模拟乘法器实验
模拟乘法器调幅(AM、DSB、SSB)实验报告
实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
实验十-模拟乘法器调幅-(1)
实验十模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑制载波双边带调幅和音频信号单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑制载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1、实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
2、实现抑制载波的双边带调幅波。
3、实现单边带调幅。
三、实验仪器1、信号源模块1块2、频率计模块1块3、4 号板1块4、双踪示波器1台5、万用表1块四、实验原理及实验电路说明幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由高频信号源产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
a)集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器,其内部电路图和引脚图如图10-1所示。
其中V 1、V 2与V 3、V 4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V 5与V 6又组成一对差分电路,因此恒流源的控制电压可正可负,以此实现了四象限工作。
V 7、V 8为差分放大器V 5与V6的恒流源。
图10-1 MC1496的内部电路及引脚图2)静态工作点的设定(1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
实验四模拟乘法器应用实验详解演示文稿
实验四模拟乘法器应用实 验详解演示文稿
(优选)实验四模拟乘法 器应用实验
实验仪器
高频信号发生器 超高频毫伏表 频率特性测试仪 直流稳压电源 数字示波器
QF1055A DA22A BT-3C HY1711-2 TDS210
一台; 一台; 一台; 一台; 一台.
实验任务与要求
基本实验的实验线路及说明
3.倍频原理框图如图7所示(输入输出关系自行推 导),仿真波形如图8所示。需注意的是,倍频 实现时模拟乘法器必须工作在平衡状态。
*仿真条件:Ux=Uy=20mV,fx=fy=200kHz,由图Байду номын сангаас看 出,输出其频率为400KHz,实现了倍频作用。
图7.倍频实现原理方框图如下:
图8.倍频波形对比图如下:
6. 用MC1596实现同步检波:按原理电路(图1)连 接,当输入端加入调幅波信号时,该信号载波 频率为500KHz,大小为50mV,调制频率为1KHz, m=30%时,分别观察图中A、B、C及输出Uo(t)的 波形。
扩展命题
1. 用模拟乘法器实现鉴频:实验电路如图2。输入 信号Us其载频fc=10.7MHz,调制频率F=1KHz, 频偏Δfm=75KHz,载波幅度Ucp.p=40mV,观察 Uo(t),并测出整个电路的特性曲线.即鉴频特 性曲线(本实验用扫频仪进行),扫频仪的使用 请参考本章第一节相关内容。图2给出的是用 模拟乘法器MC1596实现的相位鉴频电路。其中 C1与并联谐振回路LC共同组成线性移相网络, 将调频波的瞬间时频率变化转变为瞬时相位的 变化(即FM波变为FM-PM)。MC1596的作用是 将FM波与FM-PM波相乘,输出端接集成的差分 放大器将双端输出变为单端输出,再经RC构成 的LPF输出。
模拟乘法器的调查报告
模拟乘法器的调查报告陈凤通信与信息系统一、 模拟乘法器的基本原理现在,常用的模拟乘法器基本上都已实现集成化。
而且集成模拟乘法器是一种重要的非线性器件,广泛应用于频率变换、信号处理电路中,构成调制、解调或其它电路。
随着集成技术的发展和应用的日益广泛,它已成为继集成运算放大器后最通用的模拟集成电路之一。
下面简单介绍一下模拟乘法器。
(一)模拟乘法器的基本特性模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
其符号如下图一中(a )和(b)所示,K 为乘法器的增益系数。
图一 模拟乘法器符号图理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。
实际乘法器当u x = 0 , u y = 0 时,u O ≠ 0,此时的输出电压称为输出输出失调电压。
u x = 0,u y ≠ 0 (或 u y = 0,u x ≠ 0)时,u O ≠ 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。
(二)变跨导模拟乘法器的基本工作原理变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示 。
