2015北京高考数学导数模拟题真题汇编
2015年高考数学真题-北京卷(文)
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试数学(文)(北京卷)一、选择题(每小题5分,共40分)1.(5分)若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2}B.{x|﹣5<x<2}C.{x|﹣3<x<3}D.{x|﹣5<x<3}2.(5分)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x﹣1)2+(y﹣1)2=23.(5分)下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos x C.y=|lnx|D.y=2﹣x4.(5分)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1800青年教师1600合计4300A.90B.100C.180D.3005.(5分)执行如图所示的程序框图,输出的k值为()A.3B.4C.5D.66.(5分)设,是非零向量,“=||||”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B.C.D.28.(5分)某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程,在这段时间内,该车每100千米平均耗油量为()A.6升B.8升C.10升D.12升二、填空题9.(5分)复数i(1+i)的实部为.5三个数中最大数的是.10.(5分)2﹣3,,log211.(5分)在△ABC中,a=3,b=,∠A=,则∠B=.12.(5分)已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=.13.(5分)如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=2x+3y的最大值为.14.(5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.三、解答题(共80分)15.(13分)已知函数f (x )=sin x ﹣2sin2.(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.16.(13分)已知等差数列{a n }满足a 1+a 2=10,a 4﹣a 3=2(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?17.(13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?18.(14分)如图,在三棱锥V ﹣ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =,O ,M 分别为AB ,VA 的中点.(1)求证:VB ∥平面MOC ;(2)求证:平面MOC ⊥平面VAB (3)求三棱锥V ﹣ABC 的体积.19.(13分)设函数f(x)=﹣klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.20.(14分)已知椭圆C:x2+3y2=3,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直线DE的位置关系,并说明理由.。
2015高考数学(文)质量检测 函数、导数及其应用 (北师大版)
2015高考数学(文)质量检测 函数、导数及其应用(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·日照模拟)已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x∈(0,+∞),都有f ⎝ ⎛⎭⎪⎫fx -1x =2,则f ⎝ ⎛⎭⎪⎫15的值是( ) A. 5 B. 6 C. 7D. 8解析:因为f (x )是定义在(0,+∞)上的单调函数,且f ⎝ ⎛⎭⎪⎫f x -1x =2对任意x ∈(0,+∞)都成立,所以f (x )-1x =c >0(c 为常数),即f (x )=c +1x,且f (c )=2,故2=c +1c ,解得c =1,故f (x )=1+1x ,所以f ⎝ ⎛⎭⎪⎫15=1+5=6. 答案:B 2.若f (x )=2lg (1-x ),则f (x )的定义域是( )A .(1,+∞)B .(0,1)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(-∞,0)∪(0,1)解析:要使函数有意义,则⎩⎨⎧1-x >0,1-x ≠1,解得x <1且x ≠0,故函数定义域是(-∞,0)∪(0,1).答案:D 3.若⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则实数a =( )A .2B .3C .4D .6解析:⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x ) =a 2+ln a -1=3+ln 2,又a >1,所以a =2.答案:A4.(2014·江西模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( )A. ⎝ ⎛⎭⎪⎫13,23B. ⎣⎢⎡⎭⎪⎫13,23C. ⎝ ⎛⎭⎪⎫12,23 D. ⎣⎢⎡⎭⎪⎫12,23 解析:由f (2x -1)<f (13),得f (|2x -1|)<f (13),∵f (x )在[0,+∞)上单调递增,∴|2x -1|<13,即-13<2x -1<13,解得13<x <23,故选A.答案:A5.已知a >b ,函数f (x )=(x -a )(x -b )的图象如下图所示,则函数g (x )=log a (x +b )的图象可能为( )解析:由图知a >1,排除A ,D ;又0<b <1,排除C ,故选B. 答案:B6.函数f (x )=x 2+(1-a 2)x -ax 是奇函数,且在(0,+∞)上单调递增,则实数a =( )A .0B .-1C .1D .±1解析:解法一:由函数f (x )是奇函数,得f (-x )=(-x )2+(1-a 2)(-x )-a -x =-f (x )=-x 2+(1-a 2)x -a x 对一切实数R 恒成立,即x 2-(1-a 2)x -a-x =x 2+(1-a 2)x -a-x 对一切实数R 恒成立,所以-(1-a 2)x =(1-a 2)x 对一切实数R恒成立,故1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.解法二:f (x )=x -ax +(1-a 2),若函数f (x )是奇函数,则1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.答案:C7.若x ∈(e -1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x ,则( )A .c >b >aB .b >a >cC .a >b >cD .b >c >a解析:因为x ∈(e -1,1),所以-1<a <0,1<b <2,1e <c <1,故b >c >a .答案:D8.(2013年武汉调研测试)某汽车销售公司在A 、B 两地销售同一种品牌的车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆这种品牌车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:依题意,设在A 地销售x 辆汽车,则在B 地销售(16-x )辆汽车, ∴总利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝ ⎛⎭⎪⎫x -2122+0.1×2124+32,∵x ∈[0,16]且x ∈N ,∴当x =10辆或11辆时,总利润y max =43万元,故选C.答案:C9.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( )A .b <1B .b >1C .0<b <1D .b <12解析:f (x )在(0,1)内有极小值,则f ′(x )=2x -2b =0在(0,1)内有解.∴b ∈(0,1).答案:C10.已知函数f (x )=⎝ ⎛⎭⎪⎫12x -sin x ,则f (x )在[0,2π]上的零点个数为A .1B .2C .3D .4解析:画出y =sin x 和y =⎝ ⎛⎭⎪⎫12x 在同一坐标系下[0,2π)区间内的图象,可知有两个交点,故选B.答案:B11.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:由f (2-x )=f (x )得f (1-x )=f (x +1),即函数f (x )的对称轴为x =1,结合图形可知f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (0)=f (2),故选C.答案:C12.(2013年福建六校联考)设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 012)>e 2 012f (0)B .f (2)<e 2f (0),f (2 012)<e 2 012f (0)C .f (2)<e 2f (0),f (2 012)>e 2 012f (0)D .f (2)>e 2f (0),f (2 012)<e 2 012f (0)解析:解法一 令f (x )=|x |+2,所以f (2)=4,f (0)=2,f (2 012)=2 014,所以f (2)<e 2f (0),f (2 012)<e 2 012f (0).解法二 因为f ′(x )<f (x ),所以f ′(x )e x <f (x )e x ,即f ′(x )·e x <f (x )·e x ,F ′(x )=f ′(x )·e x -f (x )·e xe 2x<0,所以F (x )=f (x )e x 在R 上为减函数,所以f (2 012)e 2 012<f (2)e 2<f (0)e 0,所以选择B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =______.解析:由3x -a >0得x >a 3.因此,函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫a 3,+∞,所以a 3=23,a =2.答案:214.(2013年福建六校联考)已知奇函数f (x )满足f (x +2)=-f (x ),且当x ∈(0,1)时,f (x )=2x,则f ⎝ ⎛⎭⎪⎫72的值为________.解析:因为f (x +2)=-f (x ),所以f (x )的周期为4,所以f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=- 2.答案:- 215.函数y =4x -1+23-x 单调递减区间为________.解析:易知x ∈⎣⎢⎡⎦⎥⎤14,3,y >0.∵y 与y 2有相同的单调区间,而y 2=11+4-4x 2+13x -3,∴原函数递减区间为⎣⎢⎡⎦⎥⎤138,3.答案:⎣⎢⎡⎦⎥⎤138,316.若函数f (x )=⎩⎨⎧ax +1, x ≥1,x 2-1x 3-1,x <1在点x =1处连续,则实数a =________.解析:x 2-1x 3-1=x +1x 2+x +1,则有f (1)=a +1=1+11+1+1,因此a =-13.答案:-13三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )上点P (1,f (1))处的切线方程为y =3x +1.(1)若y =f (x )在x =-2时有极值,求函数y =f (x )的解析式; (2)求函数y =f (x )在区间[-3,1]上的最大值.解:(1)由f (x )=x 3+ax 2+bx +c 求导数,得f ′(x )=3x 2+2ax +b ,过y =f (x )上点P (1,f (1))的切线方程为:y -f (1)=f ′(1)(x -1),即y -(a +b +c +1)=(3+2a +b )(x -1).而过y =f (x )上P (1,f (1))的切线方程为y =3x +1,故⎩⎨⎧ 3+2a +b =3,a +b +c -2=1,即⎩⎨⎧2a +b =0, ①a +b +c =3. ② ∵y =f (x )在x =-2时有极值,故f ′(-2)=0, ∴-4a +b =-12. ③由①②③联立,解得a =2,b =-4,c =5, ∴f (x )=x 3+2x 2-4x +5.(2)f ′(x )=3x 2+2ax +b =3x 2+4x -4=(3x -2)(x +2).f (x )极大值f (1)=13+2×1-4×1+5=4,∴f (x )在[-3,1]上最大值为13. 18.已知函数f (x )=a -1|2x -b |是偶函数,a 为实常数. (1)求b 的值;(2)当a =1时,是否存在n >m >0,使得函数y =f (x )在区间[m ,n ]上的函数值组成的集合也是[m ,n ],若存在,求出m ,n 的值,否则,说明理由.解:(1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠b 2. ∵f (x )是偶函数,其定义域关于原点对称, ∴b =0.(2)a =1时,f (x )=1-12|x |, x >0时,f (x )=1-12x ,∵f (x )=1-12x 在[m ,n ](m >0)上是增函数, ∴f (x )在[m ,n ]上的值域为⎣⎢⎡⎦⎥⎤1-12m ,1-12n .又f (x )在[m ,n ]上的值域为[m ,n ],∴⎩⎪⎨⎪⎧1-12m =m ,1-12n =n ,即⎩⎨⎧2m 2-2m +1=0,2n 2-2n +1=0. ∴m ,n 为方程2x 2-2x +1=0的两正根,而方程2x 2-2x +1=0无实数根, ∴满足条件的m ,n 不存在.19.(2012年北京海淀期末)已知函数f (x )=e x (x 2+ax -a ),其中a 是常数. (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若存在实数k ,使得关于x 的方程f (x )=k 在[0,+∞)上有两个不相等的实数根,求k 的取值范围.解:(1)由f (x )=e x (x 2+ax -a )可得f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )是[0,+∞)上的增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根;当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如下:由上表可知函数f (x )在[0,+∞)上的极小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥e -a (-a )>-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围必须是⎝ ⎛⎦⎥⎤a +4e a +2,-a .20.定义在D 上的函数f (x ),如果满足:对于任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x; (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 解:(1)a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x ,x ∈(-∞,0).令t =⎝ ⎛⎭⎪⎫12x ,则t ∈(1,+∞).∵g (t )=1+t +t 2在(1,+∞)上为增函数, ∴g (t )>g (1)=3.∴f (x )在(-∞,0)上的值域为(3,+∞),故对于任意x ∈(-∞,0),不存在常数M >0,都有|f (x )|≤M 成立,即函数f (x )在(-∞,0)上不是有界函数.(2)若f (x )在[0,+∞)上是以3为上界的有界函数,则|f (x )|≤3在[0,+∞)上恒成立,令t =⎝ ⎛⎭⎪⎫12x ,则t ∈(0,1].∴|1+at +t 2|≤3,即-4≤at +t 2≤2在(0,1]上恒成立, ∴-⎝ ⎛⎭⎪⎫t +4t ≤a ≤2t -t 在(0,1]上恒成立.又0<t ≤1时,-⎝ ⎛⎭⎪⎫t +4t ≤-5,2t -t ≥1,∴-5≤a ≤1,即a 的取值范围是[-5,1]. 21.已知函数f (x )=12x 2+a ln x ,a ∈R . (1)若a =-1,求函数f (x )的单调递增区间; (2)当x >1时,f (x )>ln x 恒成立,求a 的取值范围. 解:(1)若a =-1,f ′(x )=x -1x (x >0), 由f ′(x )>0得x 2-1x >0,又x >0,解得x >1,所以函数f (x )的单调递增区间为(1,+∞). (2)依题意得f (x )-ln x >0,即12x 2+a ln x -ln x >0, ∴(a -1)ln x >-12x 2,∵x >1,∴ln x >0,∴a -1>-12x 2ln x , ∴a -1>⎝ ⎛⎭⎪⎪⎫-12x 2ln x max ,设g (x )=-12x 2ln x ,g ′(x )=-x ln x +12x(ln x )2,令g ′(x )=0,解得x =e 12,当1<x <e 12时,g ′(x )>0,g (x )在⎝ ⎛⎭⎪⎫1,e 12上单调递增;当x >e 12时,g ′(x )<0,g (x )在⎝ ⎛⎭⎪⎫e 12,+∞上单调递减;∴g (x )max =g ⎝ ⎛⎭⎪⎫e 12=-e ,∴a -1>-e ,即a >1-e.22.已知a ∈R ,函数f (x )=ln (x +1)-x 2+ax +2.(1)若函数f (x )在[1,+∞)上为减函数,求实数a 的取值范围;(2)令a =-1,b ∈R ,已知函数g (x )=b +2bx -x 2.若对任意x 1∈(-1,+∞),总存在x 2∈[-1,+∞),使得f (x 1)=g (x 2)成立,求实数b 的取值范围.解:(1)函数f (x )在[1,+∞)上为减函数⇒f ′(x )=1x +1-2x +a ≤0在[1,+∞)上恒成立⇒a ≤2x -1x +1在[1,+∞)上恒成立, 令h (x )=2x -1x +1,由h ′(x )>0⇒h (x )在[1,+∞)上为增函数⇒h (x )min =h (1)=32,所以a ≤32; (2)若对任意x 1∈(-1,+∞),总存在x 2∈[-1,+∞),使得f (x 1)=g (x 2)成立,则函数f (x )在(-1,+∞)上的值域是函数g (x )在[-1,+∞)上的值域的子集.对于函数f (x ),因为a =-1,所以f (x )=ln (x +1)-x 2-x +2,定义域(-1,+∞).f ′(x )=1x +1-2x -1=-2x 2-3x x +1.第 11 页 共 11 页 令f ′(x )=0得x 3=0,x 4=-32(舍去).当x 变化时,f (x )与f ′(x )的变化情况如下表:所以f (x )max 对于函数g (x )=-x 2+2bx +b =-(x -b )2+b +b 2,①当b ≤-1时,g (x )的最大值为g (-1)=-1-b ⇒g (x )值域为(-∞,-1-b ],由-1-b ≥2⇒b ≤-3;②当b >-1时,g (x )的最大值为g (b )=b 2+b ⇒g (x )值域为(-∞,b 2+b ]; 由b 2+b ≥2⇒b ≥1或b ≤-2(舍去),综上所述,b 的取值范围是(-∞,-3]∪[1,+∞).。
15年高考真题——理科数学(北京卷)
2015年普通高等学校招生全国统一考试(北京)卷一.选择题:共8小题,每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.复数()2i i -=( )(A )12i + (B )12i - (C )12i -+ (D )12i -- 2.若,x y 满足010x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为( )(A )0 (B )1 (C )32 (D )2 3.执行如图所示的程序框图,输出的结果为( ) (A )()2,2- (B )()4,0- (C )()4,4- (D )()0,8-4.设,αβ是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )(A)2+ (B)4+(C)2+ (D )56.设{}n a 是等差数列,下列结论中正确的是( ) (A )若120a a +>,则230a a +> (B )若130a a +<,则120a a +<(C )若120a a <<,则2a > (D )若10a <,则()()21230a a a a -->7.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x ≥+的解集是( )(A ){}|10x x -<≤ (B ){}|11x x -≤≤(C ){}|11x x -<≤ (D ){}|12x x -<≤8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同俯视图侧(左)视图速度下的燃油效率情况。
下列叙述中正确的是( )(A )消耗1升汽油,乙车最多可行驶5千米(B )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C )甲车以80千米/小时的速度行驶1小时,消耗10升汽油(D )某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油二.填空题:共6题,每小题5分,共30分。
北京高考数学导数题
北京高考数学导数题北京高考数学导数题一、题目背景和意义北京市高考是全国各地考生争先恐后的焦点,其中数学科目一直备受关注。
在这个充满竞争的考场上,导数是一道常见而又重要的题目。
导数作为微积分的基础概念之一,具有深远的理论意义和实际应用价值。
解题数量和质量是考查学生对导数的理解和运用能力的重要指标。
二、题目描述假定某城市的人口总数P(单位:万人)与时间t(单位:年)的关系满足函数表达式为P(t)=3t^3+5t^2-t+1。
1. 求在最近的10年(即t的取值范围为[0,10])内,该城市人口的平均增长率。
2. 若该城市人口的增长速度最大值的时刻为t=3年,求此时的人口总数。
三、题目分析和解答1. 求在最近的10年内,该城市人口的平均增长率。
根据题意和函数表达式P(t)=3t^3+5t^2-t+1,我们需要求在[0,10]范围内函数P(t)的平均增长率。
