2018-2019年人教版七年级数学上册解一元一次方程------去括号与去分母(二)达标习题

合集下载

数学人教版七年级上册3.3解一元一次方程(二) ----去括号.3解一元一次方程(二) ---去-括号

数学人教版七年级上册3.3解一元一次方程(二)  ----去括号.3解一元一次方程(二)  ---去-括号
1 2
x - 4) + 2x = 7-( x - 1)
1 3
• 训练提高 :
3x-2[3(x-1)-2(x+2)]=3(18-x)
本节课学习了什么?
• 本节课学习了用去括号的方法解一元一次方 程。 • 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
3.3 解一元一次方程(二)
—— 去括号(第一课时

解方程:6x-7=4x-1 1、一元一次方程的解法我们学了 哪几步? 移项 合并同类项
系数化为1Leabharlann 2、移项,合并同类项,系数化为1, 要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的 系数相加作为所得项的系数,字母 部分不变。 ③系数化为1,也就是说方程两边同 时除以未知数前面的系数。
2(X+3)=2.5(X-3)
注:方程中有带括号的式子时,去括
号是常用的化简步骤。 例2. 解方程:3x - 7(x-1) = 3 - 2(x+3)
例3. 解方程:3(5x-1)- 2(3x+2)=6(x-1)+2
试一试:解下列方程
1、 4x + 3(2X-3) = 12- (x+4) 2、6(
× 顺航时间=逆航速 也就是:顺航速度___ 度___ ×逆航时间
一艘船从甲码头到乙码头顺流航行,用了2 小 时;从乙码头到甲码头逆流航行,用了2.5小时; 已知水流的速度是3千米/小时,求船在静水中 的平均速度是多少千米/小时? × 逆航时间 顺航速度___ × 顺航时间=逆航速度___
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是______ (X+3) 千米/ (X-3) 千米/ 小时,船在逆水中的速度是_______ 小时.

解一元一次方程(二)——去括号与去分母 优秀教案设计

解一元一次方程(二)——去括号与去分母  优秀教案设计
解一元一次方程(二)——去括号去分母
【第一课时】 【教学目标】
1.知识与技能: 进一步掌握列一元一次方程解应用题的方法步骤。 2.过程与方法: 通过分析行程问题中顺流速度、逆流速度、水流速度、静水中的速度的关系,以及零件 配套问题中的等量关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。 3.情感与价值观: 培养学生自主探究和合作交流意识和能力,体会数学的应用价值。
课堂小结: 通过以上问题的讨论,我们进 一步体会到列方程解决实际问题的 关键是正确地建立方程中的等量关 系,另外在求出 X 值后,一定要检 验它是否合理,虽然不必写出检验 过程,但这一步绝不是可有可无 的。
4/4
教师分析:(1)顺流行驶的速 度、逆流行驶的速度、水流速度, 船 静水中的速度之间的关系如何?
生:顺流行驶速度=船在静水的速 度+水流速度。 逆流行驶速度=船在静水中的速度 -水流速度
教师引导:设船在静水中的平 均速度为 X 千米/小时。
教师提问:问题中的相等关系 是什么?
生:一般情况下,船返回是按原 路线行驶的,因此,可以认为这船的 往返路程相等。由此,列方程: 2(X+3)=2.5(X-3)
【教学设想】
本课时主要在前一课时的基础上进一步学掌握去括号,并通过分析行程问题,零件配套 问题的等量关系,运用方程解决实际问题。
【教材分析】
本课时主要复习去括号的法则,并在这基础上列方程解决实际问题。
【教学重点】
分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程, 并会解方程。
【教学难点】
找出能够表示问题会部含义的相等关系,列出方程。
【教学方法】
引导式。
【教学过程】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】

3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是( )A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=52.把方程去分母,下列变形正确的是( )A.2x﹣x+1=1B.2x﹣(x+1)=1C.2x﹣x+1=6D.2x﹣(x+1)=63.下列方程变形中,正确的是( )A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为( )A.x=1B.x=﹣1C.x=﹣12D.x=125.解方程时,把分母化为整数,得( )A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误( )A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有( )个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为( )A.x=﹣2B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为( )A.8B.﹣8C.6D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是( )x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0B.﹣1C.﹣3D.﹣4二、填空题11.当x= 时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为 .13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为 .14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x= .三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。

