Fast Fractal Image Encoder
超分辨率算法综述
超分辨率复原技术的发展The Development of Super2Re solution Re storation from ImageSequence s1、引言在图像处理技术中,有一项重要的研究内容称为图像融合。
通常的成像系统由于受到成像条件和成像方式的限制,只能从场景中获取部分信息,如何有效地弥补观测图像上的有限信息量是一个需要解决的问题。
图像融合技术的含义就是把相关性和互补性很强的多幅图像上的有用信息综合在一起,产生一幅(或多幅)携带更多信息的图像,以便能够弥补原始观测图像承载信息的局限性。
(图象融合就是根据需要把相关性和互补性很强的多幅图象上的有用信息综合在一起,以供观察或进一步处理,以弥补原始单源观测图象承载信息的局限性,它是一门综合了传感器、图象处理、信号处理、计算机和人工智能等技术的现代高新技术,于20 世纪70 年代后期形成并发展起来的。
由于图象融合具有突出的探测优越性,在国际上已经受到高度重视并取得了相当进展,在医学、遥感、计算机视觉、气象预报、军事等方面都取得了明显效益。
从图象融合的目标来看,主要可将其归结为增强光谱信息的融合和增强几何信息的融合。
增强光谱信息的融合是综合提取多种通道输入图象的信息,形成统一的图象或数据产品供后续处理或指导决策,目前在遥感、医学领域都得到了比较广泛的应用。
增强几何信息的融合就是从一序列低分辨率图象重建出更高分辨率的图象(或图象序列) ,以提高图象的空间分辨率。
对图象空间分辨率进行增强的技术也叫超分辨率(super2resolution) 技术,或亚像元分析技术。
本文主要关注超分辨率(SR) 重建技术,对SR 技术中涉及到的相关问题进行描述。
)(我们知道,在获取图像的过程中有许多因素会导致图像质量的下降即退化,如光学系统的像差、大气扰动、运动、离焦和系统噪音,它们会造成图像的模糊和变形。
图像复原的目的就是对退化图像进行处理,使其复原成没有退化前的理想图像。
如何使用堆叠自动编码器进行图像去噪(Ⅰ)
图像去噪是计算机视觉领域的一个重要问题,它在图像处理和模式识别领域有着广泛的应用。
而堆叠自动编码器是一种深度学习模型,能够有效地应用于图像去噪任务。
本文将介绍如何使用堆叠自动编码器进行图像去噪的方法和技巧。
首先,我们需要了解什么是自动编码器。
自动编码器是一种神经网络模型,它能够学习输入数据的有效表示,并通过学习到的表示来重建输入数据。
它通常由一个编码器和一个解码器组成。
编码器将输入数据映射到一个低维的表示空间,而解码器则将这个表示空间映射回原始的输入数据空间。
堆叠自动编码器是由多个自动编码器堆叠而成的深度学习模型,它能够学习更加复杂和抽象的表示。
在使用堆叠自动编码器进行图像去噪时,我们首先需要准备带有噪声的图像数据集。
这个数据集可以包含各种类型的图像,例如自然图像、人工图像等。
接着,我们需要设计一个合适的堆叠自动编码器架构,以便能够学习到图像的有效表示,并且能够对噪声图像进行重建。
通常情况下,我们可以选择使用卷积自动编码器作为堆叠自动编码器的基本单元。
卷积自动编码器能够有效地捕捉图像中的局部特征,并且能够减少参数的数量,从而提高模型的泛化能力。
在设计堆叠自动编码器架构时,我们可以采用多层卷积自动编码器,并且在每一层之间使用池化操作来降低特征图的维度。
接下来,我们需要选择合适的损失函数来衡量堆叠自动编码器的重建性能。
对于图像去噪任务来说,我们可以选择均方误差(MSE)作为损失函数。
MSE能够衡量重建图像与原始图像之间的差异,从而能够有效地指导模型学习到更加准确的表示。
在训练堆叠自动编码器时,我们可以选择使用反向传播算法和随机梯度下降(SGD)优化器来最小化损失函数。
反向传播算法能够有效地计算损失函数对模型参数的梯度,而SGD优化器能够根据梯度的方向来更新模型参数,从而不断优化模型的性能。
另外,为了提高堆叠自动编码器的去噪性能,我们还可以采用一些正则化技术,例如dropout和批标准化。
dropout能够随机地丢弃一部分神经元的输出,从而能够减少模型的过拟合现象;批标准化能够加速模型的收敛速度,提高模型的训练效率。
改善分形图像编码视觉效果的有效方法研究
匹配 的主块 , 了保证 压缩 比和 图像 质量 , 为 主块 的个 数 不能 太少 , 每个 主 块 又 有 8种 旋 转 与 翻 转 变换 而 方式 , 这样 的搜 索是相 当耗 时 的 , 也是 编码算 法具 这 有 很高 的计 算 复 杂度 的原 因。再 有 , 本 的分 形 图 虽 然 能 够 这 保 证 图像 中大物 体 的清 晰边 界 和光 滑 纹 理 , 对 那 但 些 尺 寸相对 较小 , 比序 列块 小 的物体 而言 , 或 它们 的 细节信 息却 常 常丢 失 。因而 明显 地影 响 了重 建 图像
注 。 目前 , 已 有 许 多 通 用 的 图像 ( 缩 ) 码 标 虽 压 编 准 可供 使 用 , 仍 不 能 完 全 满 足 应 用 中 日益 增 长 但 的技 术 要 求 , 有 大 量 的 研 究 工 作 正 围 绕 着 编 码 仍 技术而展开。
小块 , 找到一 个相 似 的大些 的块 , 使该 块经 过仿 射变 换后 与原 块 间的误 差 最 小 , 后 存 储 该 仿 射 变换 的 然 参数 不 断进行 迭代 。 。分 形编 码 的主要 目标 是对 主块选 择池 的穷举 式搜 索 , 以找 到 与 序 列 块 有最 佳
1 引 言
贝所 形成 , 而是 由图像 的另 一 个 局 部 经 过适 当 的仿
射变 换形 成 的。 基 本 的分 形 图像 编 码 过 程 : 先把 图像 分成 许 多
磁共振成像技术中英文名词对照
频率分辨力
Analog to digital conversion data
ADC数据
measurement data
丈量数据
Image data
图像数据
Identification information
识别信息,或标识表记标帜信息
fast Fourier transform ,FFT
连续性动脉自旋标识表记标帜
Contrast enhanced magnetic resonance angiography,CE-MRA
比较增强磁共振血管成像
Chemical shift selective saturation,CHESS
化学位移选择饱和
Contrast to noise ratio ,CNR
T1加权成像
T2 prepared-fast gradient recalled echo ,T2-FGRE T2
准备快速梯度回波
T2-weighted imaging ,T2WI
T2加权成像
Echo time ,TE
回波时间
T1 high resolution isotropic volume excitation ,THRIVE
稳态收集快速成像
Fast inversion recovery ,FIR
快速反转恢复
Fast imaging with steady-state precession,FISP
稳态进动快速成像
Fliud attenuated inversion recovery, FLAIR
体液衰减反转恢复序列
Fast low angle shot ,FLASH
一种快速分形图像编码算法
