2019年黑龙江省哈尔滨六中中考数学三模试卷(含答案)

合集下载

黑龙江省哈尔滨市2019中考模拟测试三数学试题及参考答案

黑龙江省哈尔滨市2019中考模拟测试三数学试题及参考答案

哈尔滨市2019中考模拟测试中考数学(三)考生须知:1.本试卷满分为120分,考试时间为120分钟.2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3.考生作答时,请按照题号顺序在答题卡各题目的区域内作答,超出答题卡区域书写的答案无效;在草稿纸、试题纸上答题无效.4.选择题必须用2B 铅笔在答题卡上填涂;非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,笔迹清楚.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1.12的相反数是( ) A .12-B .12C .2-D .22.下列运算正确的是( ) A .224x x x += B .222()a b a b -=- C .236()a a -=-D .236326a a a =⋅3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图,由八个相同的小正方体搭成的一个几何体,它的俯视图为( )A.B.C.D.5.如图,已知O的直径AB与弦AC的夹角为30︒,过点C的切线PC与AB的延长线交于点P,5PC=,则O的半径为()A B C.10D.56.将抛物线2y x=向右平移2个单位长度,再向上平移3个单位长度,得到的抛物线的解析式为()A.2(2)3y x=++B.2(2)3y x=-+C.2(2)3y x=+-D.2(2)3y x=--7.分式方程233x x=-的解为()A.0x=B.5x=C.3x=D.9x=8.如图,过矩形ABCD的对角线AC的中点O作EF AC⊥,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB,30DCF∠=︒,则EF的长为()A.2B.3C D9.若反比例函数(0)ky k x =≠的图象经过点(2,3)P -,则该函数的图象不经过的点是( )A .(3,2)-B .(1,6)-C .(1,6)-D .(1,6)--10.如图,D 、E 分别是ABC 的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( ) A .BD EOAD AO=B .CO CECD CB=C .AB COBD OD=D .BD ODBE OE=第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.将数67500用科掌记数法表示为____________. 12.函数221x y x -=-中,自变量x 的取值范围是____________. 13.把多项式2218a -分解因式的结果是____________. 14.不等式组1,212xx ⎧≥-⎪⎨⎪->-⎩的解集是____________.15____________. 16.二次函数243y x x =--的顶点坐标是___________.17.在一个不透明的袋子中装有红、白两种颜色的球(形状、大小、质地完全相同)共25个,其中白球有5个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中随机摸出一个红球的概率是________. 18.一个扇形的半径为3cm ,面积为22πcm ,则此扇形的圆心角为________度. 19.在ABC 中,AB AC =,30A ∠=︒,E 为直线BC 上一点(点E 不与点B 、C 重合),ABC ∠与ACE ∠的平分线相交于点D ,则BDC ∠的度数为________.20.(香坊名师原创)如图,正方形ABCD,6AB=,E、F为BC边上两点,1EF=,若135AEC BAF∠+∠=︒,则线段AE的长为________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(本题7分)先化简,再求代数式22693111x x x xx x x-+-+÷--+的值,其中2sin30tan60x︒︒=-.22.(本题7分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰Rt MON,使点N在格点上,且90MON∠=︒;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰Rt MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(画出一种即可).23.(本题8分)哈尔滨市礼乐中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成加图所示的两幅不完整的统计图.∠的度数是________;(1)这次统计共抽取了________本书籍,扇形统计图中的m=________,α(2)通过计算补全条形统计图;(3)请你估计全校师生共捐赠了多少本文学类书籍.24.(本题8分)已知四边形ABCD是正方形,AC、BD相交于点O,过点A作BAC∠的平分线分别交BD、BC于点E、F.(1)如图1,求证:2=;CF EO(2)如图2,连接CE,在不添加其他字母和辅助线的条件下,直接写出图中所有的等腰三角形(等腰直角三角形除外).25.(本题10分)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(利润=销售价格-进货价格)(1)求A、B两种型号计算器的销售价格分别是多少元;(2)商场准备用不多于2500元的资金购进A、B两种型号的计算器共70台,问最少需要购进A型号的计算器多少台?26.(本题10分)(香坊名师原创)已知,四边形ABCD 内接于O ,BC CD =,连接AC 、BD 交于点E . (1)如图1,求证:BAC CAD ∠=∠;(2)如图2,过点D 作DF AC ⊥于点F ,若12BAD ACB ACD ∠+∠=∠,求证:2AD AB CF -=;(3)如图3,在(2)的条件下,作MAN CAD ∠=∠,AM 交BD 于点M ,AN 交FD 于点N ,且AM MN =,若65DN =,5AD CF =,求O 的半径.27.(本题10分)(香坊名师原创)如图1,在平面直角坐标系中,直线3y x =+x 轴交于点A ,与y 轴交于点B ,CD AB =,点C ,点D 在x 轴上. (1)求直线BD 的解析式;(2)点E 是直线BD 在第二象限内一点,直线EF BD ⊥交x 轴于点F ,设点E 的横坐标为t ,四边形ABEF 的面积为S ,求S 关于t 的解析式;(3)如图3,在(2)的条件下,P 、Q 是DE 延长线上的两点(点P 在点Q 的右侧),2PQ =,连接FP ,M 是FP 上一点,直线QM 交EF 于点N ,PM PQ =,EF FM =,若9FN =,求t 的值.中考数学(三)一、选择题1.A 2.C 3.A 4.D 5.A 6.B 7.D 8.A 9.D 10.C 二、填空题 11.46.7510⨯12.12x ≠13.2(3)(-3)a a +14.23x -≤<15 16.(2,7)- 17.4518.8019.15︒或105︒20.解析:如图,在CD 上取点M ,使DM BF =,连接AM 、EM ,在CD 延长线上取点N ,使得DN BE =,连接AN .∵正方形ABCD ,∴A B A D=,ADBC ,90BAD B ADC ∠=∠=∠=︒.∴135AEC BAF ∠+∠=︒,180EAD AEC ∠+∠=︒.∴45EAD BAF ∠=∠+︒.∵AD AB =,DM BF =,∴ADM ABF ≅.∴DAM BAF ∠=∠.∴45EAM ∠=.∴45BAE DAM ∠+∠=︒.∵A D A B=,DN BE =,∴D A N B A E≅.∴A N A E =,DAN BAE ∠=∠.∴45DAN DAM ∠+∠=︒.∴易证MAN MAE ≅.∴M N M E B E D M ==+.设D M a =.∵6AB =,1EF =,∴1BE a =+,6MC a =-.∴5E C a =-,21EM MN a ==+.在MEC 中,由勾股定理得222(21)(6)(5)a a a +=-+-,解得115a =-(舍去),22a =.∴3BE =.∴在ABE 中,由勾股定理得AE =三、解答题21.解:原式2(3)13·1(1)(1)31x x x x x x x x -+=+=-+---.∵2sin30tan 601x ︒︒=-==. 22.(1)如图1所示;(2)如图2、图3所示(答案不唯一).23.解:(1)200,40,36︒;(2)4020%200÷=(本),20040802060---=(本),补全图形如图所示; (3)603000900200⨯=(本). 答:估计全校师生共捐赠了900本文学类书籍.24.证明:(1)取AF 的中点M ,连接OM .∵正方形ABCD ,AC 、BD 交于点O ,∴AO OC =,45ACB ABD ∠=∠=︒.∵AM MF =,∴OM CF ,2CF MO =.∴OME AFB ∠=∠.∵AF 平方BAC ∠,∴BAF CAF ∠=∠.∴AFB AEO ∠=∠.∴OME AEO ∠=∠.∴OM OE =.∴2CF EO =. (2)AED ,BEF ,AEC ,DEC .25.解:(1)设A 型号计算器的销售价格是x 元,B 型号计算器的销售价格是y 元,根据题意,得5(30)(40)76,6(30)3(40)120,x y x y -+-=⎧⎨-+-=⎩解得42,56.x y =⎧⎨=⎩答:A 型号计算器的销售价格是42元,B 型号计算器的销售价格是56元.(2)设购进A 型号的计算器a 台,则购进B 型号的计算器(70)a -台.根据题意,得 3040(70)2500a a +-≤,解得30a ≥.答:最少需要购进A 型号的计算器30台.26.(1)证明:∵BC CD =,∴CBD CDB ∠=∠.∵C B D C A D∠=∠,CDB CAB ∠=∠,∴BAC CAD ∠=∠.(2)证明:∵BAC CAD ∠=∠,∴12CBD CAD BAD ∠=∠=∠.∴12BAD ACB DEC ∠+∠=∠.∵12BAD ACB ACD ∠+∠=∠,∴DEC ACD ∠=∠.∵DF AC ⊥,∴DE DC =,AEB ABD ∠=∠.∴AB AE =.∵BAC CAD ∠=∠,ABD ACD ∠=∠,∴AEB AD C ∠=∠.∴AD C ACD ∠=∠.∴AC AD =.∵CD DE =,DF AC ⊥,∴2CE CF =.∴2AD AB AC AE CF -=-=.(3)解:如图,过点M 作MH AN ⊥于点H ,MR AB ⊥于点R .∵5AD CF =,AC AD =,∴设CF a =,则EF a =,5AD a =.∴3AB AE a ==,4AF a =.∴3DF a =. ∴3tan 4CAD ∠=,tan tan 3ABD FCD ∠=∠=. ∵AM MN =,MH AN ⊥,∴AH HN =.∵MAN CAD ∠=∠,∴54AM AH =.∴58AM AN =.∵BAC CAD MAN ∠=∠=∠,∴RAM FAN ∠=∠.∴cos cos RAM FAN ∠=∠.∴AR AFAM AN=.∴58AR AM AF AN ==.∴52A R a =.∴12B R a =.∴3ta n 2M R B R A B D a =⋅∠=.∴3ta n ta n 5F A N R A M ∠=∠=.∵4A F a =,∴12tan 5AF FA a FN N =⋅∠==.∴3655DN DF FN a =-==,解得2a =.∴10AD =. 连接AO 、OD ,过点O 作OK AD ⊥于点K ,则tan tan 3AOK ABD ∠=∠=,5AK =.∴5tan 3AK OK AOK ==∠.∴在RtAOK 中,由勾股定理得AO O27.解:(1)∵36y x =+x 轴交于点A ,与y 轴交于点B ,∴(2A -,B .∵C ,∴CO OA =.∵CD AB =,90AOB COD ∠=∠=︒,∴Rt Rt AOB COD ≅.∴OD OB ==D .设直线BD 的解析式为y kx b =+,把B ,D 代入,解得1k =-,b =.∴y x =-+(2)过点E 作EH DF ⊥于点H .由(1)可知45EDF ∠=︒.∴E D F 是等腰直角三角形.∴2FD EH =.由题意知(,E t t -+,∴EH t =-+∴221·(722EFDSFD EH t t ==-+=-+.∵114822ABDSAD BO =⋅=⨯,∴224EFDABDS SSt =-=-+.(3)如图,过点F 作FR BD 交QM 的延长线于点R ,连接RD ,过点R 作RG FP 交ED 于点G ,在BD 延长线上截取DS FN =,连接RS .∵PQ PM =,∴Q PMQ ∠=∠.∵FR BD ,RGFP ,∴四边形FRGP 是平行四边形,FRN Q ∠=∠,NRC PMQ ∠=∠.∴FRN Q PMQ FMR ∠=∠=∠=∠.∴FE FM FR ==.易得PFE GRD ≅,∴90PEF CDR ∠=∠=︒.∴易证四边形DEFR 是正方形.∴FR DR =.∴R F N R D S≅.∴F N R R S G∠=∠,FRN SRD ∠=∠.∵F N R N R D∠=∠,∴G R S R S G∠=∠.∴F P RG G S ==.设EF a =,则2FP GS a ==+.∵9DS FN ==,∴7PE GD a ==-.∴在Rt EFP 中,由勾股定理得222(7)(2)a a a +-=+,解得115a =,23a =(舍去).∴15ED EF ==.∴DF =t ==。

