热学复习题
(完整word版)热力学第一定律复习题(13,10)
第二章 热力学第一定律:系统与环境间由于温差而交换的能量。
是物质分子无序运动的结果。
是过程量。
:除热以外的、在系统与环境间交换的所有其它形式的能量。
是物质分子有序运动的、恒压条件下,△H =Q p 。
系统状态变化时,计算系统与环境间交换的能量) 恒压反应热与恒容反应热的关系:Q p =Q V +∑νB (g)RT,21;()()p r p m r m r m m C H T H T dT ∆∆=∆+1. 当理想气体冲入一真空绝热容器后,其温度将(a) 升高(b) 降低(c) 不变(d) 难以确定(答案) c (△U=Q+W, ∵p外=0 , ∴W=0 ,又∵绝热,∴Q=0,所以△U=0)因为是真空故不做功,又因为是绝热故无热交换,故△U=0。
温度不变。
2. 当热力学第一定律写成d U = δQ–p d V时,它适用于(a). 理想气体的可逆过程(b). 封闭体系的任一过程(c). 封闭体系只做体积功过程(d). 封闭体系的定压过程(答案) c (W=W体+W非,当W非=0时,W体= -pdV)3.对热力学可逆过程,下列说法中正确的是(a) 过程进行的速度无限慢 (b) 没有功的损失(c) 系统和环境可同时复原 (d) 不需环境做功(答案) c可逆过程:体系经过某一过程从状态(1)变到状态(2)之后,如果能够使体系和环境都恢复到原来的状态而未留下任何永久性的变化,则该过程称为热力学可逆过程。
否则为不可逆过程特征:①状态变化时推动力与阻力相差无限小,体系与环境始终无限接近于平衡态;②过程中的任何一个中间态都可以从正、逆两个方向到达;③体系变化一个循环后,体系和环境均恢复原态,变化过程中无任何耗散效应;④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。
⑤在可逆过程中,由于状态变化时推动力与阻力相差无限小,所以完成过程所需的时间为无限长。
4.对于封闭体系来说,当过程的始态与终态确定后,下列各项中哪一个无确定值(a) Q (b) Q + W(c) W (当Q = 0时) (d) Q (当W = 0时)(答案) a (△U=Q+W)5.对于孤立体系中发生的实际过程,下列关系中不正确的是(a) W = 0 (b) Q = 0(c) ΔU= 0 (d) ΔH = 0(答案) d (孤立体系?△U=Q+W)6.对于内能是体系状态的单值函数概念,错误理解是(a) 体系处于一定的状态,具有一定的内能(b) 对应于某一状态,内能只能有一数值不能有两个以上的数值(c) 状态发生变化,内能也一定跟着变化 (d) 对应于一个内能值,可以有多个状态(答案) c (理想气体等温过程,△U ,即内能不变; 绝热可逆过程△S=0)7.凡是在孤立体系中进行的变化,其ΔU 和ΔH 的值一定是 (a) ΔU > 0 , ΔH > 0 (b) ΔU = 0 , ΔH = 0(c) ΔU < 0 , ΔH < 0 (d) ΔU = 0 , ΔH 大于、小于或等于零不确定(答案) d8. 封闭体系从A 态变为B 态,可以沿两条等温途径:甲)可逆途径;乙)不可逆途径,则下列关系式⑴ ΔU 可逆> ΔU 不可逆 ⑵ ⎢W 可逆⎢ > ⎢W 不可逆 ⎢⑶ ⎢Q 可逆⎢< ⎢Q 不可逆⎢ ⑷ ( Q 可逆 - W 可逆) > ( Q 不可逆 - W 不可逆) 正确的是(a) (1),(2) (b) (2),(3) (c) (3),(4) (d) (1),(4)(答案) b (④等温可逆过程中,体系对环境作最大功,环境对体系作最小功。
第1章化学热力学基础复习题
化学热力学基础复习题一、是非题下列各题的叙述是否正确?正确的在题后括号内画“√”,错误的画“⨯”1 在定温定压下,CO2由饱和液体转变为饱和蒸气,因温度不变,CO2的热力学能和焓也不变。
( )1答:⨯2 25℃时H2(g)的标准摩尔燃烧焓在量值上等于25℃时H2O(g)的标准摩尔生成焓。
()2答: √p423 稳定态单质的∆f H m (800K)=0 。
( )3答: √4 d U=nC v,m d T公式对一定量的理想气体的任何pVT过程都适用。
( )4答: √p325 系统处于热力学平衡态时,其所有的宏观性质都不随时间而变。
()5答:√6 若系统的所有宏观性质均不随时间而变,则该系统一定处于平衡态。
()6答: √7 隔离系统的热力学能是守恒的。
()7答:√8隔离系统的熵是守恒的。
()8答:⨯9 一定量理想气体的熵只是温度的函数。
()9答:⨯10 绝热过程都是定熵过程。
()10答:⨯11 一个系统从始态到终态,只有进行可逆过程才有熵变。
()11答:⨯12 系统从同一始态出发,经绝热不可逆过程到达的终态,若经绝热可逆过程,则一定达不到此终态。
()12答: √13 热力学第二定律的克劳修斯说法是:热从低温物体传到高温物体是不可能的。
()13答:⨯p5114 系统经历一个不可逆循环过程,其熵变> 0。
()14答:⨯p5115 系统由状态1经定温、定压过程变化到状态2,非体积功W’<0,且有W’>∆G和∆G <0,则此状态变化一定能发生。
()15答: √16 绝热不可逆膨胀过程中∆S >0,则其相反的过程即绝热不可逆压缩过程中∆S <0。
()16答:⨯17 临界温度是气体加压液化所允许的最高温度。
( )17答:√18 化学势是一广度量。
()18 答: ⨯19 只有广度性质才有偏摩尔量。
( )19答: √20 ),(,,B B C C n V S n U ≠⎪⎪⎭⎫ ⎝⎛∂∂ 是偏摩尔热力学能,不是化学势。
大学物理复习题(热学)
E
0
V
(10)、设有下列过程 10)、设有下列过程 )、 (1)用活塞缓慢地压缩绝热容器中的理想气体。(设无摩擦) 用活塞缓慢地压缩绝热容器中的理想气体。(设无摩擦) 。(设无摩擦 用缓慢地旋转的叶片使绝热容器中的水温上升。 (2)用缓慢地旋转的叶片使绝热容器中的水温上升。 冰溶解为水。 (3)冰溶解为水。 一个不受空气阻力及其摩擦力作用的单摆的摆动。 (4)一个不受空气阻力及其摩擦力作用的单摆的摆动。 其中是可逆过程的是: 其中是可逆过程的是: )(1)、(2)、(3)、(4 (A)(1)、(2)、(3)、(4) )(1)、(2)、(3 (B)(1)、(2)、(3) )(1)、(3)、(4 (C)(1)、(3)、(4) )(1)、(4 (D)(1)、(4) (D)