在室温下,K 为常数,可见输出电压u O 与输入电压u y 、u x 的乘积成正比,所以差分放大电路具有乘法功能。
但u y 必须为正才能正常工作,故为二象限乘法器。
当 u Y 较小 时,相乘结果误差较大,因 I C3 随 u Y 而变,其比值为电导量,称变跨导乘法器.二、模拟乘法器在振幅调制解调中的应用(一)信息传输的基本概念1.对传输信号进行调制的原因(1)根据电磁波理论,天线尺寸大于信号波长的十分之一,信号才能有效发射。
如声音信号的频率范围为0.1 ~ 6 kHz。
《模电实验》模拟乘法器
模拟乘法器幅度调制实验姓名:学号:模拟乘法器幅度调制实验模拟乘法器是利用三极管的非线性特性,经过电路的巧妙设计,在输出中仅保留两路输入信号的乘积项,从而获得良好的乘积特性的集成器件。
模拟乘法器其可用于各种频率变化,如平衡调制、混频、同步检波、鉴波、检波、自动增益控制等电路。
本实验利用模拟乘法器MC1496实现幅度调制电路。
一、实验目的1、了解模拟乘法器的工作原理;2、学会利用模拟乘法器搭建振幅调制电路,掌握其工作原理及特点。
3、了解调制系数Ma的测量方法,了解Ma<1、Ma=1、Ma>1时调幅波的波形特点。
二、复习要求1、复习幅度调制器的有关知识;2、分析实验电路中用MC1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3、了解调制系数M的意义及测量方法;4、分析全载波调幅信号的特点;5、了解实验电路各元件的作用。
三、实验电路原理实验电路如下图所示。
该电路可用来实现幅度调制,混频。
倍频,同步检波等功能。
图中R8和R9为负载电阻,R10为偏置电阻,R7为负载反馈电阻。
R1、R2和Rp组成平衡调节电路,调节Rp可以调节1、4两管脚的电位差。
当电位器为0时,电路满足平衡调幅。
当电位差不为零时,输入包含调制信号和直流分量两部分,则可实现普通调幅。
四、实验步骤1、按照电路图焊接电路。
2、实现普通单音调幅:a、在Ux上加入振幅Vx=50mV、频率f=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,调节电位器Rp,使电路工作在不平衡状态,用示波器观察输出波形。
b、保持Ux不变,改变Uy的幅值,当Uy的幅度为50mV、100mV、150mV、200mV、250mV时,用示波器观察输出信号的变化,并作出Ma—Uy曲线。
c、保持Ux不变,fx由小变大,观察输出波形的变化。
3、实现平衡调幅a、将Uy接地,在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,调节电位器Rp使输出Uo=0.b、在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,微调调节电位器Rp,得到抑制波的双边带信号。
06实验六 2DPSK实验(模拟乘法器法)
实验六 2DPSK 实验(模拟乘法器法)一、实验目的1、 学习2DPSK中频调制器原理2、 了解二相差分编译码原理和作用3、 正交调幅法2DPSK中频调制器硬件实现方法4、 数字中频调制方式与频带利用率二、实验仪器1、 计算机 一台2、 通信基础实验箱 一台3、 100MHz 示波器 一台4、 频谱分析仪 一台5、 螺丝刀 一把三、实验原理数字通信最简单的调制器是2PSK调制器,也称二相相移键控,这种调制器把数字信息“1”和“0”分别用载波的相位0和π这两个离散值来表示。
其表达式为:)](cos[)(t t A t S c θω+=式中取值0或π是由数字信息比特取“1”或“0”决定。
在实际应用中,2PSK调制器分为绝对调相和相对调相两种。
1、 BPSK调制(绝对调相)利用载波相位的绝对数值来传送数字信息叫做绝对相移键控,也称BPSK调制。
例如输入一串二进制数字序列 ,其值是“1”或“0”随机变化,经过BPSK调相后,其相角按如下式变化:⎪⎩⎪⎨⎧===0,1,0)(k k b b t πθ因此:BPSK信号可表示为:⎩⎨⎧==+=−=+=1,cos )0cos(0,cos )cos()(k c c k c c b t A t A b t A t A t S ωωωπω令:⎪⎩⎪⎨⎧=+=−=0,1)(1,1k k b t D b则BPSK信号可表示为:t A t D t S c ωcos )()(=根据BPSK信号的表达式,模拟乘法器实现2DPSK调制器的原理框图如图6-1所示。
BPSK调制器波形如图6-2所示。
c(t)=COS W ct图6-1 模拟乘法器法实现2DPSK调制原理框图图6-2 BPSK调制器波形图2、 2DPSK 调制(相对调相)为了克服BPSK 移相键控中的相位模糊问题,实际应用中常采用相对调相,或叫做差分移相键控,记作DPSK 。
它的调制规律与BPSK 的区别在于:以每个数字比特的载波相位为基准来取值。
实验三模拟乘法器调幅
