二次函数与面积之铅垂高

合集下载

2020--2021学年九年级数学中考冲刺:二次函数之铅垂法求三角形面积

2020--2021学年九年级数学中考冲刺:二次函数之铅垂法求三角形面积

二次函数与面积解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化.课前练习如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ABC S △=12ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答问题:如图2,顶点为C (1,4)的抛物线y =ax 2+bx +c 交轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连接P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S △;△是否存在抛物线上一点P ,使PAB S △=CAB S △?若存在,求出P 点的坐标;若不存在,请说明理由.x CB模型讲解 竖切面积公式均为1=2S dh横切面积公式均为1=2S dh总结这种“铅垂高×水平宽的一半”的求解方法可过三角形的任意一点,并且“横竖”均可.而在选择时,如何选用,取决于点D 的坐标哪种更易求得.CBhC Bh CBD例题1 已知一次函数y=(k+3)x+(k-1)的图像与x轴、y轴分别相交于点A、B,P(-1,-4).(1)若△OBP的面积为3,求k的值;(2)若△AOB的面积为1,求k的值.ax2-ax+c的图像的顶点为C,一次函数y=-x+3例题2 如图,二次函数y=12的图像与这个二次函数的图像交于A、B两点(其中点A在点B的左侧),与它的对称轴交于点D.(1)求点D的坐标;(2)若点C与点D关于x轴对称,且△BCD的面积为4,求此二次函数的关系式.例题3 已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴正半轴上,线段OB、OC的长(OB<OC)是方程x²-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求抛物线解析式;(2)若点E时线段AB上的一个动点(与点A、B不重合),过点E作EF△AC 交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围.巩固练习1.已知直线y =2x +4与x 轴、y 轴分别交于A ,D 两点,抛物线y =-12x ²+bx +c 经过点A ,D ,点B 是抛物线与x 轴的另一个交点. (1)求这条抛物线的解析式及点B 的坐标;(2)设点M 是直线AD 上一点,且AOM S △:OMD S △=1:3,求点M 的坐标;2.如图,已知抛物线y =-x ²+bx +c 与一直线相交于A (-1,0),C (2,3)两点,与y 轴交于点N ,其顶点为D . (1)抛物线及直线AC 的函数关系式;(2)若P 是抛物线上位于直线AC 上方的一个动点,直接写出△APC 的面积的最大值及此时点P 的坐标.3.如图,在平面直角坐标系xOy中,抛物线y=ax²-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);,求a (2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为54 Array的值;4. 已知:二次函数y=ax²+bx+6(a≠0)的图象与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是方程x²-4x-12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC、BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ△AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.5. 已知:在直角坐标系中,点C 的坐标为(0,-2),点A 与点B 在x 轴上,且点A 与点B 的横坐标是方程x ²-3x -4=0的两个根,点A 在点B 的左侧. (1)求经过A 、B 、C 三点的抛物线的关系式.(2)点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n <0)连接CD 、CP ,设△CDP 的面积为S ,当S 取某一个值时,有两个点P 与之对应,求此时S 的取值范围?7、如图,在平面直角坐标系中,点O 为坐标原点,直线l 与抛物线y =mx ²+nx 相交于A (1,3),B (4,0)两点. (1)求出抛物线的解析式;(2)点P 是线段AB 上一动点,(点P 不与点A 、B 重合),过点P 作PM △OA ,交第一象限内的抛物线于点M ,过点M 作MC △x 轴于点C ,交AB 于点N ,若△BCN 、△PMN 的面积BCN S △、PMN S △满足BCN S △=2PMN S △,求出MNNC的值,并求出此时点M 的坐标.。

二次函数之“铅垂法”求三角形面积

二次函数之“铅垂法”求三角形面积

二次函数之“铅垂法”求三角形面积求三角形面积往往用公式12S a h∆=或1sin2S ab C∆=进行计算。

在二次函数里,有时用公式求三角形面积有一定的难度,我们不妨考虑用“铅垂法”来解决。

图1 图2作法:1、作铅直线PM交线段AB于点M;2、分别过A、B两点作PM的垂线段。

计算:如图1:S△PAB= S△PMA+S△PMB=12×PM×h2+12×PM×h1=12×PM×(h2+h1);①如图2:S△PAB= S△PMA﹣S△PMB=12×PM×h2-12×PM×h1=12×PM×(h2-h1)。

②理解:我们把公式中的PM称为三角形的“铅直高度”,把(h2+h1)或(h2-h1)称为三角形的“水平宽度”,则三角形的面积等于“铅直高度”与“水平宽度”积的一半。