黑龙江省哈尔滨市2019-2020学年中考第三次模拟数学试题含解析

黑龙江省哈尔滨市2019-2020学年中考第三次模拟数学试题含解析

黑龙江省哈尔滨市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-52,0)D .(-32,0) 2.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案3.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .4.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--5.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对6.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .333D .(a+2)(a ﹣2)=a 2+4 7.对于反比例函数y=k x(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上D.反比例函数的图象关于直线y=﹣x成轴对称8.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+19.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣610.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A.6.5×105B.6.5×106C.6.5×107D.65×10511.通过观察下面每个图形中5个实数的关系,得出第四个图形中y的值是()A.8 B.﹣8 C.﹣12 D.1212.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.14.如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF 上,若AB=2,则AD=________.15.若将抛物线y=﹣4(x+2)2﹣3图象向左平移5个单位,再向上平移3个单位得到的抛物线的顶点坐16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.17.一个n边形的内角和为1080°,则n=________.18.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.20.(6分)如图,以AD为直径的⊙O交AB于C点,BD的延长线交⊙O于E点,连CE交AD于F点,若AC=BC.(1)求证:»»AC CE=;(2)若32DEDF=,求tan∠CED的值.21.(6分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53︒的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得6BE=米,塔高9DE=米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).22.(8分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM 的仰角α=37°,此时把手端点A 、出水口B 和点落水点C 在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= 35,cos37°= 45,tan37°= 34) (1)求把手端点A 到BD 的距离;(2)求CH 的长.23.(8分)如图,已知点D 在反比例函数y=m x的图象上,过点D 作x 轴的平行线交y 轴于点B (0,3).过点A (5,0)的直线y=kx+b 与y 轴于点C ,且BD=OC ,tan ∠OAC=25. (1)求反比例函数y=m x 和直线y=kx+b 的解析式; (2)连接CD ,试判断线段AC 与线段CD 的关系,并说明理由;(3)点E 为x 轴上点A 右侧的一点,且AE=OC ,连接BE 交直线CA 与点M ,求∠BMC 的度数.24.(10分)解不等式:233x-﹣12x-≤125.(10分)为纪念红军长征胜利81周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随即抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90 b 30 10频率 a 0.35 0.20请你根据统计图、表,提供的信息解答下列问题:(1)该校这次随即抽取了名学生参加问卷调查:(2)确定统计表中a、b的值:a= ,b= ;(3)该校共有2000名学生,估计全校态度为“非常喜欢”的学生人数.26.(12分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?27.(12分)计算:(﹣2018)0﹣4sin45°82﹣1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.直线y=23x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),所以2=-3k+b-2=b⎧⎨⎩,解得:4k=-3b=-2⎧⎪⎨⎪⎩,即可得直线CD′的解析式为y=﹣43x﹣1.令y=﹣43x﹣1中y=0,则0=﹣43x﹣1,解得:x=﹣32,所以点P的坐标为(﹣32,0).故答案选C.考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.2.C【解析】解:∵点A为数轴上的表示-1的动点,①当点A沿数轴向左移动4个单位长度时,点B所表示的有理数②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为-1+4=1.故选C .点睛:注意数的大小变化和平移之间的规律:左减右加.与点A 的距离为4个单位长度的点B 有两个,一个向左,一个向右.3.B【解析】当k >0时,一次函数y=kx ﹣k 的图象过一、三、四象限,反比例函数y=k x的图象在一、三象限,∴A 、C 不符合题意,B 符合题意;当k <0时,一次函数y=kx ﹣k 的图象过一、二、四象限,反比例函数y=k x 的图象在二、四象限,∴D 不符合题意.故选B .4.A【解析】【分析】先确定抛物线y=x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选A .5.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .6.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、﹣C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.7.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A .若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B .当k >0时,y 随x 的增大而减小,错误,应该是当k >0时,在每个象限,y 随x 的增大而减小;故本选项不符合题意;C .错误,应该是过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为|k|;故本选项不符合题意;D .正确,本选项符合题意.故选D .点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.8.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1, 故选A .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.D试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.10.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.11.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键.12.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′,∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4, 故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>14.22【解析】如图,连接EF ,∵点E 、点F 是AD 、DC 的中点,∴AE=ED ,CF=DF=12CD=12AB=1, 由折叠的性质可得AE=A′E ,∴A′E=DE ,在Rt △EA′F 和Rt △EDF 中,EA ED EF EF ='⎧⎨=⎩, ∴Rt △EA′F ≌Rt △EDF (HL ),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt △BCF 中, 22223122BF CF -=-=∴2 .点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF ,证明Rt △EA′F ≌Rt △EDF ,得出BF 的长,再利用勾股定理解答即可.15.(﹣7,0)【解析】【分析】直接利用平移规律“左加右减,上加下减”得出平移后的解析式进而得出答案.【详解】∵将抛物线y=-4(x+2)2-3图象向左平移5个单位,再向上平移3个单位,∴平移后的解析式为:y=-4(x+7)2,故得到的抛物线的顶点坐标是:(-7,0).故答案为(-7,0).【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律是解题关键.16.【解析】∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的12,∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的14.同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的1 16,∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的1 256.17.1【解析】【分析】直接根据内角和公式()2180n-⋅︒计算即可求解.【详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n-⋅︒. 18.13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)不可能;(2)16. 【解析】【分析】 (1)利用确定事件和随机事件的定义进行判断; (2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能; (2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21126=. 【点睛】 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式m n计算事件A 或事件B 的概率. 20.(1)见解析;(2)tan ∠CED =155【解析】【分析】 (1)欲证明»»AC CE =,只要证明EAC AEC ∠∠=即可;(2)由EDF COF ∆∆∽,可得32ED OC DF OF ==,设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,由BAD BEC ∆∆∽,可得BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,由此求出AC 、CD 即可解决问题.【详解】(1)证明:如下图,连接AE ,∵AD 是直径,∴90ACD ∠︒=,∴DC ⊥AB ,∵AC =CB ,∴DA =DB ,∴∠CDA =∠CDB ,∵180EAC EDC ∠+∠︒=,180EDC CDB ∠+∠︒=,∴∠BDC =∠EAC ,∵∠AEC =∠ADC ,∴∠EAC =∠AEC ,∴»»AC CE =;(2)解:如下图,连接OC ,∵AO =OD ,AC =CB ,∴OC ∥BD ,∴EDF COF ∆∆∽, ∴32ED OC DF OF ==, 设FO =2a ,OC =3a ,则DF =a ,DE =1.5a ,AD =DB =6a ,∵∠BAD =∠BEC ,∠B =∠B ,∴BAD BEC ∆∆∽,∴BD•BE =BC•BA ,设AC =BC =x ,则有2267.5x a a ⨯=,∴3102x a =, ∴3102AC a =, ∴2236CD AD AC a =-=, ∴36152tan tan 5310a DC EDC DAC AC ∠=∠===.【点睛】本题属于圆的综合题,涉及到三角形的相似,解直角三角形等相关考点,熟练掌握三角形相似的判定及解直角三角形等相关内容是解决本题的关键.21.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB 和AC 的长度即可,根据题目中的条件可以求得AB 和AC 的长度,即可得到结论.试题解析:解:∵AB ⊥EF ,DE ⊥EF ,∴∠ABC=90°,AB ∥DE ,∴△FAB ∽△FDE ,∴AB FB DE FE = ,∵FB=4米,BE=6米,DE=9米,∴4946AB =+,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos ∠BAC=AB AC ,∴AC=cos AB BAC∠ =3.60.6=6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.22.(1)12;(2)CH 的长度是10cm .【解析】【分析】(1)、过点A 作AN BD ⊥于点N ,过点M 作MQ AN ⊥于点Q ,根据Rt △AMQ 中α的三角函数得出得出AN 的长度;(2)、根据△ANB 和△AGC 相似得出DN 的长度,然后求出BN 的长度,最后求出GC 的长度,从而得出答案.【详解】解:(1)、过点A 作AN BD ⊥于点N ,过点M 作MQ AN ⊥于点Q.在t R AMQ ∆中,310,sin 5AB α==. ∴35AO AB =, ∴365AO AB ==, ∴12AN =.(2)、根据题意:NB ∥GC .∴ANB AGC ∆~∆.∴BN AN GC AG=. ∵8MQ DN ==,∴4BN DB DN =-=.∴41236GC =. ∴12GC =.∴3081210CH =--=.答:CH 的长度是10cm .点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.23.(1)6y x -=,2y x 25=-(2)AC ⊥CD (3)∠BMC=41° 【解析】分析:(1)由A 点坐标可求得OA 的长,再利用三角函数的定义可求得OC 的长,可求得C 、D 点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC ≌△BCD ,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC ⊥CD ;(3)连接AD ,可证得四边形AEBD 为平行四边形,可得出△ACD 为等腰直角三角形,则可求得答案. 本题解析:(1)∵A (1,0),∴OA=1.∵tan ∠OAC=25,∴25OC OA =,解得OC=2, ∴C (0,﹣2),∴BD=OC=2,∵B (0,3),BD ∥x 轴,∴D (﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x, 设直线AC 关系式为y=kx+b ,∵过A (1,0),C (0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x ﹣2; (2)∵B (0,3),C (0,﹣2),∴BC=1=OA ,在△OAC 和△BCD 中OA BC AOC DBC OC BD =⎧⎪∠=∠⎨⎪=⎩,∴△OAC ≌△BCD (SAS ),∴AC=CD , ∴∠OAC=∠BCD ,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC ⊥CD ;(3)∠BMC=41°.如图,连接AD ,∵AE=OC ,BD=OC ,AE=BD ,∴BD ∥x 轴,∴四边形AEBD 为平行四边形,∴AD ∥BM ,∴∠BMC=∠DAC ,∵△OAC ≌△BCD ,∴AC=CD ,∵AC ⊥CD ,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.24.x≥19. 【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】231132x x ---≤ 2(2﹣3x )﹣3(x ﹣1)≤6,4﹣6x ﹣3x+3≤6,﹣6x ﹣3x≤6﹣4﹣3,﹣9x≤﹣1, x≥19. 【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(1)200,;(2)a=0.45,b=70;(3)900名.【解析】【分析】(1)根据“一般”和“不知道”的频数和频率求总数即可(2)根据(1)的总数,结合频数,频率的大小可得到结果(3)根据“非常喜欢”学生的比值就可以计算出2000名学生中的人数.【详解】解:(1)“一般”频数30,“不知道”频数10,两者频率0.20,根据频数的计算公式可得,总数=频数/频率=30102000.20+=(名);(2)“非常喜欢”频数90,a=900.45200=b2000.3570=⨯=;(3)20000.45900⨯=.故答案为(1)200,;(2)a=0.45,b=70;(3)900名.【点睛】此题重点考察学生对频数和频率的应用,掌握频率的计算公式是解题的关键.26.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.27.1 2 .【解析】【分析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式=1﹣4×22+22﹣12=1﹣2+2﹣=1 2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.。

黑龙江省哈尔滨市2019-2020学年中考数学三模考试卷含解析

黑龙江省哈尔滨市2019-2020学年中考数学三模考试卷含解析

黑龙江省哈尔滨市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 42.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶53.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表: 最高气温(℃) 25 26 27 28天 数1123则这组数据的中位数与众数分别是( ) A .27,28B .27.5,28C .28,27D .26.5,274. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°5.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .6.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2 C.|a|>2 D.2a<07.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎫-⎪⎝⎭米2B.932π⎛⎫-⎪⎝⎭米2C.9632π⎛⎫-⎪⎝⎭米2D.()693π-米28.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.210B.41C.52D.519.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m10.如图,已知函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+3x>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>011.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( )A .B .C .D .12.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点C (0,4),D 是OA 中点,将△CDO 以C 为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C 与点O 重合,写出此时点D 的对应点的坐标:_____.14.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程. 证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -(______________+______________).易知,S △ADC =S △ABC ,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.16.分解因式:x2y﹣6xy+9y=_____.17.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.18.如图,反比例函数y=32x的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A 运动过程中,当BP平分∠ABC时,点A的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?20.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).21.(6分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB 成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)22.(8分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.23.(8分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.24.(10分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.25.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?26.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线27.(12分)如图,在ABCBG 于点G ,ED DF ⊥交AB 于点E ,连接EG 、EF .求证:BG CF =;请你判断BE CF +与EF 的大小关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D. 2.C 【解析】 【分析】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,根据角平分线的性质得到OD=OE=OF ,根据三角形的面积公式计算即可. 【详解】作OF ⊥AB 于F ,OE ⊥AC 于E ,OD ⊥BC 于D ,∵三条角平分线交于点O ,OF ⊥AB ,OE ⊥AC ,OD ⊥BC , ∴OD=OE=OF ,∴S △ABO :S △BCO :S △CAO =AB :BC :CA=20:30:40=2:3:4, 故选C . 【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.3.A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.4.C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.5.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选B.考点:实数与数轴.7.C【解析】【详解】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.8.B【解析】【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数. 【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是()112n n-+,所以,第9行从左至右第5个数是()9911(51)2-++-=41.故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.9.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.10.C【解析】【分析】首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+3x>1的解集.【详解】∵函数y=﹣3x与函数y=ax2+bx的交点P的纵坐标为1,∴1=﹣3x,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+3x>1的解集是:x<﹣3或x>1.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.11.D【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.12.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(4,2).【解析】【分析】利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=O D=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.14.S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解析】【分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【详解】S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -( S △ANF +S △FCM ). 易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC , 可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC . 【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型. 15.25【解析】 【详解】解:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键. 16.y (x ﹣3)2 【解析】本题考查因式分解.解答:()()22269693x y xy y y x x y x -+=-+=-.17.72° 【解析】 【分析】首先根据正五边形的性质得到AB=BC=AE ,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键18.(3,6)【解析】分析:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,则有△AOE≌△OCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出2CP CF BCAP AE AB===,设点A的坐标为(a,32a)(a>0),由22OEAE=可求出a值,进而得到点A的坐标.详解:连接OC,过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,如图所示.∵△ABC为等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,===AEO OFCAOE OCFOA OC∠∠⎧⎪∠∠⎨⎪⎩,∴△AOE ≌△OCF (AAS ), ∴AE=OF ,OE=CF . ∵BP 平分∠ABC ,∴CP CF BC AP AE AB ===,∴OE AE =设点A 的坐标为(a,a),=,解得:(舍去),∴a, ∴点A), 故答案为:()).点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(I )见解析;(II )见解析;(III )见解析. 【解析】 【分析】(I )根据两种方式的收费标准分别计算,填表即可;(II )根据表中给出A ,B 两种上宽带网的收费方式,分别写出y 1、y 2与t 的数量关系式即可; (III )计算出三种方式在此取值范围的收费情况,然后比较即可得出答案. 【详解】(I )当t=40h 时,方式A 超时费:0.05×60(40﹣25)=45,总费用:30+45=75, 当t=100h 时,方式B 超时费:0.05×60(100﹣50)=150,总费用:50+150=200, 填表如下:方式B 50 100 150 200 (II)当0≤t≤25时,y1=30,当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=30(025){345(25)tt t≤≤->;当0≤t≤50时,y2=50,当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=50(050){3100(50)tt t≤≤->;(III)当75<t<100时,选用C种计费方式省钱.理由如下:当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,当t=75时,y1=180,y2=125,y3=120,所以当75<t<100时,选用C种计费方式省钱.【点睛】本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.20.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又∵y=ax+b(a≠0),且点P位于AB右下方,∴b<﹣且b≠﹣2或b>.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.21.34)米【解析】【分析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.【详解】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=12AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=23米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴PC BC PA OA=,∴PA=PC OABC⋅=23102⨯=103米,∴AB=PA﹣PB=(1034-)米.答:路灯的灯柱AB高应该设计为(1034-)米.22.证明见解析.【解析】【分析】由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.【详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.23.65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°. ∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC)=180°-12×230°=65°.24.见解析.【解析】【分析】利用矩形的性质结合平行线的性质得出∠CDF+∠ADF=90°,进而得出∠CDF=∠DAF,由AD∥BC,得出答案.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于点F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出∠CDF=∠DAF是解题关键.25.(1)1000 (2)200 (3)54°(4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、 处理以及统计图表.27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用平行线的性质和中点的定义得到,BGD CFD BD CD ∠=∠= ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG ∥AC∴BGD CFD ∠=∠∵D 是BC 的中点∴BD CD =又∵BDG CDF ∠=∠∴△BDG ≌△CDF∴BG CF =(2)由(1)中△BDG ≌△CDF∴GD=FD,BG=CF又∵ED DF ⊥∴ED 垂直平分DF∴EG=EF∵在△BEG 中,BE+BG>GE,∴BE CF +>EF【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.。