实验三模拟乘法器调幅一、实验目的1.通过实验了解振幅调制的工作原理。
2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。
3.掌握用示波器测量调幅系数的方法。
二.实验内容1.模拟相乘调幅器的输入失调电压调节。
2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。
3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。
4.用示波器观察调制信号为方波、三角波的调幅波。
三.实验步骤1.实验准备(1)在实验箱主板上插上集成乘法器幅度调制电路模块。
接通实验箱上电源开关,按下模块上开关8K1,此时电源指标灯点亮。
(2)调制信号源:采用低频信号源中的函数发生器,其参数调节如下(示波器监测):∙频率范围:1kHz∙波形选择:正弦波∙输出峰-峰值:300mV(3)载波源:采用高频信号源:∙工作频率:2MHz用频率计测量(也可采用其它频率);∙输出幅度(峰-峰值):200mV,用示波器观测。
2.输入失调电压的调整(交流馈通电压的调整)集成模拟相乘器在使用之前必须进行输入失调调零,也就是要进行交流馈通电压的调整,其目的是使相乘器调整为平衡状态。
因此在调整前必须将开关8K01置“off”(往下拨),以切断其直流电压。
交流馈通电压指的是相乘器的一个输入端加上信号电压,而另一个输入端不加信号时的输出电压,这个电压越小越好。
(1)载波输入端输入失调电压调节把调制信号源输出的音频调制信号加到音频输入端(8P02),而载波输入端不加信号。
用示波器监测相乘器输出端(8TP03)的输出波形,调节电位器8W02,使此时输出端(8TP03)的输出信号(称为调制输入端馈通误差)最小。
(2)调制输入端输入失调电压调节把载波源输出的载波信号加到载波输入端(8P01),而音频输入端不加信号。
用示波器监测相乘器输出端(8TP03)的输出波形。
调节电位器8W01使此时输出(8TP03)的输出信号(称为载波输入端馈通误差)最小。
实验 模拟乘法器电路
实验模拟乘法器电路一、实验目的和要求1.掌握模拟乘法器的基本概念与特性,NI multisim 10模拟乘法器。
2.掌握模拟乘法器组成的乘法与平方运算电路、除法与开平方运算电路、函数发生电路电路与计算机仿真设计与分析方法。
二、实践内容或原理1.NI multisim 10模拟乘法器在NI multisim 10模拟乘法器模型中,输出电压U=K[X K(U X+X off)·Y K(U X+X off)]+O ff(1.1)out式中,U out为在Z(K*XY)端的输出电压;U X为在X端的输入电压;U Y为在Y端的输入电压;K为输出增益,默认值1V/V;O ff为输出补偿,默认值0V;Y off为Y 补偿,默认值0V;X off 为X补偿,默认值0V;Y K为Y增益,默认值1V/V;X K为X增益,默认值1V/V。
单击Sources→CONTROL-FUNCTION→ MULTIPLLER,即可取出一个乘法器放置在电路工作区中,双击乘法器图标,即可弹出乘法器属性对话框,可以在对应的窗口中对乘法器的参数值、标识符等进行修改。
2.乘法与平方运算电路当两个输入电压U X(图2.1中的V1)和U Y(图2.1中的V2)加到乘法器X 和Y端时,乘法器输出端的输出电压U O可表示为U=KU X U Y (2.1)O图2.1 乘法电路从图2.1仿真分析结果可见,K =1,U X (V1)=2V ,V Y (V2)=4.3V ,输出电压U O =8.6V ,满足U O =KU X U Y 关系。
从图2.2仿真分析结果可见,当K =1,U X (V1)=U Y (V2)=2V 时,输出电压U O =4V ,满足U O =KU 2X =KU 2Y 关系,即平方运算关系。
图2.2 平方运算电路3.反相输入除法运算电路一个二象限反相输入除法运算电路如图3.1所示,它由运放3554AM 和接于负反馈支路的乘法器A1构成。
3.实验三模拟乘法器
2.混频后与滤波后信号波形与频谱的测量 a)用示波器CH1通道测量 7号板 的TP5 ,用CH2通道测量7号板 TP6
V
V
t
t
0
0
《TP5混频信号波形》
《TP6滤波信号波形》
《TP5信号频谱波形》幻灯片 9
《TP6信号频谱波形》
c)画出 TP5 和 TP6 频谱波形:幻灯片 8
相 对 振 幅
0
高频电子线路实验
实验实训中心——高频电子线路实验室
实验三 模拟乘法混频器
一、实验目的
1、了解模拟乘法混频器的工作原理。 2、会用示波器测量模拟乘法混频器混频输出与滤波后中频输出的信号波 形与频谱。
注:本次抄写2、7、8、10、11、12页
本次实验需要实验模块: 1号板、6号板、6号板、7号板
《TP5信号频谱波形》
相 对 振 幅
0
《TP6信号频谱波形》
3、本振信号电压幅值改变对混频输出中频信号幅值影响的测量
注:示波器CH1接7号板TP7,CH2接7号板TP6
表1:
7号板TP7