2 分形 图像编码的基本原理
分形 图像编码概念是 由 B rs y 次提 出[ ] 然后 Jc anl 首 e 5 , a-
un提 存储和传输造成较 大 的困难 。对数 字化后 的 图像 进 行压缩 q i 出一种基 于紧缩仿 射 变换 的 自动 分形 图像 编码方 法
[ ]从那 以后 大多数分 形 图像 编码 的加速 算法都 是在 自动 6,
c lr ti g fa t ma e c ig i t e h tr s a c ed I h sp p r a s e i g u r ca ma e c i g meh a e n a p o o e e ea en rc a i g o n s h o e e rh f l . n t i a e , p dn p fa tli g o n t o b s d o rp s d l d i e d d
YA NG o z u n Z Ha -h a g HAO Y o a
(ntueo f m t nS i c , eigJ o n nvrt,e ig10 4 ) Ist f n r a o ce eB in i t gU ie i B rn 00 4 it Io i n j ao sy
维普资讯
第2 4卷
第 1期
信 号 处 理
S GNAL P OC S NG I R ES I
Vo . 4. No 12 .1
20 0 8年 2月
F r2 O e. O 8
一
种 快 速分 形 图像 编 码算 法
杨好庄 赵 耀
( 北京 交通大学信息科学研究所 ,北京 10 4 ) 0 04
Ab ta t E p n i g mu h tme i h rc a g n o ig i si h i r w a k o a tli g o ig At rs n , c sr c : x e dn c i n te fa t l ma e e c dn s t lt e man d a b c ff c a ma e c d n . e e t a - i l r p
u-net模型知识点 -回复
u-net模型知识点-回复什么是unet模型?Unet模型是一种用于图像分割任务的卷积神经网络模型。
它由斯坦福大学的Olaf Ronneberger、Philipp Fischer和Thomas Brox在2015年提出。
Unet模型的结构独特,具有“U”形状,因此得名。
Unet模型已经在多个图像分割问题中取得了良好的结果,包括医学图像分割、遥感图像分割等。
Unet模型的结构是如何设计的?Unet模型的关键是它的“编码器-解码器”架构,使其适用于图像分割问题。
从整体上看,Unet模型由对称的两部分组成,分别是编码器和解码器。
编码器部分由卷积层和池化层组成,用于逐步提取图像的特征表示。
编码器的主要作用是将输入图像不断缩小,同时保留图像中的重要信息。
这样做的目的是为了提高网络的感受野,使其能够学习到更全局的特征。
解码器部分则通过反卷积操作将编码器的输出进行上采样,恢复到与原始输入图像相同的尺寸。
解码器的主要作用是进行特征融合,使网络能够更好地理解图像的语义。
在解码器的每一层,还会引入跳跃连接(skipconnections),将编码器中的特征与解码器中的特征进行连接。
这样做的目的是为了在解码过程中传递更多的低层次特征,帮助解码器更好地进行语义分割。
Unet模型最后通过卷积层进行像素分类,得到每个像素点的分类结果。
一般情况下,Unet模型使用交叉熵损失函数来度量预测结果与真实标签之间的差异,并通过反向传播算法进行模型参数的更新。
Unet模型有哪些改进和应用?Unet模型在提出后,经过许多改进和应用,取得了很多成功的结果。
其中一些改进和应用包括以下几个方面:1. 改进网络架构:Unet模型的初始版本在编码器和解码器之间只有一个跳跃连接。
后续的改进中,增加了多个跳跃连接,以传递更多的特征信息。
同时,还可以改变跳跃连接的位置和数目,以适应不同的图像分割任务。
2. 数据增强和正则化:由于图像分割任务中数据量通常有限,使用数据增强和正则化技术能够提高模型的泛化能力。
神经网络如何实现像生成和编辑
神经网络如何实现像生成和编辑关键信息项1、神经网络模型的选择名称:____________________________架构特点:____________________________训练数据集:____________________________2、图像生成的目标和要求图像类型:____________________________分辨率:____________________________色彩模式:____________________________3、图像编辑的功能和范围可编辑的元素:____________________________编辑精度:____________________________保留原始特征的程度:____________________________ 4、训练和优化过程训练算法:____________________________优化指标:____________________________训练时间和资源预算:____________________________5、评估和验证方法评估指标:____________________________验证数据集:____________________________人工评估的标准和流程:____________________________6、知识产权和使用许可所有权归属:____________________________许可使用范围:____________________________限制和禁止的用途:____________________________1、引言11 背景随着人工智能技术的迅速发展,神经网络在图像生成和编辑领域取得了显著的成果。
本协议旨在明确神经网络实现图像生成和编辑的相关技术细节、要求和规范。
12 目的本协议的目的是为了确保在使用神经网络进行图像生成和编辑的过程中,能够达到预期的效果,遵循相关的法律和道德规范,并保障各方的权益。
3dunet的原理 -回复
3dunet的原理-回复3D UNet是一种先进的深度学习架构,广泛应用于医学图像分割任务中,如人脑、肺部、心脏等。
一、背景介绍医学图像分割是一项具有挑战性的任务,旨在从医学图像中准确地识别和分割出感兴趣的结构或器官。
然而,由于医学图像通常具有复杂的结构和噪声,传统的图像分割方法往往存在一些局限性。
而深度学习技术在医学图像分割中取得了巨大的突破,尤其是基于卷积神经网络(CNN)的方法。
二、基本原理3D UNet是基于FCN(Fully Convolutional Network)的改进,其主要包括编码器和解码器两个部分。
编码器用来提取图像的高级特征,而解码器则用来还原分割结果。
1. 编码器编码器由多个卷积层和池化层组成,用来逐步缩小输入图像的尺寸并提取特征。
每个卷积层后都经过非线性激活函数(如ReLU)进行激活,以增强网络的非线性能力。
编码器通过堆叠多个卷积层和池化层,在逐步缩小图像尺寸的同时逐步提取抽象的特征。
2. 解码器解码器由多个上采样和卷积层组成,用来逐步恢复特征图的空间分辨率,并生成最终的分割结果。