黑龙江省哈尔滨六中中考数学三模试卷(含答案)

黑龙江省哈尔滨六中中考数学三模试卷(含答案)

2019年黑龙江省哈尔滨六中中考数学三模试卷一.选择题(每题3分,满分30分)1.﹣|﹣3|的倒数是( )A.﹣3 B.﹣C.D.32.下列计算正确的是( )A.33=9 B.(a3)4=a12C.(a﹣b)2=a2﹣b2D.a2•a3=a63.下列标志中,是中心对称图形的是( )A.B.C.D.4.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A.B.C.D.5.已知反比例函数y=﹣,下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小6.解分式方程,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=17.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为( )A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是( )A.B.C.D.9.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC 的面积分别为S1、S2,则的值为( )A.B.C.D.210.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二.填空题(满分30分,每小题3分)11.中国的领水面积约为3700000km2,将3700000用科学记数法表示为 .12.函数y=+中,自变量x的取值范围是 .13.分解因式:3x2﹣6x2y+3xy2= .14.计算:﹣= .15.若关于x的不等式组无解,则a的取值范围是 .16.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有 个.17.已知扇形的弧长为2π,圆心角为60°,则它的半径为 .18.如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP的长的取值范围是 .19.如图,点P为定角∠AOB的平分线上的一个定点,点M,N分别在射线OA,OB上(都不与点O重合),且∠MPN与∠AOB互补.若∠MPN绕着点P转动,那么以下四个结论:①P M=PN恒成立;②MN的长不变;③OM+ON的值不变;④四边形PMON的面积不变.其中正确的为 .(填番号)20.如图,在Rt△ABC中,AC=BC,AB=10,以AB为斜边向上作Rt△ABD,使∠ADB=90°.连接CD,若CD=7,则AD= .三.解答题21.(7分)先化简,再求代数式﹣的值,其中x=2sin45°+tan45°22.(7分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为 .(4)△ABC的面积为 .23.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.24.(8分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.25.(10分)为落实“美丽秦州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成,已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长2400米,改造总费用不超过195万元,至少安排甲队工作多少天?26.(10分)如图,AB是⊙O的直径,CE是⊙O切线,C是切点,EA交弦BC于点D、交⊙O 于点F,连接CF:(1)如图1,求证:∠ECB=∠F+90°;(2)如图2,连接CD,延长BA交CE于点H,当OD⊥BC、HA=HE时,求证:AB=CE;(3)如图3,在(2)的条件K在EF上,EH=FK,S△ADO=,求WE的长.27.(10分)抛物线y=ax2+bx﹣经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A和抛物线的另一个交点为C.(1)求抛物线的解析式.(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s与t 的函数关系式.(不写t的取值范围)(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.参考答案一.选择题1.解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.2.解:A、33=27,故原题计算错误;B、(a3)4=a12,故原题计算正确;C、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;D、a2•a3=a5,故原题计算错误;故选:B.3.解:A、不是中心对称的图形,不合题意;B、属于中心对称的图形,符合题意;C、不是中心对称的图形,不合题意;D、不是中心对称的图形,不合题意.故选:B.4.解:A、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;B、左视图为,俯视图为,左视图与俯视图相同,故此选项符合题意;C、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;D、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;故选:B.5.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.6.解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.7.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.8.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.9.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,故选:C.10.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.二.填空题11.解:3700000用科学记数法表示为:3.7×106.故答案为:3.7×106.12.解:由题意得,1﹣x≠0,x+2≥0,解得,x≥﹣2且x≠1,故答案为:x≥﹣2且x≠1.13.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)14.解:=2﹣=.故答案为:.15.解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.16.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.17.解:设半径为r,2,解得:r=6,故答案为:618.解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.19.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在Rt△POE和Rt△POF中,,∴Rt△POE≌Rt△POF(H L),∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN(ASA),∴EM=NF,PM=PN,故①正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故④正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故③正确,∵M,N的位置变化,∴MN的长度是变化的,故②错误,故答案为:①③④.20.解:如图,∵∠ACB=∠ADB=90°,∴A,C,B,D四点共圆,又∵AC=BC,∴∠BAC=∠ABC=45°,∴∠ADC=∠ABC=45°,作AE⊥CD于E,∴△AED是等腰直角三角形,设AE=DE=x,则AD=x,∵CD=7,∴CE=7﹣x,∵AB=10,∴AC=AB=5,在Rt△AEC中,AC2=AE2+EC2,∴(5)2=x2+(7﹣x)2解得x=4或3,∴AD=x=8或6,故答案为6或8.三.解答题21.解:原式=﹣×+=﹣+==,当x=2sin45°+tan45°=2×+1=+1时,原式==﹣.22.解:(1)如图所示:(2)如图所示:(3)结合图形可得:B′(2,1);(4)S△ABC=3×4﹣×2×3﹣×1×2﹣×2×4=12﹣3﹣1﹣4=4.23.解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.24.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△FAH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.25.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米.根据题意得:﹣=4解得:x=60,经检验,x=60是原分式方程的解,且符合题意,∴x=90.答:乙工程队每天能改造道路的长度为60米,甲工程队每天能改造道路的长度为90米.(2)设安排甲队工作m天,则安排乙队工作天.根据题意得:7m+×5≤195.解得:m≥10.答:至少安排甲队工作10天.26.解:(1)证明:如图1,连接OC,∵OB=OC∴∠OCB=∠B∵=∴∠F=∠B∴∠OCB=∠F∵CE是⊙O切线,∴OC⊥CE∴∠OCE=90°∵∠ECB=∠OCB+∠OCE∴∠ECB=∠F+90°;(2)证明:如图2,过点C作CG⊥EF于G,连接BF,则∠CGE=∠CGD=90° ∵AB是⊙O的直径,∴∠AFB=90°=∠CGE=∠CGD∵OD⊥BC∴BD=CD在△BDF和△CDG中,∴△BDF≌△CDG(AAS)∴BF=CG∵HA=HE∴∠EAH=∠E∵∠BAF=∠EAH∴∠BAF=∠E在△ABF和△ECG中,∴△ABF≌△ECG(AAS)∴AB=CE;(3)如图3,过点C作CG⊥EF于G,连接AC,OC,OF,BF,由(2)知:AB=CE,∠BAF=∠E∵OA=OC∴∠OCA=∠OAC∵AB是⊙O的直径,CE是⊙O切线,∴∠ACB=∠ECO=90°,即∠ECA+∠OCA=∠ABC+∠OAC∴∠ECA=∠ABC∴△ABD≌△ECA(ASA)∴BD=AC∵BD=CD∴AC=CD∴△ACD为等腰直角三角形∴∠ADC=45°∴∠EDF=45°∴△DEF是等腰直角三角形设FK=a,BF=b,则DF=b,BD=CD=AC=b,AD=AC=2b,BC=2b,∵BD=CD,OA=OB∴OD=AC=b,∵∠BDO=90°∴OB===b∴AB=CE=b∵S△ADO=,∴S△BOD=S△COD=,S△BOC=1∴BC•OD=1,即×2b×b=1∴b=1∴AB=CE=,BF=1,AC=,BC=2∴AF===3过点C作CT⊥AB于T,则CT===,∴OT===,∵tan∠COH==,∴CH•OT=CT•OC,即: CH=×∴CH=,∵EH=FK=a,∴CH=CE﹣EH=﹣a,∴﹣a=,解得:a=,∴FK=,EH=,∵△AEH∽△AFO∴=,即AE•OA=AF•EH,AE×=3×,∴AE=2,EK=AE+AF﹣FK=2+3﹣=过W作WR⊥EF于R,易证:△BFK∽△WRK∴===,设KR=m,WR=2m∵=tan∠WER=tan∠BAF==∴=,即ER=6m,∴EK=7m=,解得:m=∴ER=6×=,WR=2×=∴WE===.27.解:(1)∵抛物线经过点A(﹣1,0)和B(2,0),∴解得:∴抛物线的解析式为y=(2)设AC与y轴交点为G,过点P作PH⊥x轴于点H,依题意得:AP=4t,AQ=3t∵直线AC:y=x+m经过点A(﹣1,0)∴+m=0,得m=∴直线AC解析式为:y=x+∴G(0,),OG=∴AG=∵GO∥PH∴△AGO∽△APH∴∴PH=∴s=AQ•PH=(3)过点D作MN⊥x轴于点N,过点E作EM⊥MN于点M,作ER⊥x轴于点R∴四边形EMNR是矩形,△AGO∽△AER∴=∵AE=AQ=3t,AG=2,GO=,AO=1∴MN=ER=,AR=∴E(﹣1+,)设点D(d,),F(f,0)∴EM=d﹣(﹣1+)=d+1﹣,MD=,DN=,FN=d﹣f∵DE⊥DF∴∠EMD=∠EDF=∠DNF=90°∴∠MED+∠MDE=∠MDE+∠NDF=90°∴∠NDF=∠MED∴△NDF∽△MED∴∴DN=EM,FN=MD∴①d﹣f=②∵P(﹣1+2t,2t),Q(﹣1+3t,0)∴直线PQ解析式为:y=﹣2x+6t﹣2∵点D为PQ与抛物线交点∴③把①③联立方程组解得:(舍去)∴由②得:f==1∴点F坐标为(1,0)。

