复变函数与积分变换期末考试试卷A及答案
复变函数与积分变换2014-2015_1_A_参考答案
+
4
,求其
Laplace
逆变换
L−1
[
F
(s)]。
解:由 ,因此 F
(s)
=
(s
(s +1) + 2 +1)[(s +1)2 +
3]
2
L−1
[
F
(
s)]
=
e−t
⋅
L−1
s s(s
+2 2 + 3)
=
e−t
⋅
L−1
2 3
⋅
1 s
+
1 3
s2
3 +
3
−
2⋅ 3
s2
s +
3
= e−t [2 + 3 sin( 3t) − 2 cos( 3t)] 3
=
z −2 1⋅1−
1
1 z −1
=
∞
2
n=0
(z −1)−n−1
=
−1
2 (z −1)n
n=−∞
因此, 。 ∑ f
(z)
=
z
1 −1
+
−2
2
n=−∞
(
z
−1)n
六、〖12 分〗利用 Laplace 变换求解微分初值问题:
。
y′′′ + y′′(0)
6 y′′ + 12 y′ + 8y = t = y′(0) = 0, y(0) = 1
点,记 。于是, 。因此,实 z0 = 2
R = min{ z1 − z0 , z2 − z0 , zy − z0 | y >1} = 5
吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案
吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。
2.设y 是实数,则sin(iy)的模为________。
3.设a>0,则Lna=________。
4.记号Res z=af(z)表示________。
5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。
6.方程z=t+i t(t 是实参数)给出的曲线为________。
7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。
8.cosz 在z=0的幂级数展式为________。
二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。
每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。
( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。
( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。
( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。
2.试证:复平面上三点a+bi,0,1-a +bi 共直线。
3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。
4.说明函数f(z)=|z|在z 平面上任何点都不解析。
5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。
云南师范大学《复变函数与积分变换》期末试卷-A卷及答案
云南师范大学2007 --2008 学年下学期统一考试__复变函数与积分变换__试卷学院 物电 班级__06 __专业 电子类 学号__ __姓名__ ___考试方式:闭卷 考试时间:120 分钟 试卷编号:A 卷 题号一 二 三 四 总分 评卷人得分 评卷人一.单项选择题(本大题共5题,每题2分,共10分)请在每小题的括号中填上正确的答案。
选项中只有一个答案是正确的,多选或不选均不得分1.设y e y x V ax sin ),(=是调和函数,则常数=a ( )A.0B.1C.2D.32.设i iz z z f 48)(3++=,则=-'),1(i f ( )A.-2iB.2iC.-2D.23.设C 为正向圆周0)(a >=-a a z ,则积分⎰-C a z dz 22=( ) A.ai2π- B. a i π- C. a i 2π D. ai π 4.设C 为正向圆周|z-1|=1,则⎰=-C dz z z 53)1(( ) A.0B.πiC.2πiD.6πi 5.f(z)=211z +在z=1处的泰勒展开式的收敛半径为( ) A.23 B.1C.2D.3 得分 评卷人二、填空题(本大题共10个题,每题3分,共30分)请在每小题的空格中填上正确的答案。
填错、不填均无分。
1、FT 解决的问题主要是: _____ ______.2、傅立叶级数中系数n a 、n b 和n c 之间的关系为__________________________.3、)(t f 的傅立叶积分公式为:____ ________.4、)(t f 的傅立叶变换为__ _____________.5、幂级数50n n nz +∞=∑的收敛半径为________________.6、函数21()1f z z =+的幂级数展开式为______________________________. 7、积分==⎰∞∞-ωπωd e t f t i 21)( . 8、.=)(at δ ____ ___________。