每个上采样层通常使用反卷积操作,可以将特征图的分辨率放大一倍。
在每个上采样层之后,还会将来自编码器相同尺寸的低级特征与解码器的高级特征进行融合,以保留更多的细节信息。
三、损失函数在3D UNet中,通常使用交叉熵损失函数来度量预测分割结果与真实分割结果之间的差异。
交叉熵损失函数在深度学习中被广泛应用,可以有效地表示预测结果的概率分布与真实结果的差异程度。
为了解决样本不平衡问题,还可以在交叉熵损失函数中引入权重因子,以平衡正负样本之间的数量差异。
四、网络训练3D UNet的训练过程通常分为两个阶段:网络初始化和后续微调。
在网络初始化阶段,通常使用一些常见的医学图像分割数据集进行预训练,以使网络具有良好的初值。
在后续微调阶段,使用目标任务的特定数据集对网络进行进一步训练,并通过反向传播算法优化网络的参数,以最大限度地减小预测结果与真实结果之间的差异。
快速分形立体视频编码系统的设计
快速分形立体视频编码系统的设计祝世平;侯仰拴【摘要】提出了一种基于分形视频编码的快速立体视频编码算法.首先,对传统分形视频编码方法进行了改进:采用基于DCT变换的方式对I帧图像进行编码,同时采用树状划分方法对非I帧图像进行块匹配.在立体视频编码中以左通道为基本层,右通道为增强层;左通道采用单独的运动补偿预测方式(MCP)进行编码,右通道采用MCP 加视差补偿预测方式(DCP)进行编码.在进行DCP编码方式时,充分利用立体平行摄像结构中的偏振性和方向性简化DCP搜索方式,由此提出了一种快速搜索算法.实验结果表明,在保证峰值信噪比(PSNR)和压缩比(CR)基本不变的前提下,本文所提出的快速编码算法能够将运算复杂度降低为全搜索算法的0.028~0.029倍,增强了立体视频编码的实用性.【期刊名称】《光学精密工程》【年(卷),期】2010(018)011【总页数】8页(P2505-2512)【关键词】分形编码;立体视频;视差匹配;极线几何【作者】祝世平;侯仰拴【作者单位】北京航空航天大学,仪器科学与光电工程学院,测控与信息技术系,北京,100191;北京航空航天大学,仪器科学与光电工程学院,测控与信息技术系,北京,100191【正文语种】中文【中图分类】TN919.811 引言随着多媒体技术的不断发展,多视点视频因具有单目视频无法比拟的优越性逐渐成为研究的热点;而立体视频是多视点视频中应用最为广泛的一种形式,它增加了场景的深度信息,使欣赏到的图像有强烈的现实感和逼真感[1],可以应用于立体电视,远程教育,远程工业控制,远程医学诊断和虚拟现实等众多领域。
相对于单目视频,立体视频系统需要传输和存储翻番的数据量,所以有必要对其进行有效压缩。
在立体视频编码过程中,不但要考虑各通道内前后帧图像之间的时域相关性[2]和帧内图像的空域相关性,还要充分利用通道之间的空域相关性进行编码。
前者可以利用运动补偿预测(Motion Compensation Prediction,MCP)去除冗余,后者可以采用视差补偿预测(Disparity Compensation Prediction,DCP)去除通道间冗余。
分形图像压缩编码
根据编码步骤得如下分形编码原理框图:
原始 图像
图像 分块
Байду номын сангаас
每 一 部 分 求 其 IFS 编码
仿 射 变换
Thank You!
L/O/G/O
3
4
1.分形图像编码的相关介绍
分形编码算法是一种有损图像压缩技术。它是图像压缩的 重要数学工具,有着广阔的应用前景。分形图像压缩是以迭代 函数系统(IFS)为理论基础,即用自然景物的自相似性来进行数 据压缩。分形图像压缩算法具有高压缩比、任意尺度下的重构 快速编码等优越性。此项研究由M.Barnsley 于1988 年首先提 出,他成功地给予迭代函数系统的分形图像压缩应用于计算机 图形学上,对航空图像进行压缩编码,并获得了1000:1的压缩比。 但其算法有很大的局限性,最主要的缺陷就是编码过程需要人 工干预.迭代函数系统定理 :每个迭代函数系统都可以构成函 空间中的一个收缩映射。于是,我们得到结论,每个迭代函统 都决定一幅图像。一般我们用仿射变换来表示这些映射。
3.分形图像编码的数学基础
构成分形压缩编码的基本理论基础包括紧缩变换、仿射变 换、迭代函数系统定理及拼贴定理等。到目前为止,用数学 系统去解析地 究分形最成功的是函数迭代系统(Iterated Function System,简称IFS),它既包含了确定性过程又 包含了随机过程。对现实世界中的图像集合引入 Hausdorff度量,使其形成一个完备的度量空间,它的每个 点既表示一幅图像,又是欧氏空间的一个紧子集。 Hausdorff 距离空间:该距离空间被认为是分形所在的 空间,而分形之间的距离也正是由这种Hausdorff 距离度 量的。
2、分形图像编码的基本原理
分形压缩的基本原理是利用分形几何中的自相似性原 理来进行图象压缩。所谓自相似性就是指无论几何尺度 如何变化,景物的任何一小部分的形状都与较大部分的形 状极其相似。分形用于图像编码,总的来说可以分为两大 类。一类可称作分形模型图像压缩编码,即事先对一类景 物建立分形模型。编码时针对具体事物提取必要的分形 参数,编码传送,实现压缩;另一类可称为IFS分形图像压 缩编码,即利用迭代,得到原始图像的一个近似。后一种 实现方法简单,应用较为广泛。
加快分形图像编码速度的若干措施
加快分形图像编码速度的若干措施
王汇源;姜瑞海
【期刊名称】《山东工业大学学报》
【年(卷),期】1999(029)001
【摘要】针对分形图像编码速度慢的缺点,提出若干加快编码速度的措施。
按照图像局部的统计特性和人眼的视觉特性,限定定义域块的搜索范围,优化定义域块及其几何变换的搜索顺序,并结合去除搜索匹配过程中的重复运算等措施,在保证恢复图像的主客观质量变化不大的前提下,使编码速度得到明显提高,对于若干标准图像的实际编码实验结果证明了算法的正确性。
【总页数】5页(P10-14)
【作者】王汇源;姜瑞海
【作者单位】山东工业大学电子工程系;山东工业大学电子工程系
【正文语种】中文
【中图分类】TN919.8
【相关文献】
1.一种加快分形图像解码收敛速度的方法 [J], 袁宗文;鲁业频
2.利用代间差分遗传算法优化分形图像编码速度 [J], 汪剑鸣
3.提高分形图像编码质量与速度的方案 [J], 李高平;何传江;黄娟娟
4.济南市人民政府办公厅关于印发济南市支持平阴县加快发展若干政策措施和济南市支持商河县加快发展若干政策措施的通知 [J], 无
5.“加快我国经济发展速度”若干认识问题 [J], 欧阳佳妮
因版权原因,仅展示原文概要,查看原文内容请购买。
一种分形彩色图像压缩编码方法
一种分形彩色图像压缩编码方法
焦华龙;陈刚
【期刊名称】《软件学报》
【年(卷),期】2003(014)004
【摘要】在分析彩色图像色彩三分量r,g,b的相关性和分形四叉树编码层次信息冗余性的基础上,提出了一种分形彩色图像压缩编码方法.它将图像的3个独立的颜色分量按某种方式组合成1个来搜索匹配块,从而将需要存储和搜索的3个颜色分量匹配块(SFC方法)减少为1个,并且对四叉树层次信息进行压缩.此外,采用不同的组合,得到了几个图像压缩比和解码质量相近的编码方法,其中使用亮度分量的方法比使用其他方法速度更快.实验结果表明,它优于SFC方法及标准JPEG方法,不失为一种好的分形彩色图像压缩方法.
