2013中考数学试题汇编之圆的概念与性质

合集下载

2013年中考数学100份试卷分类汇编:圆的垂径定理

2013年中考数学100份试卷分类汇编:圆的垂径定理

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。

由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。

因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )Bcm B cm cm或cm D cm或cmOM==3cm==4==2cm5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE===6CE===29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()B的长为=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠可得出=BAC=∠∴=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

2013年中考数学分类自定义之圆的基本性质

2013年中考数学分类自定义之圆的基本性质

2013年中考数学分类汇编之圆的基本性质一.选择题10.(2013温州)在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是()A.B.C.D.考点:圆的认识.分析:首先根据AB、AC的长求得S1+S3和S2+S4的值,然后两值相减即可求得结论.解答:解:∵AB=4,AC=2,∴S1+S3=2π,S2+S4=,∵S1﹣S2=,∴(S1+S3)﹣(S2+S4)=(S1﹣S2)+(S3﹣S4)=π∴S3﹣S4=π,故选D.点评:本题考查了圆的认识,解题的关键是正确的表示出S1+S3和S2+S4的值.8.(2013红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A.AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA考点:圆周角定理;圆心角、弧、弦的关系;探究型.分析:根据圆周角定理,圆心角、弧、弦的关系对各选项进行逐一分析即可.解答:解:∵弦BD平分∠ABC,∴∠DBC=∠ABD,∴=,AD=DC,故A、B正确;∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,故C正确;∵>,∴∠DAB>∠CBA,故D错误.故选D.点评:本题考查的是圆周角定理及圆心角、弧、弦的关系,熟知直径所对的圆周角是直角是解答此题的关键.34.(2013台湾)如图,是半圆,O为AB中点,C、D两点在上,且AD∥OC,连接BC、BD.若=62°,则的度数为何?()A.56 B.58 C.60 D.62考点:圆心角、弧、弦的关系;平行线的性质.分析:以AB为直径作圆,如图,作直径CM,连接AC,根据平行线求出∠1=∠2,推出弧DC=弧AM=62°,即可求出答案.解答:解:以AB为直径作圆,如图,作直径CM,连接AC,∵AD∥OC,∴∠1=∠2,∴弧AM=弧DC=62°,∴弧AD的度数是180°﹣62°﹣62°=56°,故选A.点评:本题考查了平行线性质,圆周角定理的应用,关键是求出弧AM的度数.12.(2013内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm考点:圆心角、弧、弦的关系;全等三角形的判定与性质;勾股定理;圆周角定理.分析:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.解答:解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△OED,∴OE=AF=AC=3cm,在Rt△DOE中,DE==4cm,在Rt△ADE中,AD==4cm.故选A.点评:本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.13.(2013泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.7.(2013聊城)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cm B.104cm C.106cm D.108cm考点:整式的加减;圆的认识.分析:根据圆的周长公式分别求出半径变化前后的钢丝长度,进而得出答案.解答:解:设地球半径为:rcm,则地球的周长为:2πrcm,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,故此时钢丝围成的圆形的周长变为:2π(r+16)cm,∴钢丝大约需要加长:2π(r+16)﹣2πr≈100(cm)=102(cm).故选:A.点评:此题主要考查了圆的面积公式应用以及科学记数法等知识,根据已知得出图形变化前后的周长是解题关键.7.(2013苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°考点:圆周角定理;圆心角、弧、弦的关系.分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB 的度数.解答:解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.14.(2013宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°考点:垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.解答:解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A.=,正确,故本选项错误;B.AF=BF,正确,故本选项错误;C.OF=CF,不能得出,错误,故本选项错误;D.∠DBC=90°,正确,故本选项错误;故选C.点评:本题考查了垂径定理及圆周角定理,解答本题的关键是熟练掌握垂径定理、圆周角定理的内容,难度一般.6.(2013孝感)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A.平分弦(不是直径)的直径垂直于弦,故本选项错误;B.半圆或直径所对的圆周角是直角,故本选项正确;C.同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D.两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.18.(2013绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4 B.5 C.6 D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.8.(2013齐齐哈尔)下列说法正确的是()A.相等的圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k考点:位似变换;无理数;圆心角、弧、弦的关系;随机事件.分析:根据圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质分别判断得出答案即可.解答:解:A.根据同圆或等圆中相等的圆心角所对的弧相等,故此选项错误;B.根据无限不循环小数是无理数,故此选项错误;C.阴天会下雨是随机事件,故此选项错误;D.根据位似图形的性质得出:在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,故此选项正确;故选:D.点评:此题主要考查了圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质等知识,熟练掌握相关性质是解题关键.17.(2013龙东)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为()A.3 B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分析:首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.故选A.点评:本题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.5.(2013厦门)如图所示,在⊙O中,,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°考点:圆心角、弧、弦的关系.分析:先根据等弧所对的弦相等求得AB=AC,从而判定△ABC是等腰三角形;然后根据等腰三角形的两个底角相等得出∠B=∠C;最后由三角形的内角和定理求角B的度数即可.解答:解:∵在⊙O中,,∴AB=AC,∴△ABC是等腰三角形,∴∠B=∠C;又∠A=30°,∴∠B==75°(三角形内角和定理).故选B.点评:本题综合考查了圆心角、弧、弦的关系,以及等腰三角形的性质.解题的关键是根据等弧对等弦推知△ABC是等腰三角形.二.填空题17.(2013宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.考点:扇形面积的计算;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:综合题.分析:根据弦AB=BC,弦CD=DE,可得∠BOD=90°,∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD 于点G,在四边形OFCG中可得∠FCD=135°,过点C作CN∥OF,交OG于点N,判断△CNG、△OMN 为等腰直角三角形,分别求出NG、ON,继而得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考察的知识点较多,解答本题的关键是求出圆0的半径,此题难度较大.16.(2013常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= .考点:圆周角定理;含30度角的直角三角形;勾股定理;圆心角、弧、弦的关系.分析:根据直径所对的圆周角是直角可得∠BAD=∠BCD=90°,然后求出∠CAD=30°,利用同弧所对的圆周角相等求出∠CBD=∠CAD=30°,根据圆内接四边形对角互补求出∠BDC=60°再根据等弦所对的圆周角相等求出∠ADB=∠ADC,从而求出∠ADB=30°,解直角三角形求出BD,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.解答:解:∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠BAC=120°,∴∠CAD=120°﹣90°=30°,∴∠CBD=∠CAD=30°,又∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,∵AB=AC,∴∠ADB=∠ADC,∴∠ADB=∠BDC=×60°=30°,∵AD=6,∴在Rt△ABD中,BD=AD÷cos60°=6÷=4,在Rt△BCD中,DC=BD=×4=2.故答案为:2.点评:本题考查了圆周角定理,直角三角形30°角所对的直角边等于斜边的一半,以及圆的相关性质,熟记各性质是解题的关键.23.(2013黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=,求⊙O的直径.考点:圆周角定理;圆心角、弧、弦的关系;锐角三角函数的定义.专题:几何综合题.分析:(1)要证明CB∥PD,可以求得∠1=∠P,根据=可以确定∠C=∠P,又知∠1=∠C,即可得∠1=∠P;(2)根据题意可知∠P=∠CAB,则sin∠CAB=,即=,所以可以求得圆的直径.解答:(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)解:连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴=,∴∠P=∠CAB,∴sin∠CAB=,即=,又知,BC=3,∴AB=5,∴直径为5.点评:本题考查的是垂径定理和平行线、圆周角性质,解题时细心是解答好本题的关键.18.(2013玉林防城港)如图,△ABC是⊙O内接正三角形,将△ABC绕点O顺时针旋转30°得到△DEF,DE分别交AB,AC于点M,N,DF交AC于点Q,则有以下结论:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周长等于AC的长;④NQ=QC.其中正确的结论是.(把所有正确的结论的序号都填上)考点:圆的综合题;圆心角、弧、弦的关系;圆周角定理;全等三角形的判定;等边三角形的性质;旋转的性质.分析:连结OA、OD、OF、OC、DC、AD、CF,根据旋转的性质得∠AOD=∠COF=30°,再根据圆周角定理得∠ACD=∠FDC=15°,然后根据三角形外角性质得∠DQN=∠QCD+∠QDC=30°;同理可得∠AMN=30°,由△DEF为等边三角形得DE=DF,则弧DE=弧DF,得到弧AE=弧DC,所以∠ADE=∠DAC,根据等腰三角形的性质有ND=NA,于是可根据“AAS”判断△DNQ≌△ANM;利用QD=QC,ND=NA可判断△DNQ的周长等于AC的长;由于∠NDQ=60°,∠DQN=30°,则∠DNQ=90°,所以QD>NQ,而QD=QC,所以QC>NQ.解答:解:连结OA、OD、OF、OC、DC、AD、CF,如图,∵△ABC绕点O顺时针旋转30°得到△DEF,∴∠AOD=∠COF=30°,∴∠ACD=∠AOD=15°,∠FDC=∠COF=15°,∴∠DQN=∠QCD+∠QDC=15°+15°=30°,所以①正确;同理可得∠AMN=30°,∵△DEF为等边三角形,∴DE=DF,∴弧DE=弧DF,∴弧AE+弧AD=弧DC+弧CF,而弧AD=弧CF,∴弧AE=弧DC,∴∠ADE=∠DAC,∴ND=NA,在△DNQ和△ANM中,∴△DNQ≌△ANM(AAS),所以②正确;∵∠ACD=15°,∠FDC=15°,∴QD=QC,而ND=NA,∴ND+QD+NQ=NA+QC+NQ=AC,即△DNQ的周长等于AC的长,所以③正确;∵△DEF为等边三角形,∴∠NDQ=60°,而∠DQN=30°,∴∠DNQ=90°,∴QD>NQ,∵QD=QC,∴QC>NQ,所以④错误.故答案为①②③.点评:本题考查了圆的综合题:弧、弦和圆心角之间的关系以及圆周角定理在有关圆的几何证明中经常用到,同时熟练掌握三角形全等的判定、等边三角形的性质以及旋转的性质.三.解答题20.(2013威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.考点:垂径定理;圆心角、弧、弦的关系;扇形面积的计算.分析:(1)根据垂径定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数.(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB ﹣S△OAB,即可得出答案.解答:解:(1)∵CD是圆O的直径,CD⊥AB,∴=,∴∠C=∠AOD,∵∠AOD=∠COE,∴∠C=∠COE,∵AO⊥BC,∴∠C=30°.(2)连接OB,由(1)知,∠C=30°,∴∠AOD=60°,∴∠AOB=120°,在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=,∴AB=,∴S阴影=S扇形OAB﹣S△OAB=﹣××=π﹣.点评:本题考查了垂径定理及扇形的面积计算,解答本题的关键是利用解直角三角形的知识求出∠C.∠AOB的度数,难度一般.。