初中七年级数学上册,第三章第三节第一课时,《解一元一次方程,--去括号》,新课教学课件

初中七年级数学上册,第三章第三节第一课时,《解一元一次方程,--去括号》,新课教学课件
根据往返路程相等,列方程得 去括号,得 移项及合并,得
2(x+3)=2.5(x-3) 2x+6=2.5x-7.5 0.5x=13.5 X=27
答:船在静水中的平均速度为27千米/时。
------------强化训练-------------某车间22名工人生产螺钉和螺母,每人每天平均生产螺 钉1 200个或螺母2 000个,一个螺钉要配两个螺母。为 了使每天生产的产品刚好配套,应该分配多少名工人生 产螺钉,多少名工人生产螺母?
答:应安排18人去挖土,30人去运土,
正好能使挖出的土及时运走。
------------强化训练-------------某车间每天能生产甲种零件120个,或乙种零件100个, 甲、乙两种零件分别取3个、2个才能配成一套,现要在30天 内生产最多的成套产品,问怎样安排生产甲、乙两种零件的 天数? 1、你能找出题中的等量关系吗? 生产出的甲、乙两种零件恰好能配套
去括号法则: ⑴括号前是“+”号,把括号和它前面的“+”号去掉, 括号里各项都不变符号。 ⑵括号前是“-”号,把括号和它前面的“-”号去 掉,括号里各项都改变符号
去括号得: 移项得:
合并同类项得: 系数化为1得:
6x+6x-12000=150000 6x+6x=150000+12000
12x=162000 x=13500
------------强化训练-------------解方程 3x-7(x-1)=3-2(x+3)
解: 去括号得: 移项得:
3x-7x+7=3-2x-6 3x-7x+2x=3-6-7
合并同类项得: -2x = -10 系数化为1得:
X=5

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)

公开课《解一元一次方程——去括号》说课稿[修改版]

公开课《解一元一次方程——去括号》说课稿[修改版]

第一篇:公开课《解一元一次方程——去括号》说课稿解一元一次方程——去括号的说课稿我说课的内容是人教版九年义务教育七年级教科书数学第一册第三章第三节“解一元一次方程——去括号”的第一课时内容。

本次讲课从四大方面讲解:一、教材分析地位与作用:本节内容在全书及章节的地位:《解一元一次方程——去括号》是初中七年级数学人教版上册第三章第三节。

前面几节我们学习了《解一元一次方程——移项及合并同类项》,这节是解一元一次方程的延伸及应用。

通过这节我们对解一元一次方程有了更新的步骤。

它在教材中起着承前启后的作用,一方面加深对一元一次方程的解法认识,另一方面为接下来讲解去分母做了铺垫。

所以说这节课内容非常重要。

二、教学目标根据上述教材结构内容简析,考虑到学生的认识结构心理特征,教学目标确定如下:①知识与能力:形成并掌握解一元一次方程的规范步骤,理解去括号的法则,并通过对比加深对带系数的去括号方法。

②过程与方法:逐步培养学生观察、归纳、类比、联想等发现规律的一般方法③情感态度与价值观:通过分析解有括号的一元一次方程的过程,让学生体会整洁的内涵,发展有条理地清晰的思维能力,提高人的一般素质。

三、教学重难点确定弄清列方程解应用题的思想方法;用去括号解一元一次方程是这节课的重点。

弄清题意,寻找等量关系是这节课的难点四、学情分析(1)知识掌握上,七年级学生刚刚学习一元一次方程,解一元一次方程的步骤和实际问题的找等量关系掌握不一定很深刻,尤其是应用题的等量关系的寻找不容易,所以应全面系统的去讲述。

