椭圆和双曲线的必背的经典结论

合集下载

椭圆双曲线抛物线常用结论

椭圆双曲线抛物线常用结论

椭圆、双曲线、抛物线常用结论

1.),(),,(2211y x B y x A 是椭圆)0(122

22>>=+b a b

y a x 的两点,),(00y x M 是AB 的中点,

则22

0202a

b k k y a x b k OM AB AB

-=•⇔-=

2.),(),,(2211y x B y x A 是椭圆)0(122

22>>=+b a b

y a x 上关于原点对称的两点, 点P 是椭圆上不同于B

A ,的动点,且P

B PA ,斜率都存在,则22

a

b k k PB

PA -=•

3. ),(),,(2211y x B y x A 是双曲线)0,0(122

22>>=-b a b

y a x 上的两点,),(00y x M 是AB 的中点,

则22

0202a

b k k y a x b k OM AB AB

=•⇔= 4.),(),,(2211y x B y x A 是双曲线)0,0(122

22>>=-b a b

y a x 上关于原点对称的两点, 点P 是双曲线上不同于

B A ,的动点,且PB PA ,斜率都存在,则22

a

b k k PB

PA =• 5. 若),(00y x P 是椭圆)0(122

22>>=+b a b y a x 上的一点, 则过点P 的切线方程是:12020=+b y y a x x

6. 若),(00y x P 是椭圆)0(122

22>>=+b a b

y a x 外的一点,过点P 的两切线的切点分别为B A ,,

则切点弦AB 的方程是:

12020=+b

y

y a x x 7. 若),(00y x P 是双曲线)0,0(122

高中数学圆锥曲线最常用二级结论总结

高中数学圆锥曲线最常用二级结论总结

圆锥曲线的常用二级结论

一、椭圆的常用二级结论

1.(1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()22

2221,0x y b a b λλλ+=+>++.

(2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()22

22,0x y b a

λλ+=>.

2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)122PF PF a +=;(2)1a c PF a c -≤≤+;(3)2

2

12b PF PF a ≤⋅≤;

(4)焦半径公式10||PF a ex =+,20||PF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).

3.椭圆的方程为22

221x y a b +=(a >b >0),左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:

(1)()()222

22222

000022,b a y a x x b y a b =-=-;(2)参数方程()00

cos sin x a y b θθθ=⎧⎨=⎩为参数;

4.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则

(1)2

122||||1cos b PF PF θ

=+.

(2)焦点三角形的面积:122

||=tan

2

PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时,θ最大,此时12PF F S ∆也最大;(4).

21cos 2

双曲线与椭圆经典结论

双曲线与椭圆经典结论

椭圆经典结论

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b

+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是0

0221x x y y a b

+=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2

F PF S b γ∆=. 8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

(完整版)高考数学椭圆与双曲线的经典性质50条

(完整版)高考数学椭圆与双曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论)

高三数学备课组

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y a b +=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122

tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

椭圆与双曲线的一些结论

椭圆与双曲线的一些结论

椭圆与双曲线的经典结论

椭 圆

1. 椭圆22

221x y a b

+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直

线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

2. 过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线

交椭圆于B,C 两点,则直线BC 有定向且20

20

BC b x k a y =(常数).

3. 若P 为椭圆22

221x y a b

+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,

12PF F α∠=, 21PF F β∠=,则

tan t 22

a c co a c αβ

-=+.

4. 设椭圆22

221x y a b

+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上

任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有

sin sin sin c

e a

αβγ==+.

5. 若椭圆22

221x y a b

+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0

<e ≤21-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.

6. P 为椭圆22

221x y a b

+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,

则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.

高三数学辅导:椭圆与双曲线的必背的经典结论prt

高三数学辅导:椭圆与双曲线的必背的经典结论prt

椭圆与双曲线的必背的经典结论

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长

轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

22

1x y a b +=上,则过0

P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线

方程是

00221x x y y

a b

+=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆

的焦点角形的面积为122

tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应

于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论和椭圆与双曲线对偶结论

圆锥曲线常用的二级结论:

