几何综合训练
初二数学几何综合训练题及答案
初二数学几何综合训练题及答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March初二几何难题训练题1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。
2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;(2)观察图形,是否有三角形与△ACQ全等并证明你的结论4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G1 如果点E。
F在边AB上,那么EG+FH=AC,请证明这个结论2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么4 请你就1,2,3的结论,选择一种情况给予证明5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的长7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。
立体几何综合训练 学生版拔尖
课题:立体几何综合训练个性化教学辅导教案学生姓名年级学科数学上课时间教师姓名课题立体几何综合训练教学过程教师活动1.若三个平面两两相交,有三条交线,则下列命题正确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点2.回顾下直线,平面的平行判断与性质。
3.回顾下直线,平面垂直的性质和判定方法。
4.求线面所成角与二面角的一般步骤是什么?5.若已知条件中,已知三角形中两线段相等,你会想到什么?遇到中点呢?立体几何综合训练例1 如图,直三棱柱111ABC A B C - 中,90BAC ∠=,2AB AC ==,11AA =,点,M N 分别为1A B 和11B C 的中点.(1)证明:MN ∥平面11A ACC ; (2)求三棱锥1A MNC -的体积例2 如图,已知111ABC A B C -是正三棱柱,棱长均为5,E 、F 分别是AC 、11A C 的中点. (1)求证:平面1AB F ∥平面1BEC ; (2)求点A 到平面1BEC 的距离.例3 如图,在直角梯形SABC 中,∠B=∠C=π2,D 为边SC 上的点,且AD ⊥SC ,现将△SAD 沿AD 折起到达PAD 的位置(折起后点S 记为P ),并使得PA ⊥AB . (1)求证:PD ⊥平面ABCD ;(2)已知PD=AD ,PD +AD +DC=6,G 是AD 的中点,当线段PB 取得最小值时,则在平面PBC 上是否存在点F ,使得FG ⊥平面PBC ?若存在,确定点F 的位置,若不存在,请说明理由.立体几何综合训练教学过程: 突破1: 1.线面平行:①定义:直线与平面无公共点.②判定定理:(线线平行线面平行)③性质定理:(线面平行线线平行)④判定或证明线面平行的依据:(i )定义法(反证):(用于判断);////a b a a b ααα⎫⎪⊄⇒⎬⎪⊂⎭⇒////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭⇒//l l αα=∅⇒(ii )判定定理:“线线平行面面平行”(用于证明);(iii )“面面平行线面平行”(用于证明); (4)(用于判断);3.面面平行: ①定义:;②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述: 【如下图①】图① 图②推论:一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行 符号表述:【如上图②】判定2:垂直于同一条直线的两个平面互相平行. 符号表述:.【如右图】③判定与证明面面平行的依据:(1)定义法;(2)判定定理及推论(常用)(3)判定2 ④面面平行的性质: (1)(面面平行线面平行); (2);(面面平行线线平行)(3)夹在两个平行平面间的平行线段相等。
二次函数与几何图形综合训练题精选(含19题)
二次函数与几何图形综合训练题精选(含19题)1.如图1,抛物线y=ax2+bx﹣3的图象与x轴交于A(﹣4,0),B(3,0)两点,动点D 从点A出发,以每秒2个单位长度的速度沿AC方向运动,以AD为边作矩形ADEF(点E在x轴上),设运动的时间为t秒.(1)求抛物线y=ax2+bx﹣3的表达式;(2)过点D作DN⊥x轴于点N,交抛物线于点M,当t=时,求点M的坐标;(3)如图2,动点P同时从点B出发,以每秒3个单位长度的速度沿BA方向运动,以BP为边作等腰直角三角形BPQ(∠BPQ=90°),EF与PQ交于点G.给出如下定义:在四边形ABCD中,AB=AD,CB=CD且AB≠BC,我们把这种两组邻边分别相等的四边形叫做“筝形”,当矩形ADEF和等腰三角形BPQ重叠的四边形是“筝形”时,求“筝形”的面积.2.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.3.如图1,抛物线C1:y=ax2+bx+c经过A(﹣1,0),B(5,0),C(0,)三点,直线DF为该抛物线的对称轴,连接线段AC,∠CAB的平分线AE交抛物线C1于点E.(1)求抛物线C1的表达式;(2)如图1,作点C关于x轴的对称点C′,将原抛物线沿对称轴向下平移经过点C′得到抛物线C2,在射线AE上取点Q,连接CQ,将射线QC绕点Q逆时针旋转120°交抛物线C2于点P,当△CAQ为等腰三角形时,求点P的横坐标;(3)如图2,将抛物线C1沿一定方向平移,使顶点D′落在射线AE上,平移后的抛物线C3与线段CB相交于点M、N,线段CB与DF相交于点Q,当点Q恰好为线段MN 的中点时,求抛物线C3的顶点坐标.4.如图抛物线y=﹣x2与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C.C,D两点关于抛物线对称轴对称,连接BD交y轴于点E,抛物线对称轴交x轴于点F.(1)点P为线段BD上方抛物线上的一点,连接PD,PE.点M是y轴上一点,过点M 作MN⊥y轴交抛物线对称轴于点N.当△PDE面积最大时,求PM+MN+NF的最小值;(2)如图2,在(1)中PM+MN+NF取得最小值时,将△PME绕点P顺时针旋转120°后得到△PM′E′,点G是MN的中点,连接M′G交抛物线的对称轴于点H,过点H作直线l∥PM,点R是直线l上一点,在平面直角坐标系中是否存在一点S,使以点M′,点G,点R,点S为顶点的四边形是矩形?若存在,直接写出点S的坐标,若不存在,请说明理由.5.在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(1,0),B(3,0),与y轴交于C(0,3),抛物线顶点为D点.(1)求此抛物线解析式;(2)如图1,点P为抛物线上的一个动点,且在对称轴右侧,若△ADP面积为3,求点P的坐标;(3)在(2)的条件下,P A交对称轴于点E,如图2,过E点的任一条直线与抛物线交于M,N两点,直线MD交直线y=﹣3于点F,连接NF,求证:NF∥y轴.6.如图,抛物线y=ax2﹣2x+c与x轴相交于A(﹣1,0),B(3,0)两点.(1)求抛物线的函数表达式;(2)点C在抛物线的对称轴上,且位于x轴的上方,将△ABC沿直线AC翻折得到△AB'C,点B'恰好落在抛物线的对称轴上.若点G为直线AC下方抛物线上的一点,求当△AB'G 面积最大时点G的横坐标;(3)点P是抛物线上位于对称轴右侧的一点,在抛物线的对称轴上存在一点Q使得△BPQ为等边三角形,请直接写出此时直线AP的函数表达式.7.已知抛物线y=ax2+bx+c交x轴于点A(﹣1,0),B(5,0),交y轴于点C(0,5),点D是该抛物线上一点,且点D的横坐标为4,连BD,点P是线段AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN,设点P的坐标为(t,0).(1)求抛物线解析式;(2)若点Q在线段AD上时,延长PQ与抛物线交于点G,求t为何值时,线段QG最长;(3)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求P点坐标,若不存在,请说明理由;(4)设正方形PQMN与△ABD重叠部分面积为s,求s与t的函数关系式.8.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点的坐标分别为A(0,2),B(﹣1,0),点C为线段AB的中点,现将线段BA绕点B按逆时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)、经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣1.①求点D的坐标及该抛物线的解析式;②连接CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(﹣1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.9.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.10.已知抛物线y=ax2+bx(a≠0)的顶点在直线上,且过点A(4,0).(1)求这个抛物线的解析式;(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OP AB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;(3)设点C(1,﹣3),请在抛物线的对称轴确定一点D,使|AD﹣CD|的值最大,请直接写出点D的坐标.11.已知抛物线过点(8,0),(1)求m的值;(2)如图a,在抛物线内作矩形ABCD,使点C、D落在抛物线上,点A、B落在x轴上,设矩形ABCD的周长为L,求L的最大值;(3)如图b,抛物线的顶点为E,对称轴与直线y=﹣x+1交于点F.将直线EF向右平移n个单位后(n>0),交直线y=﹣x+1于点M,交抛物线于点N,若以E、F、M、N 为顶点的四边形是平行四边形,求n的值.12.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、B(3,0),顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是线段BC上方抛物线上的一个动点,设△BEC的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.13.抛物线y=ax2+bx﹣3(a≠0)的图象与x轴交于点B(﹣3,0),C(1,0),与y轴交于点A.(1)求抛物线的表达式和顶点坐标;(2)抛物线上是否存在一点D(不与点A,B,C重合),使得直线DA将四边形DBAC 的面积分为3:5两部分,若存在,求出点D的坐标;若不存在,请说明理由;(3)点P是抛物线对称轴上一点,在抛物线上是否存在一点Q,使以点P,Q,A,B为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图1,在平面直角坐标系中,抛物线y=﹣x2﹣x﹣2与x轴交于A,B两点(点A在点B的左侧),交y轴于点C.