(2)学生学习本节课的知识障碍。

学生在知识的结合上不是很顺手,所以教学中教师应予以简单明白、深入浅出的分析。

(3)由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

2019秋人教版七年级数学上册测试试题:3.3-解一元一次方程(二)——去括号与去分母

2019秋人教版七年级数学上册测试试题:3.3-解一元一次方程(二)——去括号与去分母

第1课时 利用去括号解一元一次方程[学生用书B38]1.方程3-5(x +2)=x 去括号后正确的是( B )A .3-x +2=xB .3-5x -10=xC .3-5x +10=xD .3-x -2=x2.方程7(2x -1)-3(4x -1)=11去括号后,正确的是( C )A .14x -7-12x +1=11B .14x -1-12x -3=11C .14x -7-12x +3=11D .14x -1-12x +3=113.方程-3(x +1)=9的解为( C )A .x =-3B .x =4C .x =-4D .x =5【解析】 去括号,得-3x -3=9,移项,合并同类项,得-3x =12,系数化为1,得x =-4.故选C.4.解方程4(x -1)-x =2步骤如下:①去括号,得4x -4-x =2x +1;②(x +12)移项,得4x +x -2x =4+1;③合并同类项,得3x =5;④化系数为1,x =.从53哪一步开始出现错误( B )A .①B .②C .③D .④【解析】 步骤②出现错误,应为移项,得4x -x -2x =4+1.5.多项式2(x -2)比多项式3(4x -1)大19,则x 的值为( A )A .x =-2B .x =2C .x =1D .x =-1【解析】 根据题意,得2(x -2)=3(4x -1)+19,去括号,得2x -4=12x -3+19,移项,得2x -12x =-3+19+4,合并同类项,得-10x =20,系数化为1,得x =-2.故选A.6.方程4-x =3(2-x )的解为__x =1__.【解析】 去括号,得4-x =6-3x ,合并同类项,得2x =2,系数化为1,得x =1.7.当x =____时,5(x -2)与7x -(4x -3)的值相等.1328.解下列方程:(1)[2017·武汉]4x -3=2(x -1);(2)5(m +8)-6(2m -7)=1;(3)2(0.3x +4)-5(0.2x -7)=9;(4)6+2x =7-.(12x -4)(13x -1)解:(1)去括号,得4x -3=2x -2,移项,得4x -2x =3-2,合并同类项,得2x =1,系数化为1,得x =;12(2)去括号,得5m +40-12m +42=1,移项,得5m -12m =1-40-42,合并同类项,得-7m =-81,系数化为1,得m =;817(3)去括号,得0.6x +8-x +35=9,移项,得0.6x -x =9-8-35,合并同类项,得-0.4x =-34,系数化为1,得x =85;(4)去括号,得3x -24+2x =7-x +1,13移项,得3x +2x +x =7+1+24,13合并同类项,得x =32,163系数化为1,得x =6.9.某班在绿化校园的活动中共植树130棵,有5位学生每人种了2棵,其余学生每人种了3棵,这个班共有__45__名学生.【解析】 设这个班共有x 名学生.根据题意,得5×2+3(x -5)=130,解得x =45.10.某班学生分两组参加植树活动,甲组有17人,乙组有25人,后来由于需要,又从甲组抽调了部分学生去乙组.结果乙组的人数是甲组的2倍.则从甲组抽调了__3__名学生去乙组.【解析】 设从甲组抽调了x 名学生去乙组.根据题意,得2(17-x )=25+x ,解得x =3.11.[2017·荆门]已知派派的妈妈和派派今年的年龄之和为36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,派派的年龄为__12__岁.【解析】 设妈妈今年x 岁,则派派今年(36-x )岁,依题意可列方程x +5=4[(36-x )+5]+1.解得x =32.此时36-x =4.40-32=8,4+8=12.所以当派派的妈妈40岁时,派派的年龄为12岁.12.毕业在即,九年级某班为纪念师生情谊,决定让班委花800元班费买两种不同单价的留念册,分别送给50位同学和10位任课老师每人一本留做纪念.其中送给任课老师的留念册的单价比给同学的单价多8元.请问:这两种不同留念册的单价分别为多少元?解:设送给任课老师的留念册的单价为x 元,则送给同学的留念册的单价为(x -8)元.根据题意,得10x +50(x -8)=800,解得x =20,∴x -8=12.答:送给任课老师的留念册的单价为20元,送给同学的留念册的单价为12元.13.一个两位数,十位上的数字与个位上的数字之和是8,将十位上的数字与个位上的数字对调得到的新数比原数的2倍多10,求原来的两位数.解:设原来的两位数的个位上的数字为x ,则十位上的数字为(8-x ),则这个两位数为10(8-x )+x ,数字调换后的两位数为10x +(8-x ).根据题意,得10x +(8-x )=2[10(8-x )+x ]+10,解得x =6.∴8-x =2,则原来的两位数为26.14.悟空顺风探妖踪,千里只用四分钟,归时四分行六百,试问风速是多少?解:设风速是x 里/min.则悟空的速度为-x =(250-x )里/min.1 0004根据题意,得4(250-x -x )=600,解得x =50.答:风速是50 里/min.15.