黑龙江省哈尔滨市2019-2020学年第三次中考模拟考试数学试卷含解析

黑龙江省哈尔滨市2019-2020学年第三次中考模拟考试数学试卷含解析

黑龙江省哈尔滨市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a3•a2=a6B.(x3)3=x6C.x5+x5=x10D.﹣a8÷a4=﹣a42.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.63.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°4.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13 14 15 16频数 5 15 x 10- xA.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数5.不等式组325521xx+>⎧⎨-≥⎩的解在数轴上表示为()A.B.C.D.6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.127.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上8.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2,B.最小值2 C.最大值22D.最小值229.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.1210.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定11.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、B C,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为()A.13πB.14πC.16πD.112π12.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A .35°B .60°C .70°D .70°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:112a a-=________. 14.如图,在平面直角坐标系中,抛物线212y x =可通过平移变换向__________得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.15.如图,在Rt △ABC 中,∠ACB =90°,BC =2,AC =6,在AC 上取一点D ,使AD =4,将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,连接BP ,取BP 的中点F ,连接CF ,当点P 旋转至CA 的延长线上时,CF 的长是_____,在旋转过程中,CF 的最大长度是_____.16.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.17.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC ⊥x 轴于点C ,交的图象于点A ,PD ⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是__ .18.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12 10 8 合计/kg 小菲购买的数量/kg 2 2 2 6小琳购买的数量/kg 1 2 3 6从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)反比例函数kyx=在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数kyx=的图象上,求t的值.20.(6分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?21.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)22.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x <20)之间满足一次函数关系,其图象如图所示:求y 与x 之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?23.(8分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).24.(10分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI 0~50 51~100 101~150151~200201~250300以上质量等级 A (优) B (良) C (轻度污染) D (中度污染) E (重度污染) F (严重污染) 天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图; (3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.25.(10分)如图,在ABC ∆中,90ACB ∠=︒,点P 在AC 上运动,点D 在AB 上,PD 始终保持与PA 相等,BD 的垂直平分线交BC 于点E ,交BD 于F ,判断DE 与DP 的位置关系,并说明理由;若6AC =,8BC =,2PA =,求线段DE 的长.26.(12分)如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=1OD ,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.27.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.B【解析】【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】∵D、E分别是△ABC边AB、AC的中点,∴DE是△ABC的中位线,∵BC=6,∴DE=BC=1.故选B.【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.3.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键4.D【解析】 【分析】由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定. 【详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人, ∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x 的变化而变化. 故选D. 5.C 【解析】 【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法. 【详解】解:由不等式①,得3x >5-2,解得x >1, 由不等式②,得-2x≥1-5,解得x≤2, ∴数轴表示的正确方法为C . 故选C . 【点睛】考核知识点:解不等式组. 6.B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB=8,CD=2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE=CD=2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.7.C 【解析】【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx=的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.8.D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2==,∴m=1时,d min.故选D.9.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF=,∴四边形BFED是平行四边形,∴BD=EF,∴563DE ADBD==,解得:DE=10.故选C.10.A【解析】【分析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:∵∠ACB=∠AEB,∠AEB>∠D,∴∠C>∠D.故选:A.【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.11.A【解析】【分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.12.D【解析】【分析】①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵,∴,∴,②当点B落在AC上时,在中,∵∠C=90°, ,∴,∴,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12a.【解析】【分析】根据异分母分式加减法法则计算即可.【详解】原式211222a a a=-=. 故答案为:12a.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则. 14.先向右平移2个单位再向下平移2个单位; 4 【解析】221122222y x x x =-=--. 平移后顶点坐标是(2,-2),利用割补法,把x 轴上方阴影部分补到下方,可以得到矩形面积,面积是224⨯=.15, +2.【解析】 【分析】当点P 旋转至CA 的延长线上时,CP =20,BC =2,利用勾股定理求出BP ,再根据直角三角形斜边上的中线等于斜边的一半,可得CF 的长;取AB 的中点M ,连接MF 和CM ,根据直角三角形斜边上的中线等于斜边的一半,可得CM 的长,利用三角形中位线定理,可得FM 的长,再根据当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,即可得到结论. 【详解】当点P 旋转至CA 的延长线上时,如图2.∵在直角△BCP 中,∠BCP =90°,CP =AC+AP =6+4=20,BC =2,∴BP = ∵BP 的中点是F ,∴CF =12BP . 取AB 的中点M ,连接MF 和CM ,如图2. ∵在直角△ABC 中,∠ACB =90°,AC =6,BC =2,∴AB .∵M 为AB 中点,∴CM =12AB , ∵将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=12AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=10+2.故答案为26,10+2.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.16.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.17.①②④.【解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④18.C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)6yx(2)7或2.【解析】试题分析:(2)根据反比例函数k的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.试题解析:(2)∵△AOM的面积为2,∴12|k|=2,而k>0,∴k=6,∴反比例函数解析式为y=6x;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=6x的图象上,则D点与M点重合,即AB=AM,把x=2代入y=6x得y=6,∴M点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x的图象上,则AB=BC=t-2,∴C点坐标为(t,t-2),∴t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上时,t的值为7或2.考点:反比例函数综合题.20.(1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为7+72=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.1.4米.【解析】【分析】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【详解】过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=22≈1.4,EF FM∴B与C之间的距离约为1.4米.【点睛】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,正确添加辅助线,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.22.(1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可. 【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为:y =10x+100; (2)根据题意得,(60﹣40﹣x)(10x+100)=2090, 解得:x =1或x =9,∵为了让顾客得到更大的实惠, ∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元, 根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000, ∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元. 【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.23.(1)①证明见解析;②证明见解析;(2)△EFC 是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E 作EG ⊥BC ,垂足为G ,根据ASA 证明△CEG ≌△FEM 得CE=FE ,再根据SAS 证明△ABE ≌△CBE 得AE=CE ,在△AEF 中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x ,则AF=2x ,在Rt △DEN 中,∠EDN=45°,DE=DN=x , DO=2DE=2x ,BD=2DO=4x .在Rt △ABD 中,∠ADB=45°,AB=BD·sin45°=4x ,又AF=2x ,从而AF=AB ,得到点F 是AB 的中点.;(2)过点E 作EM ⊥AB ,垂足为M ,延长ME 交CD 于点N ,过点E 作EG ⊥BC ,垂足为G .则△AEM ≌△CEG(HL),再证明△AME ≌△FME(SAS),从而可得△EFC 是等腰直角三角形.(3)方法同第(2)小题.过点E 作EM ⊥AB ,垂足为M ,延长ME 交CD 于点N ,过点E 作EG ⊥BC ,垂足为G .则△AEM ≌△CEG(HL),再证明△AEM ≌△FEM (ASA),得AM=FM ,设AM=x ,则AF=2x ,DN =x ,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.24.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例. 【详解】(1)补全统计表如下: AQI 0~50 51~100 101~150151~200201~250300以上 质量等级 A (优) B (良) C (轻度污染) D (中度污染) E (重度污染) F (严重污染) 天数16207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150+≈29天. 【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据. 25.(1)DE DP ⊥.理由见解析;(2)194DE =. 【解析】 【分析】(1)根据PD PA =得到∠A=∠PDA ,根据线段垂直平分线的性质得到EDB B ∠=∠,利用90A B ∠+∠=︒,得到90PDA EDB ∠+∠=︒,于是得到结论;(2)连接PE ,设DE=x ,则EB=ED=x ,CE=8-x ,根据勾股定理即可得到结论. 【详解】(1)DE DP ⊥.理由如下, ∵90ACB ∠=︒, ∴90A B ∠+∠=︒, ∵PD PA =, ∴PDA A ∠=∠, ∵EF 垂直平分BD ,∴ED EB =,∴EDB B ∠=∠,∴90PDA EDB ∠+∠=︒,∴18090PDE PDA EDB ∠=︒-∠-∠=︒,即DE DP ⊥.(2)连接PE ,设DE x =,由(1)得BE DE x ==,8CE BC BE x =-=-,又2PD PA ==,624PC CA PA =-=-=, ∵90PDE C ∠=∠=︒,∴22222PC CE PD DE PE +=+=,∴()2222248x x +=+-, 解得194x =,即194DE =. 【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键. 26.(1)见解析;(1)①30°或150°,②AF '的长最大值为222+,此时0315α=. 【解析】【分析】(1)延长ED 交AG 于点H ,易证△AOG ≌△DOE ,得到∠AGO=∠DEO ,然后运用等量代换证明∠AHE=90°即可;(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A 、O 、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=22+1,此时α=315°. 【详解】(1)如图1,延长ED 交AG 于点H,∵点O 是正方形ABCD 两对角线的交点,∴OA=OD ,OA ⊥OD ,∵OG=OE ,在△AOG 和△DOE 中,90OA OD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOG ≌△DOE ,∴∠AGO=∠DEO ,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE ⊥AG ;(1)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°,∵OA ⊥OD,OA ⊥AG′,∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°−30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=22,∵OG=1OD,∴OG′=OG=2,∴OF′=1,∴AF′=AO+OF′=22+1,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.27.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)。

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题(解析版)

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题(解析版)

哈尔滨市第六中学2019届高三第三次模拟考试文科数学能力测试第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则( )2{|20,}S x x x x R =+=∈2{|20,}T x x x x R =-=∈S T ⋂=A.B.C.D.{}0{}0,2{}2,0-{}2,0,2-【答案】A 【解析】试题分析:M ={x|x 2+2x =0,x ∈R}={0,-2},N ={x|x 2-2x =0,x ∈R}={ 0,2},所以M ∪N ={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.2.已知复数(是虚数单位),则复数的共轭复数( )312z i =-i z z =A.B.C.D.3655i +3655i -1255i -1255i +【答案】B 【解析】分析:利用复数代数形式的乘除运算化简求得z ,再由共轭复数的概念得答案.详解:,()()()31233612121255i z i i i i +===+--+.∴3655z i =-故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知双曲线:倍,则双曲线的渐近线方程为(C 22221(0,0)y x a b a b -=>>C)A. B. C.D.y =±xy 2±=y x =±y x =【答案】B 【解析】【分析】,由此能求出此双曲线的渐近线方程.a =【详解】∵双曲线倍,2222:1(0,0)y x C a b a b -=>>,a =∴双曲线的渐近线方程为,故选B.C x y 2±=【点睛】本题考查双曲线的渐近线的求法,解题时要认真审题,注意双曲线基本性质的合理运用,属于基础题.4.已知向量,满足,,则( )a b 1a = 1a b ⋅=- (2)a a b ⋅-= A. 4 B. 3 C. 2 D. 0【答案】B 【解析】【分析】根据向量的数量积公式计算即可.【详解】向量,满足,,a b 1a =1ab ⋅=-则,()222213a ab a a b ⋅-=-⋅=+=故选:B .【点睛】本题考查向量的数量积公式,属于基础题5.从分别写有、、、、的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的A B C D E 概率是( )A. B. C. D. 1525103CFBC ⊥【答案】B 【解析】从,,,,的5张卡片中任取2张,基本事件有,,,,,,,,A B C D E AB AC AD AE BC BD BE CD ,共10种结果,其中2张卡片上字母恰好按字母顺序相邻的有,,,共4种结果,CE DE AB BC CD DE 所以,故答案为B.42105P ==点睛:(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,他们是否是等可能的.(2)用列举法求古典概型,是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重复、不遗漏.(3)注意一次性抽取与逐次抽取的区别:一次性抽取是无顺序的问题,逐次抽取是有顺序的问题.6.执行如图所示的程序框图,则输出的值为( )S A.B.C. 2D. 3213log 32+2log 3【答案】C 【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得s =3,i=1满足条件i ,执行循环体s =3+i=23≤log 满足条件i ,执行循环体s =3+i=3,3≤loglog 满足条件i ,执行循环体,s =3+,i=4,3≤log 4log log =不满足条件i 退出循环,输出s 的值为s =.3≤,242log =故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.若,满足不等式组,则的最小值为( )x y 1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩z 2x 3y =-A. -5 B. -4C. -3D. -2【答案】A 【解析】【分析】画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.z 【详解】画出,满足不等式组表示的平面区域,如图所示x y 10 10330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩平移目标函数知,当目标函数过点时,取得最小值,z 2x 3y =-A z 由得,即点坐标为10330x y x y -+=⎧⎨--=⎩23x y =⎧⎨=⎩A ()2,3∴的最小值为,故选A.z 22335⨯-⨯=-【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.某几何体的三视图如图所示,根据图中数据可知该几何体的体积为()A. B.C.D.π3443π43π+【答案】D 【解析】【分析】由某器物的三视图知,此器物为一个简单组合体,其上部为一个半径为1的球体,下部为一个圆锥,故分别用公式求出两个几何体的体积,相加即可得该器物的体积.【详解】此简单组合体上部为一个半径为1的球体,其体积为,π341的圆锥,故其体积为,2113π⋅=综上此简单组合体的体积为,故选D .43π【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是简单几何体的表面积,涉及到球的表面积公式与圆锥的表面积公式.做对此题要熟练掌握三视图的投影规则,即:主视、俯视 长对正;主视、左视高平齐,左视、俯视宽相等9.函数图象上相邻的最高点和最低点之间的距离为( )123cos(y x π=+B.【答案】A 【解析】【分析】的周期是2π,最大值为,最小值为﹣,即可求出相邻的最高点和最低点之间的距1cos 23y x π⎛⎫=+ ⎪⎝⎭1212离.【详解】的周期是2π,最大值为,最小值为﹣,1cos 23y x π⎛⎫=+ ⎪⎝⎭1212∴相邻的最高点和最低点的横坐标之差为半个周期π,纵坐标之差为,11122-=﹣∴1cos 23y x π⎛⎫=+ ⎪⎝⎭故选:A .【点睛】本题考查了函数y =A cos (ωx +)的图象与性质的应用问题,是基础题.φ10.已知函数在上单调递增,则实数的取值范围是( )22,1()log ,1a x ax x f x x x ⎧-+-≤=⎨>⎩R a A. B. C. D. 或13a <≤2a ≥23a ≤≤02a <≤3a ≥【答案】C 【解析】【分析】由二次函数和对数函数的单调性,结合单调性的定义,解不等式即可得到所求范围.【详解】当时,的对称轴为,1≤x ()22f x x ax =-+-2ax =由递增可得,,解得;12a≤2a ≥当时,递增,可得;1>x ()log a f x x=1a >由,递增,即有,解得.x R ∈()f x 12log 10a a -+-≤=3≤a 综上可得,的范围是,故选C .a 23a ≤≤【点睛】本题考查分段函数的单调性的运用,注意运用定义,同时考查二次函数和对数函数的单调性的运用,属于中档题.11.设,分别为和椭圆上的点,则,两点间的最大距离是( )P Q 22(6)2x y +-=22110x y +=P Q A. B. C. D. 246+27+26【答案】D 【解析】【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P 、Q 两点间的最大距离.【详解】设椭圆上点Q ,则 ,因为圆的圆心为,(,)x y 221010x y=-22(6)2x y +-=0,6()所以椭圆上的点与圆心的距离,2==≤所以P 、Q 两点间的最大距离是=【点睛】本题主要考查了圆与椭圆,两点间的距离转化为定点圆心与椭圆上动点间的距离的最值,属于中档题.12.设是数列的前项和,且,,则使取得最大值时的值为(n S {}n a n 11a =11n n n a S S ++=-22110n n nS S +n )A. 2 B. 5C. 4D. 3【答案】D 【解析】【分析】可将原递推式化为,即为等差数列,故可得的通项公式,代入表达式结合对勾函1111n n S S +-=1n S ⎧⎫⎨⎬⎩⎭{}n S 数的单调性即可得最后结果.【详解】∵,,∴,11a =11n n n a S S ++=-11n n n n S S S S ++-=-∴,即是以1为首项,1为公差的等差数列,1111n n S S +-=1n S ⎧⎫⎨⎬⎩⎭∴,()111n n n S =+-=∴,则使,1n S n =222221111011010110nn n nS n n S n n n n ⨯===+++⨯+令,()10f n n n N n *=+∈,由对勾函数的性质可得其在,单调递减,在单调递增;()+∞而,,即可得当时,最小,()27f =()193,(4) 6.53f f ==3n =1n n +故取得最大值时的值为3,故选D .n 【点睛】本题主要考查了等差数列的通项公式、函数的单调性在数列中的应用,考查了推理能力与计算能力,属于中档题.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.在各项为正数的等比数列中,若与的值为_________.{}n a 2a 10a 3438log log a a +【答案】 1-【解析】由题设,又因为,所以,应填答案。

2019年黑龙江省哈尔滨六中高考数学三模试卷(文科)

2019年黑龙江省哈尔滨六中高考数学三模试卷(文科)