(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点,过点P作PD⊥AC,垂足为D,当线段PD 的长度最大时,点Q从点P出发,先以每秒1个单位的速度沿适当的路径运动到y轴上的点M处,再沿MC以每秒3个单位的速度运动到点C停止,当点Q在整个运动中所用时间t最少时,求点M的坐标;(3)如图2,将△BOC沿直线BC平移,平移后B,O,C三点的对应点分别是B′,O′,C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,请直接写出所有符合条件的点S的坐标.15.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.16.如图,抛物线y=﹣x2+x+4与x轴和y轴的正半轴分别交于点A和B.(1)求点A,点B的坐标及AB的长;(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.①求n随m变化的函数解析式;②若点E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?17.如图,抛物线y=ax2+bx+c经过O(0,0),A(﹣1,﹣),B(﹣3,)三个点.(1)求抛物线解析式;(2)若点P(﹣4,p),Q(t,q)为该抛物线上的两点,且q<p.求t的取值范围.(3)在线段AB上是否存在一点C(不与点A,点B重合),使点A,点B到直线OC的距离之和最大?若存在,求∠BOC的度数,并直接写出点C的坐标;若不存在,请说明理由.18.在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.19.如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c (a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)点P(2,﹣3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.第11页(共11页)。
2024中考备考重难点01 二次函数与几何的综合训练(9大题型+限时分层检测)
重难点01 二次函数与几何图形的综合练习中考数学中《二次函数与几何图形的综合练习》部分主要考向分为九类:一、二次函数与几何变换的综合(选择性考,10~12分)二、二次函数与直角三角形的综合(选择性考,10~12分)三、二次函数与等腰三角形的综合(选择性考,10~12分)四、二次函数与相似三角形的综合(选择性考,10~12分)五、二次函数与四边形的综合(选择性考,10~12分)六、二次函数与最值的综合(选择性考,10~12分)七、二次函数与新定义的综合(选择性考,10~12分)八、二次函数与圆的综合(选择性考,10~12分)九、二次函数与角的综合(选择性考,10~12分)因为二次函数是大多数中考压轴题的几何背景,所以,训练二次函数与其他几何图形的综合问题非常必要,只要自己见过一定量的题型,才能再遇到对应类型的压轴题时不至于新生畏惧。
所以,本专题就常见的中考数学中二次函数的几种结合类型的压轴题进行训练,希望大家在训练中摸索方法,掌握技能,练就心态!考向一:二次函数与几何变换的综合1.(2023•武汉)抛物线交x轴于A,B两点(A在B的左边),交y轴于点C.(1)直接写出A,B,C三点的坐标;(2)如图(1),作直线x=t(0<t<4),分别交x轴,线段BC,抛物线C1于D,E,F三点,连接CF,若△BDE与△CEF相似,求t的值;(3)如图(2),将抛物线C1平移得到抛物线C2,其顶点为原点.直线y=2x与抛物线交于O,G两点,过OG的中点H作直线MN(异于直线OG)交抛物线C2于M,N两点,直线MO与直线GN交于点P.问点P是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.2.在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D,如图1,当的值最大时,求点P 的坐标及的最大值;(3)过点P作x轴的垂线交直线AC于点M,连结PC,将△PCM沿直线PC翻折,当点M的对应点M′恰好落在y轴上时,请直接写出此时点M的坐标.考向二:二次函数与直角三角形的综合1.(2023•连云港)如图,在平面直角坐标系xOy中,抛物线L1:y=x2﹣2x﹣3的顶点为P.直线l过点M (0,m)(m≥﹣3),且平行于x轴,与抛物线L1交于A、B两点(B在A的右侧).将抛物线L1沿直线l翻折得到抛物线L2,抛物线L2交y轴于点C,顶点为D.(1)当m=1时,求点D的坐标;(2)连接BC、CD、DB,若△BCD为直角三角形,求此时L2所对应的函数表达式;(3)在(2)的条件下,若△BCD的面积为3,E、F两点分别在边BC、CD上运动,且EF=CD,以EF为一边作正方形EFGH,连接CG,写出CG长度的最小值,并简要说明理由.2.(2023•内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于B(4,0),C(﹣2,0)两点,与y轴交于点A(0,﹣2).(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点K,过点P作y轴的平行线交x轴于点D,求的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△MAB是以AB为一条直角边的直角三角形;若存在,请求出点M的坐标,若不存在,请说明理由.考向三:二次函数与等腰三角形的综合1.(2023•青海)如图,二次函数y=﹣x2+bx+c的图象与x轴相交于点A和点C(1,0),交y轴于点B(0,3).(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P,对称轴与x轴交于点Q,求四边形AOBP的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点M,使得△AMB是以AB为底边的等腰三角形?若存在,请求出满足条件的点M的坐标;若不存在,请说明理由(请在图2中探索).2.(2023•娄底)如图,抛物线y=x2+bx+c过点A(﹣1,0)、点B(5,0),交y轴于点C.(1)求b,c的值.(2)点P(x0,y0)(0<x0<5)是抛物线上的动点.①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考向四:二次函数与相似三角形的综合1.(2023•乐至县)如图,直线与x轴、y轴分别交于A、B两点,抛物线经过A、B两点.(1)求抛物线的表达式;(2)点D是抛物线在第二象限内的点,过点D作x轴的平行线与直线AB交于点C,求DC的长的最大值;(3)点Q是线段AO上的动点,点P是抛物线在第一象限内的动点,连结PQ交y轴于点N.是否存在点P,使△ABQ与△BQN相似,若存在,求出点P的坐标;若不存在,说明理由.2.(2023•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0),B(2,0)和C (0,2),连接BC,点P(m,n)(m>0)为抛物线上一动点,过点P作PN⊥x轴交直线BC于点M,交x轴于点N.(1)直接写出抛物线和直线BC的解析式;(2)如图2,连接OM,当△OCM为等腰三角形时,求m的值;(3)当P点在运动过程中,在y轴上是否存在点Q,使得以O,P,Q为顶点的三角形与以B,C,N为顶点的三角形相似(其中点P与点C相对应),若存在,直接写出点P和点Q的坐标;若不存在,请说明理由.考向五:二次函数与四边形的综合1.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①y=x2﹣1;②y=x2﹣x,其中,为函数y=x﹣1的轴点函数.(填序号)【尝试应用】(2)函数y=x+c(c为常数,c>0)的图象与x轴交于点A,其轴点函数y=ax2+bx+c与x轴的另一交点为点B.若OB=OA,求b的值.【拓展延伸】(3)如图,函数y=x+t(t为常数,t>0)的图象与x轴、y轴分别交于M,C两点,在x轴的正半轴上取一点N,使得ON=OC.以线段MN的长度为长、线段MO的长度为宽,在x轴的上方作矩形MNDE.若函数y=x+t(t为常数,t>0)的轴点函数y=mx2+nx+t的顶点P在矩形MNDE的边上,求n的值.3.(2023•邵阳)如图,在平面直角坐标系中,抛物线y=ax2+x+c经过点A(﹣2,0)和点B(4,0),且与直线l:y=﹣x﹣1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与抛物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.考向六:二次函数与最值的综合1.(2023•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c经过点A(0,1),点P,Q在此抛物线上,其横坐标分别为m,2m(m>0),连接AP,AQ.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.(3)当∠P AQ的边与x轴平行时,求点P与点Q的纵坐标的差.(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为h1,在点A与点Q之间部分(包括点A和点Q)的最高点与最低点的纵坐标的差为h2,当h2﹣h1=m时,直接写出m的值.2.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.考向七:二次函数与新定义的综合1.(2023•南通)定义:平面直角坐标系xOy中,点P(a,b),点Q(c,d),若c=ka,d=﹣kb,其中k 为常数,且k≠0,则称点Q是点P的“k级变换点”.例如,点(﹣4,6)是点(2,3)的“﹣2级变换点”.(1)函数y=﹣的图象上是否存在点(1,2)的“k级变换点”?若存在,求出k的值;若不存在,说明理由;(2)动点A(t,t﹣2)与其“k级变换点”B分别在直线l1,l2上,在l1,l2上分别取点(m2,y1),(m2,y2).若k≤﹣2,求证:y1﹣y2≥2;(3)关于x的二次函数y=nx2﹣4nx﹣5n(x≥0)的图象上恰有两个点,这两个点的“1级变换点”都在直线y=﹣x+5上,求n的取值范围.2.(2023•宿迁)规定:若函数y1的图象与函数y2的图象有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①y=x+1;②;③y=﹣x2+1,其中与二次函数y=2x2﹣4x﹣3互为“兄弟函数”的是(填写序号);(2)若函数与互为“兄弟函数”,x=1是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是、;(3)若函数y1=|x﹣m|(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为x1、x2、x3,且x1<x2<x3,求的取值范围.考向八:二次函数与圆的综合1.(2023•湘西州)如图(1),二次函数y=ax2﹣5x+c的图象与x轴交于A(﹣4,0),B(b,0)两点,与y轴交于点C(0,﹣4).(1)求二次函数的解析式和b的值.(2)在二次函数位于x轴上方的图象上是否存在点M,使?