某同学解关于x 的方程2(x +2)=a -3(x -2)时,由于粗心大意,误将等号右边的“-3(x -2)”看作“+3(x -2)”,其他解题过程均正确,从而解得方程的解为x =11,请求出a 的值,并正确地解方程.解:根据题意,将x =11代入2(x +2)=a +3(x -2),得2×(11+2)=a +3×(11-2),解得a =-1,则原方程为2(x+2)=-1-3(x-2),解得x=.15第2课时 利用去分母解一元一次方程[学生用书A40]1.解方程+=时,为了去分母应将方程两边同时乘以( A )x +12x +4365A .30B .15C .10D .6【解析】 分母2,3,5的最小公倍数为30,故方程两边同时乘以30.故选A.2.[2018春·惠安期中]方程+1=x ,去分母后正确的是( A )x +2413A .3(x +2)+12=4xB .12(x +2)+12=12xC .4(x +2)+12=3xD .3(x +2)+1=4x3.[2018春·泉州期末]下列解方程中去分母正确的是( D )A .由-1=,得2x -1=3-3x x 31-x 2B .由-=-1,得 2x -2-x =-4x -22x 4C .由-1=,得 2y -15=3y y 3y 5D .由=+1,得 3(y +1)=2y +6y +12y 34.方程-=的解为( C )x -13x +264-x 2A .x =1B .x =-2C .x =4D .x =35.推理填空:依据下列解方程=的过程,请在前面的括号内填写变形步骤,在后面3x +522x -53的括号内填写变形依据.解:去分母,得3(3x +5)=2(2x -5).(__等式的性质2__)去括号,得9x +15=4x -10.(__移项__),得9x -4x =-10-15.(__等式的性质1__)合并同类项,得5x =-25.(__系数化为1__),得x =-5.(__等式的性质2__)6.解方程:1-=.x +25x -12解:__去分母__,得10-2(x +2)=5(x -1),__去括号__,得10-2x -4=5x -5,__移项__,得-2x -5x =-5-10+4,__合并同类项__,得-7x =-11,__系数化为1__,得x =.1177.解方程:x -=-.x -1223x +23解:去分母,得6x -3x +1=4-2x +4①,即3x +1=-2x +8②,移项,得3x +2x =8-1③,合并同类项,得5x =7④,系数化为1,得x =⑤.75上述解方程的过程中,是否有错误?答:__有__;如果有错误,则错在第__①__步.如果上述解方程有错误,请你给出正确的解题过程.解:正确的解题过程:去分母,得6x -3(x -1)=4-2(x +2),去括号,得6x -3x +3=4-2x -4,移项,合并同类项,得5x =-3,系数化为1,得x =-.358.解方程:(1)-=5;x 630-x 4(2)[2017·黄冈模拟]+1=x -.x +13x -12解:(1)去分母,得2x -3(30-x )=60,去括号,得2x -90+3x =60,移项,得2x +3x =60+90,合并同类项,得5x =150,系数化为1,得x =30;(2)去分母,得2(x +1)+6=6x -3(x -1),去括号,得2x +2+6=6x -3x +3,移项合并,得-x =-5,解得x =5.9.若a +1与互为相反数,则a 的值为__1__.132a -63【解析】 根据题意,得a +1+=0,解得a =1.132a -6310.[2018春·南安期中]当k 取何值时,代数式的值比的值大2?4k -25k +62解:根据题意得-=2,4k -25k +622(4k -2)-5(k +6)=20,8k -4-5k -30=20,8k -5k =20+4+30,3k =54,解得k =18.答:当k =18时,代数式的值比的值大2.4k -25k +6211.现有四个整式:x 2-1,,,-6.12x +15(1)若选择其中两个整式用等号连接,则共能组成哪几个方程?(2)请选择(1)中的一个一元一次方程,解这个方程.解:(1)若选择其中两个整式用等号连接,则有以下方程:x 2-1=,x 2-1=,x 2-1=-6,12x +15=,=-6;x +1512x +15(2)=,x +1512去分母,得x +1=2.5,移项,得x =1.5.12.[2017·长泰月考]小李在解方程-=1去分母时方程右边的1没有3x +522x -m 3乘以6,因而得到方程的解为x =-4,求出m 的值并正确解方程.解:由题意知x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3×(-12+5)-2(-8-m )=1,解得m =3,∴原方程为-=1,3x +522x -33∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.13.先读懂古诗,然后列出方程并求解:巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共用一碗饭,四人共吃一碗羹.试问先生明算者,算来寺内几多僧?这首诗的大概意思是:山林里有一寺院,不知寺内有多少僧人,但知道有364个碗,三人共吃一碗饭,四人共喝一碗汤,正好用完这364个碗,求寺内有多少僧人?解:设寺内有僧人x 个,三人共吃一碗饭,则吃饭用碗 个,x 3四人共喝一碗汤,则喝汤用碗 个.x 4根据题意,得+=364,解得x =624.x 3x 4答:寺内有624个僧人.。