1.零点定理:设F1,F2为椭圆E的两个焦点,P为椭圆上一点,则PF1 + PF2 = 2a(a

为椭圆长轴的一半);对于双曲线,PF1 - PF2 = 2a,其中a为双曲线的长轴的一半。

2.切线定理:设点P(x0,y0)在曲线C上,则C在点P处的切线方程为F_x(x0,y0)

x + F_y(x0,y0)y = F(x0,y0),其中F(x,y)为曲线C的方程,F_x和F_y为它的偏导数。

3.法线定理:设点P(x0,y0)在曲线C上,则C在点P处的法线方程为F_y(x0,y0)

x - F_x(x0,y0)y = F_y(x0,y0)x0 - F_x(x0,y0)y0。

4.离心率计算公式:设椭圆E的长轴为a,短轴为b,则椭圆的离心率为e = √(a² - b²)

/ a。

5.弦长定理:对于椭圆E,设以焦点F1,F2为端点的弦所对应的直角顶点为P,则弦PF1

+ PF2的长度等于椭圆长轴的长度;对于双曲线,弦PF1 - PF2的长度等于双曲线长轴的长度。

椭圆与双曲线的对偶结论:

1.椭圆E的对称中心为它所包围的正方形的中心,长、短半轴分别为正方形的对角线之

一和另外一边。

2.椭圆的纵轴端点为它所包围正方形的中心连通它上下角的一条直线,椭圆的焦点在这

条直线上。

3.双曲线的渐近线为对应椭圆的渐近线的转置。

4.对于椭圆E的焦点F和双曲线H的焦距f,有e² = 1 + f² / b²。把椭圆的参数a,b

换成双曲线的参数a,b,即可得到双曲线的离心率计算公式。

双曲线中的一些常见结论

双曲线中的一些常见结论

双曲线中的一些常见结论

一、椭圆的常用结论:

1. 点P 处的切线PT 平分△PF1F2在点P 处的外角.

2. PT 平分△PF1F2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦

P 1P 2的直线方程是

00221x x y y

a b

+=. 7. 椭圆22

221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式

10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ

分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

史上最全圆锥曲线(椭圆、双曲线、抛物线)二级结论

史上最全圆锥曲线(椭圆、双曲线、抛物线)二级结论

史上最全圆锥曲线(椭圆、双曲线、

抛物线)二级结论

第一部分 椭圆二级结论大全

1.12

2PF PF a += 2.标准方程22

221x y a b += 3.11

1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直

径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).

9.椭圆22

221x y a b

+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭

圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22

221x y a b

-=.

10.若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

11.若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切

点弦P 1P 2的直线方程是00221x x y y

a b

+=.

12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2

2OM AB b k k a

(完整版)高考数学椭圆与双曲线的经典性质50条

(完整版)高考数学椭圆与双曲线的经典性质50条

椭圆与双曲线的对偶性质--(必背的经典结论)

高三数学备课组

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y a b +=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

专题01 解析几何的常用二级结论(高考必背)

专题01 解析几何的常用二级结论(高考必背)

解析几何的常用二级结论

一.有关椭圆的经典结论

焦点的位置

焦点在x 轴上

焦点在y 轴上

图形

标准方程

()22

2210x y a b a b +=>> ()22

22

10y x a b a b +=>> 范围

a x a -≤≤且

b y b -≤≤ b x b -≤≤且a y a -≤≤

顶点

()1,0a A -、()2,0a A

()10,b B -、()20,b B

()10,a A -、()20,a A ()1,0b B -、()2,0b B

轴长 短轴的长2b = 长轴的长2a =

焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

焦距 ()222122F F c c a b ==-

对称性

关于x 轴、y 轴、原点对称

离心率

()2

2101c b e e a a

==-<<e 越小,椭圆越圆;e 越大,椭圆越扁

1.(1)与椭圆221x y a b +=共焦点的椭圆的方程可设为()22

21,0x y b a b λλλ+=+>++. (2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()22

22,0x y b a

λλ+=>.

2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立: (1)第一定义:122PF PF a +=;

(2)焦半径的最大值与最小值:1a c PF a c -≤≤+; (3)2

2

12b PF PF a ≤⋅≤;

(4)焦半径公式10||PF a ex =+,20||PF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论

椭圆与双曲线的必背的经典结论

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y

a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦

P 1P 2的直线方程是00221x x y y

a b

+=.

7. 椭圆22

221x y a b

+= a >b >0的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=a >b >0的焦半径公式:

10||MF a ex =+,20||MF a ex =-1(,0)F c - , 2(,0)F c 00(,)M x y .