若存在,请求出点M的坐标;若不存在,请说明理由.(3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E′是圆在x轴上方圆弧上的动点(点E′不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E′,线段AE的对应线段为A′E′,连接E′C,A′A,A′A的延长线交直线E′C于点N,求的值.2.(2023•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,c=﹣1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,点D在⊙O上且在第二象限内,点E在x轴正半轴上,连接DE,且线段DE交y轴正半轴于点F,.①求证:.②当点E在线段OB上,且BE=1.⊙O的半径长为线段OA的长度的2倍,若4ac=﹣a2﹣b2,求2a+b的值.考向九:二次函数与角的综合1.(2023•无锡)已知二次函数y=(x2+bx+c)的图象与y轴交于点A,且经过点B(4,)和点C (﹣1,).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=(x2+bx+c)图象上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.2.(2023•营口)如图,抛物线y=ax2+bx﹣1(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C,抛物线的对称轴交x轴于点D(3,0),过点B作直线l⊥x轴,过点D作DE⊥CD,交直线l于点E.(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当=时,求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.(建议用时:150分钟)1.(2023•宜兴市一模)如图,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,则∠ACB=°;M是二次函数在第四象限内图象上一点,作MQ∥y轴交BC 于Q,若△NQM是以NQ为腰的等腰三角形,则线段NC的长为.2.(2023•越秀区一模)如图,抛物线与H:交于点B(1,﹣2),且分别与y轴交于点D,E.过点B作x轴的平行线,交抛物线于点A,C.则以下结论:①无论x取何值,y2总是负数;②抛物线H可由抛物线G向右平移3个单位,再向下平移3个单位得到;③当﹣3<x<1时,随着x的增大,y1﹣y2的值先增大后减小;④四边形AECD为正方形.其中正确的是.(填写正确的序号)3.(2023•晋州市模拟)如图所示,已知在平面直角坐标系xOy中,点A(15,8),点M是横轴正半轴上的一个动点,⊙P经过原点O,且与AM相切于点M.(1)当AM⊥x轴时,点P的坐标为;(2)若点P在第一象限,设点P的坐标为(x,y),则y关于x的函数关系式为(不用写出自变量x的取值范围);(3)当射线OP与直线AM相交时,点M的横坐标t的取值范围是.4.(2024•道里区模拟)已知:在平面直角坐标系中,点O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B、C两点,与x轴的另一交点为点A.(1)如图1,求抛物线的解析式;(2)如图2,点D为直线BC上方抛物线上一动点,连接AC、CD,设直线BC交线段AD于点E,△CDE的面积为S1,△ACE的面积为S2当最大值时,求点D的坐标;(3)如图3,在(2)的条件下,连接CD、BD,将△BCD沿BC翻折,得到△BCF(点D和点F为对应点),直线BF交y轴于点P,点S为BC中点,连接PS,过点S作SP的垂线交x轴于点R,在对称轴TH上有一点Q,使得△PQB是以PB为直角边的直角三角形,求直线RQ的解析式.5.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.6.(2023•东莞市一模)抛物线y=ax2+bx﹣2与x轴交于A、B两点(点A在点B的左侧),且A(﹣1,0),B(4,0),与y轴交于点C.连结BC,以BC为边,点O为中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线交抛物线于点Q,交BD于点M.(1)求该抛物线对应的函数表达式;(2)x轴上是否存在一点P,使△PBC为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由;(3)当点P在线段OB上运动时,试探究:当m为何值时,四边形CQMD是平行四边形?请说明理由.7.(2024•碑林区校级二模)二次函数y=ax2+bx+4(a≠0)的图象与x轴交于A(﹣4,0),B(1,0)两点,点M为y轴负半轴上一点,且OM=2.(1)求二次函数表达式;(2)点E是线段AB(包含A,B)上的动点,过点E作x轴的垂线,交二次函数图象于点P,交直线AM于点N,若以点P,N,A为顶点的三角形与△AOM相似,若存在,请求出点P的坐标;若不存在,请说明理由.8.(2024•镇海区校级模拟)若二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2的图象关于点P(1,0)成中心对称图形,我们称y1与y2互为“中心对称”函数.(1)求二次函数y=x2+6x+3的“中心对称”函数的解析式;(2)若二次函数y=ax2+2ax+c(a>0)的顶点在它的“中心对称”函数图象上,且当时,y最大值为2,求此二次函数解析式;(3)二次函数y1=ax2+bx+c(a<0)的图象顶点为M,与x轴负半轴的交点为A、B,它的“中心对称”函数y2的顶点为N,与x轴的交点为C、D,从左往右依次是A、B、C、D,若AB=2BP,且四边形AMDN 为矩形,求b2﹣4ac的值.9.(2024•雁塔区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴分别交于A,B两点,点A的坐标是(﹣4,0),点B的坐标是(1,0),与y轴交于点C,P是抛物线上一动点,且位于第二象限,过点P作PD⊥x轴,垂足为D,线段PD与直线AC相交于点E.(1)求该抛物线的解析式;(2)连接OP,是否存在点P,使得∠OPD=2∠CAO?若存在,求出点P的横坐标;若不存在,请说明理由.10.(2024•长沙模拟)若两条抛物线相交于A(x1,y1),B(x2,y2)两点,并满足y1﹣kx1=y2﹣kx2,其中k为常数,我们不妨把k叫做这两条抛物线的“依赖系数”.(1)若两条抛物线相交于A(﹣2,2),B(﹣4,4)两点,求这两条抛物线的“依赖系数”;(2)若抛物线1:y=2ax2+x+m与抛物线2:y=ax2﹣x﹣n相交于A(x1,y1),B(x2,y2)两点,其中a>0,求抛物线1与抛物线2的“依赖系数”;(3)如图,在(2)的条件下,设抛物线1和2分别与y轴交于C,D两点,AB所在的直线与y轴交于E点,若点A在x轴上,m≠0,DA=DC,抛物线2与x轴的另一个交点为点F,以D为圆心,CD为半径画圆,连接EF,与圆相交于G点,求tan∠ECG.11.(2023•嘉善县一模)“距离”是数学研究的重要对象,如我们所熟悉的两点间的距离.现在我们定义一种新的距离:已知P(a,b),Q(c,d)是平面直角坐标系内的两点,我们将|a﹣c|+|b﹣d|称作P,Q间的“L型距离”,记作L(P,Q),即L(P,Q)=|a﹣c|+|b﹣d|.已知二次函数y1的图象经过平面直角坐标系内的A,B,C三点,其中A,B两点的坐标为A(﹣1,0),B(0,3),点C在直线x=2上运动,且满足L(B,C)≤BC.(1)求L(A,B);(2)求抛物线y1的表达式;(3)已知y2=2tx+1是该坐标系内的一个一次函数.①若D,E是y2=2tx+1图象上的两个动点,且DE=5,求△CDE面积的最大值;②当t≤x≤t+3时,若函数y=y1+y2的最大值与最小值之和为8,求实数t的值.12.(2023•任城区二模)如图,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,且OB=OC.(1)求抛物线的解析式;(2)如图,若点P是线段BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,当△PCM和△ABC相似时,求此时点P的坐标;(3)若点P是直线BC(不与B,C重合)上一动点,过点P作x轴的垂线交抛物线于M点,连接CM,将△PCM沿CM对折,如果点P的对应点N恰好落在y轴上,求此时点P的坐标;13.(2023•姑苏区校级二模)探究阅读题:【阅读】在大自然里,有很多数学的奥秘,一片美丽的心形叶片,一棵生长的幼苗都可以看作把一条抛物线的一部分沿直线折叠而形成.(如图1和图2)【探究任务1】确定心形叶片的形状如图3建立平面直角坐标系,心形叶片下部轮廓线可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分,且过原点,求抛物线的解析式和顶点D的坐标.【探究任务2】研究心形叶片的尺寸如图3,心形叶片的对称轴直线y=x+2与坐标轴交于A、B两点,直线x=6分别交抛物线和直线AB于点E、F点,点E、E′是叶片上的一对对称点,EE′交直线AB与点G,求叶片此处的宽度EE′.【探究任务3】研究幼苗叶片的生长小李同学在观察幼苗生长的过程中,发现幼苗叶片下方轮廓线都可以看作是二次函数y=mx2﹣4mx﹣20m+5图象的一部分.如图4,幼苗叶片下方轮廓线正好对应探究任务1中的二次函数,已知直线PD与水平线的夹角为45°,三天后,点D长到与点P同一水平位置的点D′时,叶尖Q落在射线OP上,如图5所示,求此时幼苗叶子的长度和最大宽度.。
【小升初培优专题】 立体几何综合训练
立体几何综合训练1. 一个长方体仓库从里面量约长10米,宽5米,高6米,如果放入棱长是2米的正方体木箱,至多可以放进多少个?【解答】分别从长、宽、高三个方向进行考虑:10÷2=5(个)长这个方向可以放5个;5÷2=2(个)……1(米),宽这个方向可以放2个;6÷2=3(个),高这个方向可以放3个,5×2×3=30(个),所以至多可以放30个。
2. 如图,用棱长是1厘米的立方体拼成如图所示的立体图形,这个立体图形的表面积是多少平方厘米?上、下底面:3×5×2=30(平方厘米)左、右侧面:6×2=12(平方厘米)前、后侧面:8×2=16(平方厘米)立体图形的表面积:30+12+16=58(平方厘米)3. 如图(单位:厘米),要将一个圆锥形的零件用一个长方体硬纸板的盒子包装起来,至少需要多少平方厘米的硬纸板?(接头处忽略不计)。
5×2=10(厘米),长=宽=高10(厘米)硬纸板面积=10×10×6=600(平方厘米)立体几何综合训练4. 如图,甲圆柱体容器是空的,乙长方体容器中水深6.28厘米,将容器乙中的水全部倒入甲容器后水深8厘米,则甲容器的底面半径是多少厘米?【解答】水从乙容器倒入甲容器体积不变,找准这一点。