2019年黑龙江省哈尔滨六中高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合S={x|x2+2x=0,x∈R},T={x|x2﹣2x=0,x∈R},则S∩T=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2} 2.已知复数(i是虚数单位),则=()A.B.C.D.3.已知双曲线的实轴长是虚轴长的倍,则双曲线C的渐近线方程为()A.B.C.D.4.已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为()A.B.C.D.6.执行如图所示的程序框图,输出S的值为()A.B.log23C.3D.27.若x,y满足不等式组,则z=2x﹣3y的最小值为()A.﹣2B.﹣3C.﹣4D.﹣58.某几何体的三视图如图所示,根据图中数据可知该几何体的体积为()A.B.C.D.9.函数图象上相邻的最高点和最低点之间的距离为()A.B.C.D.10.已知函数f(x)=在R上单调递增,则实数a的取值范围是()A.0<a≤3B.a≥2C.2≤a≤3D.0<a≤2或a≥3 11.设P,Q分别为圆x2+(y﹣6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是()A.5B.+C.7+D.612.设S n是数列{a n}的前n项和,且a1=1,a n+1=﹣S n S n+1,则使取得最大值时n的值为()A.5B.4C.3D.2二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置. 13.各项为正数的等比数列{a n}中,a2与a10的等比中项为,则log3a4+log3a8=.14.如图所示,在等腰梯形ABCD中,,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED,EC向上翻折,使A,B重合,则形成的三棱锥的外接球的表面积为.15.甲、乙、丙三个同学同时做标号为A、B、C的三个题,甲做对了两个题,乙做对了两个题,丙做对了两个题,则下列说法正确的是①三个题都有人做对;②至少有一个题三个人都做对;③至少有两个题有两个人都做对.16.已知函数f(x)=|lnx|,实数m,n满足0<m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值是2,则的值为.三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤.17.已知△ABC中,角A,B,C所对的边分别是a,b,c,△ABC的面积为S,且S=bc cos A,C=.(Ⅰ)求cos B的值;(Ⅱ)若c=,求S的值.18.如图,在三棱锥P﹣ABC中,AC⊥AB,PH⊥BC,P A=PC=AC=AB=2,H为AC的中点(1)求证:P A⊥AB;(2)求点A到平面PBC的距离.19.某公司为确定下一年度投入某种产品的宣传费需了解年宣传费x(单位:千元)对年销售量y(单位:t)的影响.对近8年的年宣传费x,和年销售量y=(i=1,2,…8)数据作了初步处理,得到下面的散点图及一些统计量的值.i i)(x i)2•(y i)(w i)2•(y i )表中w i=,=w i附:对于﹣组数据(u i,v i),(u2,v2),…,(u n,v n),其回归直线v=+βμ的斜率和截距的最小二乘估计分别为,=﹣βμ(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)根据(2)的结果计算年宣传费x=49时,年销售量预报值是多少?20.已知函数(m∈R,m>0)(1)若m=2,求f(x)在(1,f(1))处的切线方程;(2)若y=f(x)在上有零点,求m的取值范围.21.已知点H(﹣6,0),点P(0,b)在y轴上,点Q(a,0)在x轴的正半轴上,且满足,点M在直线PQ上,且满足=,(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;(Ⅱ)过点T(﹣1,0)作直线l与轨迹C交于A、B两点,E(t,0)为x轴上一点,满足|EA|=|EB|,设线段AB的中点为D,且4|DE|=|AB|,求t的值.请考生在22、23题中任选一题作答如果多做,则按所做的第一题计分,作答时请写清题号. 22.在平面直角坐标系xOy中,曲线C1的参数方程为(t为参数且t>0,α∈(0,)),曲线C2的参数方程为(β为参数且β∈(﹣)).以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=1+cosθ(θ∈(0,)),曲线C4的极坐标方程为ρcosθ=1.(Ⅰ)求C3与C4的交点到极点的距离;(Ⅱ)设C1与C2交于P点,C1与C3交于Q点,当α在(0,)上变化时,求|OP|+|OQ|的最大值.23.已知函数f(x)=k﹣|x﹣3|,k∈R,且f(x+3)≥0的解集为[﹣1,1].(Ⅰ)求k的值;(Ⅱ)若a、b、c是正实数,且,求证:.2019年黑龙江省哈尔滨六中高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:分析可得,S为方程x2+2x=0的解集,则S={x|x2+2x=0}={0,﹣2},T为方程x2﹣2x=0的解集,则T={x|x2﹣2x=0}={0,2},故集合S∩T={0},故选:A.2.【解答】解:∵=,∴,故选:B.3.【解答】解:∵双曲线的实轴长是虚轴长的倍,∴b=a,∴双曲线C的渐近线方程为:y=x.故选:B.4.【解答】解:向量,满足||=1,=﹣1,则•(2)=2﹣=2+1=3,故选:B.5.【解答】解:由题意知本题是一个古典概型,∵试验包含的总事件是从5张卡片中任取2张,有C52中取法,这2张上的字母恰好按字母顺序相邻的有A,B;B,C;C,D;D,E四种结果,∴由古典概型公式得到P==.故选:B.6.【解答】解:模拟程序的运行,可得S=3,i=1满足条件i≤3,执行循环体,S=3+,i=2满足条件i≤3,执行循环体,S=3++,i=3满足条件i≤3,执行循环体,S=3+++=3+1=4,i=4此时,不满足条件i≤3,退出循环,可得:S==2.故程序框图输出S的值为2.故选:D.7.【解答】解:画出x,y满足不等式组表示的平面区域,如图所示;平移目标函数z=2x﹣3y知,A(2,3),B(1,0),C(0,1)当目标函数过点A时,z取得最小值,∴z的最小值为2×2﹣3×3=﹣5.故选:D.8.【解答】解:此简单组合体上部为一个半径为1的球体,其体积为,下部为一个高为,底面半径为1的圆锥,故其体积为,综上此简单组合体的体积为.故选:D.9.【解答】解:的周期为2π,图象上相邻的最高点和最低点之间的水平距离为π,垂直距离为1.故:相邻的最高点和最低点之间的距离为.故选:A.10.【解答】解:当x≤1时,f(x)=﹣x2+ax﹣2的对称轴为x=,由递增可得,1≤,解得a≥2;当x>1时,f(x)=log a x递增,可得a>1;由x∈R,f(x)递增,即有﹣1+a﹣2≤log a1=0,解得a≤3.综上可得,a的范围是2≤a≤3.故选:C.11.【解答】解:设椭圆上的点为(x,y),则∵圆x2+(y﹣6)2=2的圆心为(0,6),半径为,∴椭圆上的点(x,y)到圆心(0,6)的距离为==≤5,∴P,Q两点间的最大距离是5+=6.故选:D.12.【解答】解:∵a1=1,a n+1=﹣S n S n+1,∴S n+1﹣S n=﹣S n S n+1,∴﹣=1.∴=1+﹣(n﹣1)=n,∴S n=,则使===≤=,等号不成立.经过验证:则使取得最大值时n的值为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置. 13.【解答】解:根据题意,等比数列{a n}中,a2与a10的等比中项为,则有a2a10=,又由等比数列的性质可得:a4a8=a2a10=,则log3a4+log3a8=log3a4a8=log3=﹣1;故答案为:﹣1.14.【解答】解:由题意易知,△ADE、△CDE、△BCE都是边长为的等边三角形,翻折后所形成的三棱锥是边长为的正四面体,设该三棱锥的外接球的半径为R,则,因此,该三棱锥的外接球的表面积为4πR2=π×(2R)2=3π.故答案为:3π.15.【解答】解:若甲做对A,B,乙做对A,B,丙做对A,B,则C无人做对,所以①错误;若甲做对A,B,乙做对A,C,丙做对B,C,则没有一个题被三个人都做对,所以②错误;做对的情况可分为三种情况:三个人做对的都相同;三个人中有两个人做对的相同;三个人每个人做对的都不完全相同,分类可知三种情况都满足③的说法.故答案为:③.16.【解答】解:∵f(m)=f(n),∴﹣lnm=lnn∴mn=1.∵f(x)在区间[m2,n]上的最大值为2,∴f(x)在区间[m2,]上的最大值为2,∴﹣lnm2=2,则lnm=﹣1,解得m=,∴n=e,∴=e2,故答案为:e2.三、解答题:本大题共70分,解答应写出必要的文字说明,证明过程或演算步骤. 17.【解答】解:(Ⅰ)∵S=bc sin A=bc cos A,∴sin A=2cos A,可得:tan A=2,∵△ABC中,A为锐角,又∵sin2A+cos2A=1,∴可得:sin A=,cos A=,又∵C=,∴cos B=﹣cos(A+C)=﹣cos A cos C+sin A sin C=.(Ⅱ)在△ABC中,sin B==,由正弦定理,可得:b==3,∴S=bc cos A=3.18.【解答】证明:(1)在等边△P AC中,H为AC中点,∴PH⊥AC,∵PH⊥BC,且AC∩BC=C,∴PH⊥面ABC,∵AB⊂平面ABC,∴PH⊥AB,∵AB⊥AC,PH∩AC=H,∴AB⊥面P AC,∴P A⊥AB.解:(2)在Rt△ABC中,BC2=AB2+AC2=8,∴BC=2,同理PB=2,故在△PBC中,PC边上的高h1=(2)2﹣12=,设点A到平面PBC的距离为h,V P﹣ABC=V A﹣PBC,∴=,∴h===,∴点A到平面PBC的距离为.19.【解答】解:(1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(2)令w=,先建立y关于w的线性回归方程,由于===68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68;(3)由(2)知,当x=49时,年销售量y的预报值=100.6+68=576.6.20.【解答】解:(1)m=2时,f(1)=,f′(x)=,∴f′(1)=1,故所求切线方程为y+=x﹣1,即2x﹣2y﹣3=0;(2)依题意,f′(x)=.①当0<m≤e时,f′(x)≤0,f(x)在[]上单调递减,则,解得e,故此时m=e;②当m≥e2时,f′(x)≥0,f(x)在[]上单调递增,则,即,此不等式组无解;③当e<m<e2时,若x∈(),f′(x)>0,f(x)单调递增,若x∈(]时,f′(x)<0,f(x)单调递减,由m>e时,>0,故只需f(e)≤0,即m﹣≤0,m.故此时e.综上,m的取值范围是[e,].21.【解答】解:(Ⅰ)设点M的坐标为(x,y),则=(6,b),=(a.﹣b),=(x,y﹣b),=(a﹣x,﹣y),由⊥,得6a﹣b2=0,由=,得⇒,则由6a﹣b2=0得y2=3x,故点M的轨迹C的方程为y2=3x(x>0).(Ⅱ)易知l斜率存在,设l:y=k(x+1)(k≠0),A(x1,y1),B(x2,y2),联立得k2x2+2(k2﹣3)x+k2=0,x1+x2=,x1x2=1.△>0得.∴D(,),由|EA|=|EB|,DT⊥AB得=﹣1,化简得﹣=,|AB|2=(1+k2)(),|DE|2=(﹣1)2+=+,由4|DE|=|AB|得k2=,t=.请考生在22、23题中任选一题作答如果多做,则按所做的第一题计分,作答时请写清题号. 22.【解答】解:(Ⅰ)联立曲线C3,C4的极坐标方程得ρ2﹣ρ﹣1=0,解得ρ=,即交点到极点的距离为.(Ⅱ)曲线C1的极坐标方程为θ=α,(,ρ>0),曲线C2的极坐标方程为ρ=2sinθ,θ∈(0,),联立得ρ=2sinα,α∈(0,),即|OP|=2sinα,α∈(0,),曲线C1与曲线C3的极坐标方程联立得ρ=1+cosα,α∈(0,),即|OQ|=1+cosα,α∈(0,),所以|OP|+|OQ|=1+2sinα+cosα=1+sin(α+φ),其中φ的终边经过点(2,1),当α+φ=+2kπ,k∈Z,即α=arcsin时,|OP|+|OQ|取得最大值1+.23.【解答】(Ⅰ)解:f(x+3)≥0的解集为[﹣1,1],即为|x|≤k的解集为[﹣1,1],(k>0),即有[﹣k,k]=[﹣1,1],解得k=1;(Ⅱ)证明:将k=1代入可得,++=1(a,b,c>0),则a+2b+3c=(a+2b+3c)(++)=3+(+)+(+)+(+)≥3+2+2+2=3+2+2+2=9,当且仅当a=2b=3c,上式取得等号.则有.。

黑龙江省哈尔滨市2019-2020学年中考第三次适应性考试数学试题含解析

黑龙江省哈尔滨市2019-2020学年中考第三次适应性考试数学试题含解析

黑龙江省哈尔滨市2019-2020学年中考第三次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 2.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A .平均数是3B .中位数是3C .众数是3D .方差是2.53.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是( )A .①②③④B .②①③④C .③②①④D .④②①③4.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )A .B .C .D .5.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=67°,则∠1=( )A .23°B .46°C .67°D .78°6.若kb <0,则一次函数y kx b =+的图象一定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限7.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣4 8.1的相反数是 ( )A .6B .-6C .16D .16- 9.若抛物线y =x 2-(m -3)x -m 能与x 轴交,则两交点间的距离最值是( )A .最大值2,B .最小值2C .最大值22D .最小值22 10.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A .B .C .D .11.在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示:成绩(米)4.50 4.60 4.65 4.70 4.75 4.80 人数 2 3 2 3 4 1则这15名运动员成绩的中位数、众数分别是( )A .4.65,4.70B .4.65,4.75C .4.70,4.70,D .4.70,4.7512.已知x=2是关于x 的一元二次方程x 2﹣x ﹣2a=0的一个解,则a 的值为( )A .0B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:2363m m -+=__________.14.如图,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE ⊥OF ,OE 、OF 分别交AB 、BC 于点E 、点F ,AE=3,FC=2,则EF 的长为_____.15. 一般地,当α、β为任意角时,sin (α+β)与sin (α﹣β)的值可以用下面的公式求得:sin (α+β)=sinα•cosβ+cosα•sinβ;sin (α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin (60°+30°)=sin60°•cos30°+cos60°•sin30°=33112222+⨯=1.类似地,可以求得sin15°的值是_______. 16.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.17.关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,则k 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在菱形ABCD中,BAD∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转α,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC ,求证:AC CF⊥.20.(6分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.21.(6分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?22.(8分)计算:4cos30°12+20180+|13|23.(8分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.24.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.25.(10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且»»»==,连接AC,AF,过AF FC CB点C作CD⊥AF交AF延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若CD=23,求⊙O的半径.26.(12分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=3,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.27.(12分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.2.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.3.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形5.B【解析】【分析】根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.6.D【解析】【分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。

2019届黑龙江省哈尔滨市第六中学高三第三次模拟考试数学(文)试题(解析版)

2019届黑龙江省哈尔滨市第六中学高三第三次模拟考试数学(文)试题(解析版)

绝密★启用前黑龙江省哈尔滨市第六中学2019届高三毕业班下学期第三次高考模拟考试数学(文)试题(解析版)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T ⋂=( )A. {}0B. {}0,2C. {}2,0-D. {}2,0,2-【答案】A【解析】试题分析:M ={x|x 2+2x =0,x∈R}={0,-2},N ={x|x 2-2x =0,x∈R}={ 0,2},所以 M∪N={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.2.已知复数312z i =-(i 是虚数单位),则复数z 的共轭复数z =( ) A. 3655i + B. 3655i - C. 1255i - D. 1255i + 【答案】B【解析】分析:利用复数代数形式的乘除运算化简求得z,再由共轭复数的概念得答案. 详解:()()()31233612121255i z i i i i +===+--+,∴3655z i =-. 故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知双曲线C :22221(0,0)y x a b a b-=>>倍,则双曲线C 的渐近线方程为( )A. y =±B. x y 2±=C. 2y x =±D.y = 【答案】B【解析】【分析】a =,由此能求出此双曲线的渐近线方程.【详解】∵双曲线2222:1(0,0)y x C a b a b-=>>倍,a =,∴双曲线C 的渐近线方程为x y 2±=,故选B.【点睛】本题考查双曲线的渐近线的求法,解题时要认真审题,注意双曲线基本性质的合理运用,属于基础题.4.已知向量a ,b 满足1a =,1a b ⋅=-,则(2)a a b ⋅-=( )A. 4B. 3C. 2D. 0 【答案】B【解析】【分析】根据向量的数量积公式计算即可.。