特别地,在二次函数中,三角形的“铅直高度”就是动点P和铅直线PM与线段AB交点M的纵坐标之差(y P -y M),“水平宽度”就是两定点A与B的横坐标之差(x B-x A),即S△=12×(y P-y M)×(x B-x A)。

我们把这种求三角形面积的方法叫做“铅垂法”。

运用:例:如图,直线l:y=−x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B。

(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标。

解答:(1)y=-x 2+2x+3;(2)过点M 作MC ⊥x 轴交直线AB 于点C 。

设M (t ,-t 2+2t+3),则C (t ,-t+3)。

∵A (3,0),B (0,3)∴S=12×〖(-t2+2t+3)-(-t+3)〗×(3-0)化简整理得:23327()224S t =--+。

二次函数与面积

二次函数与面积

二次函数与面积求三角形的面积: (1)直接用面积公式计算;如图:抛物线与x 轴交于A 、B 两点,P 是抛物线上一点。

则S △ABP=21AB •PE(2)割补法;如图:直线MN 与抛物线交于M 、N ,与y 轴交于E , 则S △MON=S △OEM+S △OEN(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

BC铅垂高水平宽 haA1、如图,抛物线经过A(-1,0),B(3,0),C(0,-3)三点,点P在第二象限的抛物线上,S△POB=S△PCO,求P点的坐标。

2、如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,- 3).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB。

3、如图,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),连接PA、PB,S△PAB=6,求P点的坐标。

4、如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点()3 0,C ,与x 轴交于A 、B 两点,点B 的坐标为()0 3,-。

(1) 求二次函数的解析式及顶点D 的坐标;(2) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标。

5、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92). (1)求抛物线的函数表达式;(2)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.6、如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC面积有最大值,若存在,求出这个最大值;若不存在,请说明理由;7、如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.。

最全二次函数中的面积问题(中考数学必考题型)

最全二次函数中的面积问题(中考数学必考题型)

二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。

【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。

山东省商河县2019届中考数学一轮复习课件:二次函数面积最值之水平宽铅垂高(共19张PPT)

山东省商河县2019届中考数学一轮复习课件:二次函数面积最值之水平宽铅垂高(共19张PPT)
解:(1)二次函数的解析式为y=﹣x2+2x+3
(2)如图2 P在抛物线上,设P(m,﹣m2+2m+3), 设直线BC的解析式为y=kx+b, 将点B和点C的坐标代入函数解析式得. 解得
直线BC的解析为y=﹣x+3, 设点Q的坐标为(m,﹣m+3), PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m. 当y=0时,﹣x2+2x+3=0, 解得x1=﹣1,x2=3,
D
1
S△AOB= 2 × (4-0)×BD=6
O
B
拓展提升一 三角形面积
(2018•锦州)在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y 轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半 轴交于点A,动点D在直线BC下方的二次函数图象上. (1)求二次函数的表达式; (2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;
三边均不在坐标轴上的图形需要把图形分解
水平宽铅垂高面积公式
如图,过△ABC的三个顶点分别作出与水 平线垂直的三条直线,外侧两条直线之间 的距离叫△ABC的“水平宽”(a),中间 的这条直线在△ABC内部线段的长度叫 △ABC的“铅垂高”(h)
S△ABC=
1 2
ah
三角形面积等于水平宽与铅垂高乘积的一半
3、(2018•安岳县二模)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点, 与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0, 2). (1)求抛物线的表达式; (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F, 当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最 大面积及此时E点的坐标.

二次函数中的面积计算问题--之铅垂高PPT课件

二次函数中的面积计算问题--之铅垂高PPT课件
平宽与铅垂高乘积的一半.
B
C
即1 三ah角形面积等于水
2
证明:
ABC ABD ACD
A
h
h2
铅垂高
C
D
B
h1
水平宽
aa
(其中h1、h2是直线AD与 外侧两直线之间的距离)
1
1
AD h AD h
2
2 1
2
1AD(hh)
2
1
2
1
ah
2
2
.
巩固定义:求格点三角形的面积
例1、如图,在每个小正方形边长为1的格点图 形中,△ABC的三个顶点是图中的格点,求 △ABC的面积。
O1
A
x
C ( 1 , 4 ) 当 ,x 1 时 , y 1 4 ,y 2 2 .
图1
CA 的 B铅 C锤 D 42 高 2 .
SCAB16
.
二次函数中的面积计算问题 --之铅垂高
襄阳五中实验中学: 田 伟
1
.
如图,过△ABC的三个顶点分别作出与水平线垂
直的三条直线,外侧两条直线之间的距离叫△ABC的
“水平宽”(a),中间的这条直线在△ABC内部线段的
长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三
S S S 角形面积的新方法: SA
A
铅垂高
h
C
D
B
水平宽
aa
图12-1
4
x
.
练习 如图1,抛物线顶点坐标为点C(1,4),交x轴于
点A(3,0),交y轴于点B。
(1)求抛物线和直线AB的解析式;
(2)求△CAB的铅垂高CD及S△CAB ;
y
C