【总页数】5页(P864-868)
【作者】焦华龙;陈刚
【作者单位】浙江大学,计算机图象图形研究所,浙江,杭州,310027;浙江大学,计算机图象图形研究所,浙江,杭州,310027;宁波大学,数字技术与应用软件研究所,浙江,宁波,315211
【正文语种】中文
【中图分类】TP391
【相关文献】
1.一种改进的彩色图像分形编码方法 [J], 曹文伦;史忠科;封建湖
2.一种快速小波子带分形图像压缩编码方法 [J], 包红强;马义德
3.一种简化的分形压缩编码方法 [J], 齐利敏;刘文耀;袁理;陈志宏
4.一种结合分形的高效彩色图像压缩编码方法 [J], 于在河;刘富
5.一种基于分形的图像压缩编码方法 [J], 李艳灵;李刚
因版权原因,仅展示原文概要,查看原文内容请购买。
AE滤镜中英文对照表
3D Channel三维通道特效--3d chanel extract 提取三维通道--depth matte深度蒙版--depth of field场深度--fog 3D雾化--ID Matte ID蒙版Audio音频特效--backwards倒播--bass & treble低音和高音--delay延迟--flange & chorus变调和合声--high-low pass上下音过滤--modulator调节器--parametric EQ EQ参数--reverb回声--stero mixer 立体声混合--tone音质Blur & Sharpen模糊与锐化特效--box blur方块模糊--channel blur通道模糊--compound blur混合模糊--directional blur方向模糊--fast blur快速模糊--gaussuan blur高斯模糊--lens blur镜头虚化模糊--radial blur径向模糊--reduce interlace flicker降低交织闪烁--sharpen锐化--smart blur智能模糊--unshart mask反遮罩锐化Channel通道特效--alpha levels Alpha色阶--arithmetic通道运算--blend混合--calculations融合计算--channel combiner复合计算--invert反相--minimax扩亮扩暗--remove color matting删除蒙版颜色--set channels设置通道--set matte设置蒙版--shift channels转换通道--solid composite实体色融合Color correction 颜色校正特效--auto color自动色彩调整--auto contrast自动比照度--auto levels自动色阶--brightness & contrast亮度核比照度--broadcast colors播放色--change color转换色彩--change to color颜色替换--channel mixer通道混合--color balance色彩平衡--color blance(HIS)色彩平衡(HIS)--color link色彩连接--color stabilizer色彩平衡器--colorama彩光--curves曲线调整--equalize均衡效果--exposure屡次曝光--gamma/pedestal/gain伽马/基色/增益--hue/saturation色相/饱和度--leave color退色--levels (individual controls)色阶(个体控制) --photo filter照片过滤--PS arbitrary Map映像遮罩--shadow/highlight阴影/高光--tint色度--tritone三阶色调整Distort扭曲特效--bezier warp贝赛尔曲线弯曲--bulge凹凸镜--corner pin边角定位--displacement map置换这招--liquify像素溶解变换--magnify像素无损放大--mesh warp液态变形--mirror镜像--offset位移--optics compensation镜头变形--polar coordinates极坐标转换--puppet木偶工具--reshape形容--ripple波纹--smear涂抹--spherize球面化--transform变换--turbulent displace变形置换--twirl扭转--warp歪曲边框--wave warp波浪变形Expression Controls表达式控制特效--angel control角度控制--checkbox control检验盒控制--color control色彩控制--layer control层控制--point control点控制--slider control游标控制Generate 渲染(RENDER)--4-ccolor gradient四角渐变--advanced lightning高级闪电--audio spectrum声谱--audio waveform声波--beam声波--beam光束--cell pattern单元图案--checkerboard棋盘格式--circle圆环--ellipse椭圆--eyedropper fill滴管填充--fill填充--fractal万花筒--grid网格--lens flare镜头光晕--lightning闪电--paint bucker颜料桶--radio waves电波--ramp渐变--scribble涂抹--stroke描边--vegas勾画--write-on手写效果Keying 抠像特效--color difference key色彩差抠像--color key色彩抠像--color range色彩围--difference matte差异蒙版--extract提取--inner/outer key轮廓抠像--linear color key线性色彩抠像--luma key亮度抠像--spill suppressor溢色抑制Matte 蒙版特效--matte choker蒙版去除--simple choker简单去除 Noise & Grain 噪波和杂点特效--add grain添加杂点--dust & scratches杂点和划痕--fractal noise不规那么噪波--match grain杂点匹配--median中性--noise杂点--noise alpha alpha通道杂点--noise HLS HLS通道杂点--noise HLS auto自动生成HLS通道杂点--remove grain减弱杂点Paint 绘画--paint绘画工具--vector paint矢量绘画perspective 透视特效--3D glasses立体眼镜--basic 3D根底三维--bevel Alpha Alpha导角--vevel edges边缘导角--drop shadow投影--radial shadow放射状的投影simulation 仿真特效--card dance碎片飘移--caustics焦散--foam泡沫--particle playground粒子--shatter爆碎--wave world波纹抖动stylize 风格化特效--brush storkes画笔描边--color emboss彩色浮雕--emboss浮雕--find edges查找边缘--glow自发光--mosaic马赛克--motion tile运动拼贴--posterize多色调别离--roughen edges粗糙边缘--scatter扩散--strobe light闪光灯--texturize纹理化--threshold比照度极限text 文字特效--basic text根本文字--numbers数字--path text路径文字--timecode时间码time 时间特效--echo重影--psterize time招贴画--time difference时间差异--time displacement时间置换--timewarp时间收缩transition 转换特效--block dissolve快面溶解--card wipe卡片擦除--gradient wipe渐变擦拭--iris wipe星形擦拭--linear wipe线性擦拭--radial wipe径向擦拭--venetian blinds百叶窗utlity 实用特效--cineon converter Cineon转换--color profile converter色彩特性描述转换--grow bounds围增长--HDR compander HDR压缩扩展--HDR Highlight compression HDR高光压缩。
采用小波与ALCT的分层图像编码算法
采用小波与ALCT的分层图像编码算法
王成儒;司菁菁
【期刊名称】《光电工程》
【年(卷),期】2005(032)002
【摘要】针对纹理较丰富的图像提出了一种分层编码算法.该算法将图像划分成平滑层和纹理层,基于小波变换和自适应局部余弦变换(ALCT)分别编码.为提高平滑层小波零树编码的效率,本算法先对原图像进行恰当的平滑运算,然后再进行小波变换,从而增加零系数的个数.第二层利用改进的折叠运算和快速DCT实现残差纹理图像的ALCT,并且提出了一种ALCT系数的重组方案,进而实现了重组系数的嵌入式编码.实验结果表明,本算法在未进行算术编码的情况下,与小波零树SPIHT算法相比,峰值信噪比(PSNR)提高了0.4dB,并在重建图像中更好地保留了原图像的纹理特征.【总页数】4页(P84-87)
【作者】王成儒;司菁菁
【作者单位】燕山大学信息科学与工程学院,河北,秦皇岛,066004;燕山大学信息科学与工程学院,河北,秦皇岛,066004
【正文语种】中文
【中图分类】TN919.81
【相关文献】
1.基于快速提升小波变换的多阈值嵌入零树小波图像编码算法 [J], 王向阳;杨红颖
2.一种采用分层多阈值的分辨率渐进图像编码算法 [J], 陈仁喜;赵忠明
3.小波-分形混合图像编码算法中双正交小波的选择 [J], 马波;裘正定
4.基于方向小波变换的分层多描述图像编码 [J], 李锌;张飞舟
5.基于小波和匹配跟踪的分层图像编码算法 [J], 刘利雄;廖斌;贾云得;王元全因版权原因,仅展示原文概要,查看原文内容请购买。
mmsegmentation相关知识点
mmsegmentation相关知识点mmsegmentation是一个基于PyTorch的图像分割工具箱,提供了一系列的图像分割模型和训练、测试代码,可以用于解决语义分割、实例分割和全景分割等任务。
本文将介绍mmsegmentation的相关知识点,包括其主要特点、常用模型和使用方法。
一、mmsegmentation的主要特点1. 高度模块化:mmsegmentation采用模块化设计,将不同的组件独立开发,可以方便地组合和替换模型的各个部分,使得模型的构建更加灵活。
2. 多种分割模型:mmsegmentation提供了多种经典的分割模型,包括UNet、FCN、DeepLabv3等,可以根据任务需求选择合适的模型进行训练和测试。
3. 支持多种数据增强方法:mmsegmentation内置了丰富的数据增强方法,可以有效提升模型的泛化能力和鲁棒性,包括随机裁剪、随机翻转、颜色抖动等。
4. 可视化工具支持:mmsegmentation提供了可视化工具,可以直观地展示模型对图像的分割效果,方便用户进行调试和结果分析。
二、常用的分割模型1. UNet:UNet是一种经典的全卷积网络,由编码器和解码器组成,可以有效地捕捉不同尺度的特征信息。
它在语义分割任务中表现出色,特别适用于小样本和不平衡数据集。
2. FCN:FCN(Fully Convolutional Network)是第一个将全卷积网络引入图像分割领域的模型,通过将全连接层替换为卷积层,使得模型能够接受任意尺寸的输入图像。
3. DeepLabv3:DeepLabv3是一种基于空洞卷积和多尺度金字塔池化的分割模型,能够有效地捕捉图像中的上下文信息和多尺度特征。
4. HRNet:HRNet(High-Resolution Network)是一种高分辨率网络,通过多分支的特征融合和自顶向下的特征传播,可以在保持高分辨率的同时保持丰富的语义信息。
三、mmsegmentation的使用方法1. 数据准备:首先需要准备训练和测试所需的数据集,包括图像和对应的标签。
快速图像分割算法及在MSRS NAO中的应用
快速图像分割算法及在MSRS NAO中的应用程建【期刊名称】《安徽理工大学学报(自然科学版)》【年(卷),期】2013(033)001【摘要】Aiming at colorful image segmentation problems of MSRS NAO simulation robot, an improved fast color threshold segmentation algorithm was proposed. At first, by artificial color calibration maximum value, minimum value, and HSB values of maximum frequency of identified objects were collected. Comparing with automatic color calibration, it is more accurate and targeted. In order to simplify calculations, a matrix with Boolean type members was used to identify the object by true result of logical AND operation. Finally, a type matrix was designed , elements of which can identify each object and easily make logical AND and logical OR operation; it provides algorithm for multiple objects identification. The experimental results showed that the improved algorithm for multiple object identification greatly improved accuracy and time complexity, and the calculation speed is 4 times faster than by the original algorithm.%针对MSRS NAO仿真机器人的彩色图像分割问题,提出了一种改进的快速颜色阈值分割算法.首先利用手工颜色标定对被标识物采集其最大、最小值、出现频率最大的HSB值,相对于自动颜色标定的方法更加准确,针对性更强.为了简化计算,进一步提出了元素值为布尔型的索引表,通过逻辑与运算为真来标识物体;最后设计了一个类型矩阵,元素的值不仅可以标识每种物体,而且可以方便地进行逻辑与和逻辑或运算,并给出了针对多个物体的标识算法.实验结果表明,改进后的算法对多个物体的标识,准确性得到了很大提高,改善了算法的时间复杂度,速度提高了近4倍.