2020-2021大学《复变函数与积分变换》期末课程考试试卷A(含答案)
2020-2021大学《复变函数与积分变换》期末课程考试试卷A考试时间: 类型:闭卷 时间:120分钟 总分:100分 专业:信工一、填空题(3'824'⨯=)1、幂级数()1nn i ∞=+∑的敛散性是____________(绝对收敛、条件收敛、发散)。
2、i 22+的三角形式____________________。
3、z=0是f(z)=[ln(l+z)]/z 的奇点,其类型为_____4、11z -在z=0处的幂级数是_______。
5、0z=为函数()81cos zf z z -=的_____阶极点;在该点处的留数为_____6、ln(1)=_______。
7、25_____(2)zz e z ==-⎰。
8、21nn z n∞=∑的收敛半径为_______。
二、选择题 (3'515'⨯=)1、不等式4z arg 4π<<π-所表示的区域为( ) A.角形区域 B.圆环内部 C.圆的内部 D.椭圆内部2. 复数 8i z -= 的辐角主值 =z arg ( )(A) 2π ; (B)π; (C) 0; (D) 2π3. 设v(x ,y)=e ax siny 是调和函数,则常数a 可以取下列哪个值( ) (A )0 (B )1(C )2 (D )3 4. 0=z 是函数 zzz f sin )(=的 ( ) (A) 本性奇点; (B) 一级极点; (C) 零点 ; (D) 可去奇点5、下列积分值不为零的是 ( ) A 、z-1=22z+3)dz ⎰( B 、 z z-1=2e dz ⎰C 、z =1sin z dz z ⎰D 、z =1coszdz z⎰三、解答题(共7题,共计61分)1、(8分)已知f(z)=u+iv 是解析函数,且v=2xy 、f(1)=2, 求f(z)2、(1)(8分)计算积分(1)423z =5dz(z 2)(z-2)+⎰(2)(6分)21(21)(3)z z dz z z z =++-⎰院系: 专业班级: 姓名: 学号:装 订 线 内 不 准 答 题装 订 线3、(8分)设f(z)=x 3– 3xy 2+ i (3x 2y – y 3),问)(z f 在何处可导?何处解析?并在可导处求出导数值.4、(10分) (1)将函数()1(1)(2)f z z z =--在圆环2z <<+∞内展开为Laurent 级数。
(完整版)《复变函数》期末试卷及答案(A卷)(可编辑修改word版)
a - b1- abn (z -1) n (z -1) XXXX 学院 2016—2017 学年度第一学期期末考试复变函数 试卷7.幂级数∑(-1)n n =0z n2nn !的和函数是()学号和姓名务必正确清 A. e -zz B. e2- zC. e2dzD. sin z楚填写。
因填写错误或不清 8. 设C 是正向圆周 z = 2 ,则⎰C z2=()楚造成不良后果的,均由本 A. 0 B. - 2i C. iD. 2i人负责;如故意涂改、乱写 的,考试成绩 答一、单项选择题(本大题共 10 小题,每题 3 分,共 30 9. 设函数 f (z ) 在0 < z - z 0 < R (0 < R ≤ +∞) 内解析,那么 z 0 是 f (z ) 的极点的充要条件是()A. lim f (z ) = a ( a 为复常数)B. lim f (z ) = ∞视为无效。
题分,请从每题备选项中选出唯一符合题干要求的选项,z → z 0z → z 0请勿1.Re(i z ) =并将其前面的字母填在题中括号内。
)()10. 10. C. lim f (z ) 不存在D.以上都对z → z 0ln z 在 z = 1处的泰勒级数展开式为 ()超 A. - Re(i z )B. Im(i z )∞(z -1)n +1∞ (z -1)n A. ∑(-1)n, z -1 < 1B. ∑(-1)n, z -1 < 1过C. - Im z此 D. Im zn =1∞n +1n +1n =1 n∞n2. 函数 f (z ) =z 2在复平面上()C. ∑(-1) , z -1 < 1D. ∑(-1) , z -1 < 1密 封 A.处处不连续B.处处连续,处处不可导线 C.处处连续,仅在点 z = 0 处可导D.处处连续,仅在点 z = 0 处解析,3. 设复数 a 与b 有且仅有一个模为 1,则的值()n =0n +1 n =0n 否 则 A.大于 1 B.等于 1 C.小于 1D.无穷大视 4. 设 z = x + i y ,f (z ) = - y + i x ,则 f '(z ) = ()二、填空题(本大题共 5 小题,每题 3 分,共 15 分)为A.1+ i无B. isin zC. -1D. 011. z = 1+ 2i 的5. 设C 是正向圆周 z = 1 , ⎰C dz = 2i ,则整数n 等于 ()zn A. -1B. 0e z -1C.1D. 26. z = 0 是 f (z ) =的()z2A.1阶极点B. 2 阶极点C.