首先,计算t=0时刻和t=10时刻的人口总数,分别代入函数表达式得到P(0)=1和P(10)=3311。
其次,计算[0,10]范围内人口总数的变化量,即P(10)-P(0)=3310。
最后,计算平均增长率,即(3310/10) = 331(单位:人/年)。
因此,在最近的10年内,该城市人口的平均增长率为331人/年。
2. 若该城市人口的增长速度最大值的时刻为t=3年,求此时的人口总数。
根据题意和函数表达式P(t)=3t^3+5t^2-t+1,我们需要求在t=3时刻的人口总数。
首先,代入t=3到函数表达式中得到 P(3) = 102。
因此,在t=3时刻,该城市的人口总数为102万人。
四、题目总结本题通过考查导数的相关概念和运用,旨在培养考生对数学知识的理解和应用能力。
通过计算平均增长率和最大增长速度对应的人口总数,考察学生的计算和推理能力。
同时,这道题目也暗示了人口增长问题在城市规划和社会预测中的重要性。
要成功解答本题,学生需要熟练掌握导数的求解方法和相关定理,并能够将其应用到实际问题中。
2015年北京市高考数学试卷(理科)答案与解析
2015年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(每小题 5分,共40分)1. ( 5 分)(2015?北京)复数 i (2- i )=( )A . 1+2iB . 1 - 2iC . - 1+2iD . - 1 - 2i考点:复数代数形式的乘除运算. 专题:数系的扩充和复数. 分析:利用复数的运算法则解答.解答:解:原式=2i - i 2=2i -( - 1) =1+2i ;故选:A .点评:本题考查了复数的运算;关键是熟记运算法则•注意i 2= - 1.垃-2.( 5分)(2015?北京)若x , y 满足-x+y<^L ,贝U z=x+2y 的最大值为()A . 0B . 1C . JD . 2考点:简单线性规划. 专题:不等式的解法及应用.分析:作出题中不等式组表示的平面区域,再将目标函数z=x+2y 对应的直线进行平移,即可求出z 取得最大值. 解答:*,*),目标函数z=x+2y ,将直线z=x+2y 进行平移,当I 经过点A 时,目标函数z 达到最大值• • • z 最大值=故选:C .解:作出不等式组K -” x+y<l 表示的平面区域,Co得到如图的三角形及其内部阴影部分,由X- y=0解得A点评:本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.3. ( 5分)(2015?北京)执行如图所示的程序框图,输出的结果为( )/輸出0』/| (S)A . ( - 2, 2) B. ( - 4, 0) C. ( - 4, - 4) D. (0,- 8)考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x, y, k的值,当k=3时满足条件k為, 退出循环,输出(-4,0).解答:解:模拟执行程序框图,可得x=1 , y=1 , k=0s=0, i=2x=0 , y=2 , k=1不满足条件k為,s=- 2, i=2 , x= - 2, y=2 , k=2不满足条件k為,s= - 4, i=0 , x= - 4, y=0, k=3满足条件k為,退出循环,输出(-4, 0),故选:B.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的x, y, k的值是解题的关键,属于基础题.4. (5分)(2015?北京)设a, B是两个不同的平面,m是直线且m? a, m H B是“a B” 的()A .充分而不必要条件B .必要而不充分条件C .充分不要条件D .既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:m// B并得不到all B,根据面面平行的判定定理,只有a内的两相交直线都平行于B,而a// B,并且m? a,显然能得到m// B,这样即可找出正确选项.解答:解:m? a, m// B得不到a// B,因为a , B可能相交,只要m和a, B的交线平行即可得到m // B;a// B, m? a, ••• m 和B没有公共点,m // B,即all B能得到m// B;••• m//B是“a B的必要不充分条件.故选B.点评:考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5. (5分)(2015?北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A . 2+J 二B . 4+ .二C . 2+2 .口D . 5考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图可判断直观图为:A丄面ABC , AC=AB , E为BC中点,EA=2 , EA=EB=1 , OA=1,: BC 丄面AEO , A C W5, OE=V^判断几何体的各个面的特点,计算边长,求解面积.解答:解:根据三视图可判断直观图为:OA 丄面ABC , AC=AB , E 为BC 中点,EA=2, EC=EB=1 , OA=1 ,•••可得 AE 丄 BC , BC 丄 OA , 运用直线平面的垂直得出:BC 丄面AEO , AC= 口,OE=-xVs •2 2考点:等差数列的性质.专题:计算题;等差数列与等比数列. 分析:对选项分别进行判断,即可得出结论.解答:解:若a i +a 2>0,则2a i +d > 0, a 2+a 3=2a i +3d >2d , d >0时,结论成立,即A 不正确; 若 a i +a 2< 0,贝U2a i +d <0, a 2+a 3=2a i +3d < 2d , d < 0 时,结论成立,即 B 不正确; {a n }是等差数列,0<a i < a 2, 2a 2=a i +a 3>2 - . ., • a 2> . .「即卩 C 正确; 若 a i < 0,则(a 2- a i ) (a 2 - a 3) = - d 2< 0, 即卩 D 不正确.故选:C .点评:本题考查等差数列的通项,考查学生的计算能力,比较基础.7. ( 5分)(2015?北京)如图,函数f (x )的图象为折线 ACB ,则不等式f (x ) ^g 2 (x+1 ) 的解集是()•- S A ABC =「2X?=2 , S A OAC =S A OAB 2S A BCO =-2x =;故该三棱锥的表面积是2丨:,",点评:本题考查了空间几何体的三视图的运用, 图,得出几何体的性质.空间想象能力,计算能力,关键是恢复直观6. ( 5分)(2015?北京)设{a n }是等差数列, A .若 a i +a 2>0,贝U a 2+a 3>0若若 0v a i < a 2,贝U a 2F 列结论中正确的是( )B .若 a i +a 3< 0,则若 a i +a 2< 0,D .若 a i < 0 ,则(a 2 - a i ) (a 2 - a 3)> 0/'-1or-_2—rA . {x|—1v xO} B. {x| —1 纟<1} C. {x|—1 v x W} D. {x| - 1v x€}考点:指、对数不等式的解法.专题:不等式的解法及应用.分析:在已知坐标系内作出y=log 2(x+1)的图象,利用数形结合得到不等式的解集. 解答:解:由已知f (x)的图象,在此坐标系内作出y=log2 (x+1)的图象,如图满足不等式f (x) ^og2 (x+1 )的x范围是-1 v x<;所以不等式f (x) ^og2 (x+1) 的解集是{x| - 1 v x<};故选C.点评:本题考查了数形结合求不等式的解集;用到了图象的平移.& ( 5分)(2015?北京)汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油考点:函数的图象与图象变化.专题:创新题型;函数的性质及应用.分析:根据汽车的燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.解答:解:对于选项A,消耗1升汽油,乙车行驶的距离比5小的很多,故A错误;对于选项B,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B错误,对于选项C,甲车以80千米/小时的速度行驶1小时,里程为80千米,燃油效率为10,故消耗8升汽油,故C错误,对于选项D,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.点评:本题考查了函数图象的识别,关键掌握题意,属于基础题.二、填空题(每小题5分,共30分)9. (5分)(2015?北京)在(2+x)5的展开式中,x3的系数为40 (用数字作答)考点:二项式定理的应用.专题:二项式定理.分析:写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.解答:解:(2+x)5的展开式的通项公式为:Tr+仁C^25 r x r,J所求x3的系数为:eg2,=40.故答案为:40.点评:本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10. (5分)(2015?北京)已知双曲线王㊁-y2=1 (a> 0)的一条渐近线为V3x+y=0,则a=_Vs3 —考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用双曲线的渐近线方程为y= ±,结合条件可得丄=.一;,即可得到a的值.a a解答:2解:双曲线二7 —y2=1的渐近线方程为y= ±,J 3由题意可得一=•、: '■;,解得a= ■3故答案为::;.3点评:本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.■"l-!-11. (5分)(2015?北京)在极坐标系中,点(2,二~)到直线P(cos sin 0)=6的距离J为1 .考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:化为直角坐标,再利用点到直线的距离公式距离公式即可得出.解答:解:点P (2,)化为P -.31直线p (cos0+J5sin 0)=6 化为_20.11+3 - E|•••点P到直线的距离d= =1.^1+ (V3)2故答案为:1.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12. (5 分)(2015?北京)在△ ABC 中,a=4, b=5, c=6,则斗罟■ = 1 .sinC考点:余弦定理;二倍角的正弦;正弦定理.专题:计算题;解三角形.分析:利用余弦定理求出cosC, cosA,即可得出结论.解答:解:•/△ ABC 中,a=4, b=5, c=6 ,• sinC亍,sinA=(,si nC故答案为:1.点评:本题考查余弦定理,考查学生的计算能力,比较基础.13. (5分)(2015 ?北京)在△ ABC中,点M, N满足八「=2旷,m,若Vx^+y厂, 贝卩x= , y= -—.—2- ------------考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析:首先利用向量的三角形法则,将所求用向量[了表示,然后利用平面向量基本定理得到x , y 值.解答:解:由已知得到r'.-".:':'戶二苜二厂:〜厂-二:厂- << 丄对一二广;由平面向量基本定理,得到x=—, y=「3 I 1故答案为:丄一 _.2 6点评:本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x , y )使,向量等式成立.① 若a=1,则f (x )的最小值为 - 1;② 若f (x )恰有2个零点,则实数 a 的取值范围是二Wav 1或a 丝£考点:函数的零点;分段函数的应用. 专题:创新题型;函数的性质及应用.分析:① 分别求出分段的函数的最小值,即可得到函数的最小值;② 分别设h (x ) =2x - a , g (x ) =4 (x - a ) (x - 2a ),分两种情况讨论,即可求出 a 的范围.3,f (x ) min =f (=) = - 1 ,②设 h (x ) =2 - a , g (x ) =4 (x - a ) (x - 2a ) 若在x v 1时,h (x )=与x 轴有一个交点, 所以 a >0,并且当 x=1 时,h (1) =2 - a > 0,所以 0 v a v 2,而函数g (x ) =4 (x - a ) (x - 2a )有一个交点,所以 2a 》,且a v 1, 所以丄1,2若函数h (x ) =2x - a 在x v 1时,与x 轴没有交点,14. ( 5分)(2015?北京)设函数解答:解:①当a=1时,f (x )=y<l4 (x _ 1) (K _ 23,葢>1当 x v 1 时,f (x )当 x >1 时,f (x )=2x - 1 为增函数,f (x )>- 1,=4 (x - 1) (x - 2) =4 (x 2- 3x+2) =4 (x -—)当1v xv —时,函数单调递减,当 x,函数单调递增,故当贝U 函数g (x ) =4 (x - a ) (x - 2a )有两个交点,当aO 时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),当h (1) =2 - a W 时,即卩a ^2时,g (x )的两个交点为x i =a , x 2=2a ,都是满足题意的, 综上所述a 的取值范围是丄毛V 1,或a^2.2点评:本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能 力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15. (13 分)(2015?北京)已知函数 f (x ) M^si£co 愛-逅sin 2— I ^3 (I )求f (x )的最小正周期;(H )求f (x )在区间[-n, 0]上的最小值.值.解: ( I ) f (x )=『!si2cof -'sin2 2则有f ( x )在区间[-n, 0]上的最小值为-1 -工2.2本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运 算能力,属于中档题.16. (13分)(2015?北京)A , B 两组各有7位病人,他们服用某种药物后的康复时间(单 位:天)记录如下: A 组:10, 11, 12, 13, 14, 15, 16 B 组;12, 13, 15, 16, 17, 14, a假设所有病人的康复时间相互独立,从 A , B 两组随机各选1人,A 组选出的人记为甲,B组选出的人记为乙.考点:两角和与差的正弦函数;三角函数的周期性及其求法; 专题:计算题;三角函数的求值;三角函数的图像与性质. 分析:三角函数的最值. (I )运用二倍角公式和两角和的正弦公式,化简 即可得到所求;f ( x ),再由正弦喊话说的周期,(n )由x 的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小解答:=_ sinx -2(1 - cosx ) =sin xcos =sin 71 +cosxs in-4斗-垃-)八(x )的最小正周期为)由-n 奚切,可得(x+2 n;点评: 1,(I )求甲的康复时间不少于14天的概率;(H )如果a=25,求甲的康复时间比乙的康复时间长的概率;(川)当a为何值时,A , B两组病人康复时间的方差相等?(结论不要求证明)考点:极差、方差与标准差;古典概型及其概率计算公式.专题:概率与统计.分析:设事件A i为甲是A组的第i个人”事件B i为乙是B组的第i个人”,由题意可知P(A i) =P ( B i)=丄,i=1 , 2, ?? , 7(I )事件等价于甲是A组的第5或第6或第7个人”,由概率公式可得;(I )设事件甲的康复时间比乙的康复时间长”>A4B1U A5B1U A6B1U A7B1U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,易得P(C) =10P (A4B1),易得答案;(川)由方差的公式可得.解答: 解:设事件A i为甲是A组的第i个人”,事件B i为乙是B组的第i个人”,由题意可知P (A i) =P ( B i)=二,i=1 , 2 , ?? , 7(I)事件甲的康复时间不少于14天”等价于甲是A组的第5或第6或第7个人”•••甲的康复时间不少于14天的概率P (A5U A6U A7) =P (A5) +P (A6) +P (A7)37 ;(n)设事件C为甲的康复时间比乙的康复时间长”,贝y C=A4B1 U A5B1U A6B1U A7B1 U A5B2U A6B2U A7B2U A7B3U A6B6U A7B6,• P (C) =P (A4B1) +P (A5B1) +P (A6B1) P+ (A7B1) +P (A5B2) +p (A6B2) +P (A7B2) +P (A7B3) +P (A6B6) +P (A7B6)=10P (A4B1) =10P (A4) P ( B1) -4 y(川)当a为11或18时,A , B两组病人康复时间的方差相等.点评:本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17. (14分)(2015?北京)如图,在四棱锥A - EFCB中,△ AEF为等边三角形,平面AEF丄平面EFCB , EF// BC , BC=4 , EF=2a, / EBC= / FCB=60 ° O 为EF 的中点.(I )求证:AO丄BE.(II )求二面角F- AE - B的余弦值;(川)若BE丄平面AOC,求a的值.B考点:二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质. 专题:空间位置关系与距离;空间角.分析:(I)根据线面垂直的性质定理即可证明AO丄BE .(II )建立空间坐标系,利用向量法即可求二面角F- AE - B的余弦值;(川)利用线面垂直的性质,结合向量法即可求a的值解答:证明:(I) •••△AEF为等边三角形,0为EF的中点,••• A0 丄EF ,•/平面AEF丄平面EFCB , A0?平面AEF ,•A0丄平面EFCB•A0 丄BE .(I )取BC的中点G,连接0G,••• EFCB是等腰梯形,•0G 丄EF ,由(I )知A0丄平面EFCB ,•/ 0G?平面EFCB , • 0A 丄0G,建立如图的空间坐标系,贝U 0E=a, BG=2 , GH=a , BH=2 - a, EH=BHtan60 丄「一 - ■, 则E (a, 0, 0), A (0, 0,听a), B (2,亦(2一色),0),EA= (- a, 0, a), BE = (a- 2,- ^3(2 _ 巴),0),设平面AEB的法向量为i= (x, y, z),则n*EA=0,即 f "站血昭0:n*BE=0((a- 2) K+-/3 fa - 2)令z=1,贝U x=订E, y= - 1, 即n=(.二-1, 1),平面AEF的法向量为■;,>I Dn5cFEBzFGE18 5贝 Ucosvlln即-『=0,----- * ----- *o-''=-2 (a — 2 — 3 (a — 2) =0,解得a=-.贝U BE 丄OC•••=F = (a — 2,—:—厂;,0), 56= (— 2,衍 C2-a),0),点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.(I )求曲线y=f (x )在点(0, f (0))处的切线方程;3(n )求证,当x € (0, 1)时,f (x )〔玄+专);即二面角F - AE — B 的余弦值为 (川)若BE 丄平面AOC , (13分)(2015?北京)已知函数 f (x ) =ln —-1 一工3(川)设实数k 使得f (x ) >比(时兰一)对x € (0, 1)恒成立,求k 的最大值.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用. 专题:导数的综合应用. 分析:(1)利用函数的导数求在曲线上某点处的切线方程.(2) 构造新函数利用函数的单调性证明命题成立. (3)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 解答:解答:(1)因为 f (x ) =ln (1+x )- In (1- x )所以f y X)叮J ‘严(0)弍1+x 1 _ x又因为f (0) =0,所以曲线y=f (x )在点(0, f (0))处的切线方程为 y=2x .I 3(2)证明:令 g (x ) =f (x )- 2 (x+:'),贝U| 3 |22 Jg' (x ) =f (x )- 2 (1+x )=…一,1- d当 k >2 时,令 h (x ) =f (x )-上「-h (x )V h (0) =0,即 f (x )V,:芒'T _ !所以当k >2时,f (x )>忙.,.[.并非对x € (0, 1)恒成立.3 综上所知,k 的最大值为2.点评:本题主要考查切线方程的求法及新函数的单调性的求解证明•在高考中属常考题型, 难度适中.和点A (m , n ) ( m #))都在椭圆C 上,直线PA 交x 轴于点M .因为 所以 g' ( x )> 0 ( 0V x V 1),所以g (x )在区间(0, 1) 上单调递增. g (x )> g (0) =0, x € (0, 1),3即当 x € (0, 1)时,f (x )> 2 (x+[).(3)由(2)知,当k 电时,f (x)>J :, ' :对x € (0, 1)恒成立.所以当 减.V 0,因此h (x )在区间(0,'■) 上单调递19. (14分)(2015?北京)已知椭圆 ,点 P (0, 1)2h' (x ) =f (x )- k (1+x )h' (x ) C:=1 (a > b > 0)的离心率为(I )求椭圆C 的方程,并求点 M 的坐标(用m , n 表示);(H )设0为原点,点B 与点A 关于x 轴对称,直线 PB 交x 轴于点N ,问:y 轴上是否 存在点Q ,使得/OQM= / ONQ ?若存在,求点 Q 的坐标,若不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:创新题型;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题. 分析:(I )根据椭圆的几何性质得出a 2la求解即可.ID0) , N (. 1 -n |H-n,0),运用图形得出 tan / OQM=tan / ONQ ,2,求解即可得出即 y Q =X M ?X N ,+n 2,根据m , m 的关系整体求解.解答:解:(I )由题意得出b=l c V2 a - 22. 