2019年黑龙江省哈尔滨六中高考数学三模考试试卷(理科)(解析版)

2019年黑龙江省哈尔滨六中高考数学三模考试试卷(理科)(解析版)

2019年黑龙江省哈尔滨六中高考数学三模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)设集合U={xeN|U - 4x-5W0},A={1,2,4},则CuA=()A.{3}B.{0,3,5}C.{3,5}D.(0,3}2.(3分)已知复数z=^L,则复数z在复平面内对应的点位于()l-2iA.第一象限B.第二象限C.第三象限D.第四象限223.(3分)对于实数e是“方程1表示双曲线”的()m-1m-2A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(3分)己知直线平面a,直线mu平面6,则下列四个命题正确的是()@a//②a_L6=>/〃》i;@1//m=>a_Lp;④ZJ_«7=>a〃&.A.②④B.①②C.③④D.①③5.(3分)己知向量a=(2,3),b=(x,4),若a J-(a-b)>则x=()A.1B.-kC.2D.326.(3分)(2r-L)5的展开式中P项的系数为()xA.80B.-80C.- 40D.487.(3分)为了配合创建全国文明城市的活动,我校现从4名男教师和5名女教师中,选取3人,组成创文明志愿者小组,若男女至少各有一人,则不同的选法共有()A.140种B.70种C.35种D.84种8.(3分)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第五天走的路程为()A.48里B.24里C.12里D.6里9.(3分)设函数f(x)=—的大致图象是()10.(3分)已知f(x)=sin(2019X+2L)+cos(2019x-2L)的最大值为A,若存在实数63工1、入2,使得对任意实数%总有/(xi)W/(X2)成立,则A\x\-划的最小值为()A.兀B.4兀C.271D.兀201920192019403811.(3分)长方体ABC£)-&BiCjDi中,DC+CC1=8,CB=4,面=无,点N是平面A\B\C\D\上的点,且满足C】N=据,当长方体ABCD-A\B\C\D\的体积最大时,线段MN的最小值是()A.6^2B.8C.V21D.4^312.(3分)已知f(x)是定义在R上的可导函数,且满足(x+2)y(x)+xf(x)>0,则()A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(x)为增函数二、填空题(把答案填在题中横线上)°-(3分)已知屋2伟后点,辰=4压'…'若椭=7屈(心人均为正实数),则类比以上等式,可推测a、力的值,进而可得a+b=. 14.(3分)若直线ax+by+l=O(a>0,/?>0)把圆(x+4)2+(y+l)2=16分成面积相等的两部分,J_+2的最小值为.2a b15.(3分)抛物线y2=4x的焦点为F,其准线为直线Z,过点M(5,2福)作直线/的垂线,垂足H,则ZFMH的角平分线所在的直线斜率是.16.(3分)数列0}满足ai=—,a n+i=———冀-----,贝擞列{《J的前750项和,5032(2n+l)a n+l三、解答题(解答应写出文字说明,证明过程或演算步骤)17.己知函数f(x)=2sinxcosx+2,\/3cos2x-(1)求函数(x)的最小正周期和单调递减区间;(2)己知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=l,若锐角A满足/(A i”)=(3,且sinB+sinC=】3寸5,求/X abc的面积.261418.中国特色社会主义进入新时代,中国经济出现了一系列不一样的速度.(如图①②),2011年起年主营收入2000万以上的工业企业成为规模以上工业企业.据了解,规模以上工业企业占全国工业企业总数的20%,但其产值在全国工业企业产值中所占比例超过90%,在国民经济中起到了举足轻重的作用.在科技高速发展的今天科技进步对经济的影响日益增加,2017年全球企业研发投入排行榜中前50名中国仅有华为上榜,而且据统计全国仅有12%的规模以上工业企业设立了研发机构.科技进步对经济增长的贡献率 %60 -4515105||规慎以上T 业观部分产业制觥速♦规模以上T 业增加值增速7^♦规模以上有技术制造业制值赠速.规撕匕六大鬲耗能行业埋加值增速2013 2014 2015 2016 2017 年注:府技术制匮业包括医药制it 业,航空,航天器及设备制造 业,电子及通信设备制造业等:AXSOff 业包括石油加匚嫁焦 和核燃料加「业季0 _,_I _!_i _«_._|_»_S' 5 △年冷冷冷冷冷冷冷冷图①图②注:科技进步对经济增K 的 贡献稍是指广义技术进心对好济 增氏的贡献份额.即扣除r 资木 和劳动之外的其他因恭时经济增贞献年份20132014201520162017贡献率%52.553.85556.257.5(1)现对20家规模以上工业企业进行调查,求恰有两家设置了研发机构的概率(只列式不求);(2) 《国家长期科学与技术发展规划纲要》中提出“到2020年力争科技进步对经济增长贡献率达到60%”,如图①若科技进步对经济增长的贡献率与年份呈线性关系,设*=年 份-2012,求出科技进步对经济增长的贡献率y 关于x 的回归直线方程(精确到0.01),并预测2020年能否实现目标;(3) 结合图①②,请为中国未来经济发展提出合理化建议.n _ _ n __£ (x£-x ) (y • -y ) E X^y • -nxy i =l 1 i=] — — n n b - 二~- ,a = y _bx, £ x{yi= 837.4, £ x?=55£ (xi -x )2 £ x i 2-nx 2 1=1 1=1i=l i=l 2 219.己知椭圆C : L+J=l (q >》>0), F (1, 0)为右焦点,过F 的直线,交椭圆C 于2 1 2a bM, N 两点,当直线/垂直于x 轴时,直线的斜率为竺Z3,其中。

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题 Word版含解析

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题 Word版含解析

哈尔滨市第六中学2019届高三第三次模拟考试文科数学能力测试第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T ⋂=( )A. {}0B. {}0,2C. {}2,0-D. {}2,0,2-【答案】A【解析】试题分析:M ={x|x 2+2x =0,x∈R}={0,-2},N ={x|x 2-2x =0,x∈R}={ 0,2},所以 M∪N={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.2.已知复数312z i =-(i 是虚数单位),则复数z 的共轭复数z =( ) A. 3655i + B. 3655i - C. 1255i - D. 1255i + 【答案】B【解析】分析:利用复数代数形式的乘除运算化简求得z ,再由共轭复数的概念得答案.详解:Q ()()()31233612121255i z i i i i +===+--+, ∴3655z i =-. 故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知双曲线C :22221(0,0)y x a b a b-=>>倍,则双曲线C 的渐近线方程为( )A. y =±B. x y 2±=C. 2y x =±D.y = 【答案】B【解析】【分析】a =,由此能求出此双曲线的渐近线方程.【详解】∵双曲线2222:1(0,0)y x C a b a b-=>>倍,a =,∴双曲线C 的渐近线方程为x y 2±=,故选B.【点睛】本题考查双曲线的渐近线的求法,解题时要认真审题,注意双曲线基本性质的合理运用,属于基础题.4.已知向量a r ,b r 满足1a =r ,1a b ⋅=-r r ,则(2)a a b ⋅-=r r r ( )A. 4B. 3C. 2D. 0 【答案】B【解析】【分析】根据向量的数量积公式计算即可.【详解】向量a r ,b r 满足1a r =,1a b rr ⋅=-, 则()222213a a b a a b ⋅-=-⋅=+=r r r r r r , 故选:B .【点睛】本题考查向量的数量积公式,属于基础题5.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( ) A. 15 B. 25 C. 103 D. CF BC ⊥【答案】B【解析】从A ,B ,C ,D ,E 的5张卡片中任取2张,基本事件有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种结果,其中2张卡片上字母恰好按字母顺序相邻的有AB ,BC ,CD ,DE 共4种结果,所以42105P ==,故答案为B. 点睛:(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,他们是否是等可能的.(2)用列举法求古典概型,是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重复、不遗漏.(3)注意一次性抽取与逐次抽取的区别:一次性抽取是无顺序的问题,逐次抽取是有顺序的问题.6.执行如图所示的程序框图,则输出S 的值为( )A. 213log 32+B. 2log 3C. 2D. 3【答案】C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得s =3,i=1满足条件i 3≤,执行循环体s =3+log i=2 满足条件i 3≤,执行循环体s =3+loglog i=3, 满足条件i 3≤,执行循环体,s =3+log4log log =,i=4, 不满足条件i 3≤,退出循环,输出s 的值为s =242log =.故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.若x ,y 满足不等式组1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z 2x 3y =-的最小值为( )A. -5B. -4C. -3D. -2【答案】A【解析】【分析】画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z 的最小值. 【详解】画出x ,y 满足不等式组10 10330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域,如图所示平移目标函数z 2x 3y =-知,当目标函数过点A 时,z 取得最小值,由10330x y x y -+=⎧⎨--=⎩得23x y =⎧⎨=⎩,即A 点坐标为()2,3 ∴z 的最小值为22335⨯-⨯=-,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.某几何体的三视图如图所示,根据图中数据可知该几何体的体积为( )A. π34 15 C. 4153π D.4153π 【答案】D【解析】由某器物的三视图知,此器物为一个简单组合体,其上部为一个半径为1的球体,下部为一个圆锥,故分别用公式求出两个几何体的体积,相加即可得该器物的体积.【详解】此简单组合体上部为一个半径为1的球体,其体积为π34,1的圆锥,故其体积为2113π⋅=,综上此简单组合体的体积为43π,故选D . 【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是简单几何体的表面积,涉及到球的表面积公式与圆锥的表面积公式.做对此题要熟练掌握三视图的投影规则,即:主视、俯视 长对正;主视、左视高平齐,左视、俯视宽相等9.函数123cos()y x π=+图象上相邻的最高点和最低点之间的距离为( )【答案】A【解析】【分析】 1cos 23y x π⎛⎫=+ ⎪⎝⎭的周期是2π,最大值为12,最小值为﹣12,即可求出相邻的最高点和最低点之间的距离. 【详解】1cos 23y x π⎛⎫=+ ⎪⎝⎭的周期是2π,最大值为12,最小值为﹣12, ∴相邻的最高点和最低点的横坐标之差为半个周期π,纵坐标之差为11122-=﹣,∴1cos 23y x π⎛⎫=+ ⎪⎝⎭【点睛】本题考查了函数y =A cos (ωx +φ)的图象与性质的应用问题,是基础题.10.已知函数22,1()log ,1a x ax x f x x x ⎧-+-≤=⎨>⎩在R 上单调递增,则实数a 的取值范围是( )A. 13a <≤B. 2a ≥C. 23a ≤≤D. 02a <≤或3a ≥【答案】C【解析】【分析】由二次函数和对数函数的单调性,结合单调性的定义,解不等式即可得到所求范围.【详解】当1≤x 时,()22f x x ax =-+-的对称轴为2a x =, 由递增可得,12a ≤,解得2a ≥; 当1>x 时,()log a f x x =递增,可得1a >;由x R ∈,()f x 递增,即有12log 10a a -+-≤=,解得3≤a .综上可得,a 的范围是23a ≤≤,故选C .【点睛】本题考查分段函数的单调性的运用,注意运用定义,同时考查二次函数和对数函数的单调性的运用,属于中档题.11.设P ,Q 分别为22(6)2x y +-=和椭圆22110x y +=上的点,则P ,Q 两点间的最大距离是( )A. B. 246+ C. 27+ D. 26【答案】D【解析】【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P 、Q 两点间的最大距离. 【详解】设椭圆上点Q (,)x y ,则221010x y =- ,因为圆22(6)2x y +-=的圆心为0,6(),,所以椭圆上的点与圆心的距离2==≤,所以P、Q两点间的最大距离是=【点睛】本题主要考查了圆与椭圆,两点间的距离转化为定点圆心与椭圆上动点间的距离的最值,属于中档题.12.设n S是数列{}n a的前n项和,且11a=,11n n na S S++=-,则使22110nnnSS+取得最大值时n的值为()A. 2B. 5C. 4D. 3【答案】D【解析】【分析】可将原递推式化为1111n nS S+-=,即1nS⎧⎫⎨⎬⎩⎭为等差数列,故可得{}n S的通项公式,代入表达式结合对勾函数的单调性即可得最后结果.【详解】∵11a=,11n n na S S++=-,∴11n n n nS S S S++-=-,∴1111n nS S+-=,即1nS⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,∴()111nn nS=+-=,∴1nSn=,则使222221111011010110nnnnS nnS n nn n⨯===+++⨯+,令()10f n n n Nn*=+∈,,由对勾函数的性质可得其在(,单调递减,在)+∞单调递增;而()27f=,()193,(4) 6.53f f==,即可得当3n=时,1nn+最小,故取得最大值时n 的值为3,故选D .【点睛】本题主要考查了等差数列的通项公式、函数的单调性在数列中的应用,考查了推理能力与计算能力,属于中档题.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.在各项为正数的等比数列{}n a 中,若2a 与10a 的等比中项为3,则3438log log a a +的值为_________.【答案】1-【解析】由题设21013a a =,又因为21048a a a a =,所以343834831log log log ()log 13a a a a +===-,应填答案1-。

黑龙江省哈尔滨市第六中学2019届高三数学第三次模拟考试试题理(含解析)

黑龙江省哈尔滨市第六中学2019届高三数学第三次模拟考试试题理(含解析)