本振信号VPP(mV )
200
300
400
500
600
700
7号板TP6
中频信号
VPP(V )
六、实验总结
根据步骤2观察到的信号波形,说明信号的混频、滤波输出中频信号的过程
模
陶
拟 TP5 瓷
乘
滤
法
乘法器 输出
波
器
器
P6
TP6 差频输出
频率计 RFIN (频6率号计板)
A通道
示波器 C示H波2接器TP6 负极接GND
五、实验内容
模拟乘法器应用实验
整理所测数据及波形,认真分析各种频率变 换,用坐标纸画出所测波形,写出规范的实验 报告,并谈谈自己的体会。
实验说明及思路提示
MC1596(MC1496 电原理图和引脚图如图3 MC1596(MC1496)电原理图和引脚图如图3所示 1596(MC1496)
模拟乘法器的典型应用及仿真波形
1. 平衡调制――抑制载波调制(DSB-SC):即乘 平衡调制――抑制载波调制(DSB-SC): 法器在载波和调制同时输入时, 法器在载波和调制同时输入时 , 通过平衡调 整 ( 接在信号 Uy 通路的电位器 ) , 使载波馈 接在信号U 通路的电位器) 通为零, 输出端只有两输入信号的乘积项, 通为零 , 输出端只有两输入信号的乘积项 , 从而完成平衡调制,实现框图如图4 从而完成平衡调制,功能图如下: 3.MC1596内部电路及引脚功能图如下:
图4:平衡调制框图如下: 4:平衡调制框图如下:
由框图有: 用图1进行平衡调幅仿真,其波形和频谱分别见图 5(a).5(b)
图5(a).双边带平衡调幅波形如下: 5(a).双边带平衡调幅波形如下:
图5(b).双边带平衡调幅频谱如下: 5(b).双边带平衡调幅频谱如下:
扩展命题
1. 用模拟乘法器实现鉴频:实验电路如图2。输入 用模拟乘法器实现鉴频:实验电路如图2 信号U 其载频f =10.7MHz,调制频率F=1KHz, 信号Us其载频fc=10.7MHz,调制频率F=1KHz, 频偏Δf =75KHz,载波幅度U =40mV,观察 频偏Δfm=75KHz,载波幅度Ucp.p=40mV,观察 (t),并测出整个电路的特性曲线. Uo(t),并测出整个电路的特性曲线.即鉴频特 性曲线(本实验用扫频仪进行),扫频仪的使用 性曲线(本实验用扫频仪进行),扫频仪的使用 请参考本章第一节相关内容。图2 请参考本章第一节相关内容。图2给出的是用 模拟乘法器MC1596实现的相位鉴频电路。其中 模拟乘法器MC1596实现的相位鉴频电路。其中 C1与并联谐振回路LC共同组成线性移相网络, 与并联谐振回路LC共同组成线性移相网络, 将调频波的瞬间时频率变化转变为瞬时相位的 变化(即FM波变为FM-PM)。MC1596的作用是 变化(即FM波变为FM-PM)。MC1596的作用是 将FM波与FM-PM波相乘,输出端接集成的差分 FM波与FM-PM波相乘,输出端接集成的差分 放大器将双端输出变为单端输出,再经RC构成 放大器将双端输出变为单端输出,再经RC构成 的LPF输出。 LPF输出。
模拟乘法器应用
模拟乘法器应用一、实验目的1、进一步加深对模拟乘法器原理和功能的理解2、学会应用模拟乘法器实现低电平调幅、同步检波、混频、倍频等功能,并学会这些功能二、实验主要仪器和设备直流稳压电源EM1715、高频信号发生器GFG813、低频信号发生器HC9205、示波器HC6504各一台,万用表一块,实验电路板一块。
三、实验原理1、模拟乘法器的应用模拟乘法器由于其相乘功能,因此能实现频谱迁移,在调制与解调,混频和倍频等方面得到广泛应用,其应用原理如下: (1)双边带调制用乘法器实现双边带调制的原理框图如图1所示,图中A M 为乘法器增益,单位为1/V 。
当输入端分别为加入载波信号 u c = U cm coswt 和调制信号u o = U om cos Ωt 时,输出端得到已调信号的双边带信号,即()()[]t t U tt U u u A u ccom c m C M o ΩΩΩΩ-++===ωωωcos coscos cos 21在图5.6所示的实验电路中,是U Ω = 0,只加载信号,调节MC1496(1)脚和(4)脚间的偏置电路使载波输出最小,则加上U Ω信号后, 就可以实现双边带调制。
(2)普通调幅原理框图如图2所示,其输出()()tt m Uu A tU U t U A u U u A ucaQcmMm QcMMQ cMoωωcos cos cos cos 1(ΩΩΩΩ+=+=+=式中UU mQm aΩ=,为调制度。
在图5.6中,调节点位器Rp1给MC1496的(1)、(4)间提供合适的偏置,就可以实现普通调频。
图2 用乘法器实现普通调幅框图u cU Qu Ωu o(3)混频和倍频用乘法器实现混频的原理框图如图3所示。
当两输入端分别为加入信号电压Us =U sm cosw s t 和本振电压U L = U Lm cosw L t ,则输出电流i o 中将含有(ωL+ωS ) 和 (ωL –ωS)分量,通过中心角频率为ωi =ω1–ωs 的带通滤波器除其中的和频分量,则得到输出中频电压u1=u o =U m cos ω1t用乘法器实现倍频的原理框图如图4所示。