1 I呂-b +c解得:a= :, b=1, c=1• +y2=1,••• P (0 , 1)和点 A• PA 的方程为:y -(m , n ), — 1 v n v 1n _ 1 um x , y=0 时,x M =m1 _ n••• M ——0)1 _ nT 点B 与点A 关于x 轴对称,点 A ( m , n ) (m#))B (m , — n ) (m 崔))(II ) •••点 •••直线PB 交x 轴于点N ,••• N (0),(II )求解得出M (1一—-■^**-*-L%•^―丿23 A/ iX-1\-2•••存在点 Q ,使得/ OQM= / ONQ , Q (0, y Q ),/• tan / OQM=tan / ONQ ,.\—=^'J ,g 卩 y Q 2=x M ?X N ,丄 + n 2=1% % 2I 2小2y Q = --------- =2,1- n 2二y Q =丨.爲故 y 轴上存在点 Q ,使得/ OQM= / ONQ , Q (0, . ■:)或 Q (0, -:?)点评:本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20. (13 分)(2015?北京)已知数列{a n }满足:a i €N *, ai<36,且 a n+i = (n=1 , 2,…),记集合 M={a 叫n€N }.(I )若a i =6,写出集合 M 的所有元素;(n )如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是 3的倍数; (川)求集合M 的元素个数的最大值.考点:数列递推式.专题:创新题型;点列、递归数列与数学归纳法. 分析:(I ) a i =6,利用 a n+i =24 ;(n )因为集合M 存在一个元素是3的倍数,所以不妨设 a k 是3的倍数,由36, ^>18(川)分a i 是3的倍数与a i 不是3的倍数讨论,即可求得集合 M 的元素个数的最大 值.『%^>18「如 ^<18可求得集合M 的所有元素为6, 12,a n+1=*(n=1, 2,…),可归纳证明对任意 n 冰,a n 是3的倍数;故集合M 的所有元素为6, 12, 24;(n )因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数,由如果k=1 , M 的所有元素都是 3的倍数;如果k > 1,因为a k =2a k -1,或a k =2a k -1- 36,所以2a k -1是3的倍数;于是 a k -1是3 的倍数; 类似可得,a k -2,…,a 1都是3的倍数; 从而对任意 n N, a n 是3的倍数;综上,若集合M 存在一个元素是3的倍数,则集合M 的所有元素都是3的倍数IfSaa-l- a n <18(川)对a 1W 36, ai={(n=1,2,…)可归纳证明对任意 n 沫,a n v 36 (n=2 , 3, ••)r2ai ! a |^18因为a 1是正整数,a 2= .. ,所以a 2是2的倍数.2aj - 36, &!>18从而当n 绍时,a n 是2的倍数.如果a 1是3的倍数,由(n )知,对所有正整数 n , a n 是3的倍数. 因此当n 绍时,a n €{12 , 24, 36},这时M 的元素个数不超过 5. 如果a 1不是3的倍数,由(n )知,对所有正整数 n , an 不是3的倍数.因此当n 绍时,an€{4 , 8, 16, 20, 28, 32},这时M 的元素个数不超过 & 当 a 1=1 时,M={1 , 2,4, 8, 16, 20, 28, 32},有 8 个元素.综上可知,集合M 的元素个数的最大值为 &点评:本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算 能力,属于难题.解答:2%解:(I )右 a i =6,由于 a n+1 =2a… - 36, IL n 务6^>18(n =1, 2,…),M={a n |n€N *}.a n+1 =务a^>18(n=1, 2,…),可归纳证明对任意n 冰,a n 是3的倍数.。
基础大题题目及答案 2015北京高考数学 各区一模试题汇编
2015北京高考数学各区一模试题汇编--解析几何--目录Always a new start 项目及名称页码42长度与韦达定理的弦长与面积问题45多出一两条直线的中点与垂直问题50考察图像与方程的单动点消元问题53利用斜率与向量的定点与定值问题58以上四类常规问题的答案弦长与面积问题19.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(2,0)F ,离心率为3.过焦点F的直线l 与椭圆C 交于,A B 两点,线段AB 中点为D ,O 为坐标原点,过O ,D 的直线 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求四边形AMBN 面积的最大值.19.(本小题满分14分)设1F ,2F 分别为椭圆)0(1:2222>>=+b a b ya x E 的左、右焦点,点)23,1(P 在椭圆E 上,且点P 和1F 关于点)43,0(C 对称.(Ⅰ)求椭圆E 的方程;(Ⅱ)过右焦点2F 的直线l 与椭圆相交于A ,B 两点,过点P 且平行于AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由.19.(本小题满分14分)已知椭圆223412.C x y +=:(I )求椭圆C 的离心率;(II )设椭圆C 上在第二象限的点P 的横坐标为1-,过点P 的直线12,l l 与椭圆C 的另一交点分别为,A B .且12,l l 的斜率互为相反数,,A B 两点关于坐标原点O 的对称点分别为,M N ,求四边形ABMN 的面积的最大值.中点与垂直问题(19)(本小题满分14分)已知椭圆2222:1(0)x yC a ba b+=>>的两个焦点分别为12(2,0),(2,0)F F-,离心率为3.过焦点2F的直线l(斜率不为0)与椭圆C交于,A B两点,线段AB的中点为D,O为坐标原点,直线OD交椭圆于,M N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)当四边形12MF NF为矩形时,求直线l的方程.19.(本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为,右顶点A 是抛物线28y x =的焦点.直线l :(1)y k x =-与椭圆C 相交于P ,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)如果AM AP AQ =+u u u u r u u u r u u u r,点M 关于直线l 的对称点N 在y 轴上,求k 的值.(19)(本小题满分13分)已知椭圆2222:1(0)x y M a b a b+=>>过点(0,1)-,且离心率e =.(Ⅰ)求椭圆M 的方程;(Ⅱ)是否存在菱形ABCD ,同时满足下列三个条件:①点A 在直线2y =上;②点B ,C ,D 在椭圆M 上; ③直线BD 的斜率等于1.如果存在,求出A 点坐标;如果不存在,说明理由.19.(本小题满分14分)设1F ,2F 分别为椭圆)0(1:2222>>=+b a b ya x E 的左、右焦点,点)23,1(P 在椭圆E 上,且点P 和1F 关于点)43,0(C 对称.(Ⅰ)求椭圆E 的方程;(Ⅱ)过右焦点2F 的直线l 与椭圆相交于A ,B 两点,过点P 且平行于AB 的直线与椭圆交于另一点Q ,问是否存在直线l ,使得四边形PABQ 的对角线互相平分?若存在,求出l 的方程;若不存在,说明理由.19.(本小题满分14分) 已知椭圆22:416C x y +=. (I)求椭圆C 的离心率;(II)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.单动点消元问题已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,M为椭圆上任意一点且△12MF F 的周长等于6. (Ⅰ)求椭圆C 的方程;(Ⅱ)以M 为圆心,1MF 为半径作圆M ,当圆M 与直线 l 4x =:有公共点时,求△12MF F 面积的最大值.19.(本小题满分14分)已知椭圆C:22221(0)x ya ba b+=>>离心率2e=,短轴长为.(Ⅰ)求椭圆C的标准方程;(Ⅱ) 如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线P A,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.在平面直角坐标系中xOy 中,动点E 到定点(1,0)的距离与它到直线1x =-的距离相等.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设动直线:l y kx b =+与曲线C 相切于点P ,与直线1x =-相交于点Q .证明:以PQ 为直径的圆恒过x 轴上某定点.定点与定值问题已知椭圆W :12222=+by a x )0(>>b a 的离心率为21,Q 是椭圆上的任意一点,且点Q 到椭圆左右焦点1F ,2F 的距离和为4. (Ⅰ)求椭圆W 的标准方程;(Ⅱ)经过点()1,0且互相垂直的直线1l 、2l 分别与椭圆交于A 、B 和C 、D 两点(A 、B 、C 、D 都不与椭圆的顶点重合),E 、F 分别是线段AB 、CD 的中点,O 为坐标原点,若OE k 、OF k 分别是直线OE 、OF 的斜率,求证:OE OF k k ⋅为定值.动点),(y x P 到定点)0,1(F 的距离与它到定直线4:=x l 的距离之比为21. (Ⅰ) 求动点P 的轨迹C 的方程;(Ⅱ) 已知定点(2,0)A -,(2,0)B ,动点(4,)Q t 在直线l 上,作直线AQ 与轨迹C 的另一个交点为M ,作直线BQ 与轨迹C 的另一个交点为N ,证明:,,M N F 三点共线.(19)(本小题满分13分)已知椭圆2222:1(0)x y M a b a b+=>>过点(0,1)A -,且离心率2e =.(Ⅰ)求椭圆M 的方程;(Ⅱ)若椭圆M 上存在点,B C 关于直线1y kx =-对称,求k 的所有取值构成的集合S ,并证明对于k S ∀∈,BC 的中点恒在一条定直线上.19.(本小题满分14分)如图,已知椭圆C :)0(12222>>=+b a ay b x 的离心率2e =,短轴的右端点为B , M(1,0)为线段OB 的中点.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点M 任意作一条直线与椭圆C 相交于两点P ,Q 试问在x 轴上是否存在定点N ,使得∠PNM =∠QNM ? 若存在,求出点N 的坐标;若不存在,说明理由.19.(本小题满分14分)设点F为椭圆22221(0)x yE a ba b+=>>:的右焦点,点3(1,)2P在椭圆E上,已知椭圆E的离心率为1 2 .(Ⅰ)求椭圆E的方程;(Ⅱ)设过右焦点F的直线l与椭圆相交于A,B两点,记ABP∆三条边所在直线的斜率的乘积为t,求t的最大值.2015北京高考数学 各区一模试题汇编--解析几何 答案--弦长与面积问题19.(本小题满分14分) 解:(Ⅰ)由题意可得2222,,c c a a bc =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b , 故椭圆的方程为22162x y +=. …….4分(Ⅱ)当直线l 斜率不存在时,A B的坐标分别为,(2,,||MN =, 四边形AMBN 面积为1||||42AMBN S MN AB =⋅=. 当直线l 斜率存在时,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,点,M N 到直线l 的距离分别为12,d d ,则四边形AMBN 面积为121||()2AMBN S AB d d =+. 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 则21221213k x x k +=+,212212613k x x k -=+, 所以||AB==.因为121224(4)13ky y k x x k-+=+-=+, 所以AB 中点22262(,)1313k kD k k -++. 当0k ¹时,直线OD 方程为30x ky +=, 由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得333,x ky =-232213y k =+. 所以121||()2AMBN S AB d d =+12=====当0k =时,四边形AMBN面积的最大值AMBN S =综上四边形AMBN面积的最大值为. …………………………14分19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PF PF=+=.所以 2a =,b == ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. ……… 7分 由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分 由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y ,得2222(34)(812)41230k x k k x k k +--+--=, 由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241kk k x +--=⋅. ……………… 10分 若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k ----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. …… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)19.解:(I )由题意,椭圆C 的标准方程为221.43x y += 所以224,3,a b ==从而222 1.c a b =-= 因此,2, 1.a c ==故椭圆C 的离心率1.2c e a ==..... ...........................................4分 (II )由题意可知,点P 的坐标为3(1,).2-设1l 的方程为3(1).2y k x =++则2l 的方程为3(1).2y k x =-++........................................5分由223(1)23412y k x x y ⎧=++⎪⎨⎪+=⎩得2222(43)(812)41230.k x k k x k k +++++-= 由于1x =-是此方程的一个解.所以此方程的另一解22412343A k k x k +-=-+ 同理22412343B k k x k --=-+............... ...........................................7分故直线AB 的斜率为33(1)(1)22B A B A ABB A B Ak x k x y y k x x x x -++-+--==-- 22286(2)143.24243k k k k k -+-++==-+ ........... ...........................................9分设直线AB 的方程为1.2y x m =-+由22123412y x m x y ⎧=-+⎪⎨⎪+=⎩得2230x mxm -+-=所以||AB ==又原点O 到直线AB 的距离为d =所以OAB ∆的面积12OAB S ∆==22(4)22m m +-≤⋅= 当且仅当224m m =-,即22,2m m ==±时.OAB ∆的面积达到最大. ............... ...........................................13分由题意可知,四边形ABMN 为平行四边形,所以,四边形ABMN 的面积4OAB S S ∆=≤故四边形ABMN 面积的最大值为 ............... ...........................................14分中点与垂直问题(19)(本小题满分14分) 解:(Ⅰ)由题意可得2222,,c c a a b c=⎧⎪⎪=⎨⎪=+⎪⎩解得a =b = 故椭圆的方程为22162x y +=. ……… 5分 (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k +=+.因为121224(4)13ky y k x x k -+=+-=+,所以AB 中点22262(,)1313k kD k k -++. 因此直线OD 方程为30x ky +=()0k ¹.由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=u u u u r u u u u r,即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=.所以222(91)4013k k +-=+.解得3k =±.故直线l的方程为(2)3y x =±-. ……… 14分19.(本小题共14分)解:(Ⅰ)抛物线28y x =,所以焦点坐标为(2,0),即(2,0)A , 所以2a =.又因为2c e a ==,所以c = 所以2221b a c =-=,所以椭圆C 的方程为2214x y +=. ……………………4分 (Ⅱ)设11(,)P x y ,22(,)Q x y ,因为AM AP AQ =+u u u u r u u u r u u u r,(2,0)A ,所以11(2,)AP x y =-u u u r,22(2,)AQ x y =-u u u r ,所以1212(4,+)AM AP AQ x x y y =+=+-u u u u r u u u r u u u r,所以()12122,M x x y y +-+.由2214(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(41)8440k x k x k +-+-=(判别式0∆>), 得2122282224141k x x k k -+-=-=++,121222(2)4+1ky y k x x k -+=+-=, 即2222(,)4141k M k k --++. 设3(0,)N y , 则MN 中点坐标为3221(,)41412y kk k --+++, 因为M ,N 关于直线l 对称,所以MN 的中点在直线l 上,所以3221(1)41241k y k k k --+=-++,解得32y k =-,即(0,2)N k -. 由于M ,N 关于直线l 对称,所以M ,N 所在直线与直线l 垂直,所以 222(2)4112041kk k k k ---+⋅=---+,解得k = ……………………14分(19)(共13分)解:(Ⅰ)由题意得:2221,.b caa b c =⎧⎪⎪=⎨⎪⎪-=⎩………………3分解得:223,1.a b ⎧=⎪⎨=⎪⎩所以 椭圆M 的方程为2213x y +=. ………………4分 (Ⅱ)不存在满足题意的菱形ABCD ,理由如下: ………………5分 假设存在满足题意的菱形ABCD .设直线BD 的方程为y x m =+,11(,)B x y ,22(,)D x y ,线段BD 的中点00(,)Q x y ,点(,2)A t . ………………6分由2233,x y y x m⎧+=⎨=+⎩得224230y my m -+-=. ………………8分 由()()2221630m m ∆=--> ,解得22m -<<. ………………9分因为 122my y +=, 所以 12024y y my +==. ………………11分因为 四边形ABCD 为菱形, 所以 Q 是AC 的中点.所以 C 点的纵坐标022212C my y =-=-<-. ………………12分 因为 点C 在椭圆M 上,所以 1C y ≥-.这与1C y <-矛盾. ………………13分所以 不存在满足题意的菱形ABCD .19.(本小题满分14分)(Ⅰ)解:由点)23,1(P 和1F 关于点)43,0(C 对称,得1(1,0)F -, ………… 1分所以椭圆E 的焦点为)0,1(1-F ,)0,1(2F , ……………… 2分 由椭圆定义,得 122||||4a PFPF =+=.所以 2a =,b == ……………… 4分故椭圆E 的方程为13422=+y x . ……………… 5分 (II )解:结论:存在直线l ,使得四边形PABQ 的对角线互相平分. ……… 6分 理由如下:由题可知直线l ,直线PQ 的斜率存在,设直线l 的方程为)1(-=x k y ,直线PQ 的方程为3(1)2y k x -=-. ……… 7分 由 221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 得2222(34)84120k x k x k +-+-=, ……………… 8分 由题意,可知0∆> ,设11(,)A x y ,22(,)B x y ,则2221438kk x x +=+,212241234k x x k -=+, ……………… 9分 由221,433(1),2x y y k x ⎧+=⎪⎪⎨⎪-=-⎪⎩消去y ,得2222(34)(812)41230k x k k x k k +--+--=,由0∆>,可知12k ≠-,设),(33y x Q ,又)23,1(P ,则223431281k k k x +-=+,2234331241k k k x +--=⋅. ……………… 10分 若四边形PABQ 的对角线互相平分,则PB 与AQ 的中点重合, 所以212231+=+x x x ,即3211x x x -=-, ……………… 11分 故2212123()4(1)x x x x x +-=-. ……………… 12分所以 2222222284124123()4(1)343434k k k k k k k----⋅=-+++. 解得 34k =. 所以直线l 为3430x y --=时, 四边形PABQ 的对角线互相平分. …… 14分 (注:利用四边形PABQ 为平行四边形,则有||||PQ AB =,也可解决问题)19.解:(I)由题意,椭圆C 的标准方程为221164x y +=, 所以2222216,4,12从而a b c a b ===-=,因此4,a c ==故椭圆C 的离心率c e a == ............... ...........................................4分 (II)由221,416y kx x y =+⎧⎨+=⎩得()22148120k x kx ++-=, 由题意可知0∆>. ............... ...........................................5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y , 则1224214M x x k x k +==-+,1221214M y y y k+==+................ .....................................7分因为BEF ∆是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥,因此BM 的斜率1BM k k=-. ............... ...........................................8分 又点B 的坐标为()0,2-,所以222122381440414M BM M y k k k k x k k++++===---+,............... ....................................10分 即()238104k k k k+-=-≠, 亦即218k =,所以4k =±, ............... ...........................................12分故EF的方程为440y -+=. ............... ...........................................13分又圆2212x y +=的圆心()0,0O 到直线EF的距离为32d ==>, 所以直线EF 与圆相离................ ...........................................14分单动点消元问题解:(Ⅰ)由已知离心率12c e a ==, 又△12MF F 的周长等于226a c +=, 解得2a =,1c =.所以23b =.所以椭圆C 的方程为22143x y +=. ………………………..5分(Ⅱ)设点M 的坐标为00(,)x y ,则2200143x y +=.由于圆M 与l 有公共点,所以M 到l 的距离04x -小于或等于圆的半径r . 因为2222100(+1)r MF x y ==+,所以222000(4)(1)x x y -≤++,即20010150y x +-≥.又因为22003(1)4x y =-,所以20033101504x x -+-≥. 整理得200340+480x x -≤,解得04123x ≤≤.又022x -<< ,所以0423x ≤<.所以00y <≤. 因为△12MF F 面积01201=2y F F y =,当0y =12MF F ………………..13分(Ⅰ)由短轴长为,得b = ………………1分由2c e a ===,得224,2a b ==.∴椭圆C 的标准方程为22142x y +=. ………………4分 (Ⅱ)以MN为直径的圆过定点(F . ………………5分证明如下:设00(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024x y +=, ∵(2,0)A -,∴直线PA 方程为:00(2)2y y x x =++,∴002(0,)2y M x +……………6分 直线QA 方程为:00(2)2y y x x =+-,∴002(0,)2y N x -, ………………7分 以MN 为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+-………………10分 【或通过求得圆心00202(0,)4x y O x '-,0204||4y r x =-得到圆的方程】 即222000220044044x y y x y y x x +-+=--, ∵220042x y -=-,∴22220x x y y y ++-=, ………………12分 令0y =,则220x -=,解得x =∴以MN为直径的圆过定点(F . …………14分解:(Ⅰ)设动点E 的坐标为(,)x y .由抛物线定义知,动点E 的轨迹为以(1,0)为焦点,1x =-为准线抛物线.所以动点E 的轨迹C 的方程为:24y x =. ……………4分(Ⅱ)设直线l 的方程为:y kx b =+.(显然0k ≠)由 24,,y x y kx b ⎧=⎨=+⎩得2440ky y b -+=.因为直线l 与抛物线相切, 所以16160kb ∆=-=,1b k=.所以直线l 的方程为1y kx k=+. 令1x =-,得1y k k=-+, 所以1(1,)Q k k--+.设切点坐标00(,)P x y ,则200440ky y k -+=,解得212(,)P k k. 设(,0)M m ,则2121()(1)()MQ MP m m k k k k⋅=---+-+u u u u r u u u r2222122m m m k k k=-+-++-. 21(1)(2)m m k=---. 当1m =时,0MQ MP ⋅=u u u u r u u u r.所以以PQ 为直径的圆恒过x 轴上定点(1,0)M . ……………13分定点与定值问题解:(Ⅰ)∵点Q 到椭圆左右焦点的距离和为4. ∴24a =,2a =.又12c e a ==,∴1c =,2223b a c =-=. ∴椭圆W 的标准方程为:22143x y +=…………………5分 (Ⅱ)∵直线1l 、2l 经过点(0,1)且互相垂直,又A 、B 、C 、D 都不与椭圆的顶点重合 ∴设1l :1y kx =+,2l :11y x k=-+;点11(,)A x y 、22(,)B x y 、(,)E E E x y 、(,)F F F x y 由221143y kx x y =+⎧⎪⎨+=⎪⎩得22(34)880k x kx ++-= ∵点(0,1)在椭圆内,∴△0>∴122834kx x k +=-+,∴1224234Ex x kx k +==-+,23134E E y kx k =+=+ ∴34E OE E y k x k==- 同理33144()F OF Fy kk x K ==-=-∴916OE OFk k ⋅=-…………………14分19.(本小题共14分)解: (Ⅰ)由题意得21|4|)1(22=-+-x y x , ………………2分化简并整理,得 13422=+y x . 所以动点),(y x P 的轨迹C 的方程为椭圆13422=+y x . ………………5分 (Ⅱ)当0=t 时,点B M 与重合,点A N 与重合,,,M N F 三点共线. ………7分当0≠t 时根据题意::(2),:(2)62tt QA y x QB y x =+=-由()2214326x y t y x ⎧+=⎪⎪⎨⎪=+⎪⎩消元得:2223(2)1209t x x ++-=整理得:2222(27)441080t x t x t +++-=该方程有一根为2,x =-另一根为M x ,根据韦达定理,222241085422,2727M M t t x x t t ---==++由()2214322x y t y x ⎧+=⎪⎪⎨⎪=-⎪⎩ 消元得:2223(2)120x t x +--= 整理得:2222(3)44120t x t x t +-+-=该方程有一根为2,x =另一根为N x ,根据韦达定理,2222412262,33N N t t x x t t --==++当M N x x =时,由222254226273t t t t --=++得:29,t =1M N x x ==,,,M N F 三点共线; 当M N x x ¹时,218(2)627M M t ty x t =+=+,26(2)23N N t t y x t -=-=+22221862754219127M MFM t y t t k t x t t +===----+;2222663261913N NFN t y t t k t x t t -+===----+ NF MF K k =,,,M N F 三点共线.综上,命题恒成立. ………………14分19.(本小题共14分)解: (Ⅰ)因为椭圆C :22162x y +=所以焦点(2,0)F ,离心率3e =……………………4分 (Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.k x k x k +-+-=(依题意 0∆>). 设 11(,)P x y ,22(,)Q x y ,则21221231k x x k +=+,2122126.31k x x k -=+ .因为点P 关于x 轴的对称点为P ',则11(,)P x y '-. 所以,直线P Q '的方程可以设为211121()y y y y x x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+ 3=. 所以直线P Q '过x 轴上定点(3,0). ……………………14分19.(本小题共14分)解: (Ⅰ)因为椭圆C :22162x y +=所以焦点(2,0)F ,离心率e =……………………4分 (Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.k x k x k +-+-=(依题意 0∆>).设 11(,)P x y ,22(,)Q x y ,则21221231k x x k +=+,2122126.31k x x k -=+ . 因为点P 关于x 轴的对称点为P ',则11(,)P x y '-. 所以,直线P Q '的方程可以设为211121()y y y y x x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+ 3=. 所以直线P Q '过x 轴上定点(3,0). ……………………14分(19)(共13分)解:(Ⅰ)因为 椭圆M 过点(0,1)A -,所以 1b =.………………1分 因为 222 c e a b c a ===+, 所以 2a =.所以 椭圆M 的方程为22 1.4x y += ………………3分(Ⅱ)方法一: 依题意得0k ≠.因为 椭圆M 上存在点,B C 关于直线1y kx =-对称,所以 直线BC 与直线1y kx =-垂直,且线段BC 的中点在直线1y kx =-上. 设直线BC 的方程为11221,(,),(,)y x t B x y C x y k=-+. 由221,44y x t k x y ⎧=-+⎪⎨⎪+=⎩得 22222(4)8440k x ktx k t k +-+-=. ………………5分由2222222222644(4)(44)16(4)0k t k k t k k k t k ∆=-+-=-+>,得22240k t k --<.(*) 因为 12284ktx x k +=+, ………………7分 所以 BC 的中点坐标为2224(,)44kt k tk k ++.又线段BC 的中点在直线1y kx =-上,所以 2224144k t ktk k k =-++.所以 22314k t k =+. ………………9分代入(*),得2k <-或2k >. 所以{|S k k k =<>或. ………………11分 因为 22143k t k =+,所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分方法二:因为 点(0,1)A -在直线1y kx =-上,且,B C 关于直线1y kx =-对称, 所以 AB AC =,且0k ≠.设1122(,),(,)B x y C x y (12y y ≠),BC 的中点为000(,)(0)x y x ≠.则22221122(1)(1)x y x y ++=++. ………………6分又,B C 在椭圆M 上,所以 2222112244,44x y x y =-=-.所以 2222112244(1)44(1)y y y y -++=-++. 化简,得 2212123()2()y y y y -=-.所以 120123y y y +==. ………………9分 又因为 BC 的中点在直线1y kx =-上, 所以 001y kx =-. 所以 043x k=. 由221,413x y y ⎧+=⎪⎪⎨⎪=⎪⎩可得3x =±所以403k <<,或403k <<,即k <,或k >. 所以{|}22S k k k =<->,或. ………………12分 所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分19.(本小题共14分)(Ⅰ)由题意知, 2b =…………………1分由2e =a = …………………3分 椭圆方程为22148x y +=. …………………4分 (Ⅱ)若存在满足条件的点N ,坐标为(t ,0),其中t 为常数. 由题意直线PQ 的斜率不为0,直线PQ 的方程可设为:1x my =+,()m R ∈ …………………5分 设1122(,),(,)P x y Q x y ,联立221,148x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:22(12)460m y my ++-=, …………………7分221624(12)0m m ∆=++>恒成立,所以12122246,1212m y +y =y y =m m --++ ……8分 由PNM QNM ∠=∠知:+0PN QN k k = …………………9分1212,PN QN y yk k x t x t==--, 即12120y y x t x t +=--,即121211y y my t my t=-+-+-, …………………10分 展开整理得12122(1)()0my y t y y +-+=, 即222(6)4(1)0,1212m m t m m ---+=++ …………………12分即(4)0m t -=,又m 不恒为0,=4t ∴.故满足条件的点N 存在,坐标为(40),……14分(Ⅰ)解:设22b a c -=,由题意,得21=a c , 所以 2a c =,b =. …………………2分则椭圆方程为 2222143x y c c+=, 又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为 22143x y +=. ………………… 5分 (Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ………………… 6分 设直线l 的方程为(1)y k x =-,与椭圆的交点A (x 1,y 1),B (x 2,y 2), …… 7分由 22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得 2222(34)84120k x k x k +-+-=. ………………… 8分由题意,可知0>∆,则有 2221438kk x x +=+,212241234k x x k -=+, …… 9分 所以直线PA 的斜率11321PAy k x -=-,直线PB 的斜率22321PB y k x -=-, …… 10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯-- 12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++ 233()44k k k k =--⨯=--. ………………… 12分 即 22339()4864t k k k =--=-++, 所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964. …14分。
2015届高三二模理科数学分类汇编(导数)
北京各区二模理科数学分类汇编导数(2015届西城二模)18.(本小题满分13 分)已知函数则211)(ax x x f +-=,其中a ∈ R .⑴ 当41-=a 时,求 f (x )的单调区间; ⑵ 当a > 0时,证明:存在实数m > 0,使得对于任意的实数x ,都有| f (x )|≤m 成立. 18.(本小题满分13分) (Ⅰ)解:当14a=-时,函数21()114xf x x -=-, 其定义域为{|2}x x ∈≠±R . ……………… 1分求导,得22222224(1)3()0114(1)4(1)44x x x f x x x -+----'==<--, ……………… 4分 所以函数()f x 在区间(,2)-∞-,(2,2)-,(2,)+∞上单调递减. ……………… 5分(Ⅱ)证明:当0a >时,21()1x f x ax -=+的定义域为R .求导,得22221()(1)ax ax f x ax --'=+, ……………… 6分令()0f x '=,解得110x =,211x =+>, ……………… 7分当x 变化时,()f x '与()f x 的变化情况如下表:……………… 10分 所以函数()f x 在1(,)x -∞,2(,)x +∞上单调递增,在12(,)x x 上单调递减.又因为(1)0f =,当1x <时,21()01x f x ax -=>+;当1x >时,21()01x f x ax -=<+,所以当1x ≤时,10()()f x f x ≤≤;当1x >时,2()()0f x f x <≤. ……………… 12分记12max{()|,()|}||M f x f x =,其中12max{()|,()|}||f x f x 为两数1()||f x ,2()||f x中最大的数,综上,当0a>时,存在实数[,)m M∈+∞,使得对任意的实数x,不等式|()|f x m≤恒成立.………………13分(2015届海淀二模)(18)(共13分)解:(Ⅰ)令()0f x=,得ex=.故()f x的零点为e. ………………1分22231()(1ln)22ln3'()()x x x xxf xx x-⋅--⋅-==(0x>). ………………3分令'()0f x=,解得32ex=.当x变化时,'()f x,()f x的变化情况如下表:()f x32(0,e)32e32(e,)+∞'()f x-0+()f x↘↗所以()f x的单调递减区间为32(0,e),单调递增区间为32(e,)+∞. ………………6分(Ⅱ)令ln()xg xx=.则2211ln1ln'()()x x xxg x f xx x⋅-⋅-===. ………………7分因为11()44ln244622f=+>+⨯=,(e)0f=,且由(Ⅰ)得,()f x在(0,e)内是减函数,所以存在唯一的1(,e)2x∈,使得00'()()6g x f x==.当[e,)x∈+∞时,()0f x≤.所以 曲线ln xy x=存在以00(,())x g x 为切点,斜率为6的切线. ………………10分 由0021ln '()6x g x x -==得:200ln 16x x =-. 所以20000000ln 161()6x x g x x x x x -===-.因为012x >, 所以12x <,063x -<-. 所以00()1y g x =<-. ………………13分(2015届东城二模)(18)(本小题共13分)已知函数()e x f x x a -=+⋅.(Ⅰ)当2e a=时,求()f x 在区间[1,3]上的最小值;(Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.(18)(共13分) 解:(Ⅰ)当2e a=时,2()e x f x x -=+,]3,1[∈x .因为2'()1e x f x -=-,由0)(='x f ,2=x .则x ,)(x f ',)(x f 关系如下:所以当2=x 时,)(x f 有最小值为3. ………5分(Ⅱ)“存在实数0[3,3]x ∈-,有a x f >)(”等价于()f x 的最大值大于a .因为'()1e x f x a -=-,所以当0≤a 时,]3,3[-∈x ,0)('>x f ,)(x f 在)3,3(-上单调递增,所以()f x 的最大值为(3)(0)f f a >=.所以当0≤a 时命题成立.当0>a时,由0)(='x f 得a x ln =.则x ∈R 时,x ,)(x f ',)(x f 关系如下:(1)当3e a ≥时 ,3ln ≥a ,)(x f 在)3,3(-上单调递减,所以()f x 的最大值(3)(0)f f a ->=.所以当3e a≥时命题成立.(2)当33e e a -<<时,3ln 3<<-a ,所以)(x f 在)ln ,3(a -上单调递减,在)3,(ln a 上单调递增.所以()f x 的最大值为(3)f -或(3)f .且a f f =>-)0()3(与a f f =>)0()3(必有一成立,所以当33e e a -<<时命题成立.(3) 当30e a -<≤时 ,3ln -≤a ,所以)(x f 在)3,3(-上单调递增,所以()f x 的最大值为(3)(0)f f a >=.所以当30e a -<≤时命题成立.综上:对任意实数a 都存在]3,3[-∈x 使a x f >)(成立. ……13分(2015届丰台二模) 20.(本小题共13分) 已知函数ln 1()ax f x x+=(0a >). (Ⅰ)求函数()f x 的最大值;(Ⅱ)如果关于x 的方程ln 1x bx +=有两解,写出b 的取值范围(只需写出结论); (Ⅲ)证明:当*N k ∈且2k ≥时,1111lnln 2234k k k<+++⋅⋅⋅+<. 20.(本小题共13分) 解:(Ⅰ)函数的定义域为{0}xx >.因为ln 1()ax f x x+=, 所以2ln ()axf x x-'=. 因为0a >,所以当()0f x '=时,1x a=. 当1(0,)x a∈时,()0f x '>,()f x 在1(0,)a 上单调递增;当1(,)x a∈+∞时,()0f x '<,()f x 在1(,)a +∞上单调递减.所以当1xa=时,1()()f x f a a ==最大值. ……………………6分(Ⅱ)当01b <<时,方程ln 1x bx +=有两解. ……………………8分 (Ⅲ)由(Ⅰ)得ln 11x x +≤,变形得11ln x x-≤,当1x =等号成立.所以 11ln 22-<,231ln 32-<,……11ln 1k kk k --<-, 所以得到 当*N k ∈且2k≥时,1111ln 234k k+++⋅⋅⋅⋅⋅⋅+<. ……………………10分由(Ⅰ)得ln 11x x+≤,变形得 ln 1x x ≤-,当1x =等号成立.所以 33ln 122<-, 44ln 133<-, 55ln 144<-, ……11ln1k k k k++<-, 所以得到 当*N k ∈且2k ≥时,11111ln2234k k+<+++⋅⋅⋅⋅⋅⋅+. 又因为1lnln 22k k +<,所以当*N k ∈且2k≥时,1111lnln 2234k k k<+++⋅⋅⋅⋅⋅⋅+<. ……………………13分(2015届昌平二模) 18.(本小题满分13分)已知函数2()ln ,.f x x ax x a =-+∈R(I )若函数()f x 在(1,(1))f 处的切线垂直于y 轴,求实数a 的值;(II) 在(I )的条件下,求函数()f x 的单调区间;(III) 若1,()0x f x >>时恒成立,求实数a 的取值范围. 18.(本小题满分13分) 解:(I )2()ln ,.f x x ax x a =-+∈R 定义域为(0,)+∞'1()2,.f x x a a x=-+∈R依题意,'(1)0f =.所以'(1)30f a =-=,解得3a = ……………4分(II )3a=时,2()ln 3f x x x x =+-,定义域为(0,)+∞,21123()23x xf x x x x+-'=+-=当102x <<或1x >时,()0f x '>, 当112x <<时,()0f x '<, 故()f x 的单调递增区间为1(0,),(1,)2+∞,单调递减区间为1(,1)2.----8分(III )解法一:由()0f x >,得2ln x x a x+<在1x >时恒成立,令2ln ()x x g x x+=,则221ln ()x xg x x +-'=令2()1ln h x x x =+-,则2121()20x h x x x x -'=-=> ()h x 所以在(1,)+∞为增函数,()(1)20h x h >=> .故()0g x '>,故()g x 在(1,)+∞为增函数.()(1)1g x g >=,所以1a ≤,即实数a 的取值范围为(,1]-∞. ……………13分解法二:2112()2x axf x x a x x+-'=+-=令2()21g x xax =-+,则28a ∆=-,(i )当0∆<,即a -<<时,()0f x '>恒成立,1,()x f x >因为所以在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以(a ∈-;(ii)当0∆=,即a=±()0f x '≥恒成立,1,()x f x >因为所以在(1,)+∞上单调递增,()(1)10f x f a >=-≥,即1a ≤,所以a =-(iii)当0∆>,即a<-a >方程()0g x =有两个实数根12x x ==若a<-120x x <<,当1x >时,()0f x '>,()f x 所以在(1,)+∞上单调递增,则()(1)10f x f a >=-≥,即1a ≤,所以a <-;若a>()0g x =的两个根120x x <<,()10f x a =-<因为,且()f x 在(1,)+∞是连续不断的函数所以总存在01x >,使得0()0f x <,不满足题意.综上,实数a 的取值范围为(,1]-∞. ……………13分(2015届朝阳二模)19.(本题14分)已知函数R a e a x x f x∈-=,)()(2。