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

v1.0 可编辑可修改(D)二次函数中的面积计算问题[典型例题]例. 如图,二次函数2y x bx c =++图象与x 轴交于A,B 两点(A 在B 的左边),与y 轴交于点C ,顶点为M ,MAB ∆为直角三角形, 图象的对称轴为直线2-=x ,点P 是抛物线上位于,A C 两点之间的一个动点,则PAC ∆的面积的最大值为( C )A .274B .112C . 278D .3二次函数中面积问题常见类型:一、选择填空中简单应用 二、不规则三角形面积运用S=三、运用四、运用相似三角形五、运用分割方法将不规则图形转化为规则图形例1. 如图1,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是 ( B )例2. 解答下列问题:如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 第10题xyABCOM图1铅垂高hA C y BD思路分析此题是二次函数中常见的面积问题,方法不唯一,可以用割补法,但有些繁琐,如图2我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形面积等于水平宽与铅垂高乘积的一半.掌握这个公式后,思路直接,过程较为简单,计算量相对也少许多,答案:(1)由已知,可设抛物线的解析式为y 1=a (x -1)2+4(a ≠0).把A (3,0)代入解析式求得a =-1,∴抛物线的解析式为y 1=-(x -1)2+4,即y 1=-x 2+2x +3. 设直线AB 的解析式为y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1,b =3.∴直线AB 的解析式为y 2=-x +3. (2)∵C (1,4),∴当x =1时,y 1=4,y 2=2.∴△CAB 的铅垂高CD =4-2=2.S △CAB =21×3×2=3(平方单位).(3)解:存在.设P 点的横坐标为x ,△PAB 的铅垂高为h . 则h =y 1-y 2=(-x 2+2x +3)-(-x +3)=-x 2+3x由S △PAB =89S △CAB 得:21×3×(-x 2+3x )=89×3.整理得4x 2-12x +9=0,解得x =23. 把x =23代入y 1=-x 2+2x +3,得y 1=415.∴P 点的坐标为(23,415). 例3. (贵州省遵义市)如图,在平面直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕点O 逆时针方向旋转90°得到△COD (点A 转到点C 的位置),抛物线y =ax 2+bx +c (a ≠0)经过C 、D 、B 三点.(1)求抛物线的解析式;(2)若抛物线的顶点为P ,求△PAB 的面积;(3)抛物线上是否存在点M ,使△MBC 的面积等于△PAB 的面积若存在,请求出点M 的坐标;若不存在,图2请说明理由.思路分析:根据题目所给信息,函数关系式和△PAB 的面积很容易求出。

二次函数和面积之铅垂高

二次函数和面积之铅垂高

二次函数与面积之铅垂高一教学目的1.让学生经历探索的过程,观察图形在动点的运动过程中观察图形的变化情况,促进培养学生解决问题的能力.2.理解用“鉛锤高,水平宽”求不规则三角形面积的方法,并用此方法解决二次函数与几何图形的综合题中有关三角形面积计算的问题。

二重点难点1灵活应用铅垂高进行二次函数与几何图形的综合题中有关三角形面积计算的问题。

2铅垂高的寻找方法,以及用坐标表示线段 三.教学方法先让学生阅读理解,自主探究,引导学生掌握方法,讲练结合 四.教学过程 例1阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.例1解:(1)设抛物线的解析式为:4)1(21+-=x a y ···························· 1分图12-2xC OyABD 11图12-1把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ······························ 3分设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为)3,0( ······················· 4分 把)0,3(A ,)3,0(B 代入b kx y +=2中 解得:3,1=-=b k所以32+-=x y ················································ 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2所以CD =4-2=2 ················································· 8分32321=⨯⨯=∆CAB S (平方单位) ································· 10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△PAB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ··············· 12分 由S △PAB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23( ········································· 14分总结:求不规则三角形面积时不妨利用铅垂高。

