椭圆和双曲线的必背的经典结论
椭圆双曲线抛物线常用结论
椭圆、双曲线、抛物线常用结论
1.),(),,(2211y x B y x A 是椭圆)0(122
22>>=+b a b
y a x 的两点,),(00y x M 是AB 的中点,
则22
0202a
b k k y a x b k OM AB AB
-=•⇔-=
2.),(),,(2211y x B y x A 是椭圆)0(122
22>>=+b a b
y a x 上关于原点对称的两点, 点P 是椭圆上不同于B
A ,的动点,且P
B PA ,斜率都存在,则22
a
b k k PB
PA -=•
3. ),(),,(2211y x B y x A 是双曲线)0,0(122
22>>=-b a b
y a x 上的两点,),(00y x M 是AB 的中点,
则22
0202a
b k k y a x b k OM AB AB
=•⇔= 4.),(),,(2211y x B y x A 是双曲线)0,0(122
22>>=-b a b
y a x 上关于原点对称的两点, 点P 是双曲线上不同于
B A ,的动点,且PB PA ,斜率都存在,则22
a
b k k PB
PA =• 5. 若),(00y x P 是椭圆)0(122
22>>=+b a b y a x 上的一点, 则过点P 的切线方程是:12020=+b y y a x x
6. 若),(00y x P 是椭圆)0(122
22>>=+b a b
y a x 外的一点,过点P 的两切线的切点分别为B A ,,
则切点弦AB 的方程是:
12020=+b
y
y a x x 7. 若),(00y x P 是双曲线)0,0(122
高中数学圆锥曲线最常用二级结论总结
圆锥曲线的常用二级结论
一、椭圆的常用二级结论
1.(1)与椭圆22221x y a b +=共焦点的椭圆的方程可设为()22
2221,0x y b a b λλλ+=+>++.
(2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()22
22,0x y b a
λλ+=>.
2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)122PF PF a +=;(2)1a c PF a c -≤≤+;(3)2
2
12b PF PF a ≤⋅≤;
(4)焦半径公式10||PF a ex =+,20||PF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).
3.椭圆的方程为22
221x y a b +=(a >b >0),左、右焦点分别为12,F F ,()00,P x y 是椭圆上任意一点,则有:
(1)()()222
22222
000022,b a y a x x b y a b =-=-;(2)参数方程()00
cos sin x a y b θθθ=⎧⎨=⎩为参数;
4.设P 点是椭圆上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则
(1)2
122||||1cos b PF PF θ
=+.
(2)焦点三角形的面积:122
||=tan
2
PF F P S c y b θ∆=.(3)当P 点位于短轴顶点处时,θ最大,此时12PF F S ∆也最大;(4).
21cos 2
双曲线与椭圆经典结论
椭圆经典结论
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
221x y a b
+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是0
0221x x y y a b
+=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2
F PF S b γ∆=. 8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
(完整版)高考数学椭圆与双曲线的经典性质50条
椭圆与双曲线的对偶性质--(必背的经典结论)
高三数学备课组
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的
两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程
是00221x x y y a b +=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点
角形的面积为122
tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦
点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
椭圆与双曲线的一些结论
椭圆与双曲线的经典结论
椭 圆
1. 椭圆22
221x y a b
+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直
线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
-=.
2. 过椭圆22
221x y a b
+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线
交椭圆于B,C 两点,则直线BC 有定向且20
20
BC b x k a y =(常数).
3. 若P 为椭圆22
221x y a b
+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,
12PF F α∠=, 21PF F β∠=,则
tan t 22
a c co a c αβ
-=+.
4. 设椭圆22
221x y a b
+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上
任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有
sin sin sin c
e a
αβγ==+.
5. 若椭圆22
221x y a b
+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0
<e ≤21-时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.
6. P 为椭圆22
221x y a b
+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,
则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.