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母

人教版数学七年级上册第三章3.3解一元一次方程(二)——去括号与去分母
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的

(D)
A. 4x-1-x-3=1
B. 4x-1-x +3=1
C. 4x-2-x-3=1
2
10 5
去分母(方程两边同乘各分母的最小公倍数)
5(3x 1) 10 2 (3x 2) 4x
去括号 15x 5 20 3x 2 4x
移项
15x 3x 4x 2 5 20 合并同类项
16x 13
系数化为1
x 13 16
下列方程的解法对不对?如果不对,你能找出错在
解:设寺内有x个僧人,依题意得 1 x 1 x 364. 34
解得x=624.
答:寺内有624个僧人.
1. 方程 3 5x 7 x 17 去分母正确的是
(C)
2
4
A. 3-2(5x+7) = -(x+17)
B. 12-2(5x+7) = -x+17
C. 12-2(5x+7) = -(x+17)
七年级数学上(RJ)
第三章 一元一次方程
3.3 解一元一次方程(二) ——去括号与去分母
第1课时 利用去括号解一元一次方程
化简下列各式: (1) (-3a+2b) +3(a-b); (2) -5a+4b-(-3a+b).
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.

七年级数学上册解一元一次方程3.2_3.3-合并同类项与移项_去括号去分母

七年级数学上册解一元一次方程3.2_3.3-合并同类项与移项_去括号去分母

x
如果先去括号,就能简化方程的形式。这里的 5(138 x) 138 x 相乘。根据分配律,得 是5与
3x 5(138 x) 540
5(138 x) 690 5 x
怎样使这个方程向 x=a的形式转化呢?
下面的框图表示了解这个方程的具体过程: 3x 5(138 x) 540 本题还有其他列
3x+20=4x-25 移项 (还原) 3x-4x=-25-20 (对消) 合并同 -x=-45 类项 系数化为1 x=45
学习了移项后,方程 5x -2=8还可以怎样解呢?
移项,得 化简,得
5x =8+2
5x =10 方程两边同除以5,得 x =2
观察 & 思考
① 移项有什么新特点? ② 移项后的化简包括哪些内容?
1 1 (2)6( x 4) 2 x 7 ( x 1) 2 3
例题讲解 一艘船从甲码头到乙码头顺
流行驶,用了2小时;从乙码头返回甲码头逆 流行驶,用了2.5小时。已知水流速度是3千米 /时,求船在静水中的平均速度。 分析:一般情况下可以认为这艘船往返的路 程相等,由此填空:顺流速度 × 顺流时间= 逆流速度 × 逆流时间 解:设船在静水中的平均速度为 x 千米/时,则
点拨:解未知数的系数含有字母的 方程时,要注意分类讨论。
合并同类项与系数化为1都是解 一元一次方程的重要过程(步骤)。 合并同类项 把方程化为mx=b (m≠0)的形式。 系数化为1 把mx=b (m≠0)化 为x=a。
例、解方程:
7x-2.5x+3x-1.5x= -15×4-6×3
解: 合并同类项,得 6x = -78 系数化为1,得 x= -13