水的体积=10×10×6.28=628(立方厘米)S甲=V÷h=628÷8=78.5(平方厘米)因为S甲=78.5=πr²,那么r²=78.5÷3.14=25=5²,则r=5(厘米)5. 用铁皮做一个如图所示的水管(单位:厘米),需用铁皮多少平方厘米?铁皮围成的物体的体积是多少?如图,把两根一样的水管拼接成一根圆柱形水管,r=18÷2=9(厘米),h=45+55=100(厘米)S铁皮=2mrh÷2=2×3.14×9×100÷2=2826(平方厘米)V=πr²h÷2=3.14×9²×100÷2=12717(立方厘米)立体几何综合训练 6. 如图是一个棱长为6厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个棱长1厘米的正方体,做成一种零件,问它的表面积是多少?体积是多少?原表面积=6×6×6=216(平方厘米)新增表面积=1×1×4×6=24(平方厘米) 零件的表面积=216+24=240(平方厘米) 原体积=6×6×6=216(立方厘米)减少的体积=1×1×1×6=6(立方厘米) 零件的体积=216-6=210(立方厘米)答:它的表面积是240平方厘米,体积是 210立方厘米。
七年级数学上册第一章《基本的几何图形》综合训练(青岛版含答案)
第一章基本的几何图形◆阶段性内容回顾一、立体图形与平面图形1.几何图形包括_________图形和________图形.2.长方体、正方体、球、圆柱、圆锥等都是________,此外,棱柱和棱锥也是常见的_________.3.在日常生活中我们会遇到很多________图形,长方形、正方形、三角形、•圆等都是我们十分熟悉的_________.4.对于一些立体图形的问题,常把它们转化成_________图形来研究和处理.5.许多立体图形是由平面图形围成的,将它们适当地展开,•就可以得到它们的________展开图.二、几何图形6.几何图形都是由点、线、面、体组成的,________•是构成几何图形的基本元素,点、线、面、体经过运动变化,就能组成各种各样的________,形成多姿多彩的图形世界.7.几何体简称________,我们学过的______、________、________、•______、________、________、__________都是几何体.包围着体的是_________,•面有________和_________两种,面与面相交的地方形成________,•线和线相交的地方是___________.8.用运动的观点来理解点、线、面、体,点动成_______,_______•动成______,_________动成体.三、直线、射线、线段9.经过两点有______条直线,并且只有_________.10.线段大小的比较可以用________测量出它们的长度来比较,也可以把一条线段________另一条线段上来比较.11.线段上的一点把线段分成_________的线段,这点叫做线段的中点.12.两点的所有连线中,________最短,即为_______,_______最短.13.连接两点间的_______,叫做两点间的距离.◆阶段性巩固训练1.一个物体从不同的方向看,平面图形如图所示,画出该物体的立体图形.2.如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?请画出来.3.如图所示的立方体,如果把它展开,可以是下列图形中的().4.一个长方体被一刀切去一部分,剩下的部分可能是().A.三棱柱 B.四棱柱 C.五棱柱 D.以上都有可能5.如图所示,是三棱柱的表面展开示意图,则AB=______,BC=_______,CD=•______,BD=_______,AE=______.6.在图(1)中的几何体是由图(2)中的()绕线旋转一周得到的.7.如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”.乙说:“点A在直线CD外”.丙说:“D在CB的反向延长线上.”丁说:“A,B,C,D两两连结,有5条线段.”戊说:“射线AD与射线CD不相交”.其中说明正确的有().A.3人 B.4人 C.5人 D.2人8.已知线段AB=16厘米,C是线段AB上的一点,且AC=10厘米,D为AC的中点,E•是BC 的中点,求线段DE的长.9.平面上有A,B,C,D四个村庄,为解决当地缺水问题,•政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图4-50所示),你能说明理由吗?10.如图所示,B,C两点把线段AD分成4:5:7三部分,E是线段AD•的中点,•CD=14厘米,求:(1)EC的长;(2)AB:BE的值.11.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.•小刚说:“这还不简单,老师上课时不是讲过了吗?过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标的某一位置看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点又为什么呢?”聪明的你能回答小强的疑问吗?12.如图所示,有一只正方体盒子,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?13.根据题意,完成下列填空:L1与L2是同一平面内的两直线,它们有一个交点,如果在这个平面内,•再画第三条直线L3,那么这4条直线最多可以有_______个交点;•如果在这个平面内再画第四条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想:在同一平面内,6条直线最多有_______个交点;n(n为大于1的整数)条直线,最多可以有_______个交点(用含n 的代数式表示).参考答案阶段性内容回顾1.立体平面 2.立体图形立体图形3.平面平面图形 4.平面 5.平面6.点几何图形7.体长方体正方体圆柱圆锥球棱柱棱锥面平的曲的 •线点8.线线面面 9.一一条10.刻度尺移到 11.相等12.线段两点之间线段 13.线段的长度阶段性巩固训练1.是一个尖朝上的圆锥,如答图36所示.(点拨:从上面看到的是圆,可想到这是一个圆锥和圆柱,再由左面和正面看到的都是三角形,可想到这是一个圆锥,并且是一个尖朝上的圆锥)2.如图所示:(1)正视图(2)左视图(3)俯视图3.D4.D (点拨:三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置)5.4 5 6 4 8(点拨:要弄清楚展开之前哪两条棱是相对的)6.D (点拨:凡是绕轴旋转得到的图形,只能是球、圆柱、圆锥或它们的一部分或它们组合而成的图形)7.A8.解:因为D是AC的中点,而E是BC的中点,因此有DC=12AC,CE=12BC,而DE=DC+CE,AC+BC=AB,即DE=DC+CE=12AC+12BC=12(AC+BC)=12AB=12×16=8(厘米).9.解:如答图所示,连结AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D四点的距离之和最小.10.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米.∵CD=7x=14,∴x=2.(2)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=A B+BC+CD=8+10+14=32(厘米).故EC=12AD-CD=12×32-14=2(厘米).(2)∵BC=10厘米,EC=2厘米,∴BE=BC-EC=10-2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.11.解:若将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线,应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即达到看到哪打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.12.如图所示,沿线段AB爬行,根据两点之间,线段最短.13.3 6 15(1)2n n(点拨:这类题往往从小到大,从少到多依次找规律)。
度强化训练人教版(五四制)六年级数学下册第九章几何图形初步综合训练练习题(含详解)
六年级数学下册第九章几何图形初步综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在三角形ABC 中,8AB =,9AC =,10BC =,0P 为BC 边上的一点,在边AC 上取点1P ,使得10CP CP =,在边AB 上取点2P ,使得21AP AP =.在边BC 上取点3P ,使得32BP BP =,若031P P =,则0CP 的长度为( )A .4B .6C .5或6D .4或52、下列立体图形如图放置,其中同一几何体的左视图与主视图不同的是( )A .B .C .D .3、如果A 、B 、C 三点在同一直线上,线段4cm AB =,2cm BC =,那么A 、C 两点之间的距离为( )A.2cm B.6cm C.2cm或6cm D.无法确定4、已知∠AOB=100°,过点O作射线OC、OM,使∠AOC=20°,OM是∠BOC的平分线,则∠BOM的度数为()A.60°B.60°或40°C.120°或80°D.40°5、如图,下列说法正确的是()A.线段AB与线段BA是不同的两条线段B.射线BC与射线BA是同一条射线C.射线AB与射线AC是两条不同的射线D.直线AB与直线BC是同一条直线6、如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.平行四边形C.椭圆D.长方形7、下列标注的图形与名称不相符的是()A.B.C.D.8、下列形状的纸片中,不能折叠成正方体的是()A.B.C.D.9、如图几何体中,是圆柱体的为()A.B.C.D.10、将一副三角板按如图所示拼接,若∠ADE、∠CBE均小于平角,则∠ADE+∠CBE等于()A.300°B.285°C.270°D.265°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,两根木条的长度分别为7cm和12cm.在它们的中点处各打一个小孔M、N(木条的厚度,宽度以及小孔大小均忽略不计).将这两根木条的一端重合并放置在同一条直线上,则两小孔间的距离MN=______cm.2、某正方体的平面展开图如图所示,已知该正方体相对两个面上的数互为相反数,则a b c ++=__________.3、要在墙上订牢一根木条,至少需要2颗钉子,其理由是______.4、已知2918α'∠=︒,则α∠的补角为______.5、如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x ﹣y =_____.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)﹣12021﹣[(﹣2)2÷16×6+4]; (2)132°25′﹣55°43′20″.2、如图,ON 平分AOC ∠,OM 平分BOC ∠.(1)计算求值:若90AOB ∠=︒,60AOC ∠=︒,求MON ∠的度数;(2)拓展探究:若90AOB ∠=︒,则MON ∠=______°;(3)问题解决:若AOB x ∠=︒,MON y ∠=︒,①用含x 的代数式表示y =______;②如果156AOB MON ∠+∠=︒,试求MON ∠的度数.3、已知AOB ∠是一个直角,作射线OC ,再分别作AOC ∠和BOC ∠的平分线OD 、OE .