二次函数中的面积计算问题-之铅垂高

二次函数中的面积计算问题-之铅垂高
二次函数中的面积计算问 题-之铅垂高
本节将介绍二次函数中的一个重要应用问题——铅垂高。通过本节的学习, 您将了解到铅垂高的定义、计算公式以及它与二次函数图像的关系。
什么是铅垂高?
铅垂高指的是从一个点到与其所在直线垂直相交的点的距离。在二次函数中, 我们可以通过铅垂高来计算图像所包围的面积。
如何计算铅垂高?
交点坐标为 (4, 0)。
步骤四: 计算铅垂高
铅垂高为 4。
铅垂高的应用领域
建筑设计
铅垂高可以帮助建筑师确定建筑物的高度 和结构。
数学建模
铅垂高可以用作数学模型中的重要参数。
地理测量
地理学家利用铅垂高测量地形和海拔高度。
物理实验
物理学家可以通过铅垂高来研究物体的运 动和力学性质。
铅垂高与二次函数图像的关系
1
开口方向
铅垂高的长度取决于二次函数的开口方向。2拐点位置源自铅垂高的顶点与二次函数的拐点位置相同。
3
面积计算
铅垂高可以用于计算二次函数图像所包围的面积。
提高计算铅垂高的技巧
1 利用对称性
2 化简计算公式
利用二次函数图像的对称性可以简化铅 垂高的计算。
将二次函数化为标准或一般形式可以简 化计算铅垂高的公式。
3 练习与实践
4 使用数学工具
通过大量的练习和实践,可以提高计算 铅垂高的准确性和速度。
利用数学工具和计算器可以辅助计算复 杂的铅垂高问题。
结论和要点
铅垂高是二次函数中的一个重要概念,可以用于计算图像所包围的面积。了 解铅垂高的定义、计算方法和应用领域对深入理解二次函数具有重要意义。
1 步骤一
找到二次函数的顶点坐标。
2 步骤二
确定直线方程,该直线过顶点并且垂直 于横轴或纵轴。

二次函数中的面积计算问题之铅垂高

二次函数中的面积计算问题之铅垂高

A
铅垂高
h
C
D
x
B
水平宽
aa
图12-1
练习 如图1,抛物线顶点坐标为点C(1,4),交x轴于
点A(3,0),交y轴于点B。
(1)求抛物线和直线AB的解析式;
(2)求△CAB的铅垂高CD及S△CAB ;
y
C
B
D 1
分析 (1: )抛物线解 y1析 (x 式 1)2为 4, 即y1x22x3
直A 线 解 B 析 y2式 x 为 3.
1 2
ah即三角形面积等
证明: ABC ABD ACD
A
h
h2
铅垂高
C
D
B
h1
水平宽
aa
(其中h1、h2是直线AD与 外侧两直线之间的距离)
1
1
AD h AD h
2
2 1
2
1AD(hh)
2
1
2
1 ah
2
巩固定义:求格点三角形的面积
例1、如图,在每个小正方形边长为1的格点图 形中,△ABC的三个顶点是图中的格点,求 △ABC的面积。
O1 图1
A
x
C ( 1 , 4 ) 当 ,x 1 时 , y 1 4 ,y 2 2 .
CA 的 B铅 C锤 D 42 高 2 .
SCAB12323
就到这里了, 同学们再见!
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
E D
A
C 水平宽:CE
铅垂高:BD
SABC12CE•BD
B
延伸拓展
我们如果把△ABC 放到直角坐标系中,
A(x A,
,
yA),B(xB,

铅锤高和水平宽之二次函数面积问题综合练习题

铅锤高和水平宽之二次函数面积问题综合练习题

铅锤高与水平宽之二次函数与面积问题综合练习题例1:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”a,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高h”.我们可得出一种计算三角形面积的新方法:S△ABC =21ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C1,4,交x轴于点A3,0,交y轴于点B.1求抛物线和直线AB的解析式;2点P是抛物线在第一象限内上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;3是否存在一点P,使S△PAB =89S△CAB若存在,求出P点的坐标;若不存在,说明理由.练习1:已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是1,0,C点坐标是4,3.1求抛物线的解析式;2若点E是1中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.例2.抛物线y=﹣x2+bx+c交x轴于点A﹣3,0和点B,交y轴于点C0,3.1求抛物线的函数表达式;2若点P在抛物线上,且S△AOP =4SBOC,求点P的坐标;3如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.:练习2:在平面直角坐标系中,已知抛物线经过 :A -4,0,B 0,-4,C 2,0三点.1求抛物线的解析式;2若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.练习3:抛物线y=mx2-11mx+24m m<0与x轴交于B、C两点点B在点C的左侧,抛物线另有一点A在第一象限内,且∠BAC=90°.2连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;3如图2,设垂直于x轴的直线l:x=n与2中所求的抛物线交于点M,与CD交于点N,若直线l 沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.。