人教版七年级数学上册第3章:3.3解一元一次方程----去括号、去分母同步练习(含答案)

人教版七年级数学上册第3章:3.3解一元一次方程----去括号、去分母同步练习(含答案)

3.3解一元一次方程----去括号、去分母知识要点:1.解一元一次方程——去括号去括号:把方程中含有的括号去掉的过程叫做去括号. (1)去括号的依据:分配律.(2)去括号的法则:将括号外的因数连同它前面的符号看成一个整体,按照分配律与括号内各项相乘.括号外的因数是正数,去括号后各项符号与原括号内相应的各项符号相同;括号外的因数是负数,去括号后各项符号与原括号内相应的各项符号相反.(3)对于多重括号的,可以先去小括号,再去中括号,若有大括号,最后去大括号,或由外向内去括号,有时也可用去分母的方法去括号 2.解一元一次方程——去分母(1)定义:一元一次方程中如果有分母,在方程的两边同时乘所有分母的最小公倍数,将分母去掉,这一变形过程叫做去分母.(2)去分母的依据:等式的性质2.(3)去分母的做法:方程两边同时乘所有分母的最小公倍数 一、单选题1.小亮在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为:527x x -=+■,他翻看答案,解为5x =-,请你帮他补出这个常数是( ) A.32B.8C.72D.122.已知2342A x x =-+,2351B x x =+-且0A B -=,则满足条件的x 值为( ) A .1B .-1C .13D .13-3.如果(5126x --)的倒数是3,那么x 的值是( ) A .-3B .1C .3D .-14.下列变形中,正确的是( ) A. 变形为B.变形为C.变形为D.变形为5.解方程时,去分母正确的是()A. B. C. D.6.解方程的步骤如下:解:①去括号,得.②移项,得.③合并同类项,得.④两边同除以,得.经检验,不是方程的解.则上述解题过程中出错的步骤是()A.①B.②C.③D.④7.方程的解是()A. B. C. D.8.解方程时,去分母正确的是()A. B. C. D.9.若关于的方程的解与的解之和等于5,则的值是()A.-1 B.3 C.2 D.10.方程10515601260x x+=-的解是()A.15x =B.20x =C.25x =D.30x =二、填空题11.定义一种新运算:a b ab a b *=++,若327x *=,则x 的值是________. 12.关于x 的一元一次方程(2m-6)x │m│-2=m 2的解为___. 13.若x a =是关于x 的方程2152x b -+=的解,则+a b 的值为__________. 14.完成下列的解题过程: 用两种方法解方程:11(31)1(3)43x x -=-+. (1)解法一:去分母,得______________. 去括号,得_________________.移项、合并同类项,得________________. 系数化为1,得_____________.(2)解法二:去括号,得______________. 去分母,得________________. 移项、合并同类项,得____________. 系数化为1,得_______________.三、解答题 15.解方程:21534x x ---=- 16.解方程(1)7x ﹣4=4x+5 (2)2(10)52(1)x x x x -+=+-17.李娟同学在解方程21133x x a-+=-的过程中,去分母时,方程右边的1-没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 18.先看例子,再解类似的题目. 例:解方程:2(1)11x x -+=-.解:设1x y -=,则原方程化为21y y +=.解得1y =-. 所以11x -=-. 解得0x =.问题:用你发现的规律解方程:3(23)5(32)2x x -=-+.19.已知关于x 的方程2123x a x +--=. (1)当1a =时,求出方程的解; (2)当2a =时,求出方程的解.答案1.B 2.C 3.C 4.B5.D 6.B 7.B 8.B 9.C 10.A 11.6 12.x=34-13.11214.3(31)124(3)x x -=-+, 9312412x x -=--, 133x =, 313x =, 31111443x x -=--,9312412x x -=--, 133x =, 313x = 15.解:去分母得:4(x-2)-3(1-x)=-60 去括号得:4x-8-3+3x=-60, 移项、合并同类项,得7x=-49, 化未知数x 系数为1得:x=-7. 16.解:(1)7x ﹣4=4x+5 ∴3x 9= ∴x 3=;(2)2(10)52(1)x x x x -+=+- 去括号得:2x-x-10=5x+2x-2,移项合并得:-6x=8, ∴4x 3=-17.解:李娟同学的解法:21133x x a-+=-, 去分母,得211x x a -=+-. 移项、合并同类项,得x a =. 因为错解为2x =,所以2a =. 再将2a =代入到原方程中,解得0x =.18.解:设23x y -=,则原方程化为352y y =-+.解得14y =,所以1234x -=.解得138x =. 19.(1)将a=1代入方程得:12123x x +--=,去分母得:6−3(x+1)=2(x−2), 去括号得:6−3x−3=2x−4, 移项合并得:5x=7,解得:75x =;(2)将a=2代入方程得:22123x x +--=,去分母得:6−3(x+2)=2(x−2), 去括号得:6−3x−6=2x−4, 移项合并得:5x=4,解得:45x =。