【总页数】4页(P38-41)【作者】程建【作者单位】安徽理工大学计算机学院,安徽淮南232001【正文语种】中文【中图分类】TP39【相关文献】1.Otsu多阈值快速分割算法及其在彩色图像中的应用 [J], 王祥科;郑志强2.Otsu多阈值快速分割算法及其在彩色图像中的应用 [J], 王祥科;郑志强3.面向小目标图像的快速核密度估计图像阈值分割算法 [J], 王骏;王士同;邓赵红;应文豪4.基于PSO-KMeans快速图像分割算法模型的应用 [J], 陈兴志; 王代文; 刘乃瑶; 乐文涛; 黄飞翔5.基于PSO-KMeans快速图像分割算法模型的应用 [J], 陈兴志;王代文;刘乃瑶;乐文涛;黄飞翔因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fast Fractal Image EncoderYung-Gi, WuDepartment of Computer Science & InformationEngineeringLeader University, Tainan, TaiwanEmail: wyg@.twABSTRACTAlthough fractal image compression can achieve high compression ratio theoretically, it needs a lot of encoding time to encode an image so that it has not been widely applied as other coding schemes in the field of image compression. In this paper, an algorithm is devised to improve this drawback. The algorithm uses three major processes including classification, PDS (Partial distance search) and simplification of eight transformations to decrease the encoding time. Classification is the major factor to reduce the majority of encoding time. PDS decreases computation time of MSE (Mean Square Error). Simplification of eight transformations diminishes unnecessary computation. The experimental result shows that our proposed method makes the encoder much faster than the conventional fractal compression method and the quality is imperceptible to the conventional fractal-encoding algorithm. Compared to the published fast fractal encoding algorithms, the proposed method outperforms them. This paper contributes to the performance of source signal compression before the communication and raises the effectiveness of multimedia system.Key words: fast fractal encoding; image compression; partial distance search; classification; simplification;1. INTRODUCTIONA picture may be worth a thousand words, but it requires far more memory to store or bandwidth to transmit. With the successes of multimedia technology and the era of wideband network, peoples’ desire to the high quality of multimedia still can not be satisfied. All the scholars in the universities and the engineers in the industry want to get the compromise between the limited network bandwidth and the unlimited human desire. Among all the digitized data that we people can touch every day, such as digital library, VCD, DVD, JPEG, etc, the kernel of the system or the standard that commercial products use is the compression technique. There are many coding schemes that have been developed such as DCT, VQ, Wavelets, BTC, Fractal, etc. In general, the criteria to evaluate the performance of a compression system include 1) compression ratio 2) reconstructed quality 3) processing time. Fractal compression can achieve the highest compression ratio among all the existing coding schemes theoretically; however, its encoding time is terrible intolerant to practical industrial applications. If this shortcoming of long encoding time can be improved, the application of fractal will be a practical consideration.The cause of fractal image coding with high compression is that the minority of blocks through rotations represent the majority of blocks[1]. In a word, fractal encoding is based on PartitionedFast Fractal Image EncoderIterated Function System (PIFS). The detailed descriptions of PIFS can be found in [2-5]. There are some published papers concerning about the fast fractal encoding [6-12]. Some of them use variance for classification to improve the drawback of time consuming in encoding process. In the proposed method, we utilize classification, simplification of transformation and partial distance searching strategy to pruning those blocks whose characteristics do not match the range block to be processed and reduce unnecessary computation on best matching computation.The remaining sections are organized as follows: Section 2 will depict the basic fractal image coding. Proposed method is given in Section 3 and results will be shown in Section 4. Conclusion of this paper is in Section 5.2. BASIC FRACTAL IMAGE CODINGLet an original image be partitioned into non-overlapping regions called range blocks (R ) and overlapping regions called domains blocks (D ). The size of each domain block should be larger than that of the range block to satisfy the property of contraction [2]. Let D’ denote the down sampled domain block of D and the D’ size is equal to the size of R . The transformations are composed of a geometric transformation and a massic transformation. The geometric transformation consists of moving the domain block to the location of the range block and adjusting the size of domain block to match the size of range block. The massic transformation adjusts the intensity and orientation of the pixels in the domain block after it has been operated on by the geometric transformation. The geometric and massic transformation t i can be depicted as follows:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i i i i i i i i i o F E z y x s N M B A z y x t 0000 (1) where s i controls the contrast and o i controls the brightness. z = f (x, y) is the gray level value at (x, y) and A i , B i , M i , N i can be used to denote the eight-symmetry such as [1]. Identity mapping [2] Rotation by 90 degrees [3] Rotation by 180 degrees [4] Rotation through -90 degrees [5] Reflection about mid-vertical axis [6] Reflection about mid-horizontal axis [7] Reflection about diagonal [8] Reflection about cross diagonal. E i and F i are used for position offset. The i in s i and o i denotes one of the above mentioned eight symmetries.In practice, we compare a range block and down sampled domain blocks using MSE metric as follows(∑×=−+×=n n )k b o a s MSE k i k i 12 (2) Where a k represents the pixel value of the sampled domain blocks (D’) after eight transformations and b k represents the pixel value of the range blocks and the block size for both R and D’ is n by n . This MSE metric allows easy computation for optimal values of s i and o i.in equation (1). This will give us contrast and brightness settings that make the affine transformed a k values have the least squared distance from the b k values. The minimum of MSE occurs when the partial derivatives with respect to s i and o i are zero, which occurs when ⎟⎠⎞⎜⎝⎛∑∑∑∑∑×=−×=×⎟⎟⎠⎞⎜⎜⎝⎛×=⎟⎟⎠⎞⎜⎜⎝⎛×=−⎟⎟⎠⎞⎜⎜⎝⎛×=×=n n k a n n k a n n n n k b n n k a n n k b a n n i k k k k k k s 1111122 (3)n n nn k a i n n k b i kk s o ××=−×==∑∑11(4)There are many best matching criteria to choose. The MSE is usually used in fractal image coding and the minimal MSE always denotes better matching. We use equation (2) to find the optimal s i and o i and then quantize them for storage or transmission. In addition, the encoder must record the position of the