(1)如图①,当70BOC ∠=︒时,求DOE ∠的度数;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,DOE ∠的大小是否发生变化,说明理由;(3)当射线OC 在AOB ∠外绕O 点旋转且AOC ∠为钝角时,画出图形,直接写出相应的DOE ∠的度数(不必写出过程).4、如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分.点A ,B ,C 对应的数分别是a ,b ,c ,已知bc <0.(1)请直接写出原点在第几部分.________;(2)若A ,C 两点间的距离是5,B ,C 两点间的距离是3,b =-1.求a 的值;(3)若点C 表示数3,数轴上一点D 表示的数为d ,当点C 、原点、点D 这三点中其中一点是另外两点的中点时,直接写出d 的值.5、如图,OA OB ⊥,60COD ∠=︒.(1)若OC 平分∠AOD ,求∠BOC 的度数.(2)若37BOC AOD ∠=∠,求∠AOD 的度数.-参考答案-一、单选题1、C【解析】【分析】共有两种情况①如图1,0P 在3P 的右侧,设0CP 的长为x ,根据线段的数量关系求解即可;②如图2,0P 在3P 的左侧,设0CP 的长为x ,根据线段的数量关系求解即可.【详解】解:①如图1,0P 在3P 的右侧,设0CP 的长为x则由题意知,01CP CP x ==,129APx AP =-=,23101BP BP x ==-- ∵128AP BP +=∴91018x x -+--=解得5x =;②如图2,0P 在3P 的左侧,设0CP 的长为x则由题意知,01CP CP x ==,129APx AP =-=,23101BP BP x ==-+ ∵128AP BP +=∴91018x x -+-+=解得6x =;综上所述,0CP 的长为5或6.故选C .【点睛】本题考查了三角形中的线段的和与差.解题的关键与难点在于考虑03,P P 不同位置时的两种情况.2、B【解析】【分析】结合题意,根据立体图形左视图和主视图的性质,对各个选项逐个分析,即可得到答案.【详解】的左视图和主视图是均为正方形,故选项A 不符合题意;的左视图和主视图均为三角形,故选项C 不符合题意;的左视图和主视图均为圆形,故选项D 不符合题意;的主视图为长方形,左视图为圆形,即左视图和主视图不同故选:B.【点睛】本题考查了立体图形视图的知识;解题的关键是熟练掌握左视图和主视图的性质,从而完成求解.3、C【解析】【分析】根据题意,利用分类讨论的数学思想可以求得A、C两点间的距离.【详解】解:∵A、B、C三点在同一条直线上,线段AB=4cm,BC=2cm,∴当点C在点B左侧时,A、C两点间的距离为:4-2=2(cm),当点C在点B右侧时,A、C两点间的距离为:4+2=6(cm),故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.4、B【解析】【分析】分两种情况求解:①当OC在∠AOB内部时,②当OC在∠AOB外部时;分别求出∠BOM的度数即可.【详解】解:如图1,当OC在∠AOB内部时,∵∠AOB=100°,∠AOC=20°,∴∠BOC=80°,∵OM是∠BOC的平分线,∴∠BOM=40°;如图,当OC在∠AOB外部时,∵∠AOB=100°,∠AOC=20°,∴∠BOC=120°,∵OM是∠BOC的平分线,∴∠BOM=60°;综上所述:∠BOM的度数为40°或60°,【点睛】本题考察了角的计算,熟练掌握角平分线的性质,分两种情况画出图形是解题的关键.5、D【解析】【分析】根据直线、线段、射线的区别进行判断即可.【详解】解:A、线段AB与线段BA端点相同,顺序不同,属于一条线段,故错误;B、射线BC与射线BA端点与方向均不同,不是同一射线,故错误;C、射线AB与射线AC端点相同,方向相同,属于同一射线,故错误;D、直线AB与直线BC属于同一直线,故正确.故选:D.【点睛】本题考查的是直线、线段、射线的定义,熟练掌握之间的区别即可进行解题.6、D【解析】【分析】根据圆柱的横截面即可得出答案.【详解】解:根据图形可得,水面的形状为:长方形,故选:D.本题考查了认识立体图形,关键是要知道垂直于圆柱底面的截面是长方形,平行圆柱底面的截面是圆形.7、C【解析】【分析】根据每一个几何体的特征逐一判断即可.【详解】解:A.是圆锥,故A不符合题意;B.是四棱柱,故B不符合题意;C.是三棱柱,故C符合题意;D.是圆柱,故D不符合题意;故选:C.【点睛】本题考查了认识立体图形,熟练掌握每一个几何体的特征是解题的关键.8、C【解析】【分析】根据展开图中出现“凹”字形或“田”字型,则不能围成正方体,选出不能围成正方体的选项即可.【详解】解:∵展开图中出现“凹”字形或“田”字型,则不能围成正方体,∴如上图可知C选项中出现了凹字形,则不能折叠成正方体,故选:C.【点睛】本题考查正方体展开图,掌握正方体的展开图的特征是解决本题的关键.9、D【解析】【分析】根据圆柱体的定义(圆柱是由两个大小相等、相互平行的圆形(底面)以及连接两个底面的一个曲面(侧面)围成的几何体)即可得.【详解】解:A、圆锥,不符题意;B、圆台,不符题意;C、三棱台,不符题意;D、圆柱体,符合题意;故选:D.【点睛】本题考查认识立体图形,掌握几种常见几何体的形体特征是正确判断的前提.10、B【解析】【分析】根据求邻补角以及几何图形中角度的计算求解即可【详解】解:∠ADE+∠CBE180BDE CBA DBE=︒-∠+∠+∠180456090=︒-︒+︒+︒135150=︒+︒285=︒故选B【点睛】本题考查了求一个角的补角,以及三角尺中角度的计算,数形结合是解题的关键.二、填空题1、2.5或9.5##9.5或2.5【解析】【分析】本题没有给出图形,在画图时,应考虑到A、B、M、N四点之间的位置关系的多种可能,再根据题意正确地画出图形解题.【详解】解:本题有两种情形:(1)当A、C(或B、D)重合,且剩余两端点在重合点同侧时,MN=CN-AM=12CD-12AB=6-3.5=2.5(厘米);(2)当B、C(或A、C)重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB,=6+3.5=9.5(厘米).故两根木条的小圆孔之间的距离MN是2.5cm或9.5cm,故答案为:2.5或9.5.【点睛】本题考查两点之间的距离问题,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.2、-4【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的两个数的和是0求出a、b,c,然后相加即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“-2”是相对面,“1”与“1+b”是相对面,“3”与“c+1”是相对面,∵正方体相对两个面上的数之和为零,∴a=2,b=-2,c=-4∴a+b+c=2+(-2)+(-4)=-4.故答案为:-4.本题主要考查了正方体相对两个面上的文字、相反数、代数式求值,注意正方体的空间图形,从相对面入手,分析及解答问题.3、两点确定一条直线【解析】【分析】根据两点确定一条直线解答即可.【详解】解:要在墙上订牢一根木条,至少需要2颗钉子,其理由是:两点确定一条直线故答案为:两点确定一条直线.【点睛】本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.4、150°42′【解析】【分析】由题意知α∠的补角为1802918'︒-︒,计算求解即可.【详解】解:由两补角和为180°可得α∠的补角为180291817960291815042''''︒-︒=︒-︒=︒故答案为:15042'︒.【点睛】本题考查了补角.解题的关键在于正确的计算.5、6【解析】利用正方体及其表面展开图的特点,根据相对面上的两个数之积为24,列出方程求出x、y的值,从而得到x-y的值.【详解】解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之积为24,∴x=12,y=6,∴x-y=6.故答案为:6.【点睛】本题考查了正方体对面上的字,找出x、y的对面是解题的关键.三、解答题1、 (1)﹣149;(2)76°41′40″【解析】【分析】(1)根据有理数的混合运算的法则,先算括号里的,再算乘方、乘除、加减即可;(2)根据度分秒的换算方法将132°25′化成131°84′60″即可.(1)解:原式=﹣1﹣(4÷16×6+4)=﹣1﹣(24×6+4)=﹣1﹣(144+4)=﹣1﹣148=﹣149;(2)解:原式=131°84′60″﹣55°43′20″=76°41′40″.【点睛】本题考查有理数的混合运算,度分秒的换算,掌握有理数混合运算的计算法则、度分秒的换算方法是正确解答的关键2、(1)45°(2)45(3)①12x;②52°【解析】【分析】(1)先求出∠BOC的度数,再根据角平分线的定义求出∠MOC与∠NOC的度数,然后相减即可得解;(2)仿照(1)的步骤求解即可;(3)①先求出∠BOC的度数,再根据角平分线的定义求出∠MOC与∠NOC,然后根据∠MON=∠MOC-∠NOC列式整理即可;②根据(2)①的规律,∠MON的度数等于∠AOB的一半,进行求解即可.(1)解:∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,∵ON平分∠AOC,OM平分∠BOC,∴111507522COM BOC∠=∠==︒⨯︒,11603022CON AOC∠=∠==︒⨯︒,∴∠MON=∠COM-∠CON=75°-30°=45°;(2)∵∠AOB=90°∴∠BOC=∠AOB+∠AOC=90°+∠AOC,∵ON平分∠AOC,OM平分∠BOC,∴1145+22COM BOC AOC∠=∠=∠,12CON AOC∠=∠,∴∠MON=∠COM-∠CON=1145+22AOC AOC∠-∠=45°;(3)①∵∠AOB=x°,∴∠BOC=∠AOB+∠AOC=x°+∠AOC,∵ON平分∠AOC,OM平分∠BOC.∴∠MOC=12∠BOC=12x+12∠AOC,∠NOC=12∠AOC,∴∠MON=∠MOC-∠NOC=12x,即y=12x;②由题意可得x+12x=156,解得:x=104,从而y=12x=52即∠MON =52°.【点睛】本题考查了角的计算,主要利用了角的平分线的定义,准确识图是解题的关键.3、 (1)45︒(2)DOE ∠的大小不变,理由见解析(3)45︒或135︒【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠BOC 的一半,而∠DOE =∠COD +∠COE ,即可求出∠DOE 度数为45°;(3)分两种情况考虑,利用角平分线的定义计算,如图3,∠DOE 为45°;如图4,∠DOE 为135°.(1)如图,9020AOC BOC ∠=︒-∠=︒,∵OD OE 、分别平分AOC ∠和BOC ∠, ∴1110,3522COD AOC COE BOC ∠=∠=∠︒∠==︒, ∴45DOE COD COE ∠=∠+∠=︒;(2)DOE ∠的大小不变,理由是:1111()452222DOE COD COE AOC COB AOC COB AOB ∠=∠+∠=∠+∠=∠+∠=∠=︒; (3)DOE ∠的大小发生变化情况为,如图3,则DOE ∠为45︒;如图4,则DOE ∠为135︒,分两种情况:如图3所示,∵OD OE 、分别平分AOC ∠和BOC ∠, ∴11,22COD AOC COE BOC ∠=∠∠=∠, ∴1()452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒; 如图4所示,∵OD OE 、分别平分AOC ∠和BOC ∠, ∴11,22COD AOC COE BOC ∠=∠∠=∠, ∴11()27013522DOE COD COE AOC BOC ∠=∠+∠=∠∠︒+=⨯=︒. 