2019秋七年级人教版数学上册教案:3.3解一元一次方程-去括号与去分母

2019秋七年级人教版数学上册教案:3.3解一元一次方程-去括号与去分母
突破方法:总结寻找最简公分母的方法,如分解质因数、列举公因数等,并通过练习加强巩固。
(3)等式两边相等原则:在求解方程过程中,学生可能会忽视等式两边相等的原则,导致求解错误。
突破方法:强调等式两边每一步操作都必须保持相等,通过对比正误示例,让学生体会这一原则的重要性。
(4)实际问题的建模:将实际问题抽象为一元一次方程,学生可能难以理解问题背后的数学关系。
2019秋七年级人教版数学上册教案:3.3解一元一次方程-去括号与去分母
一、教学内容
本节课选自2019秋七年级人教版数学上册教材,章节为3.3节“解一元一次方程-去括号与去分母”。教学内容主要包括以下两个方面:
1.去括号法则:在解一元一次方程时,若方程中含有括号,需先去掉括号,再进行求解。去括号时,要注意括号前面的符号,并按照乘法分配律展开括号。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了去括号与去分母的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
其次,寻找最简公分母这个环节,部分同学还是觉得有点困难。我觉得在这里可以多给一些具体的例子,让同学们通过实际操作来体会如何找到最简公分母。此外,还可以引导同学们总结寻找最简公分母的方法,帮助他们更好地理解和记忆。
在课堂实践活动和小组讨论环节,同学们表现得非常积极。他们能够将所学的知识运用到解决实际问题中,这让我感到很欣慰。但同时我也注意到,有些同学在讨论过程中过于依赖教材,缺乏独立思考的能力。在以后的教学中,我会尽量多设置一些开放性的问题,鼓励同学们发挥自己的想象力,提高他们独立解决问题的能力。

初中数学人教版七年级上册——去括号解一元一次方程(2)

初中数学人教版七年级上册——去括号解一元一次方程(2)
系数化为1得: x=5
去括号这一步骤的易错点: 1、括号前是负号时,去括号后不记得变号。 2、括号前有因数时,去括号后会漏乘。
练习:
1、下1) 1 x 5
去括号,得 30.4x 2 0.2x
移项,得 0.4x 0.2x 3 2
1、解一元一次方程的步骤: 去括号 移项 合并同类项 2、需要注意的是:
系数化为1
学.科.网
(1)去括号法则(顺口溜) (2)括号前有因数时,
去括号,看符号; 不要漏乘
是“十”,不变号; 是“-”,全变号。
如:2(x-3)= 2x-6
中学数学网(群英学科)
作业:第98页:习题3.3 第1题、第2题
③系数化为1,要方程 两边同时除以未知数前 面的系数。
-3x+5x=5-9
合并同类项,得: 2x = -4
系数化为1,得:
x=-2
小彬,我能猜 出你心里想的数。
他怎么知 道的我心里 所想的数呢?
你想的数减5 再乘2,再加9, 得数是多少?
小彬
如果设小彬心里想的数为x,那么“x减5再乘2再加9,” 就是__2_(_x_-_5__)+__9____,所以得到方程:2(x-5)_+_9_=_A____。
复习去括号法则: (顺口溜)
去括号,看符号; 是“十”,不变号; 是“-”,全变号。
解一元一次方程的步骤:
去括号
移项
学科网
合并同类项
学.科.网
系数化为1
例1 解方程 3x-7(x-1)=3-2(x+3)
解: 去括号得: 3x-7x+7=3-2x-6
移项得: 3x-7x+2x=3-6-7
合并同类项得: -2x = -10