铅垂高与面积最值问题

铅垂高与面积最值问题

第六节
二次函数性质的综合应用
1 2
1 2
CD=- x +3x-(-x+6)=- x +4x-6,
2
2
1
1
∴S△ABC= CD· − = CD× − =2CD,
2
2
=-x2+8x-12,
∴S=S△ABC+S△AOB=-x2+8x-12+12
=-x2+8x=-(x-4)2+16(2<x<6),
返回目录
转化思想:
四边形面积转化成
两个三角形面积和
l
即S关于x的函数表达式为S=-x2+8x(2<x<6),
∵a=-1<0
∴当x=4时,四边形OACB的面积S取最大值,
最大值为16.
D
挑战自我:铅垂高、水平宽的综合运用
练习2. 在平面直角坐标系中,抛物线y=ax²-2ax-3a(a<0)与
x轴交于A、B两点(点A在点B的左侧),并经过点(2,3),
令-x²+2x+3=0
解得x=-1或x=3,∴A(-1,0),B(3,0).
将A(-1,0)代入y=x+m,解得m=1; ∴y=x+1.
Q
精炼本P21 第1题
(2)存在最大值.
令-x²+2x+3=x+1,解得x1=-1,x2=2,
设点P的坐标为(p,-p²+2p+3),其中-1<p<2,
如解图,过点P作PG∥x轴,则
直线y=x+m经过点A.
(1)求a、m的值;
(2)若P为直线y=x+m上方抛物线上任一点(不与交点重合),

连接PB交直线y=x+m于M点,则 是否有最大值,如果有,

求出最大值;如果没有,请说明理由.
C

【二次函数与几何综合讲练一】铅垂法求面积最值问题

【二次函数与几何综合讲练一】铅垂法求面积最值问题

【二次函数与几何综合讲练一】铅垂法求面积最值问题专题导入方法点睛如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,我们来得到求三角形的面积的最值问题的方法:S△PAB=1/2·PQ·|XA-XB|,根据二次函数解析式设出点P的坐标,结合一次函数解析式从而得到点Q的坐标,从而转化为S与点P横坐标之间的二次函数解析式,再根据二次函数增减性求最值.一般情况下,当铅垂线段PQ最大时,S△PAB取得最大值.典例精讲类型一:抛物线上动点产生的三角形面积的最值例1 在平面直角坐标系中,直线y=1/2x-2与x轴交于点B,与y 轴交于点C,二次函数y=1/2x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的解析式;(2)如图,连接DC,DB,设△BCD的面积为S,求S的最大值.分析(1)根据题意得到B、C两点的坐标,设抛物线的解析式为y=1/2(x-4)(x-m),将点C的坐标代入求得m的值即可;(2)过点D作DF⊥x轴,交BC与点F,设D(x,1/2x2-3/2x-2),则DF=-1/2x2+2x,然后列出S与x的关系式,最后利用配方法求得其最大值即可.类型二:抛物线上动点产生的四边形的面积例2. 如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为直线x=-1,点P是抛物线上B,C 之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)探究:当动点N在对称轴l上时,是否存在PB⊥NB,且PB=NB的关系,若存在,请求出此时点P的坐标,若不不存,请说明理由;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值,若不存在,请说明理由.分析(1)由对称轴可求得B点坐标,结合A、B两点坐标,利用待定系数法可求得抛物线解析式;(2)过点P作PM⊥x轴于点M,设抛物线对称轴l交x轴于点Q.可证明△BPM≌△NBQ,则可求得PM=BQ,可求得P点的纵坐标,利用抛物线解析式可求得P点坐标;(3)连接AC,设出P点坐标,则可表示出四边形PBAC的面积,再利用二次函数的性质可求得其最大值.专题过关1.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式.2.如图①,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x 轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数解析式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图②,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN 是等腰三角形时,直接写出m的值.备用图4.如图,在平面直角坐标系中,A,B为x轴上两点,C,D为y轴上的两点,经过点A,C,B的抛物线的一部分C1与经过点A,D,B 的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣3/2),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A,B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.5.已知直线y=1/2x+2分别交x轴、y轴于A,B两点,抛物线y=1/2x2+mx﹣2经过点A,和x轴的另一个交点为C.(1)求抛物线的解析式;(2)如图1,点D是抛物线上的动点,且在第三象限,求△ABD 面积的最大值;(3)如图2,经过点M(﹣4,1)的直线交抛物线于点P,Q,连接CP,CQ分别交y轴于点E,F,求OE·OF的值.。