2013年中考数学模拟试题分类汇编42:圆有关的性质

2013年中考数学模拟试题分类汇编42:圆有关的性质

2013年中考数学模拟试题汇编圆有关的性质一、选择题1、(2013江苏东台实中)如右图,⊙O的半径OA等于5,半径OC⊥AB于点D,若OD=3,则弦AB的长为( )A、10B、8C、6D、4答案:B2、如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于( )A.8 B.4 C.10 D.5答案:D3、(2013江苏扬州弘扬中学二模)若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A 与⊙O 的位置关系是( )A.点A 在圆外B. 点A 在圆上C. 点A 在圆内D.不能确定 答案:C4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是 AD 上任意 一点,则∠BEC 的度数为 ( ) A. 30° B. 45°答案:B5、(2013山西中考模拟六) 如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =,∠AOC 为( )A .120° B.130C .140° D.150°答案:A 6、(2013温州市一模)如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )A .3B .6C .9D .12答案:C 7、(2013·湖州市中考模拟试卷1)如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论: ① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个答案:B 8、(2013·湖州市中考模拟试卷7)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A ∠.则D ∠等于( )O P(第5题) ︵ ︵ AE =A . 20B . 30C . 40D . 50 答案:C9、(2013·湖州市中考模拟试卷8)如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .8答案:B 10、(2013·湖州市中考模拟试卷10)如图,AB 是⊙O 的直径,CD 为弦,AB CD 于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD答案:D11、(2013年河北四摸)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C )10(D )12答案:A二、填空题 1、(2013江苏东台实中)已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____. 答案:30°或150° 2、(2013江苏东台实中)如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º. 答案:18°3、(2013江苏射阴特庸中学)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD , 则∠PCA = °.(第4题)答案:67.54、(2013·曲阜市实验中学中考模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为 BC上一点,若∠CEA=28 ,则∠ABD=°.答案: 28°5、(2013·湖州市中考模拟试卷7)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________. 答案: 72°或108°6、(2013·湖州市中考模拟试卷8)如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .答案:0807、 (2013年河北二摸)如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 答案:38、(2013年上海市)如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 ▲ cm (铁丝粗细忽略不计). 答案:第17题图三、解答题1、(2013安徽芜湖一模)如图,在Rt ABC △中,90C ∠= ,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由;(2)若6AD AE ==,BC 的长.解:(1)直线AC 与DBE △外接圆相切.理由:∵DE BE ⊥, ∴ BD 为DBE △外接圆的直径, 取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠,∵BE 平分ABC ∠,∴ OBE CBE ∠=∠,∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,∴直线AC 与DBE △外接圆相切. ………………………………………………(6分) (2)设OD OE OB x ===,∵OE AC ⊥,∴222(6)x x +-=, ∴3x =, ∴12AB AD OD OB =++=,∵OE AC ⊥,∴AOE ABC △∽△, ∴AO OE AB BC =,即9312BC=,] ∴4BC =. ……………………………………………………………………(12分)2、(2013吉林镇赉县一模)如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.答案:C(第1题) B D AEDA3、(2013吉林镇赉县一模)已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE . (1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数. 答案:4、(2013江苏射阴特庸中学)如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长. 答案:(1)直线BP 和⊙O 相切. ……1分理由:连接BC,∵AB 是⊙O 直径,∴∠ACB=90°. ......2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BPF=90°. ......3分 ∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, (4)所以直线BP 和⊙O 相切.(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分∴AC BE =BCBP,解得BP=2.即BP 的长为2. ……10分 5、(2013山西中考模拟六) 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径32r =,2AC =,请你求出cos B 的值.20题图BP BAABP答案:∵AD 是⊙O 的直径,32r =,∴∠ACD =90°,AD =3, ∵AC =2,∴CD ==cos D ∵∠B 和∠D 是同弧所对的圆周角,∴∠B =∠D ,∴cos cos B D ==6、(2013温州市一模)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC .(1)求证:△ADB ∽△OBC .(2)若AB =6,BC =4.求AD 的长度 .(结果保留根号) 答案:证明:(1)∵AB 是⊙O 的直径,BC 是⊙O 的切线,∴∠D =∠OBC =90° ∵AD ∥OC[中国^∴∠A =∠COB ∴△ADB ∽△OBC(2)∵AB =6, ∴OB =3, ∵BC=4,[]5OC ∴===∵△ADB ∽△OBC∴6,,35AD AB AD OB OC =∴= 185AD ∴=。