高三数学辅导:椭圆与双曲线的必背的经典结论prt
椭圆与双曲线的必背的经典结论
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长
轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
22
1x y a b +=上,则过0
P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线
方程是
00221x x y y
a b
+=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆
的焦点角形的面积为122
tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应
于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
圆锥曲线常用的二级结论和椭圆与双曲线对偶结论
圆锥曲线常用的二级结论:
1.零点定理:设F1,F2为椭圆E的两个焦点,P为椭圆上一点,则PF1 + PF2 = 2a(a
为椭圆长轴的一半);对于双曲线,PF1 - PF2 = 2a,其中a为双曲线的长轴的一半。
2.切线定理:设点P(x0,y0)在曲线C上,则C在点P处的切线方程为F_x(x0,y0)
x + F_y(x0,y0)y = F(x0,y0),其中F(x,y)为曲线C的方程,F_x和F_y为它的偏导数。
3.法线定理:设点P(x0,y0)在曲线C上,则C在点P处的法线方程为F_y(x0,y0)
x - F_x(x0,y0)y = F_y(x0,y0)x0 - F_x(x0,y0)y0。
4.离心率计算公式:设椭圆E的长轴为a,短轴为b,则椭圆的离心率为e = √(a² - b²)
/ a。
5.弦长定理:对于椭圆E,设以焦点F1,F2为端点的弦所对应的直角顶点为P,则弦PF1
+ PF2的长度等于椭圆长轴的长度;对于双曲线,弦PF1 - PF2的长度等于双曲线长轴的长度。
椭圆与双曲线的对偶结论:
1.椭圆E的对称中心为它所包围的正方形的中心,长、短半轴分别为正方形的对角线之
一和另外一边。
2.椭圆的纵轴端点为它所包围正方形的中心连通它上下角的一条直线,椭圆的焦点在这
条直线上。
3.双曲线的渐近线为对应椭圆的渐近线的转置。
4.对于椭圆E的焦点F和双曲线H的焦距f,有e² = 1 + f² / b²。把椭圆的参数a,b
换成双曲线的参数a,b,即可得到双曲线的离心率计算公式。
双曲线中的一些常见结论
双曲线中的一些常见结论
一、椭圆的常用结论:
1. 点P 处的切线PT 平分△PF1F2在点P 处的外角.
2. PT 平分△PF1F2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y
a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦
P 1P 2的直线方程是
00221x x y y
a b
+=. 7. 椭圆22
221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式
10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ
分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
史上最全圆锥曲线(椭圆、双曲线、抛物线)二级结论
史上最全圆锥曲线(椭圆、双曲线、
抛物线)二级结论
第一部分 椭圆二级结论大全
1.12
2PF PF a += 2.标准方程22
221x y a b += 3.11
1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直
径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).
9.椭圆22
221x y a b
+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭
圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22
221x y a b
-=.
10.若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
11.若000(,)P x y 在椭圆22
221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切
点弦P 1P 2的直线方程是00221x x y y
a b
+=.
12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则2
2OM AB b k k a
(完整版)高考数学椭圆与双曲线的经典性质50条
椭圆与双曲线的对偶性质--(必背的经典结论)
高三数学备课组
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的
两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y
a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程
是00221x x y y a b +=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点
角形的面积为122tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦
点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
专题01 解析几何的常用二级结论(高考必背)
解析几何的常用二级结论
一.有关椭圆的经典结论
焦点的位置
焦点在x 轴上
焦点在y 轴上
图形
标准方程
()22
2210x y a b a b +=>> ()22
22
10y x a b a b +=>> 范围
a x a -≤≤且
b y b -≤≤ b x b -≤≤且a y a -≤≤
顶点
()1,0a A -、()2,0a A
()10,b B -、()20,b B
()10,a A -、()20,a A ()1,0b B -、()2,0b B
轴长 短轴的长2b = 长轴的长2a =
焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c
焦距 ()222122F F c c a b ==-
对称性
关于x 轴、y 轴、原点对称
离心率
()2
2101c b e e a a
==-<<e 越小,椭圆越圆;e 越大,椭圆越扁
1.(1)与椭圆221x y a b +=共焦点的椭圆的方程可设为()22
21,0x y b a b λλλ+=+>++. (2)与椭圆22221x y a b +=有相同的离心率的椭圆可设为2222x y a b λ+=,()22
22,0x y b a
λλ+=>.
2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立: (1)第一定义:122PF PF a +=;
(2)焦半径的最大值与最小值:1a c PF a c -≤≤+; (3)2
2
12b PF PF a ≤⋅≤;
(4)焦半径公式10||PF a ex =+,20||PF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
椭圆与双曲线的必背的经典结论
椭圆与双曲线的必背的经典结论
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径
的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y
a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦
P 1P 2的直线方程是00221x x y y
a b
+=.