【点睛】此题考查了角的计算,角平分线定义,注意分情况讨论是解本题的关键.4、 (1)第③部分;(2)a =﹣3;(3)d =6或1.5或﹣3.【解析】【分析】bc可得,b c异号,从而可得原点的位置;(1)由0,(2)由点B与点C距离3个单位长度,b=﹣1,相当于把表示1 的点向右平移3个单位,从而可得C对应的数,同样的把表示2的点向左边平移5个单位,从而可得a的值;(3)分三种情况讨论,当点C是OD的中点时,当点D是OC的中点时,当点O是CD的中点时,再分别求解d的值即可.(1)解:∵bc<0,∴b,c异号,∴原点在B,C之间,即第③部分;(2)解:∵点B与点C距离3个单位长度,b=﹣1,∴C表示的数为﹣1+3=2,∵AC=5,A点在点C的左边,∴点A表示的数为:2﹣5=﹣3,∴a=﹣3;(3)解:点C、原点、点D这三点中其中一点是另外两点的中点时,当点C是OD的中点时,OC=CD=3,∴OD=6,得d=6;当点D是OC的中点时,OD=CD=1.5,得d=1.5;当点O 是CD 的中点时,OC =OD =3,得d =﹣3,综上所述:d =6或1.5或﹣3.【点睛】本题考查的是数轴的应用,数轴上两点之间的距离,有理数的加减法的应用,线段中点的含义,清晰的分类讨论是解本题的关键.5、 (1)30°(2)105°【解析】【分析】(1)根据角平分线的定义可得∠AOC =60°,根据OA OB ⊥可得∠AOB =90°,根据角的和差关系即可得答案;(2)根据角的和差关系可得90BOD AOD ∠=∠-︒,60BOD BOC ∠=︒-∠,根据37BOC AOD ∠=∠列方程求出∠AOD 的值即可得答案.(1)∵OC 平分∠AOD ,60COD ∠=︒,∴60AOC COD ∠=∠=︒,∵OA OB ⊥,∴∠AOB =90°,∴∠BOC =∠AOB -∠AOC =90°-60°=30°,∴∠BOC 的度数是30°.(2)∵90AOB ∠=︒,∴90BOD AOD AOB AOD ∠=∠-∠=∠-︒,∵60COD ∠=︒,∴60BOD COD BOC BOC ∠=∠-∠=︒-∠,∴60BOC ︒-∠90AOD =∠-︒, ∵37BOC AOD ∠=∠, ∴3607AOD ︒-∠90AOD =∠-︒, 解得:105AOD ∠=︒,∴∠AOD 的度数是105°.【点睛】本题考查角平分线的定义、角的计算,正确得出图中各角的和差关系是解题关键.。
中考数学几何综合题 练习(附答案)
几何专题综合训练1如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点.(1)求证:△BCF ≌△DCE .(2)若BC=5,CF=3,∠BFC=900,求DG :GC 的值.2正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.NDA CBM第2题图3在图3-1至图3-3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.(1)如图3-1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图3-1中的CE绕点C顺时针旋转一个锐角,得到图3-2,求证:△FMH是等腰直角三角形;(3)将图3-2中的CE缩短到图3-3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图3-1AHC(M) D E BF G(N)G图3-2AHCDEBF NMAHCDE图3-3BF GMN4如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;(4分) (2)连接FC ,观察并猜测∠FCN 的度数,并说明理由;(4分)(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB =a ,BC =b (a 、b 为常数),E 是线段BC 上一动点(不含端点B 、C ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,∠FCN 的大小是否总保持不变,若∠FCN 的大小不变,请用含a 、b 的代数式表示tan ∠FCN 的值;若∠FCN 的大小发生改变,请举例说明N M B E A C D F G图(1)图(2) M B E A C D F G N5如图2-5-7,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.(1)写出y与x的函数关系,并确定自变量x的范围.(2)有人提出一个判断:“关于动点P,⊿PBC面积与⊿PAD面积之和为常数”.请你说明此判断是否正确,并说明理由..答案1. 分析与解答 (1)∵四边形 ABCD 是正方形,∴∠BCF+∠FCD=900,BC=CD .∵△ECF 是等腰直角三角形,CF=CE .∴∠ECD+∠FCD=900.∴∠BCF=∠ECD .∴△BCF ≌△DCE(2)在△BFC 中,BC=5,CF=3,∠BFC=900. ∴4==.∵△BCF ≌△DCE ,∴DE=BF=4,∠BFC=∠DEC=∠FCE=900. ∴DE ∥FC .∴△DGE ∽△CGF .∴DG :GC=DE :CF=4:3.2. .解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°, AM MN ⊥ ,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°.在Rt ABM △中,90MAB AMB ∠+∠=°, CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△. ······················································· 2分 (2)Rt Rt ABM MCN △∽△,44AB BM xMC CN x CN∴=∴=-,, 244x x CN -+∴=, ···················································································································· 4分22214114428(2)102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形, 当2x =时,y 取最大值,最大值为10. ··················································································· 6分 (3)90B AMN ∠=∠= °,∴要使ABM AMN △∽△,必须有AM ABMN BM=, ································································ 7分 由(1)知AM ABMN MC=, BM MC ∴=,∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =. ···································· 9分3(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .NDA CBM答案第2题图∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.。
2.几何综合提高专题(相似、圆) 优录选拔综合训练(二)
ED CBANMEDCBAEDCBAE DCBAl3l2l1C/B/A/CBAl3l2l1C/B/A/CBA基础知识归纳1、相似三角形中几个的基本图形2、由相似三角形得到的几个常用定理定理1 平行于三角形一边的直线截得的三角形与原三角形形似.如图,若DE∥BC,则AD AE DEAB AC BC==,或AD BDAE CE=.定理2 平行切割定理如图,,D E分别是ABCD的边,AB AC上的点,过点A的直线交,DE BC于,M N,若DE∥MN,则DM BNME NC=定理3 (平行线分线段成比例定理)两条直线被一组平行线截得的对应线段成比例.如图,若1l∥2l∥3l,则AB BC ACA B B C A C==ⅱⅱⅱ,定理4(角平分线性质定理)如图,,AD AE分别是ABCD的内角平分线与外角平分线,则DB EB ABDC EC AC==.定理5 射影定理直角三角形斜边上的高分原三角形成两个直角三角形,这两个三角形与原三角形相似.定理6 相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅定理7 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅定理8 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅定理9 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅基础能力检测1. 如图,点D 为△ABC 的外心,DE 平分ADB ∠,DE=DA ,CE 交DB 于点F ,∠ADB=120°,∠DBC=50°,则∠DFC 的度数为( ) A .50° B .70° C .80° D .100°考点:本题考查了三角形的外心;等腰三角形的性质;构造辅助圆;圆的垂径定理;圆周角定理。
七年级几何综合题
F EDCBA 七年级下学期几何综合题训练1.如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .2如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.3已知等边三角形ABC中每个内角为60。
,BD=CE,AD与BE相交于点P,求∠APE的大小。
4如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C ,•∠OAP+∠OBP=180°,若OC=4cm ,求AO+BO 的值.FGE DC B AP D A C BO5如图,OE=OF ,OC=OD ,CF 与DE 交于点A ,求证: AC=AD 。
6如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF. (1)求证:BG=CF;(2)请你判断BE+CF 与EF 的大小关系,并说明理由。
7已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(3)求证:∠ABE=∠C ;(4)若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