12、如图,一定量的理想气体,由平衡态A 12、如图,一定量的理想气体,由平衡态A变到平衡 的理想气体 ),则无论经过什么过程 则无论经过什么过程, 状态B 状态B(PA=PB),则无论经过什么过程,系统必然 对外做正功;( ;(B (A)对外做正功;(B)内能增加 从外界吸热;( ;(D 向外界放热。 (C)从外界吸热;(D)向外界放热。 [B]
[ C ]
(C)
N N H2 < O2 N N
f(v)
O2 H2
v
7、理想气体绝热地向真空自由膨胀,体 积增大为原来的两倍,则始、末两态 理想气体绝热地向真空自由膨胀, 积增大为原来的两倍,则始、 的温度T 和始、末两态气体分子的平均自由程λ 的温度T1与T2和始、末两态气体分子的平均自由程λ1 、λ2的关系为
30m/s的速度区间内 的速度区间内, 6、温度为T时,在方均根速度为 v2+30m/s的速度区间内, 温度为T 则有: H2和O2两种气体分子数占总分子数的百分比相比较 ,则有:
第1页共9页热学复习习题集一判断题146两容器分别贮有氧气和
第1页共9页《热学》复习习题集一、判断题1.两容器分别贮有氧气和第 1 页共 9 页《热学》复习习题集一、判断题1.两容器分别贮有氧气和氢气~由于它们的压强、温度、体积都相同~则两瓶气体内分子速率分布也一定相同。
, ,2.绝对温度是分子热运动剧烈程度的量度。
, ,3.互为热平衡的物体之间具有相同的热量。
, ,1dp,,4.相对压强系数的定义是。
( ) ,,,V,,pdT,,V5.可以使得华氏温标与摄氏温标的读数恰好相等。
, ,6.若系统与外界没有热流存在~则一定处在平衡态。
, ,7.加速器中粒子的温度随速度的增加而升高。
, ,8.器壁分子与气体分子间的吸引力对气体压强不作贡献。
, ,9.布朗运动不仅能说明分子无规则运动~更能说明热运动所必然有的涨落现象。
( )10.系统经一个正循环后~系统本身没有变化。
, , 11.气体的热容量只是温度的单值函数~与气体体积无关。
( ) 12.分子的内能仅仅是温度的单值函数~与体积无关。
, , 13.压强不变时~温度越高~分子的平均碰撞频率越大。
( ) 14.任何没有体积变化的过程就一定不对外作功。
, , 15.麦克斯韦速率分布律是理想气体在平衡态时存在的规律。
, , 16.理想气体等温膨胀~从单一热源吸热全部转化为对外作功。
, , 17.理想气体的绝热节流过程前后焓值不变。
, , 18.理想气体的绝热节流过程中焓值不变。
, , 19.气体经绝热节流过程温度一定会降低。
, , 20.杜瓦瓶制成的理论根据是在温度一定的条件下~超高真空气体单位时间内在单位面积上所传递的热量与压强成正比。
, ,21.状态图上过程线与横轴及两条垂直于横轴的直线所包围图形的面积的意义为在该过程中系统与外界所作功交换的数值。
( )22.第二类永动机违反了热力学第一定律。
, , 23.第二类永动机违背了热力学第二定律的开尔文表述。
, , 24.第二类永动机违背了热力学第二定律的克劳修斯表述。
第二章 热力学第一定律(总复习题)
热学复习专题 练习
《内能》一、选择题1、(2015•佛山)关于热现象的说法正确的是A、冰熔化成水需要放出热量B、不同的物质比热容一般不同C、水结成冰需要吸收热量D、热传递不能改变物质的内能15.(2015•邵阳)生物体内水的比例很高,有助于调节生物体自身的温度,以免温度变化太快对生物体造成损害。
这主要是因为水的A.质量较小B.凝固点较低C.沸点较高D.比热容较大12.(2015•邵阳) “宝剑锋从磨砺出,梅花香自苦寒来”。
人们能闻到梅花香味是因为A.分子很小B.分子间存在引力C.分子在不停地做无规则运动D.分子间存在斥力5.(3分)(2015•攀枝花)下列现象与分子热运动有关的是()A.春天,百鸟争鸣B.夏天,波光粼粼C.秋天,丹桂飘香D.冬天,大雪纷飞6.(2分)(2015•青海)关于物体的内能,下列说法正确的是()A.温度为0℃的物体没有内能B.做功可以改变物体的内能C.物体的内能增加,一定是温度升高了D.温度相同的1kg水和1g水,内能相同4. (2015•通辽)关于温度、内能和热量的说法错误的是A. 0 ℃的冰也具有内能B. 物体放出热量,温度不一定降低C. 物体对外做功,内能可能减小D. 温度高的物体,内能一定大9、(2015•赤峰)下列说法正确的是()A、物体吸收热量,内能一定增加,温度一定升高B、温度高的物体分子运动剧烈,具有的热量多C、夏日,在阳光照射下地面温度高于海水表面温度,因为水的比热容较大D、固体分子之间的作用力比液体小8.(3分)(2015•庆阳)水的比热容为4.2×103J/(kg•℃),1kg水温度从50℃降低到20℃,放出的热量是()A.4.2×103J B.8.4×104J C.1.26×105J D.2.1×105J4.(3分)(2015•随州)从微观角度分析,训练有素的缉毒犬可以嗅出毒品藏匿处的最主要原因是()A.分子间是有间隙的B.分子的质量很小C.分子不停地运动着D.分子的体积很小9.(3分)(2015•随州)如图甲,网上曾热销一种“55度杯”,称“能很快将开水变成适饮的温水,而后又能将凉水变成适饮的温水”.为破解此中秘密,随州某中学物理小组设计了如图乙模型.设此杯内胆中被封存着300g水,室温20℃;现向杯中倒入200g、100℃开水,摇一摇,杯内水温迅速降至t1,饮用后迅速将200g室温矿泉水倒入该杯,摇一摇,矿泉水的温度可升至t2,若忽略内胆及空间的热能消耗,则t1、t2分别大约为()A.50℃,50℃B.52℃,39.2℃ C.40℃,60℃D.55℃,55℃4.(2分)(2015•黑龙江)“林都”伊春,一年四季风景如画,下列现象的成因不属于物态变化的是()A.春天冰雪消融B.夏天的早晨,河面飘荡着的白雾C.秋天果香扑鼻D.冬天,飘落的雪花4.(3分)(2015•庆阳)下列说法错误的是()A.划燃火柴是利用做功的方式使火柴温度升高的B.油菜花开放时,香气袭人是扩散现象C.冬季取暖用水做媒介是因为水的比热容较大D.破镜难圆是因为分子间有斥力6.(2015•福州)俗话说“酒香不怕巷子深”,其中“酒香”说明分子A.有引力B.有斥力C.有间隙D.在不停地做无规则运动3.(2015•成都)质量相同的甲、乙两种物质从固态开始加热,它们在相同时间内吸收的热量相等,加热时间都为6 分钟,它们的温度随时间变化的图像如图所示。