黑龙江省哈尔滨市第六中学2019届高三数学第三次模拟考试试题理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】【分析】用列举法写出集合U,根据补集的定义计算即可.【详解】解:集合所以故答案为B【点睛】本题考查了补集的定义与一元二次不等式的解法问题,是基础题.2.已知复数,则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】在复平面内对应的点坐标为在第一象限,故选A.3.对于实数,“”是“方程表示双曲线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据方程表示双曲线求出m的范围,结合充分条件和必要条件的定义进行判断即可.【详解】由题意,方程表示双曲线,则,得,所以“”是“方程表示双曲线”的充要条件,故选:C.【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合双曲线方程的特点求出m的取值范围是解决本题的关键,着重考查了运算与求解能力,以及推理、论证能力,属于基础题.4.已知直线平面,直线平面,则下列四个命题正确的是()①;②;③;④.A. ②④B. ①②C. ③④D. ①③【答案】D【解析】【分析】直接由空间中的点线面的位置关系逐一核对四个选项得到答案.【详解】因直线平面,直线平面,若,则平面,则有,①正确;如图,由图可知②不正确;因为直线平面,,所以平面,又平面,所以,所以③正确;由②图可知④不正确;所以正确的命题为①③,故选D.【点睛】该题考查的是有关空间关系的判定,在解题的过程中,注意把握住相应定理的条件和结论,注意有一定的空间想象能力.5.已知向量,若,则()A. 1B.C. 2D. 3【答案】B【解析】【分析】可求出,根据即可得出,进行数量积的坐标运算即可求出x.【详解】;∵;∴;解得.故选B.【点睛】本题考查向量垂直的充要条件,向量坐标的减法和数量积运算,属于基础题.6.的展开式中项的系数为()A. 80B. -80C. -40D. 48【答案】B【解析】通项公式,令,解得,∴展开式中项的系数,故选B.7.为了配合哈尔滨创建全国文明城市的活动,现从哈六中高三学年4名男教师和5名女教师中选取3人,组成创文明城市志愿者小组,若男教师、女教师至少各有一人,则不同的选法共有()A. 140种B. 70种C. 35种D. 84种【答案】B【解析】分两类:(1)2男1女,有种;(2)1男2女,有种,所以共有+种,故选B.点睛:分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,步与步之间的方法“相互独立,分步完成”.8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A. 48里B. 24里C. 12里D. 6里【答案】C【解析】记每天走的路程里数为{a n},由题意知{a n}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选:C.9.函数的大致图像是()A. B.C. D.【答案】A【解析】【分析】求得函数在x>0时>0,在x<0时<0,从而排除即可得到答案.【详解】函数在x>0时>0,排除C、D,在x<0时<0,排除B,故选A.【点睛】本题考查了函数的图象的应用,注意确定函数在某区间的值域,从而利用排除法求解即可.10.已知的最大值为,若存在实数使得对任意实数总有成立,则的最小值为()A. B. C. D.【答案】C【解析】【分析】先化简,得,根据题意即求半个周期的A倍.【详解】解:依题意,,,,,的最小值为,故选:C.【点睛】本题考查了正弦型三角函数的图像与性质,考查三角函数恒等变换,属中档题.11.长方体中,,点是平面上的点,且满足,当长方体的体积最大时,线段的最小值是()A. B. C. D.【答案】B【解析】由题意,当长方体的体积,当最大,此时长方体为棱长为的正方体,的轨迹是平面中,以为圆心,为半径的圆的,设在平面中的射影为,则为的中点,的最小值为,线段的最小值是,故选B.12.已知是定义在上的可导函数,且满足,则()A. 为减函数B. 为增函数C.D.【答案】D【解析】【分析】令G(x)=x2•e x•f(x),求出函数的导数,得到函数的单调区间,求出函数G(x)的最小值,从而求出f(x)的符号即可.【详解】解:令G(x)=x2•e x•f(x),G′(x)=xe x[(x+2)f(x)+xf′(x)],∵(x+2)f(x)+xf'(x)>0,∴x>0时,G′(x)>0,x<0时,G′(x)<0,故G(x)在(﹣∞,0)递减,在(0,+∞)递增,故G(x)≥G(0)=0,又当故选:D.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,构造函数G(x)=x2•e x•f (x)是解题的关键,属于中档题.二、填空题(把答案填在题中横线上)13.已知,若,(均为正实数),则类比以上等式,可推测的值,进而可得___________.【答案】【解析】试题分析:由已知,数列中项的构成规律为,所以,中.考点:1.归纳推理;2.数列的通项.14.若直线把圆分成面积相等的两部分,的最小值为______.【答案】8【解析】【分析】由题意,圆心(﹣4,﹣1)代入直线1:ax+by+1=0,可得4a+b=1,利用“1”的代换,结合基本不等式求最值,即可得出结论.【详解】解:由题意,圆心(﹣4,﹣1)代入直线1:ax+by+1=0,可得4a+b=1,∴()(4a+b)=44+4=8,当且仅当时取等号,∴的最小值为8.【点睛】本题考查直线与圆的位置关系以及基本不等式的运用,关键是分析得到直线1:ax+by+1=0过圆的圆心.15.抛物线的焦点为,其准线为直线,过点作直线的垂线,垂足为,则的角平分线所在的直线斜率是_______.【答案】【解析】分析:由抛物线定义可知,进而可推断出∠FMH的角平分线所在的直线经过HF的中点,利用斜率的两点式即可得到结论.详解:连接HF,因为点M在抛物线上,所以由抛物线的定义可知,所以△MHF 为等腰三角形,所以∠FMH的角平分线所在的直线经过HF的中点,因为F,,所以HF的中点为,所以∠FMH的角平分线的斜率为.故答案为:点睛:在解决与抛物线有关的问题时,要注意抛物线的定义在解题中的应用。

省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题含解析

省哈尔滨市第六中学2019届高三第三次模拟考试数学(文)试题含解析

哈尔滨市第六中学2019届高三第三次模拟考试文科数学能力测试 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T ⋂=( ) A. {}0B. {}0,2C. {}2,0-D.{}2,0,2-【答案】A 【解析】试题分析:M ={x|x 2+2x =0,x∈R}={0,-2},N ={x|x 2-2x =0,x∈R}={ 0,2},所以 M∪N={-2,0,2},故选D .考点:1、一元二次方程求根;2、集合并集的运算.2.已知复数312z i=-(i 是虚数单位),则复数z 的共轭复数z =( ) A.3655i + B. 3655i - C. 1255i -D.1255i + 【答案】B 【解析】分析:利用复数代数形式的乘除运算化简求得z ,再由共轭复数的概念得答案. 详解:()()()31233612121255i z i i i i +===+--+, ∴3655z i =-. 故选:B.点睛:本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知双曲线C :22221(0,0)y x a b a b-=>>倍,则双曲线C 的渐近线方程为( )A. y =±B. x y 2±=C. y x =±D.y = 【答案】B 【解析】 【分析】a =,由此能求出此双曲线的渐近线方程.【详解】∵双曲线2222:1(0,0)y x C a b a b-=>>倍,a =,∴双曲线C 的渐近线方程为x y 2±=,故选B.【点睛】本题考查双曲线的渐近线的求法,解题时要认真审题,注意双曲线基本性质的合理运用,属于基础题.4.已知向量a ,b 满足1a =,1a b ⋅=-,则(2)a a b ⋅-=( ) A. 4 B. 3C. 2D. 0【答案】B 【解析】 【分析】根据向量的数量积公式计算即可.【详解】向量a ,b 满足1a =,1a b ⋅=-, 则()222213a a b a a b ⋅-=-⋅=+=, 故选:B .【点睛】本题考查向量的数量积公式,属于基础题5.从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( ) A.15B.25C.103 D.CF BC ⊥【答案】B 【解析】从A ,B ,C ,D ,E 的5张卡片中任取2张,基本事件有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种结果,其中2张卡片上字母恰好按字母顺序相邻的有AB ,BC ,CD ,DE 共4种结果,所以42105P ==,故答案为B. 点睛:(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,他们是否是等可能的.(2)用列举法求古典概型,是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重复、不遗漏.(3)注意一次性抽取与逐次抽取的区别:一次性抽取是无顺序的问题,逐次抽取是有顺序的问题.6.执行如图所示的程序框图,则输出S 的值为( )A. 213log 32+B. 2log 3C. 2D. 3【答案】C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得s =3,i=1满足条件i 3≤,执行循环体s =3+log i=2 满足条件i 3≤,执行循环体s =3+loglog i=3, 满足条件i 3≤,执行循环体,s =3+log4log log =,i=4, 不满足条件i 3≤,退出循环,输出s 的值为s =242log =. 故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.若x ,y 满足不等式组1010330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z 2x 3y =-的最小值为( )A. -5B. -4C. -3D. -2【答案】A 【解析】 【分析】画出不等式组表示的平面区域,平移目标函数,找出最优解,求出z 的最小值.【详解】画出x ,y 满足不等式组10 10330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩表示的平面区域,如图所示平移目标函数z 2x 3y =-知,当目标函数过点A 时,z 取得最小值,由10330x y x y -+=⎧⎨--=⎩得23x y =⎧⎨=⎩,即A 点坐标为()2,3∴z 的最小值为22335⨯-⨯=-,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.某几何体的三视图如图所示,根据图中数据可知该几何体的体积为( )A. π34 C. 43πD.43π 【答案】D 【解析】由某器物的三视图知,此器物为一个简单组合体,其上部为一个半径为1的球体,下部为一个圆锥,故分别用公式求出两个几何体的体积,相加即可得该器物的体积. 【详解】此简单组合体上部为一个半径为1的球体,其体积为π34,1的圆锥,故其体积为2113π⋅=,综上此简单组合体的体积为43π,故选D .【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是简单几何体的表面积,涉及到球的表面积公式与圆锥的表面积公式.做对此题要熟练掌握三视图的投影规则,即:主视、俯视 长对正;主视、左视高平齐,左视、俯视宽相等9.函数123cos()y x π=+图象上相邻的最高点和最低点之间的距离为( )【答案】A 【解析】 【分析】1cos 23y x π⎛⎫=+ ⎪⎝⎭的周期是2π,最大值为12,最小值为﹣12,即可求出相邻的最高点和最低点之间的距离. 【详解】1cos 23y x π⎛⎫=+ ⎪⎝⎭的周期是2π,最大值为12,最小值为﹣12, ∴相邻的最高点和最低点的横坐标之差为半个周期π,纵坐标之差为11122-=﹣,∴1cos 23y x π⎛⎫=+ ⎪⎝⎭【点睛】本题考查了函数y =A cos (ωx +φ)的图象与性质的应用问题,是基础题.10.已知函数22,1()log ,1a x ax x f x x x ⎧-+-≤=⎨>⎩在R 上单调递增,则实数a 的取值范围是( )A. 13a <≤B. 2a ≥C. 23a ≤≤D.02a <≤或3a ≥【答案】C 【解析】 【分析】由二次函数和对数函数的单调性,结合单调性的定义,解不等式即可得到所求范围. 【详解】当1≤x 时,()22f x x ax =-+-的对称轴为2a x =, 由递增可得,12a≤,解得2a ≥; 当1>x 时,()log a f x x =递增,可得1a >;由x R ∈,()f x 递增,即有12log 10a a -+-≤=,解得3≤a . 综上可得,a 的范围是23a ≤≤,故选C .【点睛】本题考查分段函数的单调性的运用,注意运用定义,同时考查二次函数和对数函数的单调性的运用,属于中档题.11.设P ,Q 分别为22(6)2x y +-=和椭圆22110x y +=上的点,则P ,Q 两点间的最大距离是( )A. B. 246+C. 27+D. 26【答案】D 【解析】 【分析】求出椭圆上的点与圆心的最大距离,加上半径,即可得出P 、Q 两点间的最大距离.【详解】设椭圆上点Q (,)x y ,则221010x y =- ,因为圆22(6)2x y +-=的圆心为0,6(),,所以椭圆上的点与圆心的距离2==≤,所以P、Q两点间的最大距离是=【点睛】本题主要考查了圆与椭圆,两点间的距离转化为定点圆心与椭圆上动点间的距离的最值,属于中档题.12.设n S是数列{}n a的前n项和,且11a=,11n n na S S++=-,则使22110nnnSS+取得最大值时n的值为()A. 2B. 5C. 4D. 3【答案】D【解析】【分析】可将原递推式化为1111n nS S+-=,即1nS⎧⎫⎨⎬⎩⎭为等差数列,故可得{}n S的通项公式,代入表达式结合对勾函数的单调性即可得最后结果.【详解】∵11a=,11n n na S S++=-,∴11n n n nS S S S++-=-,∴1111n nS S+-=,即1nS⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,∴()111nn nS=+-=,∴1nSn=,则使222221111011010110nnnnS nnS n nn n⨯===+++⨯+,令()10f n n n Nn*=+∈,,由对勾函数的性质可得其在(,单调递减,在)+∞单调递增;而()27f=,()193,(4) 6.53f f==,即可得当3n=时,1nn+最小,故取得最大值时n 的值为3,故选D .【点睛】本题主要考查了等差数列的通项公式、函数的单调性在数列中的应用,考查了推理能力与计算能力,属于中档题.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置.13.在各项为正数的等比数列{}n a 中,若2a 与10a 的等比中项为3,则3438l og l og a a +的值为_________. 【答案】1- 【解析】 由题设21013a a =,又因为21048a a a a =,所以343834831log log log ()log 13a a a a +===-,应填答案1-。

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考数学(文)答案

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考数学(文)答案

黑龙江省哈尔滨市第六中学2019届高三第三次模拟考数学(文)一选择题1-5 DBBBB 6-10 CADAC 11-12 DD二填空题13. 1-, 14.π3, 15. (3), 16.2e 三解答题17.(1)1010cos =B 6分 (2)3=S 12分18.19.(1).由散点图可以判断, y c =+适宜作为年销售量y 关于年宣传费x 的回归方程类型. 4分(2).令w =先建立y 关于w 的线性回归方程. 由于()()()81821108.868,56368 6.8100.61ˆˆˆ.6i ii ii w w y y d c y dw w w ==--====-=-⨯=-∑∑,所以y 关于w 的线性回归方程为100.68ˆ6yw =+, 8分 因此y 关于x的回归方程为100.ˆ6d=+(3).①由2知,当49x =时,年销售量y的预报值100.65ˆ76.6y=+=, 12分20.21.(1)x y 32= 3分 Q 在正半轴 )0(32>=x x y 4分(2)易知l 斜率存在,设)1(:+=x k y l (0≠k ) ),(),,(2211y x B y x A ,联立得0)32(2222=+-+k x k x k0,1,2321221>∆=-=+x x k x x 得432<k 6分 )23,123(2k k D - 由||||EB EA =,AB DT ⊥得1123232-=--⋅t k k k化简得t k-=-22321 8分 )129)(1(||2422kk k AB -+= 9分 22222494949)123(||kk t k DE +=+--= 10分 由||3||4AB DE =得832=k , 29=t 12分 22.(1)251+ 4分 (2))2,0(,sin 2||παα∈=OP)2,0(,c o s 1||παα∈+=OQ 6分 ααc o s s i n 21||||++=+OQ OP )21(t a n ),sin(51=++=ϕϕα 当1)sin(=+ϕα时 ||||OQ OP +取最大值为51+。