8如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=205cm ,DE=1.7cm,求BE 的长9如图,在ABC △中,40AB AC BAC =∠=,°,分别以AB AC ,为边作两个等腰直角三角形ABD 和ACE ,使90BAD CAE ∠=∠=°.(3) 求DBC ∠的度数;(2)求证:BD CE =.FE D C B AG F ED C A O10已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .11如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .(4) 求证:BD =2CE .12如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.13如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(5) 求证:MB =MD ,ME =MF(6) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.BDCFAEF E D C BA14如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(7) 若BD 平分∠ABC ,求证CE=12BD ;(8) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
直角坐标系与几何综合训练题
直角坐标系与几何综合训练题1.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.2.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.(1)填空:a=,b=;(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.3.如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.(1)当A点在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB.4.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.5.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到A101的移动方向.6.△ABC与△A′B′C′在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A;B;C;(2)△ABC由△A′B′C′经过怎样的平移得到?答:.(3)若点P(x,y)是△ABC内部一点,则△A'B'C'内部的对应点P'的坐标为;(4)求△ABC的面积.7.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.8.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).;(1)求a,b的值及S△ABC=S△ABC,试求点M的坐标.(2)若点M在x轴上,且S△ACM9.已知A(0,a),B(﹣b,﹣1),C(b,0)且满足+|b+2|+=0.(1)求A、B、C三点的坐标;(2)如图1所示,CD∥AB,∠DCO的角平分线与∠BAO的补角的角平分线交于点E,求出∠E的度数;(3)如图2,把直线AB以每秒1个单位的速度向左平移,问经过多少秒后,该直线与y轴交于点(0,﹣5).10.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD..(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC=S四边形ABDC?若存在这样一点,求出点P的坐标;若(2)在y轴上是否存在一点P,连接PA,PB,使S△P AB不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.11.如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.12.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.。
第六章 几何图形初步全章综合训练 2024—2025学年人教版数学七年级上册
第六章几何图形初步全章综合训练一、选择题(每小题5分,共30分)1[2024吉林白山质检]如图,一个圆柱体切去一部分,则从上面看到的图形是( )2[2023 山东烟台期中]下面的几何体中,不能由平面图形绕某直线旋转一周得到的是( )3[2023黑龙江哈尔滨期末]下列四个说法:①射线AB 和射线BA 是同一条射线;②若点B 为线段AC的中点,则AB=BC;③锐角和钝角互补;④一个角的补角一定大于这个角.其中正确的说法有( )A.0个B.1个C.2个D.3个4[2023山东威海期末]用一副三角板不能画出的角的度数是( )A.75°B.105°C.110°D.135°5[2024吉林长春期末]如果90°<∠α<180°,那么∠α ( )A.只有余角,没有补角B.只有补角,没有余角C.既有余角,又有补角D.既没有余角,也没有补角6[2023广东茂名质检]如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE=m°,∠EOF = 90°, O M,ON 分别平分∠AOE 和∠BOF,有下列说法:=n①点E位于点O 的北偏西m°;②图中互余的角有4对;③若∠BOF=4∠AOE,则∠DON=54°;④若∠MON∠AOE+∠BOF,则n的倒数是2.其中正确的有( )3A.3个B.2个C.1个D.0个二、填空题(每小题5分,共20分)7[2024山东枣庄质检]车窗的雨刷快速旋转时看起来像个扇面,这说明了.8[2024吉林长春期末]图(1)是由五个相同的小正方形纸片拼接而成的平面图形.现将图(1)沿虚线折成一个如图(2)所示的无盖正方体纸盒,则与线段MN重合的线段是.9如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的度数比是2:7,OP 平分∠DOA,则∠P OC= 度.10[2023湖北武汉质检]已知线段AB=讲题鸭a,延长BA 至点C,使CB=43AB,点D,E 为线段BA 延长线上的两点,且BD=3AE,M,N分别是线段DE,AB的中点.当点C是线段BD 的三等分点时,MN 的长为.(用含有a的式子表示)三、解答题(共50分)11(1)计算:3 38°25′+50°28′=,82°−15°26′=;(2)一个角的余角比这个角的补角的三分之一多6°,求这个角的大小.12[2024 山西阳泉期末]小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图(1)、图(2)所示.请根据你所学的知识,回答下列问题:观察判断:(1)小明共剪开了条棱;(2)动手操作:现在小明想将剪断的图(2)重新粘贴到图(1)上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图(3)),请你帮助小明在图(1)中补全图形;(3)解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880 cm,求这个纸盒的体积.13如图(1),点A,O,B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线O B绕点O 沿逆时针方向以每秒4°的速度旋转,如图(2),设旋转时间为t(0≤t≤90)秒.(1)用含t的代数式表示∠MOA的度数.(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的两条所形成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t 的值;如果不存在,请说明理由.14如图,P是线段AB上任意一点,AB=12 cm,C,D两点分别从P,B同时出发向A点运动,且C点的运动速度为2 cm/s,D 点的运动速度为3c m/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D 在线段PB 上运动时,试说明AC=2CD.(2)如果t=2 时,CD=1 cm,那么AP = cm.1.A 【解析】由题意可知所得几何体从上面看到的图形是A 选项.故选A.2.A 【解析】选项A,正方体不能由一个平面图形绕某直线旋转一周得到,故A 选项符合题意;选项B,球体可以由一个半圆绕它的直径所在直线旋转一周得到,故B选项不符合题意;选项C,圆锥可以由一个直角三角形绕一条直角边所在直线旋转一周得到,故C选项不符合题意;选项D,圆柱可以由一个长方形绕一条边所在直线旋转一周得到,故D 选项不符合题意.故选A.3. B 【解析】①射线AB 和射线BA 的顶点不同,延伸的方向也不同,不是同一条射线,故①错误;②若点B 为线段AC 的中点,则AB=BC,故②正确;③锐角和钝角是相对于直角的大小而言,没有一定的数量关系,不一定构成互补关系,故③错误;④一个角的补角不一定大于这个角,如一个角是130°,它的补角是50°,故④错误.故正确的说法是②,共1个.4. C 【解析】75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角板不能画出,135°可以用三角板的45°和90°画出.故选C.5. B 【解析】因为90°<∠α<180°,所以不存在一个角与∠α相加等于90°,但是存在一个角与∠α相加等于180°,所以∠α只有补角,没有余角.故选B.6. B 【解析】因为∠AOE=m°,所以∠EOD=90°-m°,所以点E 位于点O 的北偏西90°-m°,故①错误.因为∠EOF =90°,所以∠EOD+∠DOF = 90°, ∠AOE + ∠BOF = 90°. 因为∠AOD=∠BOD=90°,所以∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°.因为OM,ON分别平分∠AOE和∠BOF,所以∠AOM=∠EOM,∠BON=∠FON,所以∠EOM+∠MOD=90°,∠FON+∠DON=90°,所以题图中互余的角共有8 对,故②错误. 因为∠BOF=4∠AOE,∠AOE+∠BOF=90°,所以∠BOF=72°,所以∠BON=36°,所以∠DON=90°-36°=54°,故③正确. 因为∠AOE +∠BOF = 90°,所以∠MOE+∠NOF=12(∠AOE+∠BOF)=12×90°=45°,所以∠MON=90°+45°=135°,所以∠MON∠AOE+∠BOF =135∘90∘=32=n,所以n的倒数是23,,故④正确.故正确的说法有③④,共2个.故选B.7.线动成面【解析】由题意知,车窗的雨刷快速旋转时看起来像个扇面,这说明了线动成面,故答案为线动成面.8. DE 【解析】将题图(1)沿虚线折成一个如题图(2)所示的无盖正方体纸盒,则与线段MN重合的线段是DE.故答案为DE.9.20 【解析】因为∠COB+∠DOA=∠COB+∠COA+∠COB+∠DOB=∠AOB+∠COD =180°,又因为∠COB 与∠DOA 的度数比是2:7,所以∠DOA=180∘×72+7=140∘.