onηis consistent with the chirality onǫ.Defining the10-dimensional chirality operator asΓ11=Γ0Γ1···Γ9,(18) with(Γ11)2=1,wefind thatΓ11=iJγ6⊗14.(19) Hence,Γ11ǫ=ǫ⇒iJγ6η=η.(20)3The Five-Dimensional anti-de Sitter Black HoleRecently,a higher-dimensional generalization of the BTZ black hole was obtained [12].The construction is analogous to the three-dimensional case,whereby a certain quotient of anti-de Sitter space is constructed with the properties of a black hole.In particular,the five dimensional case was explicitly constructed.The important point for our purposes is that the topology of the black hole is R d −1×S 1,with the horizon being given by the S 1factor.This is to be contrasted with the topology R 2×S d −2of a Schwarzschild black hole.The adS 5black hole is parametrized by two parameters,its mass and angular momentum,and as shown in [12],these can be defined by relating the construction to a Chern-Simons supergravity theory for the supergroup SU (2,2|N )[17].The line element of the adS 5black hole can be written in the form [12]ds 2=−r 2−r 2+r 2+cos 2θdt 2+ r 2−r 2+r 2+dφ2+(r 2−r 2+)ℓ2ℓt −r −φ,φ→r −ℓφ,(22)and identifies points along the new angular coordinate φ∼φ+2πn ,with r −<r +.The line element then becomesds 2=dt 2 r 2r 2−ℓ2cos 2θ + r 2−r 2+ℓ2 r 2−ℓ2r +ℓ+ r 2−r 2+r +cos 2θ +(r 2−r 2+)ℓ2ℓ2,J =k r 2++r 2−note that at extremality J=Mℓ,we have r+=r−,and hence the Bekenstein-Hawking entropy is given byS BH=(2πr+)2k.(26) Due to the fact that the horizon for thefive-dimensional case is an S1factor,one notes that the Bekenstein-Hawking entropy at extremality depends on the square root of the mass,as in the case of the BTZ black hole.For very massive BTZ black holes,the entropy has been understood at the microscopic level in[8,11].This understanding is based on the special asymptotic properties of adS3[9,10].Let us recall that in the extreme case,the mass and entropy of the BTZ black hole are given by[5]M BT Z=r2+4G3,S BT Z=2πr+4G5.(28)However,in order of magnitude,we have G3∼G5/α′.We thus see that the mass of the five-dimensional black hole is of the order of the mass of the BTZ black hole.Upon this identification,one thenfinds that the entropy of the adS5black hole is of the order of the BTZ entropy(which has a statistical interpretation[8,11,18]).In order words,this identification yields the correct mass dependence of thefive-dimensional entropy.In this sense,the analysis is similar in spirit to the correspondence principle presented in[19,20].However,further work is required in order tofix the numerical coefficient.4ConclusionsThe construction of conserved charges for thefive-dimensional anti-de Sitter black hole relied on the formulation of a Chern-Simons supergravity theory for the supergroup SU(2,2|N)[17]. In this regard,it is worth remarking that a computation of the entropy for the BTZ black hole from the point of view of three-dimensional Chern-Simons theory with boundary was provided in[18].The computation is based essentially on the observation that the horizon dynamics on the boundary is controlled by a WZW model.It would be interesting to see if a similar computation in the SU(2,2|N)Chern-Simons theory sheds further light on the entropy. Indeed,there has been recent progress in understanding the connection between singletonfield theories in anti-de Sitter space and the D-brane picture of black hole entropy[21].Further considerations are contained in[22]-[24].One should also mention that the self-dual3-brane of type IIB string theory has been discussed in the context of vacuum interpolation between 10-dimensional Minkowski space and adS5×S5[25,26].Another interesting observation is the fact that the Chern-Simons supergravity theory for the anti-de Sitter group can be constructed up to a maximal dimension of seven[17].One mighttherefore expect to