可去奇点D.本性奇点∞系别专业姓名班级学号(最后两位)总分 题号 一 二 三四统分人 题分 30203030复查人得分得分评卷人复查人得分评卷人复查人⎰18.求在映射 w = z 2 下, z _ _ _ _ 平面上的直线 __ _z = (2 + i)t 被映射成 w 平面上的曲线的方程.12.设 z = (2 - 3i)(-2 + i) ,则arg z =.13.在复平面上,函数 f (z ) = x 2 - y 2 - x + i(2xy - y 2 ) 在直线上可导.cos 5z.19.求e z 在 z = 0 处的泰勒展开式.14. 设C 是正向圆周 z = 1 ,则 ⎰Cdz = .z∞ ∞∞15. 若级数∑ zn 收敛,而级数∑ zn 发散,则称复级数∑ zn 为.n =1n =1n =1三、计算题(本大题共 5 小题,每小题 8 分,共 40 分)16. 利用柯西-黎曼条件讨论函数 f (z ) = z 的解析性.20.计算积分1+iz 2dz .2017 + n i 17.判断数列 z n = n +1的收敛性. 若收敛,求出其极限.三、证明题(本大题共1 小题,每小题15 分,共15 分)nn !⎩ 21.试证明柯西不等式定理:设函数 f (z ) 在圆C : z - z 0 = R 所围的区域内解析,且在C因此在任何点(x , y ) 处, ∂u ≠∂v,所以 f (z ) 在复平面内处处不解析。
云南师范大学《复变函数与积分变换》期末试卷 A卷及答案
)
A. − πi 2a
B.
πi −
a
C. πi 2a
D. πi a
∫ 4.设 C 为正向圆周|z-1|=1,则
z 3 dz = (
C (z − 1)5
)
A.0
B.πi
C.2πi
D.6πi
5.f(z)= 1 在 z=1 处的泰勒展开式的收敛半径为(
)
1+ z2
A. 3
B.1
2
06 级电子类专业《复变函数与积分变换》(A)卷 第 1 页 共 7 页
∫ 7、积分 f (t) = 1 ∞ eiωt dω =
2π −∞
.
8、.δ (at) = ____
___________。
9、 sgn(t) 的频谱为____
_______.
10、若 f (t) ↔ F (ω ) ,则 f (t ± t0 ) ↔ ___
______________.
得分 评卷人
三、计算题(本大题共 3 小题,每题 10 分,共 30 分) 1. 求复数 z −1 的实部与虚部.
云南师范大学课程考试
试卷参考答案及评分标准
课程名称:复变函数与积分变换 考试班级: 06 级 电子类专业
试卷编号: A 命题教师签名:___
_ ____年___月___日
一、单项选择题(本大题共 5 题,每题 2 分,共 10 分)
1.B 2.B 3.D 4.A 5.C
二、填空题(本大题共 10 个空,每空 3 分,共 30 分)
C. 2
D. 3
得分 评卷人
二、填空题(本大题共 10 个题,每题 3 分,共 30 分)请在每小题的空格中填上
《复变函数与积分变换》期末考试试卷A及答案
《复变函数与积分变换》期末考试试卷A及答案六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。
(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz zz f ++=0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为 ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f z±-=(5)的非孤立奇点。
复变函数与积分变换期末试题附有答案
复变函数与积分变换期末试题附有答案Last revision on 21 December 2020复变函数与积分变换期末试题一.填空题(每小题3分,共计15分)1.231i -2.)1(i Ln +-的主值是();3. 211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ;3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
最新复变函数与积分变换期末考试试卷(A卷)(1)
复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。
复变函数与积分变换期末考试-11-12-1-A-试题&答案
京
交
通
大
学
2011-2012 学年第二学期《复变函数与积分变换》期末考试卷(A 卷)
(参考答案)
学院
专业
班级
学号
题 得 号 分 一 二
姓名
三 四 总分
阅卷人
一、填空题(每小题 3 分,共 18 分)
1. 复数 i 的指数形式为____ e 2.
i
2 k 2
______。
ln(3i)
2
π ln 3 i 2
。
3. 级数 1 z z
zn
的和函数的解析域是
| z |1
。
4.