best matched domain block (D’) and its transformation for each range block so as to reconstruct the decoded block on the decoder side. Suppose the data to be dealt with is 512 × 512 pixel image in which each pixel can be one of the 256 levels of gray( ranging from black to white). Let R i be the 8x8 pixel non-overlapping range block (i =1,..,4096) and let D be the collection of all the 16×16 overlapped sub-squares of the image. The collection of D contains 497×497=247009 squares when we shift the position of D with one pixel at one step. For each R i , search through all of collection of D i to find the one which minimizes the MSE as equation (2); that is, find the part of the image that most looks like the image above R . There are 8 ways to map one square onto another, so that this means comparing 8×247009=1976072 squares with each of the 4096 range blocks. In addition, we must fulfill the down-sampling operation for each D i to get the same size of R to carry out the later MSE computation. Choosing 1 from each 2×2 sub-square of D i or averaging the 2×2 sub-square corresponding to each pixel of R can achieve the goal of down-sampling. It is obvious that the huge computation is needed from the above descriptions about the conventional fractal encoding. The time to search the best matched domain block for every range block is a time consuming job in practical application. Therefore, we develop a new encoding algorithm to reduce the time in this research. A lot of people have been making efforts in fractal improvement. Some investigate region-based image coding methods and some combine fractal with other algorithm such as wavelet in [6], genetic algorithms in [7], discrete cosine transform in [8] [9]. Saupe and Jacob employ a variance condition to decide whether or not to quadtree partition a block further [10]. In[11], C.K. Lee and W.K. Lee use the variance matching technique. The best matched domain block is searched within the searching window for in the neighborhood of the domain block with the closet variance to that of the range block. [12] uses a non-symmetric window to search the for the best matched domain block based on the local variance method. Almost all of them used the characteristic of image content to pruning the unnecessary computation to decrease time.3. PROPOSED CODING SCHEMEIn the proposed encoding algorithm, classification and transformation simplification are the two major contributions to decrease the encoding time. The ideas are intuitively due to the following facts. The first one is that it is unnecessary for a “complicated” range block to waste time to search the “pure” blocks in the domain pool. The second one is that the eight transformations can also be simplified so that the encoder does not have to calculate so many transformations to find its best matched domain block for each range block during the calculation of MSE metric. Detailed descriptions are given in the following sections.3.1 Classification by VarianceIn this paper, the block variance is the criterion to classify. The variance is usually used to classify the simplicity or complexity of block. The variance of block I is defined as∑∑==−×=n i nj ij I u x n n I Var 112))((1)( (5) where is the size of the block and is the pixel value of the block n n ×ij x I . u(I) is the mean value of the block I . Searching area is determined according to the variance difference between and Var . Both )(R Var )'(D R and are classified into a number of classes . For every R , it only 'DFast Fractal Image Encodersearches the s whose variances are close or adjacent to the class of 'D R to reduce the searching time. Refer to Fig. 1, range block of No.2 (R 2) is an example. If the threshold is set to 20, R 2 will select D’s that meet the criteria of |Var - Var |≦20. Therefore, D’s of No.2, No. 4 , No. 6, No.7 and No.9 will be selected for the next processing. The variance threshold has serious effect on the performance of proposed method. It is certain that the reduction of searched D s amount decreases the decoded quality as well. However, the searching time decreased dramatically while the degradation of quality is almost visual undistinguishable.)(2R )'(D' Fig. 1 Variance difference between Var and Var)(R )'(D 3.2 Simplification of Eight-TransformationConventional fractal encoding fulfills eight transformations for each to find the best matched one for every 'D R . When the image size is 512×512, R is 8×8 and D is 16×16, eight transformations yield eight sets of (, ). Conventional computed number to implement MSE is247009×8 if we shift the domain block one pixel every time. This is the fatal factor making the long encoding time. Reducing the transformation number can decrease the total computation time effectively. We find some regulations can be used to decrease eight transformations by observing rotation of different block patterns. First, every is divided into four sub-blocks and then calculate the mean value of every sub-block. The mean value of each sub-block is used to generate the pattern of each D . There are four sub-blocks within each D so that there are total twenty-four possible patterns. Some of them do not need to make eight transformations after the following analysis.i s i o '''D Fig. 2 Four blocksThe mean values of the four sub-blocks are labeled as P1, P2, P3, and P4 as can be seen in Fig.2. The simplified transformation algorithm can decrease eight transformations into four classes as following:Class1: If P1=P2=P3=P4, it only makes one transformation. (Refer to Fig. 3)Class2: If P1=P4 and P2=P3, it makes two transformations. (Refer to Fig. 4)Class3:(a) If P1=P2=P3 or P1=P2=P4 or P2=P3=P4 or P1=P3=P4, it makes four transformations.(Refer to Fig. 5)(b) If P1=P2 and P3=P4, it makes four transformations. (Refer to Fig. 6)(c) If P1=P3 and P2=P4, it makes four transformations. (Refer to Fig. 7)(d) If P1=P4 and P2≠P3, it makes four transformations. (Refer to Fig. 8)(e) If P2=P3 and P1≠P4, it makes four transformations. (Refer to Fig. 9)Class4: If it doesn’t belong to class1, class2, class3, it must make eight transformations.Notice that “=” or “≠” is determined by the differences among P1 to P4 in the previous algorithm. Ifthe difference between PX and PY is lower than a threshold, we regard PX=PY. Otherwise, PX≠PY.Fig. 3 Class 1Fig. 4 Class 2Fig. 5Class 3 (a) P1=P2=P3Fig. 6 Class 3 (b)Fig. 7 Class 3 (c)Fig. 8 Class 3 (d)Fast Fractal Image EncoderFig. 