热力学复习题1
1. 公式d u = c v d t 适用理想气体的任何过程。
( )2. 孤立系统的熵与能量都是守恒的。
( )3. 焓h = u + p v ,对闭口系统,没有流动功,所以系统不存在焓这个参数。
( )4. 绝热节流前后其焓不变,所以温度也不变。
( )5. 在相同热源和在相同冷源之间的一切热机,无论采用什么工质,他们的热效率均相等。
( )6. 孤立系统熵增原理表明:过程进行的结果是孤立系统内各部分的熵都是增加的。
7. 凡符合热力学第一定律的过程就一定能实现。
( )8. δq = d u + δw 及δq = c v d T + P d v 两式均可适用于工质,任何过程。
( ) 9. 系统经历一个可逆定温过程,由于温度没有变化,故不能与外界交换热量。
( ) 10. 当压力升高,饱和温度也升高了,故饱和蒸汽的比容将增大。
( ) 11. 通用气体常数R 与工质的种类无关,气体常数Rg 与工质的种类和状态有关。
12. 在pv 图上定温线比定熵线更缓,TS 图上定容线比定压线更陡。
13. PV 图上定温线是等轴双曲线。
14. 可逆循环的熵变等于零,所以可逆循环的净热等于零。
15. 根据卡诺定理,任何可逆循环的热效率都相等,且都等于121T T -=η(其中,T2表示低温热源温度,T1表示高温热源温度) 16. 无论可逆与不可逆循环,均有TdS Q =δ。
、 17. 把热量全部变为功是不可能的。
18. 对气体加热其温度一定升高。
19. 蒸气推动汽轮机工作的过程可以看成绝热膨胀过程,其水蒸气的焓降转换为功输出。
20. 闭口绝热系是孤立系。
21. 理想气体绝热自由膨胀过程中温度和焓、熵都不变。
22. 透平机在空气中转动对其做功,若该过程进行的无限缓慢随时可以达到新的平衡则可以看成是可逆过程。
1、典型的不可逆过程2、平衡状态3、平衡是否意味着系统内各点的状态参数必须完全相同4、关于节流:不可逆,绝热节流前后焓不变理想气体不能用节流降温蒸气压缩式制冷可以5、理想气体哪些量是温度的单值函数6、定压过程的加热量全部转化为焓增;7、定容过程全部加热量转化为内能的增量8、关于熵的判断说法:例如任何过程,熵只增不减若从某一初态经可逆与不可逆两条路径到达同一终点,则不可逆途径的∆S必大于可逆过程的∆S可逆循环∆S为零,不可逆循环∆S大于零不可逆过程∆S永远大于可逆过程∆S若工质从同一初态,分别经可逆和不可逆过程,到达同一终态,已知两过程热源相同,问传热量是否相同?若工质从同一初态出发,从相同热源吸收相同热量,问末态熵可逆与不可逆谁大?若工质从同一初态出发,一个可逆绝热过程与一个不可逆绝热过程,能否达到相同终点?理想气体绝热自由膨胀,熵变?任何可逆过程的熵总是不变,任何不可逆过程工质的熵总是增加的熵增大的过程必是不可逆过程将热量全部变成功是不可能的9、卡诺效率的适用条件10、水蒸气凝结过程放热量Q,对应的饱和温度T,则该过程的熵变为多少?11、理想气体和水蒸气四个基本热力过程,PV图和TS图的表示。
热力学复习题
热⼒学复习题1、当过程不可逆时, 孤⽴系统的△S 总 > 0, ⼯质的△S 产⽣ > 0。
损失功WL > 0。
经历⼀个不可逆热机的循环过程,体系⼯质的熵 C 。
A 、增⼤B 、减⼩C 、不变D 、可能增⼤,也可能减⼩2、空⽓在封闭的⽓缸内经历⼀过程,相应其内能增加15kJ ,对外界作功15kJ ,则此过程中⼯质与外界交换热量Q= 30 kJ 。
3、流体把2000KJ 的热量传给周围温度为27℃的环境,如果流体的熵变为-5KJ/K ,这整个过程 b 。
a .可能发⽣且可逆; b.可能发⽣但不可逆; c. 不可能发⽣。
4、系统从某⼀初态经不可逆与可逆两条途径膨胀到达同⼀终态,则⼯质 c 。
a .△S 可>△S 不 b. △S 可<△S 不 c. △S 可=△S 不 d.三者都可能。
5、某流体在稳流装置内经历⼀个可逆过程,对外做功为30,得到的热量为100。
试问流体的熵变:( A ) A. 为正; B. 为负; C. 可正、可负。
6、稳流过程能量平衡式:( C )A. 仅适⽤于稳流可逆过程B. 仅适⽤于稳流不可逆过程;C. 该稳流过程可逆、不可逆均可。
7、体系经⼀绝热可逆过程熵值不变。
√8、系统向环境放出热量,温度下降,因此熵产⽣⼩于零。
× 9、Wid 具有状态函数的特点,⽽普通的Ws 则是过程函数。
√10、⾃然界⼀切实际过程的熵产⽣必⼤于零。
√ 11、分别以某⼀真实⽓体和理想⽓体为⼯质在两个恒温热源T1、T2之间进⾏卡诺理想循环,试⽐较这两个循环的热效率。
BA 、前者⼤于后者B 、两者相等C 、前者⼩于后者D 、没法⽐较。
12、i<1的体系的恒沸点为最⾼温度恒沸点。
√13、⼆元完全理想体系中i 组份的汽液平衡⽐Ki=Pis/P 。
√14、汽液平衡数据热⼒学⼀致性检验的理论依据是Wilson ⽅程。
×15、等温条件下,⼆元体系中超额⾃由焓函数与组分i 的活度系数的关系为(1122ln ln EG x x RTγγ=+)活度系数的因次是(⽆因次) 16、形成共沸物的溶液,由于在共沸点处(i i x y =),所以不能⽤简单精馏⽅法同时获得两纯组分。
热学复习习题
北京邮电大学物理系
1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度 (2)气体的温度是大量气体分子热运动的 集体表现,具有统计意义。 (3)温度的高低反应物质内部分子运动剧烈 程度的不同。 (4)从微观上看,气体的温度表示每个分子 的冷热程度
答案: (1)、(2)、(3)
量,视为常量,n 为气体摩尔数)计算理想气体内能 增量时,此式 (A) 只适用于准静态的等体过程. (B) 只适用于一切等体过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 答:[ D ]
18