1 e2 z 1 e2 z 4 z 0 是 4 的 3 阶极点, Re s[ 4 , 0] 。 z 3 z
2
5. 在映射 w z i z 下, z i 处的旋转角为__
(8 分)
由于 f (i) 2i ,得 c 1 (9 分) , f ( z ) (4 xy y 1) i(2 x 2 y x) (10 分)
2.
2
z
z z 1 e dz z 1
2 1 1 2 ( ) z 1 2! z 1
2
e z 1 1
v y 4 y u x , u 4 xy c( y) , v x (4 x 1) u y , (4 x 1) 4 x c( y)
c( y) 1, c( y) y c
u( x, y) 4 xy y c
2 2
我们有,
1 1 1 z 3 z 1 z1 3! 5! 7!
z =0为f ( z )的三阶极点, 1 Re s[ f ( z ),0] . 5!
《复变函数与积分变换》期末考试试卷及答案
«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2.)1(iLn+-的主值是();3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的()极点;5.zzf1)(=,=∞]),([Re zfs();二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A)yxiuuzf+=')(;(B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz;(C)2)2()1(3--zz;(D)2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛;(B)iz2=点绝对收敛;(C)iz+=1点绝对收敛;(D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在z点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是(Λ2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是(i 432ln 21π+ );3.211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1----5 B D C B D三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与积分变换期末试题(A )答案及评分标准复变函数与积分变换期末试题(A )一.填空题(每小题3分,共计15分)1.231i -的幅角是(Λ2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是(i 432ln 21π+ );3. 211)(z z f +=,=)0()5(f( 0 );4.0=z 是 4sin z z z -的(一级)极点;5. z z f 1)(=,=∞]),([Re z f s (-1); 二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在( C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析, 则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).(A) 的可去奇点;为z1sin ∞ (B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞ (D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ; (3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点,如果有极点,请指出它的级. 四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
(2).计算⎰-C zz zz e d )1(2其中C 是正向圆周: 解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数z z e z f z2)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆21,c c 且位于c 内⎰⎰⎰-+-=-21d )1(d )1(d )1(222C z C z C zz z z e z zz e z z z e i z e iz e i z zz z πππ2)1(2)(2021=-+'===无论采用那种方法给出公式至少给一半分,其他酌情给分。
(3).⎰=++3342215d )2()1(z z z z z解:设)(z f 在有限复平面内所有奇点均在:3<z 内,由留数定理]),([Re 2d )2()1(3342215∞-=++⎰=z f s i z z z z z π -----(5分) ]1)1([Re 22z z f s i π= ----(8分)234221521))1(2()11()1(1)1(z z zz z z f ++= 0,z )12()1(11)1(34222=++=有唯一的孤立奇点z z z z z f 1)12()1(11)1(]0,1)1([Re 34220202lim lim =++==→→z z z z zf z z f s z z ⎰==++∴33422152d )2()1(z i z z z z π --------(10分)(4)函数2332)3()(sin )2)(1()(-+-=z z z z z z f π在扩充复平面上有什么类型的奇点,如果有极点,请指出它的级. 解:∞±±±==-+-=,的奇点为Λ,3,2,1,0,)(sin )3()2)(1()(3232k k z z z z z z z f π(1)的三级零点,)为(032103=±±±==z kk z πsin ,,,,,Λ(2)的可去奇点,是的二级极点,为,)()(,z f z z f z z 210-=±== (3)的一级极点,为)(3z f z =(4)的三级极点;,为)(4,3,2z f zΛ±-=(5)的非孤立奇点。
为)(z f ∞备注:给出全部奇点给5分 ,其他酌情给分。
