部编版2020年九年级数学 第2讲 二次函数探究—二次函数与等腰三角形的综合问题教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识讲解
考点1 二次函数的基础知识
1.一般地,如果y=ax 2
+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.
2.二次函数y=ax 2
+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2
+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2
+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2
才能求出此解析式;对于y=ax 2
+bx+c 而言,其顶点坐标为(-2b a
,244ac b a ).对于y=a (x -h )2+k
而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.
考点2 等腰三角形的性质
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一性质”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,(不是等边三角形的情况下)只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形的腰与它的高的直接的关系是:腰大于高。间接的关系是:腰的平方等于高的平方加底的一半的平方。
考点3 探究等腰三角形的一般思路
探究等腰三角形的存在性问题时,具体方法如下: (1)假设结论成立;
(2)找点:当所给定长未说明是等腰的底还是腰时,需分情况讨论,具体方法如下:
①当定长为腰时,找已知直线上满足条件的点时,以定长的某一端点为圆心,以定长为半径画弧,若所画弧与数轴或抛物线有交点且交点不是定长的另一端点时,交点即为所求的点;若所画弧与数轴或抛物线无交点或交点是定长的另一端点时,满足条件的点不存在;
②当定长为底边时,根据尺规作图作出定长的垂直平分线,若作出的垂直平分线与数轴或抛物线有交点,则交点即为所求的点,若作出的垂直平分线与数轴或抛物线无交点,则满足条件的点不存在。
以上方法即可找出所有符合条件的点;
(3)计算:在求点坐标时,大多时候利用相似三角形求解,如果图形中没有相似三角形,可以通过添加辅助线构造相似三角形,有时也可利用直角三角形的性质进行求解。
例题精析
例1如图,抛物线y=- x2+ x-4与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴
与x轴相交于点M。P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)。分别过点A、B作直线CP的垂线,垂足分别为D、E,连接MD、ME。
(1)求点A、B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标,若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果),若不能,说明理由。
例2如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴方程;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)试判断△AOC与△COB是否相似?并说明理由;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由.
例3如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC 重叠部分的面积记为S,用m的代数式表示S.
例4在平面直角坐标系xOy中,抛物线y=x2﹣(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.
(1)若m=2,n=1,求A、B两点的坐标;
(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,﹣1),求∠ACB的大小;
(3)若m=2,△ABC是等腰三角形,求n的值.
例5如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x
轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.
课程小结
有针对性的对等腰三角形的性质、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与等腰三角形的综合问题提供有利的依据。在探究二次函数与等腰三角形的综合问题时,抓住已有的信息及条件在函数图像中构造出等腰三角形,并能运用等腰三角形的性质解决问题,掌握此类问题的解题思路及技巧是解决问题的关键。
例1【规范解答】(1)抛物线解析式为y=﹣x2+ x﹣4,令y=0,即﹣x2+ x﹣4=0,解得x=1或
x=5,
∴A(1,0),B(5,0).
如答图1所示,
分别延长AD与EM,交于点F;∵AD⊥PC,B E⊥PC,∴AD∥BE,∴∠MAF=∠MBE;
在△AMF与△BME中,∠MAF=∠MBE,MA=MB,∠AMF=∠BME;∴△AMF≌△BME(ASA),
∴ME=MF,即点M为Rt△EDF斜边EF的中点,∴MD=ME,即△MDE是等腰三角形
(2)能;抛物线解析式为y=﹣x2+ x﹣4=﹣(x﹣3)2+,∴对称轴是直线x=3,M(3,0);