16. 如图所示,绝热过程AB、CD,等温过程DEA, 和任意过 程BEC,组成一循环过程.若图中ECD所包围的面积为70 J, EAB所包围的面积为30 J,DEA过程中系统放热100J,则 40J (1)整个循环过程(ABCDEA)系统对外做功为___________. 140J (2) BEC过程中系统从外界吸热为___________ .
(C) 两种气体分子的平均速率相等.
(D) 两种气体的内能相等.
14
11.若气体分子的平均平动动能等于1.06 1019 J,则该气
5.12 103 体的温度T=______ K. k
1.38 1023 J K 1
一个
3 kT 2
12.根据能量按自由度均分原理,设气体分子为刚
答:[ A ]
20
18.
如图所示,设某热力学系统经历一个由 c→d→e的过程,其中ab 是一条绝热曲线,a、c在该曲线上.由热力学定律可知该系统在过 程中 (A)不断向外界放出热量. (B)不断从外界吸收热量. (C) 有的阶段吸热,有的阶段放热,整个过程中吸的热量等于放出的 热量. (D) 有的阶段吸热,有的阶段放热,整个过程中吸的热量大于放出的 热量. (E) 有的阶段吸热,有的阶段放热,整个过程中吸的热量小于放出的 p 热量. a
热学复习题 答案
1.有 2×10-3 m 3刚性双原子分子理想气体,其内能为6.75×102 J .(1) 试求气体的压强;(2) 设分子总数为 5.4×1022个,求分子的平均平动动能及气体的温度.(玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) 设分子数为N .据 E = N (i / 2)kT 及 p = (N / V )kT得 p = 2E / (iV ) = 1.35×105 Pa 4分(2) 由 kT N kT E w 2523=ϖϖ 得 ()21105.75/3-⨯==N E w J 3分又 kT N E 25= 得 T = 2 E / (5Nk )=362k 3分2.一定量的单原子分子理想气体,从初态A出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分(2) W = W 1 +W 2 +W 3=100 J .Q = Q 1 +Q 2 +Q 3 =100 J 2分1 2 3 1 2 O V (10-3 m 3) 5 AB C3.1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量.(2) 气体对外界所作的功.(3) 气体吸收的热量.(4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.) 解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分 (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分4.一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = 1.0×105 Pa ,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K ,再经绝热过程温度降回到T 2 = 300 K ,求气体在整个过程中对外作的功. 解:等压过程末态的体积 1001T T V V = 等压过程气体对外作功)1()(01000101-=-=T T V p V V p W =200 J 3分 根据热力学第一定律,绝热过程气体对外作的功为W 2 =-△E =-νC V (T 2-T 1)这里 000RT V p =ν,R C V 25=, 则 500)(25120002==--=T T T V p W J 4分 气体在整个过程中对外作的功为 W = W 1+W 2 =700 J . 1分5.1 mol 理想气体在T 1 = 400 K 的高温热源与T 2 = 300 K 的低温热源间作卡诺循环(可逆的),在400 K 的等温线上起始体积为V 1 = 0.001 m 3,终止体积为V 2 = 0.005 m 3,试求此气体在每一循环中(1) 从高温热源吸收的热量Q 1(2) 气体所作的净功W(3) 气体传给低温热源的热量Q 2解:(1) 312111035.5)/ln(⨯==V V RT Q J 3分 B A O V p 1p p V 1V 2(2) 25.0112=-=T T η. 311034.1⨯==Q W η J 4分(3) 3121001.4⨯=-=W Q Q J 3分6.1 mol 单原子分子理想气体的循环过程如T -V图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量;(2) 经一循环系统所作的净功;(3) 循环的效率.(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693) 解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K 2分(1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热))(2)(b c b c V bc T T R i T T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) 4分(2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J 2分(3) Q 1=Q bc +Q ca , η=W / Q 1=13.4% 2分7.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A 的温度为T A =300 K ,求 (1) 气体在状态B 、C 的温度;(2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和). 解:由图,p A =300 Pa ,p B = p C =100 Pa ;V A =V C =1 m 3,V B =3 m 3.