模拟乘法器
3.12模拟乘法器一.实验目的1.了解模拟乘法器的构成和工作原理。
2 .掌握模拟乘法器在运算电路中的应用。
二.实验原理集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法,除法,乘方和开方等模拟运算,同时广泛用于信息传输系统中作为调幅,解调,混频和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有许多单片的集成电路。
此外,模拟乘法器还是一些现代专用模拟集成系统中的重要单元。
1.模拟乘法器的基本特性模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端电路符号如图3-12-1所示。
若输入信号为VyVx,,则输出信号Vo为KVxVyVo=式中,K为乘法器的增益系数或标尺因子,单位为1-V。
根据两个输入电压的不同极性,乘积输出的极性有四种组合,可用图3-12-2所示的工作象限来说明。
若信号VyVx,均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号VyVx,中一个能适应正,负两种极性电压,而另一个只能是单极性电压,为二象限乘法器;若两个输入信号能适应四种极性组合,则称为四象限乘法器。
2.集成模拟乘法器集成模拟乘法器的常见产品有BG314,F1595,F1596,MC1495,MC1496,LM1595,LM1596等。
下面介绍BG314集成模拟乘法器。
BG314内部结构与典型应用电路分别如图3-12-3和图3-12-4所示。
输出电压与输入电压的关系为KVxVyVo=式中,IoxRxRyRcK2=为乘法器的增益系数。
图3-12-1 模拟乘法器的电路符号 图3-12-2 模拟乘法器的工作象限图3-12-3 BG314内部电路(1) 电路特点a. 当反馈电阻Rx 和Ry 足够大时,输出电压Vo 与输入电压Vy Vx ,的乘积成正比,具有接近于理想的相乘作用。
b. 输入电压Vy Vx ,均可取正或负极性,所以是四象限乘法器。
模拟乘法器应用
模拟乘法器应用一、实验目的1、进一步加深对模拟乘法器原理和功能的理解2、学会应用模拟乘法器实现低电平调幅、同步检波、混频、倍频等功能,并学会这些功能二、实验主要仪器和设备直流稳压电源EM1715、高频信号发生器GFG813、低频信号发生器HC9205、示波器HC6504各一台,万用表一块,实验电路板一块。
三、实验原理1、模拟乘法器的应用模拟乘法器由于其相乘功能,因此能实现频谱迁移,在调制与解调,混频和倍频等方面得到广泛应用,其应用原理如下: (1)双边带调制用乘法器实现双边带调制的原理框图如图1所示,图中A M 为乘法器增益,单位为1/V 。
当输入端分别为加入载波信号 u c = U cm coswt 和调制信号u o = U om cos Ωt 时,输出端得到已调信号的双边带信号,即()()[]t t U tt U u u A u ccom c m C M o ΩΩΩΩ-++===ωωωcos coscos cos 21在图5.6所示的实验电路中,是U Ω = 0,只加载信号,调节MC1496(1)脚和(4)脚间的偏置电路使载波输出最小,则加上U Ω信号后, 就可以实现双边带调制。
(2)普通调幅原理框图如图2所示,其输出()()tt m Uu A tU U t U A u U u A ucaQcmMm QcMMQ cMoωωcos cos cos cos 1(ΩΩΩΩ+=+=+=式中UU m Qm a Ω=,为调制度。
在图5.6中,调节点位器Rp1给MC1496的(1)、(4)间提供合适的偏置,就可以实现普通调频。
图2 用乘法器实现普通调幅框图u cU Qu Ωu o(3)混频和倍频用乘法器实现混频的原理框图如图3所示。
当两输入端分别为加入信号电压Us =U sm cosw s t 和本振电压U L = U Lm cosw L t ,则输出电流i o 中将含有(ωL+ωS ) 和 (ωL –ωS)分量,通过中心角频率为ωi =ω1–ωs 的带通滤波器除其中的和频分量,则得到输出中频电压u1=u o =U m cos ω1t用乘法器实现倍频的原理框图如图4所示。
实验二:模拟乘法器应用实验PPT教学课件
图1.模拟乘法器应用电路:振幅调制、 混频等
2020/12/10
5
图2.MC1596内部电路及引脚功能图如下:
2020/12/10
6
基本命题 fx=500KHz , Ux=50mV , fy=10KHz , Uy=0.2V 的 信 号 时 调 电 位 器 RW 工 作 在 不 平 衡 状态时便可产生含载波的正弦调幅信号。
2020/12/10
2
实验仪器
高频信号发生器 QF1055A 一台;
超高频毫伏表 DA22A
一台;
频率特性测试仪 BT-3C 一台;
直流稳压电源 HY1711-2 一台;
数字示波器 TDS210
一台.