2018年秋七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母(1) (新版)新

2018年秋七年级数学上册 第三章 一元一次方程 3.3 解一元一次方程(二)—去括号与去分母(1) (新版)新
顺水的速度=静水中的速度+水流的速度 逆水的速度=静水中的速度–水流的速度
问题:本题的等量关系是什么?
顺流行驶的路程=逆流行驶的路程
解:设船在静水中的平均速度为x千米/时,则顺流
速度为(__x_+_3_)_千米/时,逆流速度为(__x_-_3_)__千米/时, 由题意得.
2(x+3)=2.5(x-3)
1. 4x+3(2x-3)=12-(x+4)
2. 6( 1 x-4)+2x=7-( x1-1 )
2
3
点拨
用去括号的方法解一元一次方程,需要注意 的是:
(1)如果括号外的因数是负数时,去括号后 原括号内各项的符号要改变符号:
(2)乘数与括号内多项式相乘时,乘数应遍 乘括号内的各项,不要漏乘.
例题
例2 一艘船从甲码头到乙码头顺流行驶,用了 2小时;从乙码头返回甲码头逆流行驶,用了 2.5小时.已知水流的速度是3千米/时,求船在静 水中的速度.
去括号,得 2 400x = 44 000 – 2 0
x = 10
生产螺母的人数为 22 – x = 12
答:应分配10名工人生产螺钉,12名工人生产螺母.
练习
1.某水利工地派 48 人去挖土和运土,如果每人每 天平均挖土5方或运土3方,那么应怎样安排人员, 正好能使挖出的土及时运走?
3.3解一元一次方程(二)(1)
回顾
解方程:6x-7=4x-1 一元一次方程的解法我们学了哪几步?
移项
合并同类项
系数化为1
我们在方程6x-7=4x-1后加上一个括号 得6x-7=4(x-1)会解吗?
在前面再加上一个负号得6x-7=-4(x-1) 会吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 解一元一次方程--------去括号与去分母(二) 基础练习
1.下列解方程去分母正确的是( )
A.由113
2x x --=,得2x - 1 = 3 - 3x; B.由232124x x ---=-,得2(x - 2) - 3x - 2 = - 4
C.由
131236y y y y +-=--,得3y + 3 = 2y - 3y + 1 - 6y; D.由4415
3x y +-=,得12x - 1 = 5y + 20 2.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( ) A.0.92a B.1.12a
C.1.12a
D.0.81a
3.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )
A .54
B .27
C .72
D .45
4.一个长方形的周长为26 cm ,这个长方形的长减少1 cm ,宽增加2 cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程( )
A .1(26)2x x -=-+
B .1(13)2x x -=-+
C .1(26)2x x +=--
D .1(13)2x x +=--
5.小明买了20本练习本,店主给他八折优惠,结果便宜1.6元, 每本练习本的标价是 元 。

6.如果方程 2x+4=0的解与方程4x+m=8的解相同,则m= .
拓展提高
7.三个连续偶数的和为18,设最大的偶数为 x, 则可列方程______. 8.甲水池有水31吨,乙水池有水11吨,甲池的水每小时流入乙池2吨,x 小时后, 乙池有水________吨 ,甲池有水_______吨 , ________小时后,甲池的水与乙池的水一多.
9.一项工程,甲独立做需要20天完成,乙独立完成需要30天完成,丙独立完成需要40天。

开始三人合作,后来甲另外有事离开,由乙和丙继续合作,全部工作共用了12天完成,问甲工作了几天?。

相关文档
最新文档