(1) C →A 为等体过程,据方程p A /T A = p C /T C 得T C = T A p C / p A =100 K . 2分B →C 为等压过程,据方程V B /T B =V C /T C 得T B =T C V B /V C =300 K . 2分(2) 各过程中气体所作的功分别为A →B : ))((211C B B A V V p p W -+==400 J . B →C : W 2 = p B (V C -V B ) = -200 J .C →A : W 3 =0 3分(3) 整个循环过程中气体所作总功为W = W 1 +W 2 +W 3 =200 J .因为循环过程气体内能增量为ΔE =0,因此该循环中气体总吸热Q =W +ΔE =200 J . 3分V (10-3m 3)O 1 2 a b c A B C p (Pa)O V (m 3)1002003008.如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q . 解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1=p 1V 2 /4故 V 2 = 4 V 12分循环过程 ΔE = 0 , Q =W .而在a →b 等体过程中功 W 1= 0.在b →c 等压过程中功W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分在c →a 等温过程中功W 3 =p 1 V 1 ln (V 2/V 1) = -p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分Q =W=[(3/4)-ln4] p 1V 1 3分9.气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a为等压过程.试求:(1) d -a 过程中水蒸气作的功W da(2) a -b 过程中水蒸气内能的增量∆E ab(3) 循环过程水蒸汽作的净功W (4) 循环效率η (注:循环效率η=W /Q 1,W 为循环过程水蒸汽对外作的净功,Q 1为循环过程水蒸汽吸收的热量,1 atm= 1.013×105 Pa)解:水蒸汽的质量M =36×10-3 kg水蒸汽的摩尔质量M mol =18×10-3 kg ,i = 6(1) W da = p a (V a -V d )=-5.065×103 J 2分(2) ΔE ab =(M /M mol )(i /2)R (T b -T a )=(i /2)V a (p b - p a )=3.039×104 J 2分(3) 914)/(==RM M V p T mol a b b K W bc = (M /M mol )RT b ln(V c /V b ) =1.05×104 J净功 W =W bc +W da =5.47×103 J 3分(4) Q 1=Q ab +Q bc =ΔE ab +W bc =4.09×104 Jη=W / Q 1=13% 3分p p 1 p 1/4V 1a c b p (atm ) V (L) O a b c d25 50 2 610.比热容比=γ 1.40的理想气体,进行如图所示的ABCA 循环,状态A 的温度为300 K .(1) 求状态B 、C 的温度; (2) 计算各过程中气体所吸收的热量、气体所作的功和气体内能的增量.(普适气体常量 11K m ol J 31.8--⋅⋅=R ) 解:(1) C →A 等体过程有 p A /T A = p C /T C∴ 75)(==Ac A C p p T T K 1分B →C 等压过程有 V B /V B =V C / T C∴ 225)(==CBC B V VT T K1分 (2) 气体的摩尔数为 321.0mol ===AA A RT Vp M M ν1分 由 γ=1.40 可知气体为双原子分子气体,故 R C V 25=,R C p 27=1分 C →A 等体吸热过程 W CA =0Q CA =ΔE CA = v C V (T A -T C ) =1500 J2分 B →C 等压压缩过程 W BC =P B (V C -V B ) =-400 JΔE BC = v C V (T C -T B ) =-1000 JQ BC =ΔE BC + W BC =-1400 J2分 A →B 膨胀过程 1000J )26()100400(21=-+=AB W JΔE AB = v C V (T B -T A ) =-500 JQ AB =ΔE AB + W AB =500 J2分V (m 3) 246A B C O。
热力学题目复习
2、如果一个人在静止状态下向环境散热率为400kJ/h。假设本教室中有60人在上课,教室全封闭,使用空调系统维持室内恒温。现在空调突然发生故障,求:1)故障后20分钟,教室中空气的热力学能增加量。2)假定教室和环境无热量交换,将教室和所有的人取为热力系,该系统热力学能变化多少?应如何解释教室中空气温度的升高?
1、某职工浴室准备采用太阳能热水器提供50°的热水,已知工人下班的半小时内共需要热水2m³,每台热水器的集热板面积为8㎡,每㎡集热面积可以提供1000kJ的热量给热水,用来把20°的水加热到所需的50°,问需要多少台热水器?(50度水的比体积为0.001m³/kg,水的比热4.187kJ/kg.K)
5、压力为15bar,容积为0.2634 m³的干饱和蒸汽,若对其压缩使容积变为初始的一半,求1)定温压缩过程的终态参数;2)按PV=定值计算会得到什么样的结果?
已知t1=400℃, p1=50bar的蒸汽进入汽轮机绝热膨胀至p2=0.04bar。设环境温度t0=20℃,求:1)若过程是可逆的,1kg蒸汽所做的膨胀功及技术功各为多少?2)若汽轮机的相对效率为0.88,求其做功能力损失为多少?
3、某登山运动员携带一只气压计,在出发地测得大气压力为95kpa,在登山过程中,他连续测得另外三个读数,分别为88.4kpa,83.6kpa,78.7kpa,若大气平均密度为1.2kg/M3,重力加速度g=9.81m/s2保持不变,请确定取三个气压值时对应的高度分别是多少?