中考数学圆的定义及概念归纳

中考数学圆的定义及概念归纳

中考数学圆的定义及概念归纳如果你想得到甜蜜,就将自己变成工蜂,到花芯中去采撷,如果你想变得聪慧,就将自己变成一尾鱼,遨游于书的海洋。

下面是小编给大家带来的中考数学圆的定义及概念,欢迎大家阅读参考,我们一起来看看吧!初中七年级圆的知识点之圆及有关概念圆及有关概念1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。

2 连接圆心和圆上的任意一点的线段叫做半径(radius)。

3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。

4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。

5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。

小于半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小于180度的弧6 由两条半径和一段弧围成的图形叫做扇形(sector)。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角(central angle)。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个超越数,通常用π表示,π=3.1415926535……。

在实际应用中,一般取π≈3.14。

11 圆周角等于弧所对的圆心角的一半。

字母表示圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;扇形弧长—L ; 周长—C ; 面积—S。

圆的表示方法要求很严格,需要用到相应的知识要求。

初中七年级圆的知识点之圆的基础性质圆的基础性质⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

中考真题训练圆的有关性质

中考真题训练圆的有关性质

中考数学试题专题汇编:圆的有关性质1. 如图1,⊙O 弦AB 若AB =6,则⊙O 的半径为( )A. 2 B.2 2 C.22 D.622. 圆柱形油槽内装有一些油。

截面图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )分米(A )6(B )8(C )10(D )123. 一个圆形人工湖如图3,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为()A.B.C.D.4. 一条排水管的截面如图4.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A.16 B.10 C.8 D.65. 如下图1,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )个单位 A . 12 B. 10 C.4 D. 156. 如图(六),△ABC 的外接圆上,AB 、BC 、CA 三弧的度数比为12:13:11.自弧BC 上取一点D ,过D 分别作直线AC 、直线AB 的并行线,且交弧BC 于E 、F 两点,则∠EDF 的度数为何? ( )A . 55B . 60C . 65D . 707. 如图3,⊙O 过点B 、C ,圆心O 在等腰Rt △ABC 的内部,∠BAC=90°,OA=1,BC=6。

则⊙O 的半径为( )A .6B .13CD .8. 如图4,若AB 是⊙0的直径,CD 是⊙O 的弦,∠ABD =58°, 则∠BCD =( )(A)116° (B)32° (C)58° (D)64°9. 如图5,⊙O 是△ABC 的外接圆,∠BAC=60°,若⊙O 的半径OC 为2,则弦BC 的长为( )A .1B C .2 D .10. 如右面图1,⊙O 的直径CD =5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,O M :OD =3:5,则AB 的长是( )A .2cm B .3cm C .4cm D .221cm11.矩形ABCD 中,AB =8,BC =P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ).(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内;(C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内. 12. 如图2,CD 是⊙ O 的弦,直径AB 过CD 的中点M ,若∠ BOC=40°,则∠ ABD=( ) A .40° B .60° C .70° D .80°13. 如上图3,100AOB ∠=,点C 在O 上,且点C 不与A 、B 重合,则ACB ∠的度数为( ) A .50 B .80或50 C .130 D .50 或13014. 如上图4,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( ) A . 115°B . 105°C . 100°D . 95°15. 如上图5, AB 为 ⊙ O 的直径, CD 为弦, AB ⊥ CD ,如果∠ BOC = 700 ,那么∠ A 的度数为( ) A .70︒ B . 35︒ C . 30︒ D . 20︒16.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为( )A. (4 cmB. 9 cmC.D.17.如图2,的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( )A 、7B 、 C、 D 、918.如图3,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为( ) A .22 B .2 C .1 D .2 19.如图4,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19 B .16 C .18 D .2020. 已知⊙O 的半径为13cm ,弦AB//CD ,AB=24cm ,CD=10cm ,则AB 、CD 之间的距离为( ) A .17cm B .7 cm C .12 cmD .17 cm 或7 cm(第3题)ABCOOCA B第10题图D CAO二、填空题1. 如下图1,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .2. 如上图2,⊙O 的弦CD 与直径AB 相交,若∠B AD=50°,则∠ACD=3. 如下图3,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .4. 如图4,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =则∠AED= .__________.6. 如图上2,点A ,B ,C ,D 都在⊙O上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD 十∠CAO = °. 7. 如上图3,AB 是⊙ O 的直径,点C ,D 都在⊙ O 上,连结CA ,CB ,DC ,DB .已知∠ D =30°,BC =3,则AB 的长是 .8. 如上图4,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。

中考复习讲义 圆的基本概念与性质(含参考答案)

中考复习讲义 圆的基本概念与性质(含参考答案)

圆的基本概念与性质内容基本要求略高要求较高要求圆的有关概念理解圆及其有关概念会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题垂径定理会在相应的图形中确定垂径定理的条件和结论能用垂径定理解决有关问题1. 圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,其中固定端点O 叫做圆心,OA 叫做半径. 2. 弧与弦:弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍. 弦心距:从圆心到弦的距离叫做弦心距.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B 、为端点的圆弧记作»AB ,读作弧AB . 等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆. 优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧. 3. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