哈尔滨市第六中学2019届第三次模拟考试

哈尔滨市第六中学2019届第三次模拟考试

哈尔滨市第六中学2011届第三次模拟考试 语 文 考试时间:150分钟 满分150分 第Ⅰ卷 甲 必考题 一、 现代文阅读(9分,每小题3分) 阅读下面的文字,完成1—3题 汉魏六朝的家教特点 自秦始皇统一中国后,中国古代社会就开始它漫长的封建社会发展史。

秦王朝的国运不长,而且秦王朝推行“以法为教”、“以吏为师”的文教政策,所以在家庭教育方面没有什么建树。

但是,随着汉王朝的建立和封建社会的持久安定,加上长期推行“独尊儒术”的文教政策,采取科举取士和以经术取士,注重以三纲五常之教统治人们思想和以孝道之教稳定家庭与社会的伦理道德关系,所以家庭教育得到迅速发展,并且日渐形成了它的特色。

魏晋南北朝时期,除了汉代形成的以经学作为主要内容的教育继续推行之外,由于统治阶级和一些知识分子的提倡,玄学、佛学、史学以及一些自然科学技艺及生产技艺等,也进入了不同阶层的家庭教育范围。

总体说来,魏晋南北朝时期,由于战乱频仍、社会动荡不安,家庭的生产与生活也缺乏稳定性,所以这一时期的家庭教育与汉代相比,相差甚远,尤其是统治阶层受“九品中正”制取士制度的影响,豪门士族的子孙天生就是“上三品”的高官世袭者,而寒门士族的子孙即使学富五车也难以入上品,至于平民百姓的子孙就更不在话下,由此所造成的“读书无用”的观念也渗透到不同阶级和阶层的家庭教育实践中,造成诗书教育日渐衰落的局面。

汉魏六朝的家庭教育,尽管有由盛转衰的趋向,但是由于封建社会制度和家庭制度不断发展和完善,所以家庭教育的阶级性和等级性也日益明显起来。

形成了以皇家宗室为主体的贵族家庭教育,以及在职文官为代表的官宦家庭教育和广大生活在社会底层的平民家庭教育的家教制度。

这三类家庭教育,一直沿续和发展到清末,在客观上对我国封建社会政治、道德、家庭乃至社会秩序等,都产生了深刻的影响。

皇家的教育主要在于培养储君,所以皇太子及诸王子的教育受到特别的重视,乃至成为国家政治的一件大事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年黑龙江省哈尔滨六中中考数学三模试卷一.选择题(每题3分,满分30分)1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.32.下列计算正确的是()A.33=9 B.(a3)4=a12C.(a﹣b)2=a2﹣b2D.a2•a3=a63.下列标志中,是中心对称图形的是()A.B.C.D.4.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小6.解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=17.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60 B.12(x+10)=13x+60C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则的值为()A.B.C.D.210.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二.填空题(满分30分,每小题3分)11.中国的领水面积约为3700000km2,将3700000用科学记数法表示为.12.函数y=+中,自变量x的取值范围是.13.分解因式:3x2﹣6x2y+3xy2=.14.计算:﹣=.15.若关于x的不等式组无解,则a的取值范围是.16.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.17.已知扇形的弧长为2π,圆心角为60°,则它的半径为.18.如图,⊙O的半径为2,切线AB的长为,点P是⊙O上的动点,则AP的长的取值范围是.19.如图,点P为定角∠AOB的平分线上的一个定点,点M,N分别在射线OA,OB上(都不与点O重合),且∠MPN 与∠AOB互补.若∠MPN绕着点P转动,那么以下四个结论:①P M=PN恒成立;②MN的长不变;③OM+ON的值不变;④四边形PMON的面积不变.其中正确的为.(填番号)20.如图,在Rt△ABC中,AC=BC,AB=10,以AB为斜边向上作Rt△ABD,使∠ADB=90°.连接CD,若CD=7,则AD=.三.解答题21.(7分)先化简,再求代数式﹣的值,其中x=2sin45°+tan45°22.(7分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为.(4)△ABC的面积为.23.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.24.(8分)如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.25.(10分)为落实“美丽秦州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成,已知甲队的工作效率是乙队工作效率的倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长2400米,改造总费用不超过195万元,至少安排甲队工作多少天?26.(10分)如图,AB是⊙O的直径,CE是⊙O切线,C是切点,EA交弦BC于点D、交⊙O于点F,连接CF:(1)如图1,求证:∠ECB=∠F+90°;(2)如图2,连接CD,延长BA交CE于点H,当OD⊥BC、HA=HE时,求证:AB=CE;=,求WE的长.(3)如图3,在(2)的条件K在EF上,EH=FK,S△ADO27.(10分)抛物线y=ax2+bx﹣经过点A(﹣1,0)和B(2,0),直线y=x+m经过点A和抛物线的另一个交点为C.(1)求抛物线的解析式.(2)动点P、Q从点A出发,分别沿线段AC和射线AO运动,运动的速度分别是每秒4个单位长度和3个单位长度.连接PQ,设运动时间为t秒,△APQ的面积为s,求s与t的函数关系式.(不写t的取值范围)(3)在(2)的条件下,线段PQ交抛物线于点D,点E在线段AP上,且AE=AQ,连接ED,过点D作DF⊥DE交x轴于点F,当DF=DE时,求点F的坐标.参考答案一.选择题1.解:﹣|﹣3|=﹣3,﹣|﹣3|的倒数是﹣,故选:B.2.解:A、33=27,故原题计算错误;B、(a3)4=a12,故原题计算正确;C、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;D、a2•a3=a5,故原题计算错误;故选:B.3.解:A、不是中心对称的图形,不合题意;B、属于中心对称的图形,符合题意;C、不是中心对称的图形,不合题意;D、不是中心对称的图形,不合题意.故选:B.4.解:A、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;B、左视图为,俯视图为,左视图与俯视图相同,故此选项符合题意;C、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;D、左视图为,俯视图为,左视图与俯视图不同,故此选项不合题意;故选:B.5.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.6.解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.7.解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.8.解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.9.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,故选:C.10.解:A、小丽从家到达公园共用时间20分钟,正确;B、公园离小丽家的距离为2000米,正确;C、小丽在便利店时间为15﹣10=5分钟,错误;D、便利店离小丽家的距离为1000米,正确;故选:C.二.填空题11.解:3700000用科学记数法表示为:3.7×106.故答案为:3.7×106.12.解:由题意得,1﹣x≠0,x+2≥0,解得,x≥﹣2且x≠1,故答案为:x≥﹣2且x≠1.13.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)14.解:=2﹣=.故答案为:.15.解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.16.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.17.解:设半径为r,2,解得:r=6,故答案为:618.解:连接OB,∵AB是⊙O的切线,∴∠OBA=90°,∴OA==4,当点P在线段AO上时,AP最小为2,当点P在线段AO的延长线上时,AP最大为6,∴AP的长的取值范围是2≤AP≤6,故答案为:2≤AP ≤6.19.解:如图作PE ⊥OA 于E ,PF ⊥OB 于F .∵∠PEO =∠PFO =90°, ∴∠EPF +∠AOB =180°, ∵∠MPN +∠AOB =180°, ∴∠EPF =∠MPN , ∴∠EPM =∠FPN ,∵OP 平分∠AOB ,PE ⊥OA 于E ,PF ⊥OB 于F , ∴PE =PF ,在Rt △POE 和Rt △POF 中,,∴Rt △POE ≌Rt △POF (H L ), ∴OE =OF ,在△PEM 和△PFN 中,,∴△PEM ≌△PFN (ASA ), ∴EM =NF ,PM =PN ,故①正确, ∴S △PEM =S △PNF ,∴S 四边形PMON =S 四边形PEOF =定值,故④正确, ∵OM +ON =OE +ME +OF ﹣NF =2OE =定值,故③正确, ∵M ,N 的位置变化,∴MN的长度是变化的,故②错误,故答案为:①③④.20.解:如图,∵∠ACB=∠ADB=90°,∴A,C,B,D四点共圆,又∵AC=BC,∴∠BAC=∠ABC=45°,∴∠ADC=∠ABC=45°,作AE⊥CD于E,∴△AED是等腰直角三角形,设AE=DE=x,则AD=x,∵CD=7,∴CE=7﹣x,∵AB=10,∴AC=AB=5,在Rt△AEC中,AC2=AE2+EC2,∴(5)2=x2+(7﹣x)2解得x=4或3,∴AD=x=8或6,故答案为6或8.三.解答题21.解:原式=﹣×+=﹣+==,当x=2sin45°+tan45°=2×+1=+1时,原式==﹣.22.解:(1)如图所示:(2)如图所示:(3)结合图形可得:B′(2,1);=3×4﹣×2×3﹣×1×2﹣×2×4=12﹣3﹣1﹣4=4.(4)S△ABC23.解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.24.解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△FAH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.25.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米.根据题意得:﹣=4解得:x=60,经检验,x=60是原分式方程的解,且符合题意,∴x=90.答:乙工程队每天能改造道路的长度为60米,甲工程队每天能改造道路的长度为90米.(2)设安排甲队工作m天,则安排乙队工作天.根据题意得:7m+×5≤195.解得:m≥10.答:至少安排甲队工作10天.26.解:(1)证明:如图1,连接OC,∵OB=OC∴∠OCB=∠B∵=∴∠F=∠B∴∠OCB=∠F∵CE是⊙O切线,∴OC⊥CE∴∠OCE=90°∵∠ECB=∠OCB+∠OCE∴∠ECB=∠F+90°;(2)证明:如图2,过点C作CG⊥EF于G,连接BF,则∠CGE=∠CGD=90°∵AB是⊙O的直径,∴∠AFB=90°=∠CGE=∠CGD∵OD⊥BC∴BD=CD在△BDF和△CDG中,∴△BDF≌△CDG(AAS)∴BF=CG∵HA=HE∴∠EAH=∠E∵∠BAF=∠EAH∴∠BAF=∠E在△ABF和△ECG中,∴△ABF≌△ECG(AAS)∴AB=CE;(3)如图3,过点C作CG⊥EF于G,连接AC,OC,OF,BF,由(2)知:AB=CE,∠BAF=∠E∵OA=OC∴∠OCA=∠OAC∵AB是⊙O的直径,CE是⊙O切线,∴∠ACB=∠ECO=90°,即∠ECA+∠OCA=∠ABC+∠OAC∴∠ECA=∠ABC∴△ABD≌△ECA(ASA)∴BD=AC∵BD=CD∴AC=CD∴△ACD为等腰直角三角形∴∠ADC=45°∴∠EDF=45°∴△DEF是等腰直角三角形设FK=a,BF=b,则DF=b,BD=CD=AC=b,AD=AC=2b,BC=2b,∵BD=CD,OA=OB∴OD =AC =b ,∵∠BDO =90°∴OB ===b∴AB =CE =b∵S △ADO =,∴S △BOD =S △COD =,S △BOC =1∴BC •OD =1,即×2b ×b =1∴b =1∴AB =CE =,BF =1,AC =,BC =2∴AF ===3过点C 作CT ⊥AB 于T ,则CT ===,∴OT ===,∵tan ∠COH ==,∴CH •OT =CT •OC ,即: CH =×∴CH =,∵EH =FK =a ,∴CH =CE ﹣EH =﹣a ,∴﹣a =,解得:a =,∴FK =,EH =,∵△AEH ∽△AFO∴=,即AE •OA =AF •EH ,AE ×=3×,∴AE =2,EK =AE +AF ﹣FK =2+3﹣= 过W 作WR ⊥EF 于R ,易证:△BFK ∽△WRK∴===,设KR =m ,WR =2m∵=tan ∠WER =tan ∠BAF ==∴=,即ER =6m ,∴EK =7m =,解得:m =∴ER =6×=,WR =2×=∴WE ===.27.解:(1)∵抛物线经过点A (﹣1,0)和B (2,0),∴ 解得:∴抛物线的解析式为y =(2)设AC 与y 轴交点为G ,过点P 作PH ⊥x 轴于点H , 依题意得:AP =4t ,AQ =3t∵直线AC :y =x +m 经过点A (﹣1,0)∴+m =0,得m =∴直线AC解析式为:y=x+∴G(0,),OG=∴AG=∵GO∥PH∴△AGO∽△APH∴∴PH=∴s=AQ•PH=(3)过点D作MN⊥x轴于点N,过点E作EM⊥MN于点M,作ER⊥x轴于点R∴四边形EMNR是矩形,△AGO∽△AER∴=∵AE=AQ=3t,AG=2,GO=,AO=1∴MN=ER=,AR=∴E(﹣1+,)设点D(d,),F(f,0)∴EM=d﹣(﹣1+)=d+1﹣,MD=,DN=,FN=d﹣f∵DE⊥DF∴∠EMD=∠EDF=∠DNF=90°∴∠MED+∠MDE=∠MDE+∠NDF=90°∴∠NDF =∠MED ∴△NDF ∽△MED∴∴DN =EM ,FN =MD∴①d ﹣f =②∵P (﹣1+2t ,2t ),Q (﹣1+3t ,0)∴直线PQ 解析式为:y =﹣2x +6t ﹣2∵点D 为PQ 与抛物线交点∴③把①③联立方程组解得: (舍去)∴由②得:f ==1∴点F 坐标为(1,0)。

相关文档
最新文档