二次函数与铅垂法的运用

二次函数与铅垂法的运用

二次函数与铅垂法的运用二次函数与铅垂法的运用在数学学科中,二次函数是一种非常重要且常见的函数形式。

它的基本形式为y=ax^2+bx+c,其中a、b、c为常数。

二次函数在自然科学、工程技术以及经济管理等领域广泛应用。

而铅垂法则是一种求解二次函数相关问题的重要方法,它在解决实际问题中具有很高的适用性和指导意义。

首先,让我们来看一下二次函数的性质和特点。

二次函数通常呈现开口向上或开口向下的抛物线形状,它有一个顶点,对称轴是x= -b/2a这条直线。

顶点是抛物线的最高点或最低点,对称轴是抛物线的中轴线。

二次函数的图像关于对称轴对称。

根据二次函数的特点,我们可以确定函数的最值、图像的开口方向以及对称轴的位置。

铅垂法则是一种求解与二次函数有关问题的简单而有效的方法。

它的基本思想是利用二次函数与其顶点和对称轴的性质,快速求解相关问题。

在使用铅垂法时,首先需要确定二次函数的顶点以及对称轴的位置。

根据问题的具体情况,我们可以通过观察函数的系数a、b和c来确定二次函数的开口方向,从而推导出函数的性质。

例如,在研究物体自由落体问题时,经常会遇到求解物体从一定高度上抛出后的运动轨迹问题。

假设物体被抛向上方,经过一段时间后再回到地面。

根据物理学的知识,我们可以建立关于物体高度与时间的二次函数模型。

利用铅垂法则,我们可以快速求解物体的最高高度、到达地面的时间以及物体相对于地面的位置等问题。

除了物理学中的自由落体问题,二次函数和铅垂法也广泛应用于其他领域。

在工程技术中,当需要设计一个拱桥或者建立一个抛物面的建筑物时,我们可以通过二次函数和铅垂法来确定拱桥的最高点和抛物面的形状。

在经济管理中,二次函数和铅垂法可以用于求解成本、收益以及产量之间的关系。

通过分析二次函数的图像,我们可以确定最小成本或最大收益对应的产量,从而指导经济决策和管理策略。

综上所述,二次函数与铅垂法在数学学科中具有重要的地位和广泛的应用。

通过学习和掌握二次函数的基本性质和铅垂法的使用方法,我们可以更好地理解数学知识,并能够运用数学方法解决实际问题。

铅锤高和水平宽之二次函数-面积问题综合练习题

铅锤高和水平宽之二次函数-面积问题综合练习题

铅锤高与水平宽之二次函数与面积问题综合练习题例1:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:1ah,即三角形面积等于水平宽与铅垂高乘积的一半.S△ABC=2解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在一点P ,使S △PAB =89S △CAB 若存在,求出P 点的坐标;若不存在,说明理由.练习1:已知抛物线y=ax 2+bx+3与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)若点E 是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求△ACE 的最大面积及E 点的坐标.例2.抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.:练习2:在平面直角坐标系中,已知抛物线经过 :A(-4,0),B(0,-4),C (2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.MC BA O xy练习3:抛物线y=mx2-11mx+24m (m<0)与x轴交于B、C两点(点B在点C 的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB= ,OC= ;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.。