一 与圆有关概念【例1】 判断题(1)直径是弦 ( ) (2)弦是直径( )中考说明自检自查必考点中考必做题(3)半圆是弧( )(4)弧是半圆( )(5)长度相等的两条弧是等弧( )(6)等弧的长度相等( )(7)两个劣弧之和等于半圆( )(8)半径相等的两个圆是等圆( )(9)两个半圆是等弧( )(10)圆的半径是R,则弦长的取值范围是大于0且不大于2R( )【答案】(1)√;(2)×;(3)√;(4)×;(5)×;(6)√;(7)×;(8)√;(9)×;(10)√【例2】如图,点A D G M、、、在半圆O上,四边形ABOC DEOF HMNO、、均为矩形,设BC a=,EF b=,NH c=则下列格式中正确的是( )A.a b c>>B.a b c==C.c a b>>D.b c a>>ONMHGFEDCB A【答案】B【例3】如图,直线12l l∥,点A在直线1l上,以点A为圆心,适当长为半径画弧,分别交直线12l l、于B、C两点,连接AC BC、.若54ABC∠=︒,则∠1的大小为________【答案】72°【例4】如图,ABC∆内接于Oe,84AB AC D==,,是AB边上一点,P是优弧¼BAC的中点,连接PA、PB、PC、PD,当BD的长度为多少时,PAD∆是以AD为底边的等腰三角形?并加以证明.【答案】解:当4BD=时,PAD∆是以AD为底边的等腰三角形.证明:∵P是优弧¼ABC的中点∴»»PBPC = ∴PB PC =在PBD ∆与PCA ∆中, ∵4PB PC PBD PCB BD AC =⎧⎪∠=∠⎨⎪==⎩∴PBD PCA SAS ∆∆≌().∴PD PA =,即4BD =时,PAD ∆是以AD 为底边的等腰三角形.【例5】 如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果点Q 从点A 出发,沿图中所示方向按A B C D A ⇒⇒⇒⇒滑动到A 止,同时点R 从点B 出发,沿图中所示方向按B C D A B ⇒⇒⇒⇒滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为_________【答案】4π- 【解析】根据直角三角形的性质,斜边上的中线等于斜边的一半,可知:点M 到正方形各顶点的距离都为1,故点M 所走的运动轨迹为以正方形各顶点为圆心,以1为半径的四个扇形,点M 所经过的路线围成的图形的面积为正方形ABCD 的面积减去4个扇形的面积.二 垂径定理及其应用【例6】 如图,AB 是O e 的直径,BC 是弦,OD BC ⊥于E ,交弧BC 于D .(1)请写出五个不同类型的正确结论; (2)若82BC ED ==,,求O e 的半径.【答案】(1)不同类型的正确结论有:22290•ABC BE CE BD DC BED BOD A AC OD AC BC OE BE OB S BC OE BOD BOE BAC ==∠=︒∠=∠⊥+==⋯V P V V V ①;②弧弧;③;④;⑤;⑥;⑦;⑧;⑨是等腰三角形;⑩∽(2)∵OD BC ⊥,∴12BE CE ==4BC =设O e 的半径为R ,则2OE OD DE R =-=-,在Rt OEB V中,由勾股定理得: 22222224OE BE OB R R +=-+=,即(),解得:5R = ,∴O e 的半径为5.【例7】 如图,在O e 中,120,3AOB AB ∠=︒=,则圆心O 到AB 的距离=_______BAO【答案】23【例8】 如图,D 内接于O e ,D 为线段AB 的中点,延长OD 交O e 于点E , 连接,AE BE 则下列五个结论①AB DE ⊥,②AE BE =,③OD DE =,④AEO C ∠=∠,⑤»¼12AB ACB =,正确结论的个数是( )DCBAA .2B .3C . 4D .5【答案】A【例9】 如图,AB 为O e 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )ODCAA . 70︒B . 35︒C . 30︒D .20︒【答案】B【例10】 如图,AB 是O e 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O e 的直径为( )EO BDCAA .10B .12C .14D .16【答案】A【例11】 如图,O e 是ABC ∆的外接圆,60BAC ∠=︒,若O e 的半径OC 为2,则弦BC 的长为( ) A .1 B 3 C .2 D .23OCBA【答案】D【例12】 小英家的圆镜子被打破了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是( )A .2B 5C .22D .3【答案】B【解析】考查垂径定理与勾股定理的应用.此题关键找到圆心,由不在同一条直线上的三点确定唯一一个圆.如图,作线段,AB BC 的垂直平分线交于点O ,点O 即为圆镜的圆心,连结OA ,由图可知 1,2AD OD ==,由勾股定理得半径2222125OA AD OD +=+ODCBA【例13】 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得=∠DOE sin 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5m 的速度下降,则经过多长时间才能将水排干?【答案】(1)∵OE ⊥CD 于点E ,CD =24, ∴ED =12CD =12.在Rt △DOE 中,∵sin ∠DOE =ED OD =1213, ∴OD =13(m ). (2)OE 22OD ED -2213125-=. ∴将水排干需:50.510÷=小时.【例14】 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( )OEC DABCDA .5米B . 8米C .7米D .53米 【答案】B【例15】 如图,AB 为O e 的直径,弦CD AB ⊥,垂足是E ,连接OC ,若5,8OC CD ==,则AE =_______BEO DCA【答案】2【例16】 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )OCBAA .16B .10C .8D .6 【答案】A【例17】 已知,如图,1O e 与坐标轴交与A (1,0)、B ( 5,0)两点,点1O 的纵坐标为5,求1O e 的半径。

圆的概念和性质知识点初三

圆的概念和性质知识点初三

圆的概念和性质知识点初三
一、圆的定义
1、圆是由一组点组成的一种二维几何形状,它们都距离中心点同样的距离;
2、一个圆可以定义为由圆心(C)和半径(r)确定的
一组点集合(每个点都离圆心C的距离都是r);
3、用参数方程表示:
(x-a)²+(y-b)²=r²
其中,(a, b)为圆心,r为半径。

二、圆的性质
1、圆上的点都是对称的:连接任意两点,这条线段会穿过圆中心;
2、圆的半径不变:圆的半径是一个固定的数值,并且不会随着其他参数变化而变化;
3、圆的周长和面积:周长等于2πr,面积等于πr²;
4、圆的中心轴对称:即通过任意一点A,连接圆心,任意一点B都能满足之间的距离相等;
5、圆的角平分线:任取圆中的两点,以它们为两端点可以画出一条直线,这条直线可以将圆平分
成两等份;
6、圆的内切线:从圆上任取一点,可以画出一条
穿过该点的直线,叫做内切线,内切线与圆的半径垂直,通过任意一点,两条内切线总会相交于圆心,也称正切线。

中考数学总复习专题圆有关概念及性质

中考数学总复习专题圆有关概念及性质

A.4 m
B.5 m
C.6 m
中考数学总复习专题圆的有关概念及性质
D.8 m
【点拨】连接 OA,则 OA=OC=5,OD=CD- OC=8-5=3(m).在 Rt△OAD 中,OA2-OD2=AD2, 即 52-32=AD2,解得 AD=4(m).∵OD⊥AB,由垂径 定理可得 AB=2AD=8(m).
中考数学总复习专题圆的有关概念及性质
考点五 圆内接四边形性质定理
1.性质定理 1:圆内接四边形的对角互补. 2.性质定理 2:圆内接四边形的外角等于它的内角的对角. 如图,四边形 ABCD 内接于⊙O,则∠A+∠BCD=∠B+ ∠D=180°,∠DCE=∠A.
中考数学总复习专题圆的有关概念及性质
考点六 圆的性质的应用
中考数学总复习专题圆的有关概念及性质
中考数学总复习专题圆的有关概念及性质
考点一 垂径定理及其推论 例 1 (2013·上海)在⊙O 中,已知半径长为 3,弦 AB 长为 4,那么圆心 O 到 AB 的距离为_________.
中考数学总复习专题圆的有关概念及性质
【点拨】如图,过圆心 O 作 AB 的垂线交 AB 于点 D,由垂径定理,得 AD=12AB=2.在 Rt△AOD 中,由 勾股定理,得 OD= AO2-AD2= 5.
中考数学总复习专题圆的有关概念及性质
考点四 圆心角与圆周角
1.定义:顶点在圆心的角叫做圆心角;顶点在圆 上,且两边都与圆相交的角叫做圆周角.
2.圆周角定理:在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于这条弧所对的圆心角的一半.
中考数学总复习专题圆的有关概念及性质
如图,圆周角∠C 和圆心角∠AOB 都对着 AB , 则∠C=12∠AOB.