be able to construct conserved charges for the seven-dimensional anti-de Sitter black hole,as in thefive-dimensional case.Furthermore,the adS7black hole could thenbe obtained as a compactification adS7×K4of11-dimensional supergravity,with the4-form field strength being proportional to the volume form of the compact internal space K4[27,28].In this way,the adS7black hole could be given an interpretation as a solution of the low-energylimit of M Theory,with the2-branefield excited.AcknowledgementsI would like to thank K.Sfetsos for valuable correspondence on the entropy discussion.Thiswork was supported by Forbairt grant SC/96/603.References[1]A.Strominger and C.Vafa,Microscopic Origin of the Bekenstein-Hawking Entropy,Phys.Lett.B379(1996)99,hep-th/9601029.[2]C.Callan and J.Maldacena,D-brane Approach to Black Hole Quantum Mechanics,Nucl.Phys.B472(1996)591,hep-th/9602043.[3]See,for example,G.Horowitz,Quantum States of Black Holes,gr-qc/9704072;J.Malda-cena,Black Holes in String Theory,hep-th/9607235.[4]J.Polchinski,Dirichlet-branes and Ramond-Ramond Charges,Phys.Rev.Lett.75(1995)4724,hep-th/9510017.[5]M.Ba˜n ados,C.Teitelboim,and J.Zanelli,Black Hole in Three-Dimensional Spacetime,Phys.Rev.Lett.69(1992)1849,hep-th/9204099.[6]M.Ba˜n ados,M.Henneaux,C.Teitelboim,and J.Zanelli,Geometry of the2+1BlackHole,Phys.Rev.D48(1993)1506,gr-qc/9302012.[7]S.Carlip,The(2+1)-Dimensional Black Hole,Class.Quant.Grav.12(1995)2853,gr-qc/9506079.[8]A.Strominger,Black Hole Entropy from Near-Horizon Microstates,hep-th/9712251.[9]J.D.Brown and M.Henneaux,Central Charges in the Canonical Realization of AsymptoticSymmetries:An Example from Three Dimensional Gravity,Commun.Math.Phys.104 (1986)207.[10]O.Coussaert and M.Henneaux,Supersymmetry of the(2+1)-Dimensional Black Holes,Phys.Rev.Lett.72(1994)183,hep-th/9310194.[11]D.Birmingham,I.Sachs,and S.Sen,Entropy of Three-Dimensional Black Holes in StringTheory,hep-th/9801019.[12]M.Ba˜n ados,Constant Curvature Black Holes,gr-qc/9703040.[13]M.J.Duff,R.R.Khuri,and J.X.Lu,String Solitons,Phys.Rep.259(1995)213,hep-th/9412184.[14]J.H.Schwarz,Covariant Field Equations of Chiral N=2D=10Supergravity,Nucl.Phys.B226(1983)269.[15]C.Wetterich,Dimensional Reduction of Weyl,Majorana and Majorana-Weyl Spinors,Nucl.Phys.B222(1983)20.[16]J.H.Schwarz,in Superstrings and Supergravity,Proceedings of the28th Scottish Univer-sities Summer School in Physics,ed.A.T.Davies and D.G.Sutherland,1986.[17]A.H.Chamseddine,Topological Gravity and Supergravity in Various Dimensions,Nucl.Phys.B346(1990)213.[18]S.Carlip,Statistical Mechanics of the(2+1)-Dimensional Black Hole,Phys.Rev.D51(1995)632,gr-qc/9409052;The Statistical Mechanics of the Three-Dimensional Euclidean Black Hole,Phys.Rev.D55(1997)878,gr-qc/9606043.[19]L.Susskind,Some Speculations about Black Hole Entropy in String Theory,hep-th/9309145.[20]G.T.Horowitz and J.Polchinski,A Correspondence Principle for Black Holes and Strings,Phys.Rev.D55(1997)6189,hep-th/9612146.[21]K.Sfetsos and K.Skenderis,Microscopic Derivation of the Bekenstein-Hawking EntropyFormula for Non-Extremal Black Holes,hep-th/9711138.[22]J.Maldacena,The Large N Limit of Superconformal Field Theories and Supergravity,hep-th/9711200.[23]S.Ferrara and C.Fronsdal,Conformal Maxwell Theory as a Singleton Field Theory onADS5,IIB Three Branes and Duality,hep-th/9712239.[24]H.J.Boonstra,B.Peeters,and K.Skenderis,Branes and anti-de Sitter spacetimes,hep-th/9801076.[25]M.J.Duffand J.X.Lu,The Self-Dual Type IIB Superthreebrane,Phys.Lett.B273(1991)409.[26]G.W.Gibbons and P.K.Townsend,Vacuum Interpolation in Supergravity via Super p-branes,Phys.Rev.Lett.71(1993)3754,hep-th/9307049.[27]P.G.O.Freund and M.A.Rubin,Dynamics of Dimensional Reduction,Phys.Lett.97B(1980)233.[28]M.J.Duff,B.E.W.Nilsson,and C.N.Pope,Kaluza-Klein Supergravity,Phys.Rep.130(1986)1.。

相关文档
最新文档