高一物理热学基础练习题及答案
高一物理热学基础练习题及答案1.选择题:1) 以下哪个物理量与热平衡无关?A. 热容B. 热温度C. 热量D. 内能答案:A. 热容2) 单位质量物质升高1摄氏度所需的热量称为:A. 热容B. 热比热容C. 内能D. 热传导答案:B. 热比热容3) 热平衡是指两个物体:A. 温度相等B. 热量相等C. 热容相等D. 内能相等答案:A. 温度相等4) 以下哪个选项是正确的?A. 温度是物体的固有属性B. 温度是热量的度量C. 温度只能用温度计来测量D. 温度是物体内能的度量答案:D. 温度是物体内能的度量5) 热量是一个:A. 宏观物理量B. 微观物理量C. 化学物理量D. 学院物理量答案:A. 宏观物理量2.填空题:1) 定容状态下若物体的体积变小,则温度___。
答案:升高2) 0摄氏度与摄氏度的冷热程度相同。
答案:相同3) 理想气体在等压过程中热容与()相等。
答案:等压热容4) 热量可以用___来度量。
答案:焦耳5) 热平衡是指两个物体之间没有___流动。
答案:热量3.计算题:1) 质量为0.5kg的物体热容为400J/kg·°C,现有一物体温度由20°C 升高到40°C,需要吸收多少热量?答案:ΔQ = mcΔθΔQ = 0.5kg × 400J/kg·°C × (40°C - 20°C)ΔQ = 400J2) 一瓶装满水的热水袋的质量为0.8kg,其初始温度为80°C,现要将其温度升高到100°C,需要吸收多少热量?(水的比热容为4200J/kg·°C)答案:ΔQ = mcΔθΔQ = 0.8kg × 4200J/kg·°C × (100°C - 80°C)ΔQ = 6720J3) 一个物体的质量为2kg,它的比热容为1000J/kg·°C,将其温度由20°C升高到60°C,需要吸收多少热量?(不考虑相变)答案:ΔQ = mcΔθΔQ = 2kg × 1000J/kg·°C × (60°C - 20°C)ΔQ = 80000J总结:本篇文章涵盖了高一物理热学基础练习题及答案,分为选择题、填空题和计算题三个部分。
热学复习题-学
1.热力学系统处于平衡态应满足的条件为 、 和 。
2.在微观上,绝对温度是 的量度。
3.在相同的温度下,氧气和氦气的分子平均速率的比值=He O V V :2____ __;氧气和氦气的分子平均动能的比值=He O εε:2____ _____。
4. 1mol 理想气体在气缸中进行无限缓慢的膨胀,其体积由V 1变到V 2。
(1)当气缸处于绝热情况下时,理想气体熵的增量△S=_____ _________;(2)当气缸处在等温情况下时,理想气体熵的增量△S=_____ _________.5.卡诺循环由 ____ ____过程和____ ____过程组成.6.试说明下列各量的物理意义:⎰21)(v v dv v f : 。
⎰∞0)(dv v vf : 。
R i 2: 7.如图所示,一定量的理想气体由状态a 经三个不同过程到达状态 b.这三个过程中, 过程对外做功最大, 过程吸热最小。
8。
从分子动理论的观点看,气体的粘滞现象的产生是由于分子热运动引起__ __迁移的结果,气体热传导现象的产生是由于_____ ______迁移的结果,气体扩散现象是由于______ ______迁移的结果。
9。
如熔解时体积膨胀,则晶体的熔点随压强增大而 ;如熔解时体积缩小,则晶体的熔点随压强增大而 。
10. 在微观上,温度是 的量度。
温度是 参量,只具有 意义。
11。
一容器中贮有氧气,其压强为 1.0×105Pa ,温度为300K 。
则其 分子数密度为 m -3,氧气的密度为 kg •m -3,分子平均平动能为 J 。
12. 1mol 理想气体在气缸中进行无限缓慢的膨胀,其体积由V 1变到V 2。
(1)当气缸处于绝热情况下时,理想气体熵的增量△S=_____ _________;(2)当气缸处在等温情况下时,理想气体熵的增量△S=_____ ________。
13.试说明下列各量的物理意义: dvv f )(: 。
第二章热力学第一定律复习题(最新整理)
热力学第一定律一、选择题1、有理想气体,温度由T 1变到T 2,压力由P 1变到P 2,则:( )a.;b.;T nC Hm p ∆=∆,T nC Q m p ∆=,c.;d.T nC Q m V ∆=,TnC T nC W m V m p ∆-∆=,,2、,式中W 代表:( )W Q U +=∆a.体积功; b.非体积功c.体积功和非体积功的和;d.体积功和非体积功的差。
3、对W 的规定是:( )a.环境对体系做功W 为正;b. 环境对体系做功W 为负c. 体系对环境做功W 为正;d. W 总为正4、焓的定义式是:( )a.; b. pV U H +=∆pV U H -=c. ;d. pV U H +=pV U H ∆+∆=∆5、反应 H 2(g) + 1/2O 2(g) = H 2O(l) 的 是:( )θm r H ∆a.H 2O(l)的标准生成焓; b.H 2(g)的标准燃烧焓;c.既是H 2O(l)的标准生成焓又是H 2(g)的标准燃烧焓;d.以上三种说法都对。
6、理想气体的 ( ),,/p m V m C C a.大于1; b.小于1;c.等于1;d.以上三者皆有可能。
7、某化学反应的,该化学反应的反应热:( )0=∆p r C a.不随温度而变; b.随温度升高而增大; c.随温度升高而减小; d.随温度降低而降低。
8、封闭物系 ( )a.不与环境交换功;b.不与环境交换热;c.不与环境交换物质;d.物系内物质种类不改变9、用公式 计算某反应在温度T 的反应焓变,要求:⎰∆+∆=∆Tp dT C H T H 298)298()(( )a.反应恒容;b.T >298K ;c.△C P ≠0;d. 298~T 间反应物和产物无相变10、气体标准态规定为 ( )a.298.15K ,100KPa 状态;b.100KPa ,298.15K 纯理想气体状态;c.100KPa 纯理想气体状态;d.298.15K ,101.325KPa 理想气体状态。
大学物理热学复习题
大学物理热学复习一.选择题(30分,每题3分)1. 金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有个自由电子,其中电子的最大速率为,电子速率在~+d 之间的概率为式中为常数.则该电子气电子的平均速率为 (A) (B)(C)(D)[ B ]2. 按照麦克斯韦分子速率分布定律,具有最概然速率v p 的分子,其动能为: (A) (B)(C)(D)[ C ]3. 一定量的理想气体,开始时处于压强,体积,温度分别为P 1, V 1, T 1的平衡态,后来变到压强,体积,温度分别为P 2, V 2, T 2的终态.若已知V 2> V 1,且T 2= T 1,则以下各种说法中正确的是:(A) 不论经历的是什么过程,气体对外净作的功一定为正值. (B) 不论经历的是什么过程,气体从外界净吸的热一定为正值. (C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少. (D) 如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断。