九年级数学圆的性质及习题

九年级数学圆的性质及习题

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;A内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

中考数学经典总复习专题圆的有关概念及性质完美

中考数学经典总复习专题圆的有关概念及性质完美
Leabharlann 4分8分 10 分
命题点1 命题点2 命题点3 命题点4
命题点3 圆内接四边形 4.(2012·安徽,13,5分)如图,点A,B,C,D在☉O上,O点在∠D的内部,四 边形OABC为平行四边形,则∠OAD+∠OCD=60 °.
解析 根据一条弧所对的圆周角是它所对的圆心角的一半,得 ∠AOC=2∠D;又因为四边形OABC是平行四边形,所以∠B=∠AOC;由 圆内接四边形对角互补,得∠B+∠D=180°,所以∠D=60°,连接OD,则 OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有 ∠OAD+∠OCD=∠D=60°.
示:具备②③条件时,应是平分弦(不是直径)]
考点一
考点二
考点三
考点四
考点五
考点三圆心角、弧、弦、弦心距之间的关系 1.圆心角:顶点在圆心的角叫做圆心角. 2.定理:在同圆或等圆中,相等的圆心角所对的弧 相等,所对的 弦 相等,所对的弦的弦心距 相等. 推论:(1)在同圆或等圆中,如果两个圆心角以及这两个圆心角所 对的弧、所对的弦、所对的弦的弦心距中,有一组量相等,那么其 余的各组量也都相等 . (2)弧的度数等于它所对的圆心角的度数.
考点一
考点二
考点三
考点四
考点五
考点二垂径定理及其推论(高频)
定理 推论
垂直于弦的直径平分弦,并且平分弦所对的两条 弧
平分弦(不是直径 )的直径垂直于弦,并且平分弦 所对的两条弧
如果一条直线:①垂直于弦;②经过圆心;③平分弦; ④平分弦所对的优弧;⑤平分弦所对的劣弧.具备其
中任意两个条件,那么就可得到其他三个结论.[提

弦 直径 弦心距
半圆
同心圆 等圆 等弧

全国名校2013年中考数学模拟试卷分类汇编31 圆有关的性质

全国名校2013年中考数学模拟试卷分类汇编31 圆有关的性质

圆有关的性质一、选择题1、(2013江苏东台实中)如右图,⊙O 的半径OA 等于5,半径OC ⊥AB 于点D ,若OD =3,则弦AB 的长为( )A 、10B 、8C 、6D 、4答案:B2、如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )A .8B .4C .10D .5 答案:D3、(2013江苏扬州弘扬中学二模)若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是( )A.点A 在圆外B. 点A 在圆上C. 点A 在圆内D.不能确定 答案:C4、如图,已知⊙O 是正方形ABCD 的外接圆,点E 是 AD 上任意 一点,则∠BEC 的度数为 ( ) A. 30° B. 45°答案:B5、(2013山西中考模拟六) 如图,AB 是⊙O 的直径,AB =4,AC 是弦,AC =∠AOC 为( )A .120°B .130C .140° D.150°答案:A 6、(2013温州市一模)如图,⊙O 的半径为5,若OP =3,,则经过点P 的弦长可能是 ( )A .3B .6C .9D .12答案:C O P(第5题)7、(2013·湖州市中考模拟试卷1)如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C=70°,现给出以下四个结论:① ∠A=45°; ②AC=AB ;③ ; ④CE·AB=2BD 2其中正确结论的个数为 ( )A .1个B .2个C .3个D .4个答案:B 8、(2013·湖州市中考模拟试卷7)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A = ∠.则D ∠等于( )A .20 B .30 C .40 D .50 答案:C9、(2013·湖州市中考模拟试卷8)如右图,已知圆的半径是5,弦AB 的长是6,则弦AB 的弦心距是( )A .3B .4C .5D .8答案:B10、(2013·湖州市中考模拟试卷10)如图,AB 是⊙O 的直径,CD 为弦,AB CD ⊥于E ,则下列结论中不.成立的是( ) A.∠A ﹦∠D B.CE ﹦DE C.∠ACB ﹦90°D .CE ﹦BD︵ ︵ AE =答案:D11、(2013年河北四摸)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的弦心距为( ) (A )6 (B )8 (C )10(D )12答案:A二、填空题 1、(2013江苏东台实中)已知⊙O 的半径为6cm ,弦AB 的长为6cm ,则弦AB 所对的圆周角的度数是 _____. 答案:30°或150°2、(2013江苏东台实中)如第18题图,已知过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A =63 º,那么∠B = º. 答案:18°3、(2013江苏射阴特庸中学)如图,AB 为⊙O 的直径,PD切⊙O 于点C ,交AB 的延长线于D ,且CO =CD , 则∠PCA = °.答案:67.54、(2013·曲阜市实验中学中考模拟)如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为 BC上一点,若∠CEA=28,则∠ABD=°.答案: 28°5、(2013·湖州市中考模拟试卷7)一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为__________.(第4题)答案: 72°或108°6、(2013·湖州市中考模拟试卷8)如图,点A 、B 、C 在圆O 上,且040BAC ∠=,则BOC ∠= .答案:0807、 (2013年河北二摸)如图,⊙O 的半径OA =5cm ,弦AB =8cm ,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm . 答案:38、(2013年上海市)如果一边长为20cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,那么铁圈直径的最小值为 ▲ cm (铁丝粗细忽略不计).答案: 三、解答题1、(2013安徽芜湖一模)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若6AD AE ==,BC 的长.解:(1)直线AC 与DBE △外接圆相切.理由:∵D E BE ⊥, ∴ BD 为DBE △外接圆的直径, 取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠,∵BE 平分ABC ∠,∴ OBE CBE ∠=∠,∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,C(第1题) BD AE第17题图∴直线AC 与DBE △外接圆相切. ………………………………………………(6分) (2)设OD OE OB x ===,∵OE AC ⊥,∴222(6)x x +-=, ∴3x =, ∴12AB AD OD OB =++=,∵OE AC ⊥,∴AOE ABC △∽△, ∴AO OE AB BC =,即9312BC=,] ∴4BC =. ……………………………………………………………………(12分) 2、(2013吉林镇赉县一模)如图,BC 是⊙O 的直径,AD ⊥CD ,垂足为D ,AC 平分∠BCD ,AC =3,CD =1,求⊙O 的半径.答案:3、(2013吉林镇赉县一模)已知A 、B 、C 是半径为2的圆O 上的三个点,其中点A 是弧BC 的中点,连接AB 、AC ,点D 、E 分别在弦AB 、AC 上,且满足AD =CE .(1)求证:OD =OE ;(2)连接BC ,当BC =22时,求∠DOE 的度数. 答案:DA 20题图B4、(2013江苏射阴特庸中学)如图,AB 是⊙O 的直径,点A 、C 、D 在⊙O 上,过D 作PF ∥AC 交⊙O 于F 、交AB 于E ,且∠BPF =∠ADC .(1)判断直线BP 和⊙O 的位置关系,并说明你的理由; (2)当⊙O 的半径为5,AC =2,BE =1时,求BP 的长. 答案:(1)直线BP 和⊙O 相切. ......1分 理由:连接BC,∵AB 是⊙O 直径,∴∠ACB=90°. ......2分 ∵PF ∥AC,∴BC ⊥PF, 则∠PBH+∠BP F=90°. ......3分 ∵∠BPF=∠ADC,∠ADC=∠ABC,得AB ⊥BP, (4)所以直线BP 和⊙O 相切.(2)由已知,得∠ACB=90°,∵AC=2,AB=25,∴BC=4. ……6分 ∵∠BPF=∠ADC,∠ADC=∠ABC,∴∠BPF=∠ABC,由(1),得∠ABP=∠ACB=90°,∴△ACB ∽△EBP, ……8分∴AC BE =BCBP,解得BP=2.即BP 的长为2. ……10分 5、(2013山西中考模拟六) 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O的半径32r =,2AC =,请你求出cos B 的值.答案:∵AD 是⊙O 的直径,32r =,∴∠ACD =90°,AD =3, ∵AC =2,∴CD ==cos D∵∠B 和∠D 是同弧所对的圆周角,∴∠B =∠D , ∴cos cos B D ==6、(2013温州市一模)如图,AB 是⊙O 的直径,BC 是⊙O 的切线, D 是⊙O 上一点,且AD ∥OC .(1)求证:△ADB ∽△OBC .P BAABP 5题图(2)若AB=6,BC=4.求AD的长度.(结果保留根号)答案:证明:(1)∵AB是⊙O的直径,BC是⊙O的切线,∴∠D=∠OBC=90°∵AD∥OC[中国^∴∠A=∠COB∴△ADB∽△OBC(2)∵AB=6, ∴OB=3,∵BC=4,[]5OC∴==∵△ADB∽△OBC∴6,,35 AD AB ADOB OC=∴=185AD∴=。