7. 椭圆22
221x y a b
+= a >b >0的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=a >b >0的焦半径公式:
10||MF a ex =+,20||MF a ex =-1(,0)F c - , 2(,0)F c 00(,)M x y .
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ
分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q
双曲线中的一些常见结论
双曲线中的⼀些常见结论
双曲线中的⼀些常见结论
⼀、椭圆的常⽤结论:
1. 点P 处的切线PT 平分△PF1F2在点P 处的外⾓.
2. PT 平分△PF1F2在点P 处的外⾓,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线⽅程是00221x x y y
a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外,则过0P 作椭圆的两条切线切点为P 1、P 2,则切点弦
P 1P 2的直线⽅程是
00221x x y y
a b
+=. 7. 椭圆22
221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意⼀点
12F PF γ∠=,则椭圆的焦点⾓形的⾯积为122tan
2
F PF S b γ
=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式
10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上⼀个顶点,连结AP 和AQ
分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆⼀个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
高考数学椭圆与双曲线的经典性质与结论
椭圆与双曲线的对偶性质--(必背的经典结论)
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的
两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程
是00221x x y y a b +=. 7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点
角形的面积为122
tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦
点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
高考数学椭圆与双曲线的经典性质62条
椭圆与双曲线的对偶性质--(必背的经典结论)
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的
两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
22
1x y a b
+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6.
若000(,)P x y 在椭圆22
221x y a b
+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程
是00221x x y y
a b +=. 7.
椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点
角形的面积为122
tan 2
F PF S b γ∆=.
8.
椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦
点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P
高考数学椭圆与双曲线的经典性质50条经典法则
椭圆与双曲线的对偶性质--(必背的经典结论)
高三数学备课组
椭圆
1.点P处的切线PT平分△PF1F2在点P处的外角.
2.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.
3.以焦点弦PQ为直径的圆必与对应准线相离.
4.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.
5.若在椭圆上,则过的椭圆的切线方程是.
6.若在椭圆外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是
.
7.椭圆 (a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点,则椭圆的焦点角形的面积
为.
8.椭圆(a>b>0)的焦半径公式:,( , ).
9.设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆
准线于M、N两点,则MF⊥NF.
10.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于
点N,则MF⊥NF.
11.AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,即。
12.若在椭圆内,则被Po所平分的中点弦的方程是.
13.若在椭圆内,则过Po的弦中点的轨迹方程是.
双曲线
1.点P处的切线PT平分△PF1F2在点P处的内角.
2.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端
点.
3.以焦点弦PQ为直径的圆必与对应准线相交.
4.以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆与双曲线的必背的经典结论
椭 圆
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径
的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相离.
4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.
5. 若000(,)P x y 在椭圆22
221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.
6. 若000(,)P x y 在椭圆22
221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点
弦P 1P 2的直线方程是00221x x y y
a b
+=.
7. 椭圆22
221x y a b
+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点
12F PF γ∠=,则椭圆的焦点角形的面积为122tan
2
F PF S b γ
∆=.
8. 椭圆22
221x y a b
+=(a >b >0)的焦半径公式:
10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).
9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和
AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q
交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是椭圆22
221x y a b
+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则
2
2OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22
221x y a b
+=内,则被Po 所平分的中点弦的方程是
22
00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22
221x y a b
+=内,则过Po 的弦中点的轨迹方程是
22002222x x y y
x y a b a b
+=+.
双曲线
1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.
2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为
直径的圆,除去长轴的两个端点.
3. 以焦点弦PQ 为直径的圆必与对应准线相交.
4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:
P 在左支)
5. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)上,则过0P 的双曲线的切线方程
是00221x x y y
a b
-=. 6. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)外 ,则过Po 作双曲线的两条切
线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y
a b
-=.
7. 双曲线22
221x y a b
-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意
一点12F PF γ∠=,则双曲线的焦点角形的面积为122
t
2
F PF S b co γ
∆=.
8. 双曲线22
221x y a b
-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c
当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.
当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--
9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,
连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,
A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.
11. AB 是双曲线22
221x y a b
-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB
的中点,则0202y a x b K K AB OM =⋅,即020
2y a x b K AB =。
12. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则被Po 所平分的中点弦的
方程是22
00002222x x y y x y a b a b
-=-.
13. 若000(,)P x y 在双曲线22
221x y a b
-=(a >0,b >0)内,则过Po 的弦中点的轨迹方
程是22002222x x y y x y a b a b
-=-.