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ

分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q

双曲线中的一些常见结论

双曲线中的一些常见结论

双曲线中的⼀些常见结论

双曲线中的⼀些常见结论

⼀、椭圆的常⽤结论:

1. 点P 处的切线PT 平分△PF1F2在点P 处的外⾓.

2. PT 平分△PF1F2在点P 处的外⾓,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线⽅程是00221x x y y

a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦

P 1P 2的直线⽅程是

00221x x y y

a b

+=. 7. 椭圆22

221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意⼀点

12F PF γ∠=,则椭圆的焦点⾓形的⾯积为122tan

2

F PF S b γ

=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式

10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上⼀个顶点,连结AP 和AQ

分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆⼀个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

高考数学椭圆与双曲线的经典性质与结论

高考数学椭圆与双曲线的经典性质与结论

椭圆与双曲线的对偶性质--(必背的经典结论)

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y a b +=. 7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122

tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

高考数学椭圆与双曲线的经典性质62条

高考数学椭圆与双曲线的经典性质62条

椭圆与双曲线的对偶性质--(必背的经典结论)

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的

两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

22

1x y a b

+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6.

若000(,)P x y 在椭圆22

221x y a b

+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程

是00221x x y y

a b +=. 7.

椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点

角形的面积为122

tan 2

F PF S b γ∆=.

8.

椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦

点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P

高考数学椭圆与双曲线的经典性质50条经典法则

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论)

高三数学备课组

椭圆

1.点P处的切线PT平分△PF1F2在点P处的外角.

2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

3.以焦点弦PQ为直径的圆必与对应准线相离.

4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.

5.若在椭圆上,则过的椭圆的切线方程是.

6.若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是

.

7.椭圆 (a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点,则椭圆的焦点角形的面积

为.

8.椭圆(a>b>0)的焦半径公式:,( , ).

9.设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆

准线于M、N两点,则MF⊥NF.

10.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于

点N,则MF⊥NF.

11.AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。

12.若在椭圆内,则被Po所平分的中点弦的方程是.

13.若在椭圆内,则过Po的弦中点的轨迹方程是.

双曲线

1.点P处的切线PT平分△PF1F2在点P处的内角.

2.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端

点.

3.以焦点弦PQ为直径的圆必与对应准线相交.

4.以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆与双曲线的必背的经典结论

椭 圆

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.

2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相离.

4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.

5. 若000(,)P x y 在椭圆22

221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.

6. 若000(,)P x y 在椭圆22

221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点

弦P 1P 2的直线方程是00221x x y y

a b

+=.

7. 椭圆22

221x y a b

+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点

12F PF γ∠=,则椭圆的焦点角形的面积为122tan

2

F PF S b γ

∆=.

8. 椭圆22

221x y a b

+=(a >b >0)的焦半径公式:

10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).

9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和

AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.

10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q

交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是椭圆22

221x y a b

+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则

2

2OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22

221x y a b

+=内,则被Po 所平分的中点弦的方程是

22

00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22

221x y a b

+=内,则过Po 的弦中点的轨迹方程是

22002222x x y y

x y a b a b

+=+.

双曲线

1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.

2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为

直径的圆,除去长轴的两个端点.

3. 以焦点弦PQ 为直径的圆必与对应准线相交.

4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:

P 在左支)

5. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)上,则过0P 的双曲线的切线方程

是00221x x y y

a b

-=. 6. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)外 ,则过Po 作双曲线的两条切

线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y

a b

-=.

7. 双曲线22

221x y a b

-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意

一点12F PF γ∠=,则双曲线的焦点角形的面积为122

t

2

F PF S b co γ

∆=.

8. 双曲线22

221x y a b

-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c

当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.

当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--

9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,

连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,

A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.

11. AB 是双曲线22

221x y a b

-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB

的中点,则0202y a x b K K AB OM =⋅,即020

2y a x b K AB =。

12. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则被Po 所平分的中点弦的

方程是22

00002222x x y y x y a b a b

-=-.

13. 若000(,)P x y 在双曲线22

221x y a b

-=(a >0,b >0)内,则过Po 的弦中点的轨迹方

程是22002222x x y y x y a b a b

-=-.

相关文档
最新文档