#2013年中考数学总复习第30讲圆的有关概念和性质

#2013年中考数学总复习第30讲圆的有关概念和性质

2018年初中毕业生学业测试复习初中数学第30讲圆的有关概念及性质考点知识梳理考点一圆的定义及其性质1.圆的定义有两种方式(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点叫,线段OA叫做.(2)圆是到定点的距离等于定长的点的.2.圆的对称性(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.(2)圆是以圆心为对称中心的中心对称图形.(3)圆是旋转对称图形.圆绕圆心旋转任意角度,都能和原来的图形重合,这就是圆的旋转不变性.考点二垂径定理及推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧.考点三圆心角、弧、弦、弦心距之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等.2.推论:同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等;(4)两条弦的弦心距相等.四项中有一项成立,则其余对应的三项都成立.考点四圆心角和圆周角1.定义:顶点在圆心上的角叫圆心角;顶点在圆上,角的两边和圆都相交的角叫圆周角.2.性质(1)圆心角的度数等于它所对弧的度数;(2)一条弧所对的圆周角的度数等于它所对圆心角的;(3)同弧或等弧所对的圆周角.同圆或等圆中相等的圆周角所对的相等;(4)半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是直径.考点五圆的性质的使用1.垂径定理的使用用垂径定理进行计算或证明,常需作出圆心到弦的垂线段(即弦心距),则垂足为弦的中点,再利用解半径、弦心距和弦的一半组成的直角三角形来达到求解的目的 .2.借助同弧、等弧所对圆周角相等,所对圆心角相等进行角的等量代换;也可在同圆或等圆中,由相等的圆周角所对的弧相等,进行弧(或弦)的等量代换.中考典型精析例1 (1)(2018·陕西)如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .4 2(2)(2018·河北)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BE B.AD =BCC .∠D =12∠AEC D .△ADE ∽△CBE (3)如图,⊙O 是△ABC 的外接圆,∠B =60°,OP ⊥AC 于点P ,OP =23,则⊙O 的半径为( )A .43B .63C .8D .12例1(1)题图例1(2)题图例1(3)题图例2 (1)(2018·昆明)如图,AB ,CD 是⊙O 的两条弦,连接AD ,BC .若∠BAD =60°,则∠BCD 的度数为( )A .40°B .50°C .60°D .70°(2)(2018·重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°例2(1)题图 例2(2)题图 例2(3)题图(3)(2018·衢州)如图,点A ,B ,C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( )A.12B.22C.32D.33例3(2018·长沙)如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,则满足∠BAC =∠APC =60°.(1)求证:△ABC 是等边三角形;(2)求圆心O 到边BC 的距离OD .基础巩固训练1.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =12,BE =2,则⊙O 的直径为( )A .8B .10C .16D .202.已知:⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB 、CD 之间的距离为( )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm3.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为 3 cm ,则弦CD 的长为( ) A.32 cm B .3 cm C .2 3 cm D .9 cm第1题图 第3题图 第4题图 第5题图4.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD=.5.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,点D为⊙O上一点,若∠CAB =55°,则∠ADC的大小为度.6.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.考点训练一、选择题(每小题4分,共48分)1.(2018·台州)如图,点A,B,C是⊙O上三点,∠AOC=130°,则∠ABC等于() A.50° B.60°C.65° D.70°2.(2018·苏州)如图,已知BD是⊙O的直径,点A、C在⊙O上,AB=BC,∠AOB=60°,则∠BDC的度数是()A.20° B.25°C.30° D.40°3.(2018·襄阳)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是() A.80° B.160°C.100° D.80°或100°4.如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.6 B.13 C.13 D.213第1题图第2题图第4题图第5题图第6题图5.(2018·泰安)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论中不成立的是()A.CM=DM B.CB=DBC.∠ACD=∠ADC D.OM=MD6.(2018·湘潭)如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( )A .20°B .40°C .50°D .80°7.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B 的值是( )A.23B.32C.34D.438.如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .209.(2018·广元)如图,A 、B 是⊙O 上两点,若四边形ACBO 是菱形,⊙O 的半径为r ,则点A 和点B 之间的距离为( ) A.2r B.3r C .r D .2r第7题图 第8题图 第9题图 第10题图 第11题图10.如图,在5×5的正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M11.如图,在Rt △ABC 中,∠ACB =90°,点P 是半圆弧AC 的中点,连接BP 交AC 于点D ,若半圆弧的圆心为O ,点D 、点E 关于圆心O 对称,则图中的两个阴影部分的面积S 1,S 2之间的关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定12.每位同学都能感受到日出时美丽的景色.如图是一位同学从照片上剪切下来的画面,“图上”太阳和海平线交于A 、B 两点,他测得“图上”圆的半径为5厘M ,AB =8厘M ,若从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,则“图上”太阳升起的速度为( )A .0.4厘M/分B .0.5厘M/分C.0.6厘M/分 D.0.7厘M/分二、填空题(每小题4分,共16分)13.(2018·吉林)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB =度.14.(2018·大连)如图,△ABC是⊙O的内接三角形,若∠BCA=60°,则∠ABO=.第13题图第14题图第15题图第15题图15.(2018·安徽)如图所示,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD= .16.(2018·宁波)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AB=22,D是线段BC 上的一个动点,以AD为直径画⊙O分别交AB,AC于点E,F,连接EF,则线段EF 长度的最小值为.三、解答题(共36分)17.(10分)(2018·宁夏)如图,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.18.(12分)如图,AB是⊙O的直径,CD⊥AB于点E,交⊙O于C、D两点,连接BC,BD,OF⊥AC于点F.(1)请写出三条和BC有关的正确结论;(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.19.(14分)如图,点C 、D 分别在扇形AOB 的半径OA 、OB 的延长线上,且OA =3,AC =2,CD 平行于AB ,并和弧AB 相交于点M 、N .(1)求线段OD 的长;(2)若tan C =12,求弦MN 的长.。