[ D ] 4. 一定量的理想气体,从a 态出发经过①或②过程 到达b 态,acb 为等温线(如图情况),则①、②两 过程中外界对系统传递的热量Q 1、Q 2是(A) Q 1>0, Q 2<0. (B) Q 1<0, Q 2<0. (C) Q 1>0, Q 2>0. (D) Q 1<0, Q 2>0.[ C ]5. 一定量的理想气体,从p-V 图上初态a 经历① 或②过程到达末态b ,己知a 、b 两态处于同一条 绝热线上(图中虚线是绝热线),则气体在 (A) ①过程中放热,②过程中吸热.(B) ①过程中吸热,②过程中放热.(C) 两种过程中都吸热.(D) 两种过程中都放热. [ A ]6. 一定量的理想气体经历acb 过程时吸热500 J. 则经历acbda 过程时,吸热为 (A) -1200 J. (B) -700 J. (C) -400 J. (D) 700 J.[ B ] 7. 理想气体卡诺循环过程的两条绝热线下的面积 大小(图中阴影部分)分别为S 1和S 2,则二者的大小 关系是:(A) S 1>S 2, (B) S 1=S 2. (C) S l <S 2. (D)无法确定.[ B ] 8. 某理想气体分别进行了如图所示的两个卡诺 循环:Ⅰ(abcda)和Ⅱ(a'b'c'd'a'),且两个循环曲线 所围面积相等.设循环Ⅰ的效率为η,每次循环 在高温热源处吸的热量为Q ,循环Ⅱ的效率为η', 每次循环在高温热源处吸的热量为Q',则 (A) η>η',Q< Q'. (B) η>η',Q>Q' . (C) η<η',Q< Q'. (D) η<η',Q>Q' .[ D ]V5V (×10-3m 3)PV9. 如图所示:一定质量的理想气体,从同一状态A出发,分别经AB(等压)、AC(等温)、AD(绝热)三种过程膨胀,使体积从V1增加到V2. 问哪个过程中气体的熵增加最多?哪个过程中熵增加为零?正确的答案是:(A) 过程AC熵增加最多,过程AD熵增加为零.(B)过程AB熵增加最多,过程AC熵增加为零.(C) 过程AB熵增加最多,过程AD熵增加为零.(D) 过程AD熵增加最多,过程AB熵增加为零. [ C ]10. 理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度T1与T2和始、末两态气体分子的平均自由程与的关系为(A) (B) .(C) (D)[ D ]二.填空题(30分,每题3分)1. 在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根速率 为200 m ·s -1, 则气体的压强为 1.33×105 .2. 边长为1 m 的立方箱子内盛有处于标准状态(1atm, 0°C )下的3×1025个氧分子,此时氧分子的平均速率= 425 m/s . 若已知在单位时间内撞击在容器器壁单位面积上的分子数是(其中n 为分子数密度),计算1秒钟内氧分子与箱子(注:共六面)碰撞的次数N= 1.9×1028 s -1.3. 在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 麦克斯韦 分布律来描述.如果气体处于外力场中,气体分子在空间的分布规律,可用 玻尔兹曼 分布律来描述.4. 某系统由两种理想气体A 、B 组成.其分子数分别为N A 、N B . 若在某一温度下,A 、B 气体各自的速率分布函数为则在同一温度下,由A 、B 气体组成的系统的速率分布函数为=BA B B A A N N f N f N ++)()(v v .5. 如图所示,已知图中画不同斜线的两部分的 面积分别为S 1和S 2,那么(1) 如果气体的膨胀过程为a-1-b ,则气体 对外做功W= S1+ S2 ;(2) 如果气体进行a-2-b-1-a 的循环过程, 则它对外做功W= - S 1 .6. 常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由度为i ),在等压过程中吸热为,对外作功为,内能增加为,则..7. 一理想卡诺热机在温度为300 K 和400 K 的两个热源之间工作.(1) 若把高温热源温度提高100 K,则其热机效率可提高为原来的1.6 倍:(2) 若把低温热源温度降低100 K,则其逆循环的致冷系数将降低为原来的 1/3 倍.8. 有ν摩尔理想气体,作如图所示的循环过程acba,其中acb为半圆弧,b-a为等压线,p c=2p a. 令气体进行a-b的等压过程时吸热Q ab, 则在此循环过程中气体净吸热量Q < Q ab. (填入:>,<或=)9. 1 mol理想气体在气缸中进行无限缓慢的膨胀,其体积由V1变到V2.(1) 当气缸处于绝热情况下时,理想气体熵的增量ΔS= 0 .(2) 当气缸处于等温情况下时,理想气体熵的增量ΔS= Rln(V2/V1) .10. 真实理想气体占据三维空间区域,每个分子都在作三维运动。
高等传热学复习题答案
高等传热学复习题答案一、选择题1. 传热的基本方式包括:A. 导热B. 对流C. 辐射D. 所有以上答案:D2. 稳态导热与非稳态导热的区别在于:A. 温度随时间变化B. 温度不随时间变化C. 热量传递方向D. 热量传递速率答案:A3. 傅里叶定律描述的是:A. 导热现象B. 对流现象C. 辐射现象D. 热传导与热对流的关系答案:A4. 牛顿冷却定律适用于:A. 固体导热B. 流体对流C. 辐射传热D. 非稳态导热答案:D5. 黑体辐射定律中,辐射强度与温度的关系是:A. 线性关系B. 对数关系C. 指数关系D. 幂次关系答案:D二、简答题1. 解释什么是热传导和热对流,并简述它们的主要区别。
热传导是指热量通过物体内部分子振动和自由电子运动传递的过程,是一种分子内部的能量传递方式,不需要物质的宏观流动。
热对流则是由于流体中温度差异引起的密度差异,导致流体发生宏观流动,从而实现热量的传递。
主要区别在于热传导不涉及物质的宏观运动,而热对流则需要。
2. 描述傅里叶定律的物理意义及其数学表达式。
傅里叶定律描述了在稳态导热条件下,单位时间内通过单位面积的热量与温度梯度成正比的关系。
其数学表达式为:\[ q = -k\frac{dT}{dx} \],其中 \( q \) 是热流密度,\( k \) 是材料的热导率,\( \frac{dT}{dx} \) 是温度梯度。
三、计算题1. 一个长为L的长直金属棒,其两端温度分别为T1和T2,金属棒的热导率为k。
求棒中任意位置x处的温度。
根据傅里叶定律,可以列出稳态导热方程:\[ -k\frac{d^2T}{dx^2} = 0 \],解得:\[ T(x) = Ax + B \],其中A和B是常数。
根据边界条件 \( T(0) = T1 \) 和 \( T(L) = T2 \),可以得到:\[ T(x) = T1 + \frac{T2 - T1}{L}x \]2. 一个封闭房间内的空气温度为Ta,房间外的墙面温度为Tw。