2015年高考数学导数真题与答案
导数目录1.【2015高考,理10】.................................................. - 2 -2.【2015高考,理12】.................................................. - 2 -3.【2015高考新课标2,理12】.......................................... - 3 -4.【2015高考新课标1,理12】.......................................... - 4 -5.【2015高考,理16】.................................................. - 5 -6.【2015高考天津,理11】.............................................. - 5 -7.【2015高考新课标2,理21】(本题满分12分).......................... - 6 -8.【2015高考,19】(本小题满分16分).................................. - 8 -9.【2015高考,理20】................................................. - 10 -10.【2015高考,17】(本小题满分14分)................................ - 13 -11.【2015高考,理21】................................................ - 14 -12.【2015高考,理21】................................................ - 17 -13.【2015高考天津,理20(本小题满分14分)........................... - 19 -14.【2015高考,理20】................................................ - 21 -15.【2015高考,理21】................................................ - 22 -16.【2015高考,理22】................................................ - 24 -17.【2015高考新课标1,理21】........................................ - 26 -18.【2015高考北京,理18】............................................ - 27 -19.【2015高考,理19】................................................ - 29 -20【2015高考,理21】................................................. - 31 -1.【2015高考,理10】若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭D . 111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】由已知条件,构造函数()()g x f x kx =-,则''()()0g x f x k =->,故函数()g x 在R 上单调递增,且101k >-,故1()(0)1g g k >-,所以1()111k f k k ->---,11()11f k k >--,所以结论中一定错误的是C ,选项D 无法判断;构造函数()()h x f x x =-,则''()()10h x f x =->,所以函数()h x 在R 上单调递增,且10k >,所以1()(0)h h k>,即11()1f k k ->-,11()1f k k >-,选项A,B 无法判断,故选C . 【考点定位】函数与导数.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.2.【2015高考,理12】对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b '=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.3.【2015高考新课标2,理12】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【答案】A 【考点定位】导数的应用、函数的图象与性质.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.4.【2015高考新课标1,理12】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e,1) 【答案】D 【解析】设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题【名师点睛】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.5.【2015高考,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是16 1.2403=,所以答案应填:1.2. 【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()ba f x dx ⎰. 6.【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . O xy【答案】16【考点定位】定积分几何意义与定积分运算.【名师点睛】本题主要考查定积分几何意义与运算能力.定积分的几何意义体现数形结合的典型示,既考查微积分的基本思想又考查了学生的作图、识图能力以及运算能力.【2015高考,理11】20(1)x dx ⎰-= .【答案】0.【解析】试题分析:0)21()1(22200=-=-⎰x x dx x . 【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.7.【2015高考新课标2,理21】(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值围.【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-.【解析】(Ⅰ)'()(1)2mx f x m e x =-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1t g t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值围是[1,1]-.【考点定位】导数的综合应用.【名师点睛】(Ⅰ)先求导函数'()(1)2mx f x m e x =-+,根据m 的围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.8.【2015高考,19】(本小题满分16分)已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减; 当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2) 1.c =当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭U 时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<, 所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而304027a ab >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩. 又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<. 设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值围恰好是 ()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U U ,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥⎪⎝⎭,因此1c =. 此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根, 所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠,解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪⎪⎝⎭⎝⎭U U . 综上1c =.【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间的符号,根据符号判定函数在每个相应区间的单调性. 已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.9.【2015高考,理20】已知函数f()ln(1)x x =+,(),(k ),g x kx R =?(Ⅰ)证明:当0x x x ><时,f();(Ⅱ)证明:当1k <时,存在00x >,使得对0(0),x x Î任意,恒有f()()x g x >;(Ⅲ)确定k 的所以可能取值,使得存在0t >,对任意的(0),x Î,t 恒有2|f()()|x g x x -<.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ) =1k .【解析】解法一:(1)令()f()ln(1),(0,),F x x x x x x =-=+-??则有1()11+1+x F x x x¢=-=- 当(0,),x ?? ()0F x ¢<,所以()F x 在(0,)+?上单调递减;故当0x >时,()(0)0,F x F <=即当0x >时,x x f()<.(2)令G()f()()ln(1),(0,),x x g x x kx x =-=+-??则有1(1k)()1+1+kx G x k x x -+-¢=-= 当0k £ G ()0x ¢>,所以G()x 在[0,)+?上单调递增, G()(0)0x G >=(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x ,>>故()f()g x x >, |f()()|()()k ln(1)x g x g x f x x x -=-=-+,令2M()k ln(1),[0)x x x x x =-+-违,+,则有21-2+(k-2)1M ()k 2=,11x x k x x x x +-¢=--++故当0x Î(时,M ()0x ¢>,M()x 在[0上单调递增,故M()M(0)0x >=,即2|f()()|x g x x ->,所以满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意的0(0),x x ,Î恒有f()()x g x >. 此时|f()()|f()()ln(1)k x g x x g x x x -=-=+-, 令2N()ln(1)k ,[0)x x x x x =+--违,+,则有2'1-2-(k+2)1()2=,11x x k N x k x x x-+=--++故当0x Î(时,N ()0x ¢>,M()x 在[0上单调递增,故N()(0)0x N >=,即2f()()x g x x ->,记0x1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 违当+|f()()|()()ln(1)x g x g x f x x x -=-=-+,令2H()ln(1),[0)x x x x x =-+-违,+,则有21-2H ()12=,11x xx x x x-¢=--++ 当0x >时,H ()0x ¢<,所以H()x 在[0+¥,)上单调递减,故H()(0)0x H <=, 故当0x >时,恒有2|f()()|x g x x -<,此时,任意实数t 满足题意. 综上,=1k .解法二:(1)(2)同解法一.(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x >>,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x -=-=-+>-=-,令2(k 1),01x x x k -><<-解得,从而得到当1k >时,(0,1)x k ?对于恒有2|f()()|x g x x ->,所以满足题意的t 不存在. 当1k <时,取11k+1=12k k k <<,从而 由(2)知存在00x >,使得0(0),x x Î任意,恒有1f()()x k x kx g x >>=. 此时11|f()()|f()()(k)2kx g x x g x k x x --=->-=, 令21k 1k ,022x x x --><<解得,此时 2f()()x g x x ->, 记0x 与1-k 2中较小的为1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,【考点定位】导数的综合应用.【名师点睛】在解函数的综合应用问题时,我们常常借助导数,将题中千变万化的隐藏信息进行转化,探究这类问题的根本,从本质入手,进而求解,利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+ (其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t②当t 为何值时,公路l 的长度最短?求出最短长度.【答案】(1)1000,0;a b ==(2)①()f t =定义域为[5,20],②min ()t f t ==千米【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得1000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 2则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈.②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =,此时()min f t =答:当t =l 的长度最短,最短长度为千米. 【考点定位】利用导数求函数最值,导数几何意义【名师点晴】解决实际应用问题首先要弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型,然后将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;本题已直接给出模型,只需确定其待定参数即可.求解数学模型,得出数学结论,这一步骤在应用题中要求不高,难度中等偏下,本题是一个简单的利用导数求最值的问题.首先利用导数的几何意义是切点处切线的斜率,然后再利用导数求极值与最值.11.【2015高考,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若()0,0x f x ∀>≥成立,求a 的取值围.【答案】(I ):当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点;(II )a 的取值围是[]0,1.(2)当0a > 时, ()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤ ,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值; ②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增;当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点;当89a >时,函数()f x 在()1,-+∞上有两个极值点; (II )由(I )知, (1)当809a ≤≤时,函数()f x 在()0,+∞上单调递增, 因为()00f =所以,()0,x ∈+∞时,()0f x > ,符合题意; (2)当819a <≤ 时,由()00g ≥ ,得20x ≤ 所以,函数()f x 在()0,+∞上单调递增,又()00f =,所以,()0,x ∈+∞时,()0f x > ,符合题意; (3)当1a > 时,由()00g < ,可得20x > 所以()20,x x ∈ 时,函数()f x 单调递减; 又()00f =所以,当()20,x x ∈时,()0f x < 不符合题意; (4)当0a <时,设()()ln 1h x x x =-+ 因为()0,x ∈+∞时,()11011x h x x x '=-=>++当11x a>-时,()210ax a x +-< 此时,()0,f x < 不合题意. 综上所述,a 的取值围是[]0,1【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.【名师点睛】本题考查了导数在研究函数性质中的应用,着重考查了分类讨论、数形结合、转化的思想方法,意在考查学生结合所学知识分析问题、解决问题的能力,其中最后一问所构造的函数体现了学生对不同函数增长模型的深刻理解.12.【2015高考,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a z b =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.13.【2015高考天津,理20(本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥. (I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+- 【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)证明:设点P 的坐标为0(,0)x ,则110n x n-=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x '=-,即()00()()g x f x x x '=-,令()()()F x f x g x =-,即()00()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-由于1()n f x nxn -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 单调递增,在0(,)x +∞单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(III)证明:不妨设12x x ≤,由(II)知()()20()g x n n x x =--,设方程()g x a =的根为2x ',可得202.ax x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(II)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式. 【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.14.【2015高考,理20】设函数()()23xx axf x a R e+=∈ (1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在[)3,+∞上为减函数,求a 的取值围。
高考数学导数大题汇编
高考数学导数大题汇编高考数学导数大题汇编1.设函数 f(x) = 2x^3 - 3x^2 - 12x + 5,求 f(x) 的导函数 f'(x)。
解:对 f(x) 分别求导得到 f'(x) = 6x^2 - 6x - 12。
2.已知函数 f(x) = 3x^2 + 2x + 5,求函数 f(x) 在 x = 2 处的切线方程。
解:首先求 f(x) 在 x = 2 处的导数 f'(x) = 6x + 2。
代入 x = 2,得到f'(2) = 14。
切线的斜率等于 f'(2),所以切线的斜率为 14。