初中数学中考复习——圆的有关概念和性质

初中数学中考复习——圆的有关概念和性质

3cm OP 5cm
O EP B
2.(2016兰州)如图,在⊙O中,若点C是 的中 点,∠ A=50°,则∠ BOC=( A) A.40° B.45° C.50° D.60°
练一练
3.(2017宜昌)如图,四边形ABCD内接⊙O,
AC平分∠BAD,则下列结论正确的是( B )
A.AB=AD
B.BC=CD
C.
D.∠BCA=∠DCA
6.如图,⊙O的直径为10cm,弦AB=8cm ,点P
上弦AB上的一个动点,求OP的范围
解:如图所示,过点O作OE AB于点E,连接OB
Q AB=8cm,
AE=BE= 1 AB 1 8 4cm22源自Q ⊙O的直径为10cm,
A
OB = 1 10 5cm 2
OE OB 2 BE 2 52 42 3cm
练一练
1.(2018广东)同圆中,已知 所对的圆
心角是100°,则
所对的圆周角是
__5_0__°.
2.(2014珠海)如图,线段AB是⊙O的直 径,弦CD丄AB,∠CAB=20°,则∠AOD等 于( C )
A.160° B.150°
C.140° D.120°
练一练
3.(2017广东)如图,四边形ABCD内接于⊙O, DA=DC,∠CBE=50°,则∠DAC的大小为( C) A.130° B.100° C.65° D.50°
定理 在同圆或等圆中,相等的圆心角 所对的弧_相__等__,所对的弦也_相_等___.
推论 在同圆或等圆中,两个圆心角、 两条弧、两条弦中有一组量相等,它 们所对应的其余各组量也__相__等__.
练一练
1.(2016茂名)如图,A、B、C是⊙O上的三点,

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质一、圆的基本概念及性质(1)圆的有关概念①圆:平面. 上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆. 上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形:其对称轴是任意一条过圆心的直线:圆是中心对称图形,对称中心为圆心。

②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有-组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角: 90”的圆周角所对的弦是直径.④三角形的内心和外心确定圆的条件:不在同一直线上的三个点确定一个圆.⑥:三角形的外心:三角形的三个顶点确定-一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的- -半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一一个外角等于它相邻内角的对角.圆的性质1、圆是轴对称图形,对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并粗平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并平分弦对的弧。

2013中考数学----圆的基本性质_课件

2013中考数学----圆的基本性质_课件
是 6,则水面宽 AB 是( A )
图 5-1-2 A.16 B.10 C.8 D.6 小结与反思:用垂径定理进行证明或计算时,常需作出圆 心到弦的垂线段(即弦心距),则垂足为弦的中点,再利用半径、
弦心距和半弦组成的直角三角形来达到求解的目的.
圆周角、圆心角之间的关系
3.(2011 年浙江绍兴)如图 5-1-3,AB 为⊙O 的直径,点
任意两点 (3)弦:连接圆上__________的线段叫弦,经过圆心的弦叫 直径 做_____. 平分 (4)垂径定理及其推论:垂直于弦的直径_____这条弦,并 垂直 平分 且_____弦所对的弧;平分弦(不是直径)的直径_____于弦,并 弧 且平分弦所对的____. (5)圆心角、弧、弦、弦心距的关系定理:在同圆或等圆中, 圆心角 相等的______所对的弧相等,所对的弦相等. 两条弧 推论:在同圆或等圆中,如果两个圆心角、_______、两条 弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余 各组量都分别相等.
垂径定理 1.(2011 年浙江嘉兴)如图 5-1-1,半径为 10 的⊙O 中, 弦 AB 的长为 16,则这条弦的弦心距为( A )
图 5-1-1
A.6 B.8 C.10 D.12
2.(2011 年浙江绍兴)一条排水管的截面如图 5-1-2.已知
排水管的截面圆半径 OB=10,截面圆圆心 O 到水面的距离 OC
C 在⊙O 上,若∠C=16°,则∠BOC 的度数是( C )
图 5-1-3
A.74°
B.48°
C.32°
D.16°
4.(2011 年重庆)如图 5-1-4,⊙O 是△ABC 的外接圆, ∠OCB=40°则∠A 的度数等于(
B)
图 5-1-4 A.60° B.50° C.40° D.30° 小结与反思:此题组考察了圆中弧与圆心角、圆周角数量 间的关系,即在同圆或等圆中,同弧或等弧所对的圆周角相等, 等于它所对的圆心角的一半.

2013中考数学:圆知识点汇总

2013中考数学:圆知识点汇总

2013年中考数学:圆知识点汇总1不在同一直线上的三点确定一个圆。

2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2圆的两条平行弦所夹的弧相等3圆是以圆心为对称中心的中心对称图形4圆是定点的距离等于定长的点的集合5圆的内部可以看作是圆心的距离小于半径的点的集合6圆的外部可以看作是圆心的距离大于半径的点的集合7同圆或等圆的半径相等17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角18圆的外切四边形的两组对边的和相等外角等于内对角19如果两个圆相切,那么切点一定在连心线上20①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-rr)④两圆内切d=R-r(R>r)⑤两圆内含dr)21定理相交两圆的连心线垂直平分两圆的公共弦22定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆24正n边形的每个内角都等于(n-2)×180°/n25定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26正n边形的面积Sn=pnrn/2p表示正n边形的周长27正三角形面积√3a/4a表示边长28如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 29弧长计算公式:L=n兀R/18030扇形面积公式:S扇形=n兀R^2/360=LR/231内公切线长=d-(R-r)外公切线长=d-(R+r)32定理一条弧所对的圆周角等于它所对的圆心角的一半33推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径35弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角12①直线L和⊙O相交d②直线L和⊙O相切d=r③直线L和⊙O相离d>r13切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线14切线的性质定理圆的切线垂直于经过切点的半径15推论1经过圆心且垂直于切线的直线必经过切点16推论2经过切点且垂直于切线的直线必经过圆心精心整理,仅供学习参考。