因为OP 平分∠DOA,所以∠DOP = 70°,所以∠P OC =90°-∠DOP=20°.故答案为20.10.43a或一83a【解析】因为AB=a,延长BA 至点C,使CB=43AB,所以CB=43a①当CD=13BD时,如图(1).因为BC=43a,所以CD=12BC=23a,BD=2a.因为BD=3AE,所以AE=13BD=23a,所以DE=BD−AB−AE=13a.因为M,N分别是线段DE,AB的中点,所以DM=12DE=16a,BN=12AB=12a,所以MN=BD-DM-BN= 2a−16a−12a=43a.②当BC=13BD时,如图(2).因为BC=43a,所以CD=2BC=83a,BD=4a,所以AE=13BD=43a,所以CE=AE+AB-BC=a,所以DE=CD−CE=53a.因为M,N分别是线段DE,AB的中点,所以DM=12DE=56a,BN=12AB=12a,所以MN=BD-DM- BN=4a−56a−12a=83a.综上,MN的长为43a或83a..故答案为.43a或83a.11.【解】(1)38°25'+50°28'=88°53',82°-15°26'=66°34'.故答案为88°53',66°34'.(2)设这个角的度数为x°,则这个角的余角为(90-x)°,补角为(180-x)°.由题意得(90−x)∘=13(180−x)∘+6∘,解得x=36.答:这个角为36°.12.【解】(1)小明共剪开了8条棱,故答案为8.(2)如图,存在四种情况.(3)设长方体纸盒的高为a cm,则长方体纸盒的长与宽均为5a cm.因为长方体纸盒所有棱长的和是880 cm,所以4(a+5a+5a)=880,解得a=20,所以这个长方体纸盒的高为20 cm,长和宽均为5×20=100(cm),所以这个长方体纸盒的体积为20×100×100= 200000(cm³).13.【解】(1)∠MOA=2t°.(2)根据题意知∠AOM=2t°,∠BON=4t°.当∠AOB 第二次达到60°时, ∠AOM +∠BON-∠MON=60°,即2t+4t-180=60,解得t=40.故t=40时,∠AOB第二次达到60°.(3)存在. t=18或22.5或36或67.5.有以下三种情况:①OB平分∠AOM时,因为1∠AOM=∠BOM,2所以t=180-4t,解得t=36;②OB平分∠MON时,因为∠BOM=1∠MON,即∠BOM=90°,2所以4t=90或4t-180=90,解得t=22.5或t=67.5;③OB平分∠AON时,因为∠BON=1∠AON,2所以4t=1(180−2t),解得t=18.2综上,t的值为18或22.5或36或67.5.14.【解】(1)①由题意可知CP=2×1=2(cm),DB=3×1=3(cm).因为AP=8cm,AB=12cm,所以PB=AB-AP=4cm,所以CD=CP+PB-DB=2+4-3=3(cm).②因为AP=8cm,AB=12cm,所以BP=4 cm,AC=(8-2t) cm,所以DP=(4-3t) cm,所以CD=DP+CP=2t+4-3t=(4-t) cm,所以AC=2CD.(2)当t=2时,CP=2×2=4(cm),DB=3×2=6(cm).当点D 在点C的右边时,如图(1)所示.因为CD=1 cm,所以CB=CD+DB=7 cm,所以AC=AB-CB=5cm,所以AP=AC+CP=9 cm. 当点D 在点C的左边时,如图(2)所示.AD=AB-DB=6cm,所以AP=AD+CD+CP=11 cm. 综上所述,AP=9 cm或ll cm. 故答案为9或11.。
七年级数学上册综合训练几何作图基本几何作图天天练试题
智才艺州攀枝花市创界学校根本几何作图一、单项选择题(一共10道,每道10分)1.如图,村庄A,B之间有一条河流,要在河流上建造一座大桥P,为使P到村庄A,B之间的间隔之和最小,那么这座大桥P应建造在()A.点E处B.点F处C.连接AB,AB与EF的交点即为所求点PD.河流上的任意处都可以2.如图,为理解决A,B,C,D四个小区的缺水问题,政府准备HY修建一个水厂E,使之到A,B,C,D四个小区的间隔之和最小,那么水厂E应建在()A.线段AC的中点B.线段BD的中点C.线段AC与线段BD的交点D.直线AB与直线CD的交点3.按照以下要求作图:①连接AB;②作射线DA;③作直线AC.其中符合要求的是()A. B.C. D.4.,点A,B,C,线段a.按照以下要求作图:①连接AB,AC;②延长BA;③在BA的延长线上截取AD,使得AD=a.其中符合要求的是()A. B.C. D.5.如图,四点A,B,C,D,按要求作图:①作射线AB,射线CD;②连接AC,BD交于点O;③反向延长射线CD交射线AB于点P.以下选项里面作图正确的选项是()A. B.C. D.6.如图,线段AB,用尺规作图〔保存作图痕迹〕:延长线段AB到点C,使BC=2AB.以下尺规作图正确的选项是()A.线段BC即为所求B.线段BC即为所求C.线段AC即为所求D.线段BC即为所求7.如图,点C,D分别在直线AB上和直线AB外,以下是在此图根底上作图的过程及作法,其中错误的选项是()A.连接CDB.连接CD,并延长CD到点E,使DE=2CDC.过点D作DE⊥AB于点ED.过点D作DE∥AB8.如图1,三点A,B,C,根据某些几何语言描绘作出图2,那么以下选项里面语言描绘错误的选项是()A.作直线ABB.作射线CAC.连接BCD.取线段BC的中点D,作线段AD9.如图1,点C和点D分别是直线AB外两点,根据某些几何语言描绘作出图2,那么以下选项里面语言描绘正确的选项是()A.作直线CD交直线AB于点EB.连接CD,并延长CD交直线AB于点EC.过点C作直线CF⊥AB,垂足为CD.过点C作直线CF⊥CD交AB于点F,垂足为C10.如图1,四点A,B,C,D,根据某些几何语言描绘作出图2,那么以下选项里面语言描绘正确的选项是()A.作射线ADB.作直线BC,过点A作AF∥BCC.过点B作BE⊥AD于点ED.连接AD,连接BC,交点为E。
北师大版七年级数学下册几何解答题综合训练(word版、无答案)
几何解答题综合训练北师大版七年级数学下册1、如图,已知∠ECF=70°,∠BCE=50°,∠A=70°,BC∥DE,求∠BDE的度数.2、如图,已知∠ABC=180°-∠A,BD⊥CD于点D,EF⊥CD于点F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.3、如图,∠1=∠2.∠GFA=55°,∠ACB=75°,AQ平分∠FAC,AH∥BD,求∠HAQ 的度数?4、如图,已知∠ABC+∠ECB=180°,∠P=∠Q.试说明:∠1=∠2.5、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.6、如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=80°,试求:(1)∠EDC的度数;(2)若∠BCD=n°,试求∠BED的度数.(用含n的式子表示)7、如图,AC∥FE,∠1+∠3=180°.(1)判定∠FAB与∠4的大小关系,并说明理由;(2)若AC平分∠FAB,EF⊥BE于点E,∠4=78°,求∠BCD的度数.8、如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,求∠DGB的度数.9、如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.(1)求证△EFC≌△EGB;(2)若AB=3,AC=5,求AF的长。
10、如图,△ABC中 CD⊥AB,垂足为 D,BE⊥AC垂足为 E,且 AD=AE,BE与CD相交于点F.求证:①△ACD≌△ABE ;②FB=FC.11、在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.当∠EDF绕D点旋转到DE⊥AC于点E时(如图1),易证S△DEF +S△CEF=12S△ABC,(1)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,求证:DE=DF;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2的情况下,S△DEF +S△CEF=12S△ABC 是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.12、如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B 匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)13、(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD有何数量关系?请直接写出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何综合训练
1、ABC ∆两边AB 、BC 上分别有点P 、Q ,CP 、BQ 的中点分别是M 、N ,直线MN 交AB 、AC 于E 、F ,求证
QC
AF PB AE =
2、在正三角形ABC 内有一点P ,P 在BC 、CA 、AB 上的射影分别为D 、E 、F ,联结PA 、PB 、PC 后,把△ABC 分割成6个直角三角形,边被分成6条线段,求证:边上相间的3条线段之和等于另3条线段之和,相间的3个三角形的面积之和等于另3个三角形的面积之和。
3、已知平行四边形ABCD 中,M 、N 分别在AD 、AB 上,1S S MDC =∆,2S S AMN =∆,3S S CBN =∆,试用1S ,2S ,3S 表示CMN S ∆。
4、求证:锐角三角形ABC 的内接三角形中,以垂足三角形的周长最短。
5、△ABC 中,I 是内心,I 在BC 上的射影为K ,IK=r ,BK=m ,CK=n ,求△ABC 的面积。
6、在△ABC 中,AB 、AC 上分别有点E 、F ,EF//BC ,BF 、CE 交于K ,若△EKF 和△BKC 的面积已知为21,S S ,求△ABC 的面积。
7、在任意凸五边形ABCDE 中,M 、N 、P 、Q 分别为AB 、CD ,BC 、DE 的中点,K 、L 分别是MN 、PQ 的中点,求证:KL//AE ,AE KL 4
1。
8、在梯形ABCD 中,AB//CD ,Q 为AB 上一定点,P 是DC 边上的一个动点,PC DP λ=,当λ为何值时,PEQF S 最大,其中E 是AP 、DQ 的交点,F 是BP 、CQ 的交点。
9、在△ABC 中,三边长为a,b,c ,h 是BC 边上的高,a=3h ,求b
c c b +的取值范围。
10、设D 、E 、F 分别为正三角形ABC 的边BC 、CA 、AB 上的点,△DEF ,△AEF ,△BDF ,△CED 的面积分别为3210,,,S S S S ,证明:
3213111S S S S ≥++
11、在凸四边形的边AB 、BC 、CD 、DA 上各取一点K 、L 、M 、N ,设△ANK 、△BKL 、△CLM 、△DMN 的面积分别为4321,,,S S S S ,求证:3343332312A B C D S S S S S ≤+++。
12、正方形ABCD 的边长为1,E 为
BC 上,F 为CD 上,∠EAF=θ,求)sin cos )(sin cos (θθθθ++b a 的值。