9 Class 3 (e) 3.3 Computation Reduction of MSEPrevious section 3.1 depicts the algorithm to rule out the domain blocks whose variance and mean value do not close to the input range block to decrease the number of MSE computation by only calculating a portion of D’s instead of the whole block. Section 3.2 depicts the rule to decrease the number of eight symmetries. This section describes another methodology to decrease the MSE computation furthermore.For every selected domain block, we must compute the error between the range block and the eight-transformed domain blocks to find the best matched one whose error is minimum. We use a method to reduce the computation of MSE metric. This algorithm is called as Partial Distance Search (PDS) which was devised in 1991 for the application of fast Vector Quantization (VQ) encoding [13]. The PDS algorithm discards all the domain blocks whose partial distortion relative to an input vector exceeds the current available minimum distortion during the calculation of MSE . The operation of the PDS algorithm is summarized as follows:Input: Range block (R ).Selected sampled domain blocks D i ’ (i=1..z ). Notice that the number of total domain block is z . Output: Best matched D’ and its best isometric.Step1: find s i and o i for first D’i =0;∑∑==−+×=n k n l i i l k R o s l k D MSE 112'1)),(),(((6)current_error =MSE ;best_D’=1;best_isometric=0;Step 2:for(p=1;p<=z; p++) // p is D’ index{Find s i and o i by equation (3)(4) for every D’ ;if(p==1) a=1; else a=0;// the MSE of first D’ and its first isometric has calculated already in Step 1;for(i =a; i <8;i ++){MSE =0;for(k =1; k <=n; k ++)for(l =1; l <=n; l ++){(7)2')),(),((l k R o s l k D MSE i i i −+×=+ if (MSE >=current_error) /* it exceeds the current minimum error */goto exit; /* pre-mature exit */}if(MSE <current_error){current_error=MSE ;best_D’=p;best_isometric =i ;}exit: { };}}Return (best_D’, best_isometric);In general case, without the simplification of eight symmetries as given in the previous section, every D i ’ has eight-symmetry forms and the number of D i ’ (i =1..z) to be compared to every R is z ; thus, the total computation of MSE is z x 8. Step 1 calculates the MSE error between R and the first isometric of D 1’. Step 2 calculates all the other MSE including the other isometrics of D 1’ and the isometrics of all the D 2’ ~ D z ’; meanwhile, it compares the distortion between the current minimum error and increasing MSE in (7). Once the increasing MSE exceeds the current minimum error, it stops the MSE calculation and exits to the outer of the loop. Such a method can decrease the heavy computation of MSE effectively. We call this MSE as PDS-MSE .3.4 Procedures of the Proposed AlgorithmThe main purpose is to use the variance value to pruning those s that are inconsistent to the 'D R . Then, using the computation reduction of MSE and simplified transformation to find the best matched .'D The steps of the proposed algorithm are given as follows.Step 1: Partition the original image into non-overlapping range blocks (R ) and overlapping domainblocks ().D Step 2: Down-sample domain blocks (D ÆD’) to the same size as R .Step 3: Calculate variance of R and .'D Step 4: For each R , select those s that meet the criterion of 'D |)'()(|D Var R Var − ≤ threshold.Step 5: For all the selected D’, using the simplified transformation analysis to decrease the 8transformation.Step 6: Fulfill PDS-MSE computation to find the best matched and its transformation. Then,store this position of searched , mapped isometric, and . 'D 'D i s i o Step 7: Repeat Step 4-6 until all the R s are processed.4. EXPERIMENTAL RESULTSThe proposed fast fractal encoding is simulated using several 512×512 images with 256 gray levels. The conventional algorithm uses non-overlapping 8×8 range block and overlapping 16×16 domain block and full exhaustive search. For the purpose of performance comparison, the sizes for range and domain blocks are the same as the conventional scheme in the proposed experiment. The thresholds of variance difference for test images are given in Table 1. We got those thresholds from empirical experience and we find that setting the threshold to 40 can get the tradeoff between decoded quality and encoding time. The numbers of s in each class through the simplified eight transformations algorithm are listed in Table 2. All of the above methods have been coded in C language and running on Pentium 4- 2.4 gigahertz CPU and main memory is 512MB. Windows XP is the operating system and the programming language is Visual C++ 6.0. PSNR is used to measure the quality of the decoding image.'D Table 1 The thresholds for test imagesImages Lena Zelda PepperThreshold 40 36 48Fast Fractal Image EncoderTable 2 The number of after simplified eight transformations'D512×512 Class 1 Class 2 Class 3 Class 4Lena 322 495 64479 181713Zelda 217 210 50922 195660183903 Pepper 369 423 62314Refer to Fig. 10 to Fig. 12, there are three different nature images including Lena, Zelda and Pepper used for visual evaluation. Conventional fractal encoding needs about 7 hours to encode them under the same hardware circumstance as we use; however, the proposed method only needs a little more than one minute. Note that the proposed method moves the domain block by shifting single-pixel manner in the simulations of Fig.10 to Fig. 12.(a) Original image (b) Traditional fractal decoding imagePSNR=30.128 dB. Time=21456 sec(c) Proposed fractal decoding imagePSNR=29.27 dB. Time=42 secFig. 10 Performance of Lena(a) Original image (b) Traditional fractal decoding imagePSNR=34.6999 dB. Time=21543 sec(c) Proposed fractal decoding imagePSNR=33.45 dB. Time=41 secFig. 11 Performance of Zelda(a) Original image (b) Traditional fractal decoding imagePSNR=30.9105 dB Time=21532 sec(c) Proposed fractal decoding imagePSNR=29.88 dB. Time=43 secFig. 