四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数;(1)110<-<z ,(2)10<<z ,(3)∞<<z 1解:(1)当110<-<z])11(1[)1(1)1(1)(2'+---=-=z z z z z f 而])1()1([])11(1['--='+-∑∞=n n n z z ∑∞=---=01)1()1(n n n z n∑∞=-+--=021)1()1()(n n n z n z f -------6分(2)当10<<z)1(1)1(1)(22z z z z z f --=-==∑∞=-021n nz z ∑∞=--=02n n z -------10分(3)当∞<<z 1)11(1)1(1)(32zz z z z f -=-=∑∑∞=+∞===03031)1(1)(n n n n z z zz f ------14分 每步可以酌情给分。
五.(本题10分)用Laplace 变换求解常微分方程定解问题:⎩⎨⎧='===+'-''-1)0(1)0()(4)(5)(y y e x y x y x y x解:对)(x y 的Laplace变换记做)(s L ,依据Laplace 变换性质有11)(4)1)((51)(2+=+----s s L s sL s s L s …(5分) 整理得)4(151)1(65)1(101 11)4(151)1(61)1(101 11)4)(1)(1(1)(-+-++=-+-+--+=-+--+=s s s s s s s s s s s s L …(7分) xx x e e e x y 415165101)(++=- …(10分) 六、(6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos 解:)()(0>=-+∞∞--⎰βωβω dt ee F tti --------3分)()(00>+=-+∞-∞--⎰⎰βωβωβω dt e e dt e eF t t i tti)()()(00>+=⎰⎰+∞+-∞--βωβωβ dt e dt et i ti)()()(00>+--=+∞+-∞--βωβωβωβωβ i e i e t i t i)()(021122>+=++-=βωββωβωβω i i F ------4分)()()(021>=⎰+∞∞-βωωπω d F e t f ti - -------5分 )(022122>+=⎰+∞∞-βωωββπω d e ti )()sin (cos 0122>++=⎰+∞∞-βωωωωββπ d t i t )(sin cos 0222022>+++=⎰⎰+∞∞-+∞βωωβωβπωωβωπβd ti d t)(cos )(02022>+=⎰+∞βωωβωπβd tt f , -------6分te d t ββπωωβω-+∞=+⎰2022cos 复变函数与积分变换期末试题(B)一.填空题(每小题3分,共计15分)二.1.21i-的幅角是( );2.)(i Ln +-的主值是( );3.a=( ),)2(2)(2222y xy ax i y xy x z f +++-+=在复平面内处处解析.4.0=z 是 3sin zzz -的( )极点;5. z z f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A )x y iv u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )y x iu u z f +=')(.2.C 是正向圆周2=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )13-z ; (B )13-z z; (C )2)1(3-z z ; (D )2)1(3-z . 3.如果级数∑∞=1n n n z c 在i z 2=点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2-=点绝对收敛;(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果0)(=⎰Cdz z f ,其中C 复平面内正向封闭曲线, 则)(z f 在C 所围成的区域内一定解析;(C )函数)(z f 在0z 点解析的充分必要条件是它在该点的邻域内一定可以展开成为0z z -的幂级数,而且展开式是唯一的;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A )、lnz 是复平面上的多值函数; cosz )B (、是无界函数;z sin )C (、 是复平面上的有界函数;(D )、z e 是周期函数.三.按要求完成下列各题(每小题8分,共计50分)(1)设)))((),()(y g x i y x u z f ++=2是解析函数,且00=)(f ,求)(),,(),(z f y x u y g .(2).计算⎰-+C z i z z zd ))(1(22.其中C 是正向圆周2=z ; (3).计算⎰-Cz z e z z d )1(12,其中C 是正向圆周2=z ; (4).利用留数计算⎰--C z z z d )2)(1(12.其中C 是正向圆周3=z ;(5)函数33221)(sin ))(()(z z z z z f π+-=在扩充复平面上有什么类型的奇点,如果有极点,请指出它的级.四、(本题12分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数;(1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题8分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos复变函数与积分变换期末试题简答及评分标准(B ) 一.填空题(每小题3分,共计15分)1.21i -的幅角是( Λ,2,10,24±±=+-k k ππ);2.)1(i Ln --的主值是(42ln 21πi - );3. 211)(z z f +=,=)0()7(f ( 0 );4.3sin )(z z z z f -=,=]0),([Re z f s ( 0 ) ;5. 21)(z z f =,=∞]),([Re z f s ( 0 );二.选择题(每小题3分,共计15分)1----5 A A C C C三.按要求完成下列各题(每小题10分,共计40分)(1)求d c b a ,,,使)()(2222y dxy cx i by axy x z f +++++=是解析函数,解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。