又知道切线通过点 (2, f(2)) = (2, 19),所以切线方程为 y - 19 = 14(x - 2)。
3.已知函数 f(x) = x^3 - 3x^2 + 2x,求函数 f(x) 在 x = 1 处的极值。
解:首先求导数 f'(x) = 3x^2 - 6x + 2。
令 f'(x) = 0,解方程得到 x = 1 和 x = 2。
求得的 x 值是函数 f(x) 的驻点,需要判断是极大值还是极小值。
为此,我们可以求二阶导数 f''(x) = 6x - 6。
当 x = 1 时,f''(1) = 0,说明该点处可能是拐点。
当 x = 2 时,f''(2) = 6,说明该点处是极小值点。
所以函数 f(x) 在 x = 1 处的极小值为 f(1) = 0。
4.已知函数 f(x) = x^4 - 4x^3 + 6x^2 - 8x,求函数 f(x) 的单调递增区间和单调递减区间。
解:首先求导数 f'(x) = 4x^3 - 12x^2 + 12x - 8。
令 f'(x) = 0,解方程得到 x = 1。
求得的 x 值是函数 f(x) 的驻点,需要判断是单调递增还是单调递减。
为此,我们可以选取驻点 x = 1 附近的值进行判断。
2015高三数学:导数压轴题题型归纳
Go the distance导数压轴题题型归纳1. 高考命题回顾例1已知函数f(x)=e x-ln(x +m).(2013全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.例2已知函数f(x)=x 2+ax +b ,g(x)=e x (cx +d),若曲线y =f(x)和曲线y =g(x)都过点P(0,2),且在点P 处有相同的切线y =4x+2(2013全国新课标Ⅰ卷) (Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时, ()()f x kg x ≤,求k 的取值范围。
例3已知函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-(2012全国新课标)(1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
例4已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(2011全国新课标) (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
例5设函数2()1xf x e x ax =---(2010全国新课标)(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥,求a 的取值范围例6已知函数f(x)=(x 3+3x 2+ax+b)e -x . (2009宁夏、海南)(1)若a =b =-3,求f(x)的单调区间;(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6.2. 在解题中常用的有关结论※3. 题型归纳①导数切线、定义、单调性、极值、最值、的直接应用例7(构造函数,最值定位)设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .函数例11(零点存在性定理应用)已知函数()ln ,().xf x xg x e ==⑴若函数φ (x ) = f (x )-11x x ,求函数φ (x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.例12(最值问题,两边分求)已知函数1()ln 1af x x ax x-=-+-()a ∈R .Go the distance⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.例13(二阶导转换)已知函数x x f ln )(=⑴若)()()(R a x ax f x F ∈+=,求)(x F 的极大值;⑵若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值范围.例14(综合技巧)设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.②交点与根的分布例15(切线交点)已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例16(根的个数)已知函数x x f =)(,函数x x f x g sin )()(+=λ是区间[-1,1]上的减函数.(I )求λ的最大值;(II )若]1,1[1)(2-∈++<x t t x g 在λ上恒成立,求t 的取值范围;(Ⅲ)讨论关于x 的方程mex x x f x+-=2)(ln 2的根的个数.例17(综合应用)已知函数.23)32ln()(2x x x f -+=⑴求f (x )在[0,1]上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.③不等式证明例18(变形构造法)已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;Go the distance⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例19(高次处理证明不等式、取对数技巧)已知函数)0)(ln()(2>=a ax x x f .(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;(2)当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例20(绝对值处理)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例21(等价变形)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;(Ⅲ)当20e y x <<<且e x ≠时,试比较xyx y ln 1ln 1--与的大小.例22(前后问联系法证明不等式)已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1。
2015届高考数学(理)一轮讲义:第29讲 导数及其应用经典回顾 课后练习
第29讲 导数及其应用经典回顾主讲教师:丁益祥 北京陈经纶中学数学特级教师题一:已知函数c bx ax x f ++=23)(,其导函数图象如图所示,则函数)(x f 的极小值是 A .c b a ++ B .c b a ++48 C .b a 23+ D .c题二:已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是 ( )题三:若函数()3f x ax x =+在区间[]1,1-上单调递增,求a 的取值范围.题四:已知函数22()ln ()f x x a x ax a =-+∈R ,若函数()(1,)f x +∞在区间上是减函数,求实数a 的取值范围题五:2(1)x x dx +⎰等于 .题六:2211x e dx x ⎛⎫+ ⎪⎝⎭⎰等于 .题七:已知函数()()32(1)(2),f x x a x a a x ba b R =+--++∈.(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间()1,1-上不单调,求a 的取值范围.题八:已知).R a (x 3ax 2x 32)x (f 23∈--= (1)当41|a |≤时, 求证)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围.题九:设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0). (Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0,+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1.题十:已知函数xbx x a x f ++=1ln )(,曲线)(x f y =在点))1(,1(f 处的切线方程为032=-+y x ,(1)求b a ,的值(2)证明:当1,0≠>x x 时,xxx f ->1ln )(题十一:设函数f (x )=ln x +ln (2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上的最大值为12,求a 的值.题十二:已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围第29讲 导数及其应用经典回顾题一:D详解:点拨:由图可知函数()f x 在(),0-∞上单调递减,在()0,2上单调递增,在()2,+∞上单调递减,所以函数的极小值为()0f c =。
2015年全国各地高考数学试题汇总北京市高考理科数学试题
2015年全国各地高考北京市高考理科数学试题及解析一、选择题(每小题5分,共40分)1.(5分)复数i(2﹣i)=()A.1+2iB.1﹣2iC.﹣1+2iD.﹣1﹣2i2.(5分)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.23.(5分)执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)4.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.56.(5分)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>07.(5分)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}8.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油二、填空题(每小题5分,共30分)9.(5分)在(2+x)5的展开式中,x3的系数为(用数字作答)10.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.11.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.12.(5分)在△ABC中,a=4,b=5,c=6,则=.13.(5分)在△ABC中,点M,N满足=2,=,若=x+y,则x =,y=.14.(5分)设函数f(x)=,①若a=1,则f(x)的最小值为;②若f(x)恰有2个零点,则实数a的取值范围是.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.16.(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)17.(14分)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.18.(13分)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.20.(13分)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数; (Ⅲ)求集合M的元素个数的最大值.2015年全国各地高考北京市高考理科数学试题及解析参考答案与试题解析一、选择题(每小题5分,共40分)1.(5分)复数i(2﹣i)=()A.1+2iB.1﹣2iC.﹣1+2iD.﹣1﹣2i【试题分析】利用复数的运算法则解答.【试题解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.【试题点评】本题考查了复数的运算;关键是熟记运算法则.注意i2=﹣1.2.(5分)若x,y满足,则z=x+2y的最大值为()A.0B.1C.D.2【试题分析】作出题中不等式组表示的平面区域,再将目标函数z=x+2y对应的直线进行平移,即可求出z取得最大值.【试题解答】解:作出不等式组表示的平面区域,当l经过点B时,目标函数z达到最大值=0+2×1=2.∴z最大值故选:D.【试题点评】本题给出二元一次不等式组,求目标函数z=x+2y的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题. 3.(5分)执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)【试题分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【试题解答】解:模拟程序框图的运行过程,如下;x=1,y=1,k=0时,s=x﹣y=0,t=x+y=2;x=s=0,y=t=2,k=1时,s=x﹣y=﹣2,t=x+y=2;x=s=﹣2,y=t=2,k=2时,s=x﹣y=﹣4,t=x+y=0;x=s=﹣4,y=t=0,k=3时,循环终止,输出(x,y)是(﹣4,0).故选:B.【试题点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目.4.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【试题分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m⊂α,显然能得到m∥β,这样即可找出正确选项.【试题解答】解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选:B.【试题点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.5.(5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2D.5【试题分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.【试题解答】解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE ⊥BC,BC ⊥OA,运用直线平面的垂直得出:BC ⊥面AEO,AC =,OE =∴S △ABC =2×2=2,S △OAC =S △OAB =×1=. S △BCO =2×=.故该三棱锥的表面积是2, 故选:C.【试题点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直观图,得出几何体的性质.6.(5分)设{a n }是等差数列,下列结论中正确的是( )A.若a 1+a 2>0,则a 2+a 3>0B.若a 1+a 3<0,则a 1+a 2<0C.若0<a 1<a 2,则a 2D.若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)>0【试题分析】对选项分别进行判断,即可得出结论.【试题解答】解:若a 1+a 2>0,则2a 1+d >0,a 2+a 3=2a 1+3d >2d,d >0时,结论成立,即A 不正确;若a 1+a 3<0,则a 1+a 2=2a 1+d <0,a 2+a 3=2a 1+3d <2d,d <0时,结论成立,即B 不正确;{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2>,即C 正确; 若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确.故选:C.【试题点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2}【试题分析】在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.【试题解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≥log2(x+1)的x范围是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故选:C.【试题点评】本题考查了数形结合求不等式的解集;用到了图象的平移.8.(5分)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/小时的速度行驶1小时,消耗10升汽油【试题分析】根据函数图象的意义逐项分析各说法是否正确.【试题解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故C正确;对于D,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故D错误.故选:C.【试题点评】本题考查了函数图象的意义,属于中档题.二、填空题(每小题5分,共30分)9.(5分)在(2+x)5的展开式中,x3的系数为40(用数字作答)【试题分析】写出二项式定理展开式的通项公式,利用x的指数为3,求出r,然后求解所求数值.【试题解答】解:(2+x)5的展开式的通项公式为:T r=25﹣r x r,+1所求x3的系数为:=40.故答案为:40.【试题点评】本题考查二项式定理的应用,二项式系数的求法,考查计算能力.10.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.【试题分析】运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a的值.【试题解答】解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.【试题点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.11.(5分)在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为1.【试题分析】化为直角坐标,再利用点到直线的距离公式距离公式即可得出.【试题解答】解:点P(2,)化为P.直线ρ(cosθ+sinθ)=6化为.∴点P到直线的距离d==1.故答案为:1.【试题点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.12.(5分)在△ABC中,a=4,b=5,c=6,则=1.【试题分析】利用余弦定理求出cosC,cosA,即可得出结论.【试题解答】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【试题点评】本题考查余弦定理,考查学生的计算能力,比较基础.13.(5分)在△ABC中,点M,N满足=2,=,若=x+y,则x=,y=﹣.【试题分析】首先利用向量的三角形法则,将所求用向量表示,然后利用平面向量基本定理得到x,y值.【试题解答】解:由已知得到===;由平面向量基本定理,得到x=,y=;故答案为:.【试题点评】本题考查了平面向量基本定理的运用,一个向量用一组基底表示,存在唯一的实数对(x,y)使,向量等式成立.14.(5分)设函数f(x)=,①若a=1,则f(x)的最小值为﹣1;②若f(x)恰有2个零点,则实数a的取值范围是≤a<1或a≥2.【试题分析】①分别求出分段的函数的最小值,即可得到函数的最小值;②分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a的范围.【试题解答】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.【试题点评】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.三、解答题(共6小题,共80分)15.(13分)已知函数f(x)=sin cos﹣sin.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣π,0]上的最小值.【试题分析】(Ⅰ)运用二倍角公式和两角和的正弦公式,化简f(x),再由正弦函数的周期,即可得到所求;(Ⅱ)由x的范围,可得x+的范围,再由正弦函数的图象和性质,即可求得最小值.【试题解答】解:(Ⅰ)f(x)=sin cos﹣sin=sinx﹣(1﹣cosx)=sinxcos+cosxsin﹣=sin(x+)﹣,则f(x)的最小正周期为2π;(Ⅱ)由﹣π≤x≤0,可得﹣≤x+≤,即有﹣1,则当x=﹣时,sin(x+)取得最小值﹣1,则有f(x)在区间[﹣π,0]上的最小值为﹣1﹣.【试题点评】本题考查二倍角公式和两角和的正弦公式,同时考查正弦函数的周期和值域,考查运算能力,属于中档题.16.(13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)【试题分析】设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件等价于“甲是A组的第5或第6或第7个人”,由概率公式可得;(Ⅱ)设事件“甲的康复时间比乙的康复时间长”C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,易得P(C)=10P(A4B1),易得答案;(Ⅲ)由方差的公式可得.【试题解答】解:设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i 个人”,由题意可知P(A i)=P(B i)=,i=1,2,••,7(Ⅰ)事件“甲的康复时间不少于14天”等价于“甲是A组的第5或第6或第7个人”∴甲的康复时间不少于14天的概率P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=; (Ⅱ)设事件C为“甲的康复时间比乙的康复时间长”,则C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6,∴P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(Ⅲ)当a为11或18时,A,B两组病人康复时间的方差相等.【试题点评】本题考查古典概型及其概率公式,涉及概率的加法公式和方差,属基础题.17.(14分)如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(Ⅰ)求证:AO⊥BE.(Ⅱ)求二面角F﹣AE﹣B的余弦值;(Ⅲ)若BE⊥平面AOC,求a的值.【试题分析】(Ⅰ)根据线面垂直的性质定理即可证明AO⊥BE. (Ⅱ)建立空间坐标系,利用向量法即可求二面角F﹣AE﹣B的余弦值; (Ⅲ)利用线面垂直的性质,结合向量法即可求a的值【试题解答】证明:(Ⅰ)∵△AEF为等边三角形,O为EF的中点,∴AO⊥EF,∵平面AEF⊥平面EFCB,AO⊂平面AEF,∴AO⊥平面EFCB∴AO⊥BE.