铅锤高和水平宽之二次函数-面积问题综合练习题

铅锤高和水平宽之二次函数-面积问题综合练习题

铅锤高与水平宽之二次函数与面积问题综合练习题例 1:如图 1,过 △ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫 △ABC 的“水平宽 ”( a ),中间的这条直线在 △ABC 内部线段的长度叫 △ABC 的“铅垂高( h ) ”.我们可得出一种计算三角形面积的新方法:1 S △ABC = ah ,即三角形面积等于水平宽与铅垂高乘积的一半.2解答下列问题:如图 2,抛物线顶点坐标为点 C ( 1,4),交 x 轴于点 A ( 3, 0),交 y 轴于点 B .( 1)求抛物线和直线 AB 的解析式; ( 2)点 P 是抛物线(在第一象限内)上的一个动点,连接 PA ,PB ,当 P 点运动到顶点 C时,求 △CAB 的铅垂高 CD 及 S △CAB ;( 3)是否存在一点 P ,使 S △PAB =9 S △CAB ?若存在,求出 P 点的坐标;若不存在,说明理8 由.练习 1:已知抛物线 y=ax 2+bx+3 与 x 轴交于 A 、 B 两点,过点 A 的直线 l 与抛物线交于点C ,其中 A 点的坐标是( 1,0), C 点坐标是( 4, 3).( 1)求抛物线的解析式;( 2)若点 E 是( 1)中抛物线上的一个动点,且位于直线 面积及 E 点的坐标.AC 的下方,试求△ ACE 的最大例2.抛物线 y=﹣x 2 +bx+c 交 x 轴于点 A(﹣ 3,0)和点 B ,交 y 轴于点 C(0,3).( 1)求抛物线的函数表达式;( 2)若点 P 在抛物线上,且 S△AOP =4S BOC,求点 P 的坐标;( 3)如图 b ,设点 Q 是线段 AC 上的一动点,作 DQ ⊥ x 轴,交抛物线于点 D,求线段 DQ 长度的最大值.:练习 2:在平面直角坐标系中,已知抛物线经过 :A (-4,0 ),B (0,-4 ),C (2,0 )三点.( 1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点S 关于 m 的函数关系式,并求出 S 的最大值.M 的横坐标为 m ,△ AMB 的面积为 S.求yA OC xM B练习 3:抛物线 y=mx2(m <)与x轴交于B、两点(点B在点C的左侧),-11mx+24m0C抛物线另有一点 A 在第一象限内,且∠ BAC=90 °.( 1)填空: OB=, OC=;(2)连接 OA ,将△ OAC 沿 x 轴翻折后得△ ODC ,当四边形 OACD 是菱形时,求此时抛物线的解析式;(3)如图 2,设垂直于 x 轴的直线 l :x=n 与( 2)中所求的抛物线交于点 M,与 CD 交于点 N,若直线 l 沿 x 轴方向左右平移,且交点 M 始终位于抛物线上 A 、 C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大值.。

“铅垂高”的最值在二次函数中的应用

“铅垂高”的最值在二次函数中的应用

“铅垂高”的最值在二次函数中的应用作者:万旭光来源:《广东教学报·教育综合》2021年第42期《中小学数学》多期刊文对“铅垂高”的定义、应用进行了探讨,本文沿用他们的定义,将夹在抛物线和直线之间与x轴垂直的线段称为“铅垂高”,并就其存在最大值或最小值的性质及其应用作一个粗浅的探究.一、“铅垂高”的最大值、最小值的探究例1:如图1,已知二次函数y=-x2+2x+3与y=-x+3直线交于B、C两点,P为直线BC上方抛物线上一动点,过点P作PH⊥x轴,垂足为H,垂线PH交抛物线于点D,求PD的最大值。

解:设P(x,y),其中0∴x=时,PD的最大值为例2:如图2,已知二次函数y=-x2+2x+3图象与直线y=x+4无交点,P为抛物线上任意一点,过点P作PH⊥x轴,垂足为H,垂线PH交直线y=x+4于点D,求PD的最小值。

解:设P(x,y)∴x=时,PD的最小值为小结:从以上两个例子可以发现,线段PD夹在抛物线与直线之间,当P点在抛物线上运动时,PD的长度是以P点横坐标x为自变量的二次函数,这样PD长度的最值问题就转化成了二次函数的最值问题,进一步研究发现无论抛物线开口方向如何,当直线与抛物线无交点时,夹在直线与抛物线之间的“铅垂高”,存在最小值;当直线与抛物线有交点时,夹在直线与抛物线之间的“铅垂高”,在两交点横坐标之间的区间上存在最大值.二、“铅垂高”最值的应用1.利用“铅垂高”最大值,求三角形面积的最大值例3:(2008·深圳)如图3,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.(1)求二次函数的表达式;(2)若点D(2,y)是该抛物线上一点,点P是直线AD下方的抛物线上一动点,当点P运动到什么位置时,△APD的面积最大?求出此时P点的坐标和△APD的最大面积.分析:(1)先求A、B、C三点坐标,代入即可求得二次函数表达式;(2)如图4,作PH⊥轴,垂足为H,交AD于点E,作DG⊥PE,垂足为G,因为S△APD=S△APE+S△DPE=PE×(AH+GD)=PE×=PE×3=PE,而“鉛垂高”PE有最大值,所以S△APD有最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与面积之铅垂高一教学目的1.让学生经历探索的过程,观察图形在动点的运动过程中观察图形的变化情况,促进培养学生解决问题的能力.2.理解用“鉛锤高,水平宽”求不规则三角形面积的方法,并用此方法解决二次函数与几何图形的综合题中有关三角形面积计算的问题。