2020/12/10
3
实验任务与要求
基本实验的实验线路及说明
实验电路如图1所示。该电路可用来实现普通 调幅、平衡调制、混频、倍频、同步检波等功 能。图中RL为负载电阻,RB是偏置电阻,RE 是负载反馈电阻,RW和R1、R2组成平衡调节 电路,调节RW,可使1、4两脚的直流电位差 为零,从而满足平衡调幅的需要,若1、4脚直 流电位差不为零,则1、4输入包括调制信号和 20直20/12/流10 分量两部分,此时可实现普通调幅波。 4
*实验时可只用一个输入信号,然后将x和y通 道短接
2020/12/10
9
PPT精品课件
谢谢观看
Thank You For Watching
10
c.保持ux(t)不变,使Uy由小到大变化,观察uo(t)的变化, 记下变化结果,并测出最大不失真的uo(t)所对应的 Uy的大小。
2d02.0保/12/1持0 ux(t)不变,fy变化时uo(t)变化情况如何?
8
通信电子线路实验:实验六 模拟乘法器
5PT3
结论
同步检波器也可用于解调普通的Am波。 与二极管包络检波器比较,同步检波器电路较复杂。当 与已调波的载波不同频不同相,将会产生解调信号失真。
(5) 1°将接于5PT2的示波器探头接于5PT3,调节低频信号 发生器输出,增大ma=100%,记录ma=100%的调幅波 波形与抑制载波波形作比较,指出其区别。
(3)1°观察记录二极管包络检波器的输出波形(7PT) 2°观察记录二极管包络检波器的解调输出波形与已调 波(5PT3)包络的关系。 3°将接5PT3的示波器探头改接5PT2,观察记录包络检 波器的解调输出波形与原调制信号的差异。
7PT3 7PT3
5PT2 5PT3
结论:二极管包络检波器可解调ma<1的普通调幅波
对3°,4°实验结果进行分析 写出结论。
(2) 抑制载波调幅波的解调。
1°同集成模拟乘法器构成的同步解调器进行解调将5K3连通 2-3端,示波器一通道接5PT2,另一通道6PT1,观察,记 录解调输出(6PT1)波形与原解调制信号(5PT2)波形 的异同。将接5PT2的示波器输出探头改接5PT3,观察记 录解调输出波形与已调波包迹的关系。图如下:
3 普通调幅波的产生及其解调
(4)1°将5K3连通2-3端,示波器一通道探头接6PT1另一 通道探头接5PT2,观察记录同步检波器解调输出波 形与原调制信号波形的异同。
2°将接5PT的示波器探头改接5PT3,观察记录同步检 波器解调输出波形与原调制信号包络的关系。
6PT1
6PT1
结论 (下页) 5PT2
VΩ vAM VDSB
1°普通AM波的包络函数 αVΩ(t)VDSB波的 包络函数α∣ VΩ(t)∣
2° VΩ=0 普通AM波的振幅为原载波
实验七-集成电路模拟乘法器的应用
实验报告实验名称 集成电路模拟乘法器的应用成绩姓名 马晓恬 专业班级 电信081 实验日期 学号指导教师刘富强提交报告日期12.19一、实验目的1、了解模拟乘法器(MC1496)的工作原理,掌握其调整与特性参数的测量方法。
2、掌握利用乘法器实现混频,平衡调幅,同步检波,鉴频等几种频率变换电路的原理及方法。
二、实验内容1、 改变模拟乘法器外部电路,实现混频器电路,观察输出点波形,并测量输出频率。
2、 改变模拟乘法器外部电路,实现平衡调幅电路,观察输出点波形。
3、 改变模拟乘法器外部电路,实现同步检波电路,观察输出点波形。
4、 改变模拟乘法器外部电路,实现鉴频电路,观察输出点波形。
三、实验仪器1、双踪示波器一台2、频率特性扫频仪(选项)一台四、实验原理及电路1、集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496是双平衡四象限模拟乘法器。
其内部电路和引脚如图7-1(a)(b)所示。
其中1VT 、2VT 与3VT 、4VT 组成双差分放大器,5VT 、6VT 组成的单差分放大器用以激励1VT ~4VT 。
7VT 、8VT 及其偏置电路组成差分放大器5VT 、6VT 的恒流源。
引脚8与10接输入电压U X ,1与4接另一输入电压U y ,输出电压U 0从引脚6与12输出。
引脚2与3 外接电阻R E ,对差分放大器5VT 、6VT 产生串联电流负反馈,以扩展输入电压U y 的线性动态范围。
高频实验模拟乘法器实验
实验课程名称:_高频电子线路(a)1496内部电路 (b)1496引脚图图2 MC1496的内部电路及电路模块引脚图DSB电路的设计与仿真调幅就是用低频调制信号去控制高频振荡(载波)的幅度,使高频振荡的振幅按调制信号的规律变化。