(Ⅱ)取BC的中点G,连接OG,∵EFCB是等腰梯形,∴OG⊥EF,由(Ⅰ)知AO⊥平面EFCB,∵OG⊂平面EFCB,∴OA⊥OG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,(a≠2),BH=2﹣a,EH=BHtan60°=,则E(a,0,0),A(0,0,a),B(2,,0),=(﹣a,0,a),=(a﹣2,﹣,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=﹣1,即=(,﹣1,1),平面AEF的法向量为,则cos<>==即二面角F﹣AE﹣B的余弦值为;(Ⅲ)若BE⊥平面AOC,则BE⊥OC,即=0,∵=(a﹣2,﹣,0),=(﹣2,,0),∴=﹣2(a﹣2)﹣3(a﹣2)2=0,解得a=.【试题点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.18.(13分)已知函数f(x)=ln,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>;(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.【试题分析】(1)利用函数的导数求在曲线上某点处的切线方程.(2)构造新函数利用函数的单调性证明命题成立.(3)对k进行讨论,利用新函数的单调性求参数k的取值范围.【试题解答】解答:(1)因为f(x)=ln(1+x)﹣ln(1﹣x)所以又因为f(0)=0,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x. (2)证明:令g(x)=f(x)﹣2(x+),则g'(x)=f'(x)﹣2(1+x2)=,因为g'(x)>0(0<x<1),所以g(x)在区间(0,1)上单调递增.所以g(x)>g(0)=0,x∈(0,1),即当x∈(0,1)时,f(x)>2(x+).(3)由(2)知,当k≤2时,f(x)>对x∈(0,1)恒成立.当k>2时,令h(x)=f(x)﹣,则h'(x)=f'(x)﹣k(1+x2)=,所以当时,h'(x)<0,因此h(x)在区间(0,)上单调递减.当时,h(x)<h(0)=0,即f(x)<.所以当k>2时,f(x)>并非对x∈(0,1)恒成立.综上所知,k的最大值为2.【试题点评】本题主要考查切线方程的求法及新函数的单调性的求解证明.在高考中属常考题型,难度适中.19.(14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(Ⅰ)求椭圆C的方程,并求点M的坐标(用m,n表示);(Ⅱ)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标,若不存在,说明理由.【试题分析】(I)根据椭圆的几何性质得出求解即可.(II)求解得出M(,0),N(,0),运用图形得出tan∠OQM=tan∠ONQ,=,求解即可得出即y Q2=x M•x N,+n2,根据m,m的关系整体求解.【试题解答】解:(Ⅰ)由题意得出解得:a=,b=1,c=1∴+y2=1,∵P(0,1)和点A(m,n),﹣1<n<1∴PA的方程为:y﹣1=x,y=0时,x M=∴M(,0)(II)∵点B与点A关于x轴对称,点A(m,n)(m≠0)∴点B(m,﹣n)(m≠0)∵直线PB交x轴于点N,∴N(,0),∵存在点Q,使得∠OQM=∠ONQ,Q(0,y Q),∴tan∠OQM=tan∠ONQ,∴=,即y Q2=x M•x N,+n2=1y Q2==2,∴y Q=,故y轴上存在点Q,使得∠OQM=∠ONQ,Q(0,)或Q(0,﹣)【试题点评】本题考查了直线圆锥曲线的方程,位置关系,数形结合的思想的运用,运用代数的方法求解几何问题,难度较大,属于难题.20.(13分)已知数列{a n}满足:a1∈N*,a1≤36,且a n+1=(n=1,2,…),记集合M={a n|n∈N*}.(Ⅰ)若a1=6,写出集合M的所有元素;(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数; (Ⅲ)求集合M的元素个数的最大值.【试题分析】(Ⅰ)a1=6,利用a n=可求得集合M的所有元+1素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数;(Ⅲ)分a1是3的倍数与a1不是3的倍数讨论,即可求得集合M的元素个数的最大值.=(n=1,2,…),M={a n|n 【试题解答】解:(Ⅰ)若a1=6,由于a n+1∈N*}.故集合M的所有元素为6,12,24;(Ⅱ)因为集合M存在一个元素是3的倍数,所以不妨设a k是3的倍数,由a n+1=(n=1,2,…),可归纳证明对任意n≥k,a n是3的倍数.如果k=1,M的所有元素都是3的倍数;,或a k=2a k﹣1﹣36,所以2a k﹣1是3的倍数;于是a k﹣1是3如果k>1,因为a k=2a k﹣1的倍数;,…,a1都是3的倍数;类似可得,a k﹣2从而对任意n≥1,a n是3的倍数;综上,若集合M存在一个元素是3的倍数,则集合M的所有元素都是3的倍数(Ⅲ)对a1≤36,a n=(n=1,2,…),可归纳证明对任意n≥k,a n<36(n=2,3,…)因为a1是正整数,a2=,所以a2是2的倍数.从而当n≥2时,a n是2的倍数.如果a1是3的倍数,由(Ⅱ)知,对所有正整数n,a n是3的倍数.因此当n≥3时,a n∈{12,24,36},这时M的元素个数不超过5.如果a1不是3的倍数,由(Ⅱ)知,对所有正整数n,a n不是3的倍数.因此当n≥3时,a n∈{4,8,16,20,28,32},这时M的元素个数不超过8.当a1=1时,M={1,2,4,8,16,20,28,32},有8个元素.综上可知,集合M的元素个数的最大值为8.【试题点评】本题考查数列递推关系的应用,突出考查分类讨论思想与等价转化思想及推理、运算能力,属于难题.。
2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(2021年整理)
2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2015年全国各地高考模拟数学试题汇编导数与定积分(理卷B)(word版可编辑修改)的全部内容。
专题2 不等式、函数与导数 第4讲 导数与定积分(B 卷)一、选择题(每题5分,共30分)1、(2015·山东省滕州市第五中学高三模拟考试·4)01()x x e dx --⎰=( )A .11e--B .1-C .312e-+D .32-622a x x ⎛⎫+ ⎪⎝⎭展开2.(2015·德州市高三二模(4月)数学(理)试题·9)式的常数项是15,右图阴影部分是由曲线2y x =和圆22x y a x+=及轴围成的封闭图形,则封闭图形的面积为( )A .146π- B .146π+C .4πD .163。
(江西省新八校2014—2015学年度第二次联考·12)已知定义域为R 的奇函数)(x f 的导函数)(x f ',当0≠x 时,0)()(>+'xx f x f ,若)1(sin 1sin f a ⋅=,)3(3--=f b ,)3(ln 3ln f c =,则下列关于c b a ,,的大小关系正确的是( )A.a c b >>B.b c a >>> C 。
a b c >>D 。
2015年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)
2015年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题:1.(2015安徽文)函数()32f x ax bx cx d =+++的图像如图所示,则下列结论成立的是( )(A )a >0,b <0,c >0,d >0 (B )a >0,b <0,c <0,d >0 (C )a <0,b <0,c <0,d >0 (D )a >0,b >0,c >0,d <02.(2015福建理)若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫> ⎪-⎝⎭ C .1111f k k ⎛⎫< ⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭【答案】C考点:函数与导数.3.(2015福建文)“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.4.(2015全国新课标Ⅰ卷理)设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数x 0,使得0()f x 0,则a 的取值范围是( )A.[-,1)B. [-,)C. [,)D. [,1)【答案】D 【解析】试题分析:设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.考点:导数的综合应用5.(2015全国新课标Ⅱ卷理)设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.6. (2015陕西理)对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .-1是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上 【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值.二、填空题:1.(2015安徽理)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)① 3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.与最值;函数零点问题考查时,要经常性使用零点存在性定理.2. (2015湖南理)20(1)x dx ⎰-= .【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.3、(2015全国新课标Ⅰ卷文)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .4. (2015全国新课标Ⅱ卷文)已知曲线ln y x x =+在点()1,1 处的切线与曲线()221y ax a x =+++相切,则a = . 【答案】8 【解析】试题分析:由11y x'=+可得曲线ln y x x =+在点()1,1处的切线斜率为2,故切线方程为21y x =-,与()221y ax a x =+++ 联立得220ax ax ++=,显然0a ≠,所以由 2808a a a ∆=-=⇒=.考点:导数的几何意义.5、(2015陕西文)函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-考点:导数的几何意义. 6. (2015陕西理)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2 【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是161.2403=,所以答案应填:1.2.考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.7. (2015陕西理)设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点p 处的切线垂直,则p 的坐标为 . 【答案】()1,1 【解析】试题分析:因为xy e =,所以xy e '=,所以曲线xy e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,因为1y x =,所以21y x '=-,所以曲线1y x=在点P处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以2011x -=-,即201x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1.考点:1、导数的几何意义;2、两条直线的位置关系.8、(2015四川文)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0; ③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中真命题有___________________(写出所有真命题的序号).【答案】①④ 【解析】对于①,因为f '(x )=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g '(x )=2x -8,当x 1,x 2<4时n <0,②错误 对于③,令f '(x )=g '(x ),即2x ln 2=2x +a 记h (x )=2x ln 2-2x ,则h '(x )=2x (ln 2)2-2【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题. 9. (2015天津文) 已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 . 【答案】3 【解析】试题分析:因为()()1ln f x a x '=+ ,所以()13f a '==. 考点:导数的运算法则.10.(2015天津理)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 【答案】16【解析】试题分析:两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积()1122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰.考点:定积分几何意义.三、解答题:1. (2015安徽文) 已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性;(Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值.2.(2015安徽理)设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足D 1≤时的最大值.3.(2015北京文)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(2)证明详见解析.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )0k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.4. (2015北京理)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭;(Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln ()013x x F x k x x +=-+>-,()01x ∈,;422222()(1)11kx k F x k x x x+-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x -'==∈,,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.5.(2015福建文)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<故()f x 的单调递增区间是10,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<,所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增.从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞.考点:导数的综合应用.6. (2015福建理) 已知函数f()ln(1)x x =+,(),(k ),g x kx R =?(Ⅰ)证明:当0x x x ><时,f();(Ⅱ)证明:当1k <时,存在00x >,使得对0(0),x x Î任意,恒有f()()x g x >;(Ⅲ)确定k 的所以可能取值,使得存在0t >,对任意的(0),x Î,t 恒有2|f()()|x g x x -<. 【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ) =1k . 【解析】 试题分析:(Ⅰ)构造函数()f()ln(1),(0,),F x x x x x x =-=+-??只需求值域的右端点并和0比较即可;(Ⅱ)构造函数G()f()()ln(1),(0,),x x g x x kx x =-=+-??即()0G x >,求导得1()1+G x k x ¢=- (1k)1+kx x-+-=,利用导数研究函数()G x 的形状和最值,证明当1k <时,存在00x >,使得()0G x >即可;(Ⅲ)由(Ⅰ)知,当1k >时,对于(0,),x "违+()f()g x x x ,>>故()f()g x x >,则不等式2|f()()|x g x x -<变形为2k ln(1)x x x -+<,构造函数2M()k ln(1),[0)x x x x x =-+-违,+,只需说明()0M x <,易发现函数()M x 在0x Î(递增,而(0)0M =,故不存在;当1k <时,由(Ⅱ)知,存在00x >,使得对任意的任意的0(0),x x ,Î恒有f()()x g x >,此时不等式变形为2ln(1)k x x x +-<,构造2N()ln(1)k ,[0)x x x x x =+--违,+,易发现函数()N x 在0x Î(递增,而(0)0N =,不满足题意;当=1k 时,代入证明即可.试题解析:解法一:(1)令()f()ln(1),(0,),F x x x x x x =-=+-??则有1()11+1+xF x x x ¢=-=- 当(0,),x ?? ()0F x ¢<,所以()F x 在(0,)+?上单调递减; 故当0x >时,()(0)0,F x F <=即当0x >时,x x f()<.(2)令G()f()()ln(1),(0,),x x g x x kx x =-=+-??则有1(1k)()1+1+kx G x k x x-+-¢=-=当0k £ G ()0x ¢>,所以G()x 在[0,)+?上单调递增, G()(0)0x G >= 故对任意正实数0x 均满足题意.当01k <<时,令()0,x G ¢=得11=10k x k k-=->. 取01=1x k,-对任意0(0,),x x Î恒有G ()0x ¢>,所以G()x 在0[0,x )上单调递增, G()(0)0x G >=,即f()()x g x >.综上,当1k <时,总存在00x >,使得对任意的0(0),x x ,Î恒有f()()x g x >.(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x ,>>故()f()g x x >,|f()()|()()k ln(1)x g x g x f x x x -=-=-+, 令2M()k ln(1),[0)x x x x x =-+-违,+,则有21-2+(k-2)1M ()k 2=,11x x k x x x x+-¢=--++故当0x Î(时,M ()0x ¢>,M()x 在[0上单调递增,故M()M(0)0x >=,即2|f()()|x g x x ->,所以满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意的0(0),x x ,Î恒有f()()x g x >. 此时|f()()|f()()ln(1)k x g x x g x x x -=-=+-,令2N()ln(1)k ,[0)x x x x x =+--违,+,则有2'1-2-(k+2)1()2=,11x x k N x k x x x-+=--++故当0x Î(时,N ()0x ¢>,M()x 在[0上单调递增,故N()(0)0x N >=,即2f()()x g x x ->,记0x 的为1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 违当+|f()()|()()ln(1)x g x g x f x x x -=-=-+,令2H()ln(1),[0)x x x x x =-+-违,+,则有21-2H ()12=,11x xx x x x-¢=--++ 当0x >时,H ()0x ¢<,所以H()x 在[0+¥,)上单调递减,故H()(0)0x H <=, 故当0x >时,恒有2|f()()|x g x x -<,此时,任意实数t 满足题意. 综上,=1k .解法二:(1)(2)同解法一.(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x >>,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x -=-=-+>-=-,令2(k 1),01x x x k -><<-解得,从而得到当1k >时,(0,1)x k ?对于恒有2|f()()|x g x x ->,所以满足题意的t 不存在.当1k <时,取11k+1=12k k k <<,从而 由(2)知存在00x >,使得0(0),x x Î任意,恒有1f()()x k x kx g x >>=.此时11|f()()|f()()(k)2kx g x x g x k x x --=->-=,令21k 1k ,022x x x --><<解得,此时 2f()()x g x x ->, 记0x 与1-k 2中较小的为1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 违当+|f()()|()()ln(1)x g x g x f x x x -=-=-+,令2M()ln(1),[0)x x x x x =-+-∈∞,+,则有212M ()12,11x xx x x x--'=--=++ 当0x >时,M ()0x ¢<,所以M()x 在[0+∞,)上单调递减,故M()M(0)0x <=, 故当0x >时,恒有2|f()()|x g x x -<,此时,任意实数t 满足题意 综上,=1k .考点:导数的综合应用.7.(2015广东理)设1a >,函数a e x x f x-+=)1()(2。
导数题目及答案 2015北京高考数学 各区一模试题汇编
1
基本的单调性与极最 值的讨论与研究问题
2015 朝阳一模文科 20 题 20.(本小题满分 13 分)
已知函数 f (x) (x a )ex , a R . x
(Ⅰ)当 a 0 时,求曲线 y f (x) 在点 (1, f (1)) 处的切线方程; (Ⅱ)当 a 1 时,求证: f (x) 在 (0, ) 上为增函数; (Ⅲ)若 f (x) 在区间 (0,1) 上有且只有一个极值点,求 a 的取值范围.