热学复习题
1. 气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示。
其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a 为等压过程。
试求:(1) d -a 过程中水蒸气作的功W da (2) a -b 过程中水蒸气内能的增量∆E ab (3) 循环过程水蒸汽作的净功W(4) 循环效率η(注:循环效率η=W /Q 1,W 为循环过程水蒸汽对外作的净功,Q 1为循环过程水蒸汽吸收的热量,1 atm = 1.013×105 Pa) 解:水蒸汽的质量kg 1036-3⨯=M水蒸汽的摩尔质量kg 1081-3mol ⨯=M水蒸汽视为刚性多原子分子理想气体,则其总自由度数为 6=i ` (1) d -a 等压压缩过程中水蒸气对外作的功为J10065.51025)-(5010013.12)(3-35⨯=⨯⨯⨯⨯=-=a d a da V V p W(2) a -b 等体升压升温过程中水蒸气内能的增量为53-mol10013.12)-(6102526)(2)(⨯⨯⨯⨯⨯=-⋅=-=∆a b a a b V ab p p V i T T C MM EJ 10039.34⨯=(3) 由理想气体状态方程可得b 点温度K91431.8)1081/( 1036102510013.16)/(3-3--35≈⨯⨯⨯⨯⨯⨯⨯==RMM V p T molab b则b -c 等温膨胀过程中水蒸气对外作的功为3--33-5mol10521050ln102510013.16lnln⨯⨯⨯⨯⨯⨯⨯===bc b b bc b bc V V V p V V RT MM WJ 10053.14⨯≈循环过程水蒸汽作的净功为J 10465.510065.510053.1334⨯=⨯-⨯=-=da bc W W W(4) 循环过程水蒸汽吸收的热量J10092.410053.110039.34441⨯=⨯+⨯=+∆=+=bc ab bc ab W E Q Q Q循环效率 %35.1310092.410465.5431≈⨯⨯==Q W ηp (atm )V (L)2、 质量为 ,摩尔质量为的理想气体,摩尔定压热容为。
初中物理:热学计算题复习
知识点复习:1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K巩固与提高1.现有一壶水要烧开需要吸收1.38×108J的热量,若不计热量损失,需要完全燃烧多少克煤油?(煤油的燃烧值是4.6×107焦/千克)若实际燃烧了5千克的煤油,则该煤油炉的效率是多少?2.用燃气灶烧水,燃烧0.5kg的煤气,使50kg的水从20℃升高到70℃.已知水的比热容为4.2×103J/(kg·℃),煤气的热值为4.2×107J/kg.求:(1)0.5kg煤气完全燃烧放出的热量.(2)水吸收的热量.(3)燃气灶烧水的效率.3.某工厂利用地热温泉水辅助冬季供暖,地热温泉水每天出水量为2.5×104kg,温泉水的初温是80℃,供暖后温度降到30℃.温泉水的比热容是4.2×103J/(kg•℃).试求(1)这些温泉水每天放出的热量是多少?(2)若这些热量由热值是3.0×107J/kg的焦炭提供,至少需要燃烧多少千克的焦炭?”4.如图甲所示,1标准大气压下,普通煤炉把壶内20℃,5kg水烧开需完全燃烧一定质量的煤,此过程中,烧水效率为28%,为提高煤炉效率,浙江大学创意小组设计了双加热煤炉,如图乙所示,在消耗等量煤烧开壶内初温相同,等量水的过程中,还可额外把炉壁间10kg水从20℃加热至40℃,q煤=3×107J/g,c水=4.2×103J/(kg•℃),以上过程中:问:(1)普通煤炉完全燃烧煤的质量有多大?(2)双加热煤炉的烧水效率有多大?5.可燃冰的学名为“天然气水合物”,是一种由水和天然气在高压、低温情况下形成的类冰状结晶物质,可看成高度压缩的固态天然气,可直接点燃,燃烧后几乎不产生任何残渣,污染比煤、石油都要小的多,被视为21世纪的新型绿色能源,我国南海海底存储着丰富的可燃冰资源,1m3可燃冰可转化为164m3的甲烷气体和0.8m3的水.已知甲烷气体的热值为3.6×107J/m3.(1)在标准大气压下,1m3可燃冰完全燃烧,最多能将多少0℃的水烧开?〔C水=4.2×103J/(Kg•℃)〕.(2)已知甲烷的密度为0.72Kg/m3,求可燃冰的密度.(结果保留一位小数).6.随着生活条件的改善,小明家住上了新楼房,新楼使用的是天然气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-1在一台缩小成为实物1/8的模型中,用20oC 的空气来模拟实物中平均温度为 200 oC 空气的加热过程。
实物中空气的平均流速为6.03m/s ,问模型中的流速应为若干?如模型中的平均表面对流换热系数为195 (W/m 2K),求相应实物中的值。
在这一实验中,模型与实物中流体的Pr 数并不严格相等,你认为这样的模化试验有无实用价值。
解:C t O 20= s m x /1006.15261-=γ mK w x /1059.22
1-=λ C t O 200= s m x /1085.34261-=γ mK w x /1093.322-=λ
21e e R R = 2221
1
1γγl w l w = s m l l w w /85.20112221=⨯=γγ ()82=l l 21u u N N = 222111λλl h l h = K m w l l h h 22
11212/99.36=⨯=λλ (3分) 有价值,因为空气在一定范围内,Pr 值几乎不变。
6-19水以1.2m/s 的平均速流流过内径为20mm 的长管。
(1)管子壁温为75 o C ,水以20 o C 加热到70 o C ;(2)管子壁温为15 o C ,水以70 o C 冷却到20 o C,。
试计算两种情形下的表面传热系数,并讨论造成误差的原因。
解:s m w /2.1= d=0.02m
(1) ()C t t t o f 452
1=+=出入 s m x /10607.0261-=γ mK w x /1015.6422-=λ 361053.3910
607.002.02.1x x x wl R e ===γ 149.189925.3)1053.39(023.0Pr Re 023.04.08.034.08.0===x x x x Nu
λhl
Nu = K m W x l Nu h 2/95.606602.0/6415.0149.189/===λ
(2) 96.164925.3)1053.39(023.0Pr Re 023.03.08.033.08.0===x x x x Nu
K m W x l Nu h 2/14.529102.0/6415.096.164/===λ
(3)流体加热,贴近壁面处的流体粘度减少,增加流体流动,则增加换热效果。
反之,减少换热效果。