把调制信号和载波同时加到一个非线性元件上(例如晶体二极管或晶体三体管经过非线性变换电路,就可以产生新的频率成分,再利用一定带宽的谐振回路选出所需的频率成分就可实现调幅。
幅度调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双)信号,抑制载波和一个边带的单边带(SSB)信号。
利用模拟乘法器相乘原理实现调幅是很方便的,工作原理如下:在乘法器的一个输入端输入载波信号另一输入端输入调制信号若要输出普通调幅信号,只要调节外部电路的平衡电位器,使输出信号中有载波即可。
输出信号表达式为:普通振幅调制电路的原理框图与抑制载波双边带振幅调制电路的原理框图如图图3图4 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc ⑩端,C3为高频旁路电容,使⑧交流接地。
调制信号经高频耦合电容C2输入到U Ω④端,C5为高频旁路电容,使①交流接地。
调制信号从⑿脚单端输出。
电路采用双电源供电,所以⑤脚接Rb 到地。
因此,改变R 5也可以调节大小,即:Ω+--=≈5007.0550R V u I I EE Ω--=5007.055I V R EE图5 1496构成的振幅调制电路电原理图图8实验测得DSB过零点信号波形如图9所示。
为曲线。
实验测得DSB过零点信号波形如图示。
为M曲线。
图9同步检波器电路设计与仿真图12按同步检波工作原理加入信号,得实验数据如图12所示。
)混频器电路设计与仿真用模拟乘法器实现混频,就是在端和端分别加上两个不同频率的信号,两信号U U图14。
模拟乘法器实验
模拟乘法器实验模拟乘法器的应用--低电平调幅姓名:学号:实验台号:一、实验目的1、掌握集成模拟乘法器的工作原理及其特点2.进一步掌握集成模拟乘法器(mc1596/1496)实现调幅、同步检测、混频、倍频的电路调整和测试方法二、实验仪器低频信号发生器高频信号发生器频率计调节功率通用指示器三、实验原理1.Mc1496/1596集成模拟乘法器集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的ssb乘法检波器、am调制解调器、fm解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。
mc1496的内部电路继引脚排列如图所示Mc1496模拟乘法器仅适用于低频场合,一般在1MHz以下工作。
双差分对模拟乘法器mc1496/1596的差分输出电流为i?(i5?i6)th(12vt)?2.2ryth(?12vt)mc1595是式中,错误!未找到引用源。
为乘法器的乘法系数。
mc1496/1596使用时,vt1偏置电压施加在VT6的底座上。
2.乘法器振幅调制原理通道x的两个输入端子的引脚8和10的直流电位为6V,可以用作载波输入通道;Y通道两个输入端子的引脚1和引脚4之间有一个外部调零电路;输出端子6和12引脚可与调谐到载波频率的带通滤波器外部连接;外部y通道负反馈电阻器R8连接在引脚2和3之间。
如果实现普通振幅调制,可以调节10KΩ电位计RP1使引脚1的电位高于引脚4的电位。
错误未找到引用源。
,调制信号错误!未找到引用源。
直流电压错误!未找到引用源。
叠加后输入y通道,调整电位器改变误差!未找到引用源。
改变调制指数Ma;如果实现DSB调制,10KΩ电位计RP1使引脚1和引脚4之间的直流等电位,即Y通道的输入信号仅为交流调制信号。
为了减少流经电位计的电流,便于精确调零,可以增加两个750Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.12模拟乘法器
一.实验目的
1. 了解模拟乘法器的构成和工作原理。
2. 掌握模拟乘法器在运算电路中的运用。
二.实验原理
集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
1. 模拟乘法器的基本特性
模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图3-12-1所示。
u x
u y
o
图3-12-1 模拟乘法器的电路符号
若输入信号为x u , y u ,则输出信号o u 为:
o u =k y u x u
式中: k 为乘法器的增益系数或标尺因子,单位为V 1
.