值.
4
2015 西城一模文科 20 题
20.(本小题满分 13 分)
设
n N* ,函数
f
(x)
ln x xn
,函数
g(x)
ex xn
,
x (0, ) .
(Ⅰ)判断函数 f (x) 在区间 (0, ) 上是否为单调函数,并说明理由;
(Ⅱ)若当 n 1时,对任意的 x1, x2 (0, ) , 都有 f (x1)≤t≤g(x2 ) 成立,求实数 t 的
2015 北京高考数学 各区一模试题汇编 --导数--
目录
Always a new start
项目 及 名称 单调性与极最值的 函数讨论与研究问题 以单调性为依托的 零点存在与个数问题 以函数零点为依托的 量词不等式问题 根据函数形式及性质而构造新函数的 不等式证明问题 以上四类常规问题的
答案
页码 2 7 13 16 19
11
2015 海淀一模理科 18 题 18.(本小题满分 13 分)
已知函数 f (x) a ln x 1 (a 0) . x
(Ⅰ)求函数 f ( x) 的单调区间; (Ⅱ)若{x f (x) 0} [b, c] (其中 b c ),求 a 的取值范围,并说明[b, c] (0,1) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(18)(本小题共13分)已知函数x xax x f ln )(++=,a ∈R . (Ⅰ)若()f x 在1x =处取得极值,求a 的值;(Ⅱ)若)(x f 在区间)2,1(上单调递增, 求a 的取值范围; (Ⅲ)讨论函数x x f x g -'=)()(的零点个数.解:(Ⅰ)因为22211)('xax x x x a x f -+=+-=, 由已知()f x 在1x =处取得极值,所以'(1)0f =.解得2a =,经检验2a =时,()f x 在1x =处取得极小值.所以2a =. ……3分(Ⅱ)由(Ⅰ)知,22211)('x ax x x x a x f -+=+-=,0x >.因为)(x f 在区间)2,1(上单调递增,所以0)('≥x f 在区间)2,1(上恒成立. 即x x a +≤2在区间)2,1(上恒成立.所以2≤a . ……8分(Ⅱ)因为x x f x g -'=)()(, 所以21()1a g x x x x=-+-,0>x . 令0)(=x g 得x x x a ++-=23,令x x x x h ++-=23)(,0>x .)1)(13(123)(2-+-=++-='x x x x x h .当)1,0(∈x 时,0)(>'x h ,)(x h 在)1,0(上单调递增, ),1(+∞∈x 时,0)(<'x h ,)(x h 在),1(+∞上单调递减. 所以max ()(1)1h x h ==.综上:当1>a 时,函数)(x g 无零点,当1=a 或0≤a 时,函数)(x g 有一个零点,当10<<a 时,函数)(x g 有两个零点. ……13分(18)(本小题共13分) 已知函数()exf x x a -=+⋅.(Ⅰ)当2e a =时,求()f x 在区间[1,3]上的最小值; (Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.解:(Ⅰ)当2e a =时,2()exf x x -=+,]3,1[∈x .因为2'()1e x f x -=-, 由0)(='x f ,2=x .则x ,)(x f ',)(x f 关系如下:所以当2=x 时,)(x f 有最小值为3. ………5分 (Ⅱ)“存在实数,有”等价于()f x 的最大值大于a . 因为'()1e x f x a -=-,所以当0≤a 时,]3,3[-∈x ,0)('>x f ,)(x f 在)3,3(-上单调递增, 所以()f x 的最大值为(3)(0)f f a >=. 所以当0≤a 时命题成立.当0>a 时,由0)(='x f 得a x ln =. 则x ∈R 时,x ,)(x f ',)(x f 关系如下:(1)当3e a ≥时 ,3ln ≥a ,)(x f 在)3,3(-上单调递减, 所以()f x 的最大值(3)(0)f f a ->=. 所以当3e a ≥时命题成立.(2)当33e e a -<<时,3ln 3<<-a ,所以)(x f 在)ln ,3(a -上单调递减,在)3,(ln a 上单调递增. 所以()f x 的最大值为(3)f -或(3)f .且a f f =>-)0()3(与a f f =>)0()3(必有一成立, 所以当33ee a -<<时命题成立.0[3,3]x ∈-a x f >)((3) 当30e a -<≤时 ,3ln -≤a , 所以)(x f 在)3,3(-上单调递增, 所以()f x 的最大值为(3)(0)f f a >=. 所以当30e a -<≤时命题成立.综上:对任意实数a 都存在]3,3[-∈x 使a x f >)(成立. ……13分2015西城一模18.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x=,(0,)x ∈+∞.(Ⅰ)当1n =时,写出函数()1y f x =-零点个数,并说明理由;(Ⅱ)若曲线()y f x =与曲线()y g x =分别位于直线1l y =:的两侧,求n 的所有可能取值. (Ⅰ)证明:结论:函数()1y f x =-不存在零点. ……………1分 当1n =时,ln ()x f x x =,求导得21ln ()xf x x -'=, ……………2分 令()0f x '=,解得e x =. ……………3分 当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在(0,e)上单调递增,在(e,)+∞上单调递减,则当e x =时,函数()f x 有最大值1(e)e f =. ……………4分 所以函数()1y f x =-的最大值为1(e)110ef -=-<,所以函数()1y f x =-不存在零点. ……………5分 (Ⅱ)解:由函数ln ()n x f x x =求导,得 11ln ()n n xf x x +-'=,令()0f x '=,解得1e nx =. 当x 变化时,()f x '与()f x 的变化如下表所示:……………7分 所以函数()f x 在1(0,e )n 上单调递增,在1(e ,)n+∞上单调递减,则当1e nx =时,函数()f x 有最大值11(e )enf n =; ……………8分 由函数e ()x n g x x =,(0,)x ∈+∞求导,得 1e ()()x n x n g x x+-'=, ……………9分 令 ()0g x '=,解得x n =. 当x 变化时,()g x '与()g x 的变化如下表所示:所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值e ()()ng n n=. ……………11分因为*n ∀∈N ,函数()f x 有最大值11(e )1enf n =<, 所以曲线ln n xy x =在直线1l y =:的下方,而曲线e x n y x=在直线1l y =:的上方,所以e ()1nn>, ……………12分解得e n <.所以n 的取值集合为{1,2}. ……………13分2015西城二模18.(本小题满分13分) 已知函数21()1x f x ax-=+,其中a ∈R .(Ⅰ)当14a =-时,求()f x 的单调区间;(Ⅱ)当0a >时,证明:存在实数0m >,使得对于任意的实数x ,都有|()|f x m ≤成立.(Ⅰ)解:当14a =-时,函数21()114xf x x -=-, 其定义域为{|2}x x ∈≠±R . ……………… 1分求导,得22222224(1)3()0114(1)4(1)44x x x f x x x -+----'==<--, ……………… 4分 所以函数()f x 在区间(,2)-∞-,(2,2)-,(2,)+∞上单调递减. ……………… 5分(Ⅱ)证明:当0a >时,21()1xf x ax -=+的定义域为R .求导,得22221()(1)ax ax f x ax --'=+, ……………… 6分令()0f x '=,解得110x =<,211x =>, ……………… 7分当x 变化时,()f x '与()f x 的变化情况如下表:……………… 10分所以函数()f x 在1(,)x -∞,2(,)x +∞上单调递增,在12(,)x x 上单调递减. 又因为(1)0f =,当1x <时,21()01x f x ax -=>+;当1x >时,21()01x f x ax -=<+,所以当1x ≤时,10()()f x f x ≤≤;当1x >时,2()()0f x f x <≤. ……………… 12分 记12max{()|,()|}||M f x f x =,其中12max{()|,()|}||f x f x 为两数1()||f x , 2()||f x 中最大的数, 综上,当0a >时,存在实数[,)m M ∈+∞,使得对任意的实数x ,不等式|()|f x m ≤恒 成立. ……………… 13分2015海淀一模(18)(本小题满分13分) 已知函数1()ln (0)f x a x a x=+≠. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若{()0}[,]x f x b c ≤=(其中b c <),求a 的取值范围,并说明[,](0,1)b c ⊆.解:(Ⅰ)2211'()(0)a ax f x x x x x-=-=>. ………………2分 (ⅰ)当0a <时,'()0f x <,则函数()f x 的单调递减区间是(0,)+∞.………………3分(ⅱ)当0a >时,令'()0f x =,得1x a=.当x 变化时,'()f x ,()f x 的变化情况如下表所以 ()f x 的单调递减区间是(0,)a ,单调递增区间是(,)a+∞. ………………5分(Ⅱ)由(Ⅰ)知:当0a <时,函数()f x 在区间(0,)+∞内是减函数,所以,函数()f x 至多存在一个零点,不符合题意. ………………6分当0a >时,因为 ()f x 在1(0,)a 内是减函数,在1(,)a+∞内是增函数, 所以 要使{()0}[,]x f x b c ≤=,必须1()0f a <,即1ln 0a a a+<.所以 e a >. ………………7分 当e a >时,222211()ln()2ln (2ln )f a a a a a a a a a a=+=-+=⋅-. 令()2ln (e)g x x x x =-≥,则22'()1(e)x g x x x x-=-=≥. 当e x >时,'()0g x >,所以,()g x 在[e,)+∞上是增函数. 所以 当e a >时,()2ln (e)e 20g a a a g =->=->. 所以 21()0f a>. ………………9分 因为2111a a <<,1()0f a<,(1)10f =>, 所以 ()f x 在211(,)a a内存在一个零点,不妨记为b , 在1(,1)a内存在一个零点,不妨记为c . ……11分 因为 ()f x 在1(0,)a 内是减函数,在1(,)a+∞内是增函数, 所以 {()0}[,]x f x b c ≤=.综上所述,a 的取值范围是(e,+)∞. ………………12分 因为 211(,)b a a ∈,1(,1)c a∈,所以 [,](0,1)b c ⊆.…13分2015海淀二模(18)(本小题满分14分) 已知函数21ln ()xf x x-=. (Ⅰ)求函数()f x 的零点及单调区间; (Ⅱ)求证:曲线ln xy x=存在斜率为6的切线,且切点的纵坐标01y <-.解:(Ⅰ)令()0f x =,得e x =.故()f x 的零点为e . ………………1分22231()(1ln )22ln 3'()()x x xx x f x x x -⋅--⋅-==(0x >). ………………3分令 '()0f x =,解得 32e x =.当x 变化时,'()f x ,()f x 的变化情况如下表:所以 ()f x 的单调递减区间为32(0,e ),单调递增区间为32(e ,)+∞. ………………6分(Ⅱ)令ln ()x g x x =.则2211ln 1ln '()()x xx x g x f x x x ⋅-⋅-===. ………………7分 因为 11()44ln 244622f =+>+⨯=,(e)0f =,且由(Ⅰ)得,()f x 在(0,e)内是减函数,所以 存在唯一的01(,e)2x ∈,使得00'()()6g x f x ==.当[e,)x ∈+∞时,()0f x ≤. 所以 曲线ln xy x=存在以00(,())x g x 为切点,斜率为6的切线. ………………10分 由0021ln '()6x g x x -==得:200ln 16x x =-.所以 20000000ln 161()6x x g x x x x x -===-.因为 012x >,所以12x <,063x -<-.所以 00()1y g x =<-. …13分2015朝阳一模18.(本小题满分13分)已知函数2()ln (1)2x f x a x a x =+-+,a ∈R .(Ⅰ) 当1a =-时,求函数()f x 的最小值;(Ⅱ) 当1a ≤时,讨论函数()f x 的零点个数.解:(Ⅰ)函数()f x 的定义域为{}0x x >.当1a =-时,2()ln 2x f x x =-+.211(1)(1)()x x x f x x x x x -+-'=-+==. 由(1)(1)0x x x +->()0x >解得1x >;由(1)(1)0x x x +-<()0x >解得01x <<. 所以()f x 在区间(0,1)单调递减, 在区间(1,)+∞单调递增. 所以1x =时,函数()f x 取得最小值1(1)2f =. ……………….5分 (Ⅱ)(1)()()x x a f x x--'=,0x >.(1)当0a ≤时,(0,1)x ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在1x =时取得最小值1(1)2f a =--. (ⅰ)当0a =时,2()2x f x x =-,由于0x >,令()0f x =,2x =,则()f x 在(0,)+∞上有一个零点;(ⅱ)当12a =-时,即(1)0f =时,()f x 有一个零点;(ⅲ)当12a <-时,即(1)0f >时,()f x 无零点.(ⅳ)当102a -<<时,即(1)0f <时,由于0x →(从右侧趋近0)时,()f x →+∞;x →+∞时,()f x →+∞, 所以()f x 有两个零点. (2)当01a <<时,(0,)x a ∈时,()0f x '>,()f x 为增函数; (,1)x a ∈时,()0f x '<,()f x 为减函数; (1,)x ∈+∞时,()0f x '>,()f x 为增函数.所以()f x 在x a =处取极大值,()f x 在1x =处取极小值.21()ln (1)2f a a a a a a =+-+21ln 2a a a a =--.当01a <<时,()0f a <,即在(0,1)x ∈时,()0f x <.而()f x 在(1,)x ∈+∞时为增函数,且x →+∞时,()f x →+∞, 所以此时()f x 有一个零点.(3)当1a =时,2(1)()0x f x x-'=≥在()0,+∞上恒成立,所以()f x 为增函数.且0x →(从右侧趋近0)时,()f x →-∞;x →+∞时,()f x →+∞. 所以()f x 有一个零点.综上所述,01a ≤≤或12a =-时()f x 有一个零点;12a <-时,()f x 无零点;102a -<<()f x 有两个零点.…………….13分2015朝阳二模19.(本小题共14分)已知函数. (Ⅰ)当时,求函数的单调区间;(Ⅱ)若在区间(1,2)上存在不相等的实数成立,求的取值范围; (Ⅲ)若函数有两个不同的极值点,,求证:.解:(Ⅰ)当时,,.由,解得,. 当时,,单调递增; 当时,,单调递减; 当时,,单调递增.所以的单调增区间为,单调减区间为.(Ⅱ)依题意即求使函数在上不为单调函数的的取值范围.,设,则,.因为在上为增函数.当,即当时,函数在上有且只有一个零点,设为,当时,,即,为减函数;当时,,即,为增函数,满足在上不为单调函数.当时,,,所以在上成立(因在上为增函数),所以在上成立,即在上为增函数,不合题意.同理时,可判断在为减函数,不合题意.综上.(Ⅲ).因为函数有两个不同的零点,即有两个不同的零点,即方程的判别式,解得.由,解得,.此时,.随着变化,和的变化情况如下:+ +极大值极小值所以是的极大值点,是的极小值点,所以是极大值,是极小值所以因为,所以,所以.。