12 Performance of PepperBecause there are three major methods contribute to the performance, we also show the experimental results used for the performance evaluation of classification, simplification of eight transformation and PDS in Table 3. (A) denotes traditional fractal encoding method, (B) shows the encoding method with the variance classification, (B)+(C) shows the encoding method with the variance classification and the simplification of eight transformations but without PDS-MSE, (B)+(C)+(D) shows proposed complete encoding method including the variance classification, simplification of eight transformations and PDS-MSE. The decoded quality on the decoder side is expressed by PSNR in Table 3. The decoded quality by the proposed method is worse than conventional full search strategy. But, the visual degradation is not noticeable.Fast Fractal Image EncoderTable 3 Experimental resultsImage Method PSNR (dB) Encoding time (sec) Numbers of MSE Computation(A) 30.12 21456 1976072Lena(B) 29.85 93 4856(B)+(C) 29.27 72 3634(B)+(C)+(D) 29.27 42 3634(A) 34.69 21543 1976072Zelda(B) 33.85 88 4034(B)+(C) 33.45 68 3221(B)+(C)+(D) 33.45 41 3221(A) 30.91 21532 1976072Pepper(B) 30.43 86 4356(B)+(C) 29.88 67 3356(B)+(C)+(D) 29.88 43 3356Note that PDS-MSE does not increase any PSNR degradation while reducing encoding time. The data within the column of “number of MSE computation” in Table 3 denotes the numbers of fulfilling MSE for each range block. PDS-MSE does not decrease the number of MSE but it decreases the computation burden during the computation. If we move the domain blocks by shifting 4 pixels, the time for encoding Lena, Zelda and Pepper are 2.83 seconds, 2.67 seconds and 2.93 seconds, respectively. The PSNR values for the three images are 28.87 dB, 32.46dB and 29.05 dB.In [11], it achieves speedup by using a symmetry window searching for the best matched domain blocks for each range block. The best matched domain block is searched within the searching window for in the neighborhood of the domain block with the closet variance to that of the range block. [12] a three-level quadtree partition scheme with range block of 4×4, 8×8 and 16×16 with different error thresholds for the quadtree splitting process and a domain grid of two are used. It uses a non-symmetric window to search the for the best matched domain block based on the local variance method. In the above two methods, the size of searching window influences the performance of encoding time and quality. The results of [12] are better than [11]. We have implemented the algorithm of [12] and running it on the same hardware and platform as we use. The window sizes being used in [12] are from 4.7% to 9.4%. But, it does not consider the simplification of transformation and the other factors that are contributed to the speedup. In the proposed method, the numbers of searched block are greatly decreased because of that we use variance to prune the number of domain blocks. And the simplification of eight transforms also reduces the numbers of MSE computation. The numbers of MSE computation by the proposed method are from about 0.15% to 0.18% compared to the conventional full search fractal encoding in out test images. We modify the parameter of classification threshold, shifting pixel of domain block, and the bit-allocation for the fractal codes in the proposed system to make the compression ratio close to [11] and [12]. The performance comparison among the three methods is listed in Table 4.Table 4 Performance comparisonMethod Compression ratio PSNR (dB) Encoding time (sec)Proposed method 21.56 28.21 1.72Lena32.12[11] 20.3210152[12] 20.0532.08Proposed method 24.32 29.01 2.01Pepper31.87[11] 22.7719848[12] 23.1331.84International Journal of Information Technology, Vol. 13 No. 1 20075.CONCLUSIONIn this paper, the performance of the traditional image coding system in terms of speed is greatly improved, which can raise the performance of coding system. The experimental results show that our proposed method makes the encoder much faster than the conventional fractal compression method. Compared to other published methods [6-12], the proposed method gets better performance in terms of running time. We proposed a composite method of speeding up fractal image coding. There are major three ways to achieve the speed-up (1). Pruning the domain pools using a variance condition (variance of parent block should not be too different from the variance of the child block).(2). Pruning the isometrics being considered, based upon a classification of blocks based on local mean of block. (3). PDS-MSE to monitor the partial sums of the collage error as they are being computed, and exiting the loop as soon as the partial sum exceeds the minimum collage error encountered to date. Variance classification is the major contribution to reduce the majority of encoding time and control the quality of the decoded images. The classification by variance can be changed by adjusting the thresholds. Modifying the classification thresholds, different performance will be yielded to meet requirement. Simplification of eight transformations also diminishes the unnecessary number of transformation computation burden. PDS helps us to decrease MSE computation. Our proposed fractal encoding method improves the drawback of conventional fractal image coding in the cost of imperceptible quality. Notice that the proposed method moves the domain blocks by shifting single-pixel manner. If we move the domain block more than one pixel every time, the efficiency with respect to time will be raised. However; the decoded quality will be worse certainly.ACKNOWLEGEMENTThis work was supported in part by the National Science Council of Taiwan under Contract No. NSC 95-2221-E- 426-004.REFERENCE[1] M.F. Barnsley. Fractal Everywhere. Academic Press, San Diego, 1988.[2] Y. Fisher, Fractal Image Compression. Theory and Application, Springer-Verlag, New York1995.[3] A.E. Jacquin, “Fractal image coding: a review”, Proc. of the IEEE, vol. 81, NO.10, pp.1451-1456,1993.[4] A.E. Jacquin, “Image coding based on a fractal theory of iterated contractive imagetransformations,” IEEE Trans. Image Process. Vol.1, NO.1, pp.18-30, 1992.[5] B. Wohlberg and G.D. Jager, “A review of the fractal image coding literature,” IEEE Trans.Image Process. Vol.8, NO.12, pp.1716-1729, 1999.[6] G.M. Davis, “A wavelet-based analysis of fractal image compression,”IEEE Trans. ImageProcess. , vol. 7, NO.2, pp.141 -154, 1998.[7] M. Takezawa, H. Honda, J. Miura, H. Haseyama and H. Kitajima,“A genetic-algorithm basedquantization method for fractal image coding,” in Proc. of IEEE International Conf. on Image Process. Vol. 1, pp.458-461, Kobe, Japan, 1999.[8] Y. Zhao and B. Yuan,“Image compression using fractals and discrete cosine transform,” Electron.Lett. vol.30, NO.6, pp.474–475, 1994.[9] Y. Zhao and B. Yuan, “A hybrid image compression scheme combining block-based fractalcoding and DCT,” Signal Processing: Image Communication. Vol.8, NO.2, pp.73-78, 1996.Yung-Gi, WuFast Fractal Image Encoder[10] D. Saupe and S. Jacob, “Variance-based quad-trees in fractal image compression,” Electron.Lett. Vol.33, NO.1, pp.46–48, 1997.[11] C.K. Lee and W.K. Lee, “Fast fractal image block coding based on local variances,” IEEETrans. Image Process. Vol.7, NO.6, pp.888 –891, 1998.[12] C.M. Lai, K. M. Lam and W. C. Siu, “Improved searching scheme for fractal image coding,”Electronic Lett. Vol. 38, NO.25, pp.1653-1654, 2002.[13] J. Ngwa-Ndifor and T. Ellis, “Predictive partial search algorithm for vector quantization,”Electron. Lett. Vol.27, NO.19, pp.1722-1723, 1991.。