根据两个输入电压的不同极性,乘法输出的极性有四种组合,用图3-12-2所示的工作象限来说明。
图 3-12-2 模拟乘法器的工作象限
若信号x u 、y u 均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号x u 、y u 中一个能适应正、负两种极性电压,而另一个只能适应单极性电压,则为二象限乘法器;若两个输入信号能适应四种极性组合,称为四象限乘法器。
2. 集成模拟乘法器
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍BG314集成模拟乘法器。
(1) BG314内部结构如图3-12-3所示,外部电路如图3-12-4所示:
1
8
43
7
6
5142+
9
121110
13
7
图3-12-3 BG314内部电路
+V CC
图3-12-4 外接电路
输出电压o u =k x u y u 式中 k=
y
x ox c
R R I R 2为乘法器的增益系数。
(2) 内部结构分析
a 当反馈电阻x R 和y R 足够大时,输出电压o u 与输入电压x u 、y u 的乘积
成正比,具有接近于理想的相乘作用; b 输入电压x u 、y u 均可取正或负极性,所以是四象限乘法器;
c 增益系数k 由电路参数决定,可通过调整电流源电流ox I 进行调节,
BG314增益系数的典型值为k=0.1V 1
;
d k 与温度无关,因此温度稳定性较好。
当然,乘法器的输入信号动态范围还是有限的。
特别是当输入信号幅度增大而负反馈电阻x R 、y R 又不够大时,同时考虑到晶体管的电压——电流关系并不是完全理想的指数规律特性因素,输入信号动态范围受到限制。
理论上讲,允许的输入信号电压的极限值为:max i u <ox I x R
若取ox I =1mA, x R =10kΩ,则输入信号动电压的极限值为10V.
(3) 外部电路参数确定
a . 恒流源偏置电阻R 3和R 13的估算
为了减小功耗,并保证其内部晶体管工作正常,恒流源电流一般取在0.5~2 mA,取I ox =i 3R =1mA ,则R 3= R 13=
3
7.0R EE i V
V --500Ω
b. 反馈电阻x R 、y R 的估算 为使乘法器有满意的线性,应使x R 、y R 满足下列条件,即
x i ≤
32ox I ; y i ≤3
2
oy I 前已选定ox I =oy I =1mA ,再要求x u 和y u 的动态范围
max x u =max y u =±5V ,则 x R =y R =
Iox Ux 3
2
max
c. 负载电阻R c 的估算
取k=0.1V 1-,则根据k=
y
x ox c
R R I R 2可求R c .
d. R 1的估算
由图3-12-3可知,当m ax x x u u =时,x 通道差分对管B
A V V 11和的集
电极电压应比max x u 高出2~3V ,以保证输出级晶体管工作在放大区,则有:
ox
x cc I V V u V R 2)
7.03(max 1++-=
3. 乘除运算电路
利用模拟乘法器与集成运放相配合,可组成平方、除法、平方根等运算电路。
(1)平方运算 将相同的信号输入模拟乘法器的两个输入端,就构成了平方
运算电路,如图3-12-5所示,2
I o ku u =
(2
u o
图3-12-5 平方运算电路
)除法运算
图3-12-6为反相输入除法运算电路。
U i2>0
图3-12-6 除法电路
u i1
利用理想运放特性可得:
2
1122
1212
121110i i o i o o o i u u kR R u u ku u i i R u i R u i -
===+=
=联立以上四式可得:
上式表明 21i i o u u u 除以与的商成正比。
在图3-12-6中还可看出,为了保证运算放大器处于负反馈工作状态,12i i u u 必须大于零,而则可正可负,所以是
二象限除法器。
(3)平方根电路
u o
图3-12-7 平方根运算电路
u i1
图3-12-7所示为平方根运算电路,k
u u i
o -
=
,从上式可以看出,只有i u 为负值时,才能实现开方运算。
若要对正输入信号开平方,可以加入反
相器等环节。
三.实验任务
1. 预习要求
(1) 了解集成模拟乘法器的基本结构及其内部结构 (2) 熟悉BG314外部电路参数的估算方法 2. 设计任务
(1) 试
设
计
一
个
2
i
o u u =的电路,其中
)(10514.3sin 3sin 3V t t U u im i ⨯⨯=Ω=
已知
-5V ≤V u x 5+≤V u V y 55+≤≤-
k=0.1V 1-
(2) 设计一个能实现加、减、乘、除四则运算的电路
四.实验报告要求
同实验2 五.思考题
1.用模拟乘法器如何实现开立方电路? 六.仪器与器件
仪器:同实验2 器件:BG314 μA741 电阻若干。