中考数学题复习 第25讲 圆中的概念、性质

中考数学题复习 第25讲 圆中的概念、性质
第25讲 圆中的概念、性质
1
• 知识点:
1.圆的对称性(重要)
(1)圆是轴对称图ቤተ መጻሕፍቲ ባይዱ,其对称轴是过圆心的任 意一条直线.
(2)圆是中心对称图形,对称中心是圆心. (3)圆是旋转对称图形,旋转中心是圆心.
2
• 知识点:
2.直径与等弧
直径:经过圆心的弦,直径是圆中最 长的弦,弦不一定是直径.
等弧:在同圆或等圆中,能完全重合 的弧叫等弧.
3
• 知识点:
3.垂径定理及其推论
(1)垂径定理:垂直于弦的直径平分这 条弦,并且平分弦所对的两段弧.
(2)垂径定理的推论:平分弦(不是直径 )的直径垂直于弦,并且平分弦所对的两 段弧.
4
• 知识点:
4.弧、弦、圆心角的关系
定理:在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.
推论:在同圆或等圆中,如果两个圆心角、两 条弧、两条弦中有一组量相等,那么它们所对应 的其余各组量也分别相等.
13
• 随堂演练:
(1)证明:∵AB是圆O的直径, ∴AD⊥BC, ∵AB=AC, ∴BD=DC;
22
5
• 知识点:
5.圆周角定理及其推论
定理:一条弧所对的圆周角等于它所对的圆心角的一 半.
推论: ①同弧或等弧所对的圆周角相等;同圆或等 圆中,相等的圆周角所对的弧也相等.
②半圆或直径所对的圆周角是90°;90°的圆 周角所对的弦是直径,所对的弧是半圆.
6.圆内接四边形对角互补.
6
• 课堂精讲:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013中考全国100份试卷分类汇编圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.B.C.D.答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在中,,,,以点为圆心,为半径的圆与交于点,则的长为A. B.C.D.答案:C解析:由勾股定理得AB =5,则sinA =,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =,即,所以,CE =,AE =,所以,AD =3、(2013河南省)如图,CD 是的直径,弦于点G ,直线与相切与点D ,则下列结论中不一定正确的是【】(A )(B )∥(C )AD ∥BC (D )【解析】由垂径定理可知:(A )一定正确。

由题可知:,又因为,所以∥,即(B )一定正确。

因为所对的弧是劣弧,根据同弧所对的圆周角相等可知(D )一定正确。

【答案】C 4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,. cm B . cmC . cm 或cmD . cm 或cm 45CE AC 453CE12595B分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为().cm B.cm:垂径定理;勾股定理.分析:连接AO,根据垂径定理可知AC=AB=4cm,设半径为x,则OC=x﹣3,根据勾股定理即可求得x的值.解答:解:连接AO,∵半径OD与弦AB互相垂直,∴AC=AB=4cm,设半径为x,则OC=x﹣3,在Rt△ACO中,AO2=AC2+OC2,即x2=42+(x﹣3)2,解得:x=,故半径为cm.故选A.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理、勾股6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为():垂径定理的应用;勾股定理.分析:连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.解答:解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.点评:此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是().B.C.D.:垂径定理;勾股定理分析:根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选B.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为().2B.2D.2中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答9、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A.B.C.D.求得其高即可.解答:解:过O点作OC⊥AB,垂足为D,交⊙O于点C,由折叠的性质可知,OD=OC=OA,由此可得,在Rt△AOD中,∠A=30°,同理可得∠B=30°,在△AOB中,由内角和定理,得∠AOB=180°﹣∠A﹣∠B=120°∴弧AB的长为=2π设围成的圆锥的底面半径为r,则2πr=2π∴r=1cm∴圆锥的高为=2故选A.点评:本题考查了垂径定理,折叠的性质,特殊直角三角形的判断.关键是由折叠的性质得10、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()∴OC===5.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5 C. 6 D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.A F=BF C.O F=CF D.∠DBC=90°分析:根据垂径定理可判断A、B,根据圆周角定理可判断D,继而可得出答案.解答:解:∵DC是⊙O直径,弦AB⊥CD于F,∴点D是优弧AB的中点,点C是劣弧AB的中点,A、=,正确,故本选项错误;B、AF=BF,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O 的半径()OB的长度.解:连接OB,∵OC⊥AB,AB=8,∴BC=AB=×8=4,在Rt△OBC中,OB===.故选A.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为().4B探究型.先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径定理即可求出DE的长,再根据勾股定理即可得出结论.解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.D.分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.点评:此题考查了一次函数的综合,用到的知识点是垂径定理、勾股定理、圆的有关性质,18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。

B、当ΔAPC是等腰三角形时,PO⊥AC。

C、当PO⊥AC时,∠ACP=300.D、当∠ACP=300,ΔPBC是直角三角形。

19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.得出OG,在Rt△OGD中求出OD,即得圆O的半径,代入扇形面积公式求解即可.解答:解:∵弦AB=BC,弦CD=DE,∴点B是弧AC的中点,点D是弧CE的中点,∴∠BOD=90°,过点O作OF⊥BC于点F,OG⊥CD于点G,则BF=FG=2,CG=GD=2,∠FOG=45°,在四边形OFCG中,∠FCD=135°,过点C作CN∥OF,交OG于点N,则∠FCN=90°,∠NCG=135°﹣90°=45°,∴△CNG为等腰三角形,∴CG=NG=2,过点N作NM⊥OF于点M,则MN=FC=2,在等腰三角形MNO中,NO=MN=4,∴OG=ON+NG=6,在Rt△OGD中,OD===2,即圆O的半径为2,故S阴影=S扇形OBD==10π.故答案为:10π.点评:本题考查了扇形的面积计算、勾股定理、垂径定理及圆心角、弧之间的关系,综合考20、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.解答:解:过点O作OD⊥AB交AB于点D,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.点评:本题综合考查垂径定理和勾股定理的运用.21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB= 28度.:圆周角定理;垂径定理.分析:根据垂径定理可得点B是中点,由圆周角定理可得∠ADB=∠BOC,继而得出答案.解答:解:∵OB⊥AC,∴=,∴∠ADB=∠BOC=28°.故答案为:28.点评:此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC 的度数是48度.23、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.半径为x,由勾股定理即可求得:(8﹣x)+2=x,解此方程即可求得答案.解答:解:连接OC,∵M是CD的中点,EM⊥CD,∴EM过⊙O的圆心点O,设半径为x,∵CD=4,EM=8,∴CM=CD=2,OM=8﹣OE=8﹣x,在Rt△OEM中,OM2+CM2=OC2,即(8﹣x)2+22=x2,解得:x=.∴所在圆的半径为:.故答案为:.点评:此题考查了垂径定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.解答:解:连接OA,由AB垂直平分OC,得到OD=OC=1,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=2.故答案为:2.点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为,CD=4,则弦AC的长为.考点:垂径定理;勾股定理。

相关文档
最新文档