二重点难点1灵活应用铅垂高进行二次函数与几何图形的综合题中有关三角形面积计算的问题。

2铅垂高的寻找方法,以及用坐标表示线段 三.教学方法先让学生阅读理解,自主探究,引导学生掌握方法,讲练结合 四.教学过程 例1阅读材料: 如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xC OyABD 1 1铅垂高水平宽 ha 图12-1A例1解:(1)设抛物线的解析式为:4)1(21+-=x a y ··········································· 1分把A (3,0)代入解析式求得1-=a所以324)1(221++-=+--=x x x y ············································· 3分设直线AB 的解析式为:b kx y +=2由3221++-=x x y 求得B 点的坐标为)3,0( ···································· 4分 把)0,3(A ,)3,0(B 代入b kx y +=2中解得:3,1=-=b k所以32+-=x y ·········································································· 6分 (2)因为C 点坐标为(1,4)所以当x =1时,y 1=4,y 2=2所以CD =4-2=2 ·········································································· 8分32321=⨯⨯=∆CAB S (平方单位) ··················································· 10分 (3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则x x x x x y y h 3)3()32(2221+-=+--++-=-= ······················ 12分 由S △P AB =89S △CAB 得:389)3(3212⨯=+-⨯⨯x x 化简得:091242=+-x x 解得,23=x 将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23( ······························································ 14分总结:求不规则三角形面积时不妨利用铅垂高。

铅垂高的表示方法是解决问题的关键,要学会用坐标表示线段。

例2(2010广东省中考拟)如图10,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan∠ACO=31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x 轴相切,求该圆半径的长度.(4)如图11,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的1)方法一:由已知得:C (0,-3),A (-1,0)将A、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a 解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y 方法二:由已知得:C (0,-3),A (-1,0) 设该表达式为:)3)(1(-+=x x a y 将C 点的坐标代入得:1=a所以这个二次函数的表达式为:322--=x x y (注:表达式的最终结果用三种形式中的任一种都不扣分) (2)方法一:存在,F 点的坐标为(2,-3) 理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0) 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形∴存在点F ,坐标为(2,-3)方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0) ∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3)(3)如图,①当直线MN 在x代入抛物线的表达式,解得2171+=R②当直线MN 在x 轴下方时,设圆的半径为r (r>0则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-.(4)过点P 作y 轴的平行线与AG 交于点Q , 易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG当21=x 时,△APG 的面积最大此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆.随堂练习1.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC=AC 与直线x=4交于点E .(1)求以直线x=4为对称轴,且过C 与原点O 的抛物线的函数关系式,并说明此抛物线一定过点E ;(2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值.【答案】解:(1)点C 的坐标.设抛物线的函数关系式为2(4)y a x m =-+,则1604a ma m +=+=⎧⎨⎩63a m == ∴所求抛物线的函数关系式为24)63y x =-…………①设直线AC 的函数关系式为,y kx b =+则402k b kb -+=+=⎧⎨⎩33k b ==. ∴直线AC 的函数关系式为33y x =+,∴点E的坐标为(4,3把x=4代入①式,得2(44)633y =--+=,∴此抛物线过E 点.(2)(1)中抛物线与x 轴的另一个交点为N (8,0),设M (x ,y ),过M 作MG ⊥x 轴于G ,则S △CMN=S △MNG+S 梯形MGBC —S △CBN=111(8)(23)(2)(82)23 222x y y x-++--⨯-⨯=22343333833()3835383632y x x x x x x+-=-++-=-+-=2393(5),22x--+∴当x=5时,S△CMN有最大值932课下练习1.(本题满分12分)已知:如图一次函数y=12x+1的图象与x轴交于点A,与y 轴交于点B;二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C 两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.3.(2010山东临沂)如图,二次函数2y x ax b=++的图象与x轴交于1(,0)2A-,(2,0)B两点,且与y轴交于点C.(1)求该抛物线的解析式,并判断ABC∆的形状;(2)在x轴上方的抛物线上有一点D,且以A C D B、、、四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;(3)在此抛物线上是否存在点P,使得以A C B P、、、四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.第24题图【答案】解:根据题意,将A(12-,0),B(2,0)代入y=-x2+ax+b中,得110, 42420.a ba b⎧--+=⎪⎨⎪-++=⎩解这个方程,得3,21. ab⎧=⎪⎨⎪=⎩所以抛物线的解析式为y=-x2+32x+1.当x=0时,y=1.所以点C的坐标为(0,1)。

相关文档
最新文档