2020年中考数学总复习优化设计第二板块热点问题突破专题6方案设计题专题提升演练新人教版
2020版中考数学总复习优化设计:第3讲-分式-讲练ppt课件全集2
B.x<-2
C.x=-2
D.x≠-2
答案:D
解析:∵代数式������ +1 2在实数范围内有意义, ∴x+2≠0,解得x≠-2.故选D. 方法点拨①分式无意义的条件:分母为零;②分式有意义的条件:
分母不为零.
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考题初做诊断
例 2(2018 山东滨州)若分式������������2--39的值为 0,则 x 的值为
例
4(2018
甘肃天门)化简:4������+4������
5������������
·1������52���-������2��� 2������ .
解:原式=4(������+������) · 15������2������ = 12������.
5������������ (������+������)(������-������) ������-������
方法点拨1.分式约分的步骤:(1)找出分式的分子与分母的公因式,
当分子、分母是多项式时,要先把分式的分子与分母分解因式;(2)
约去分子与分母的公因式.
2.求最简公分母的方法是:(1)将各个分母分解因式;(2)找各分母
系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次
数最高的.满足(2)(3)的因式之积即为各分式的最简公分母.
规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果
传递给下一人,最后完成化简.过程如图所示:
接力中,自己负责的一步出现错误的是( )
A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁
2019年中考数学总复习优化设计第二板块热点问题突破专题6方案设计题课件(新人教版)
甲厂 乙厂
到该社区供水点的路程/千米 20 14
运费/(元/吨·千米) 12 15
(1)若某天调运水的总运费为26 700元,则从甲、乙两水厂各调运 了多少吨饮用水?
(2)设从甲厂调运饮用水x吨,总运费为W元,试写出W关于x的函数 解析式,怎样安排调运方案才能使每天的总运费最少?
考向一 考向二 考向三
方案设计问题在求解时,多会涉及几何、函数、方程、不等式以 及概率等知识,其主要特征是要求在众多的可行方案中确定最佳方 案或最优方案.
解决方案设计问题的一般方法是:阅读,了解问题的背景和要求; 观察,结合生活经验寻找问题的等量关系与不等关系;建模,应用数 学知识将问题转化为数学问题;解答,求解相关的数学问题;作答,根 据实际意义,对所获得的结论进行归纳、比较,确定符合题目要求 的最佳方案.
专题六 方案设计题
专题名师解读
同一个问题往往有多种不同的解决方案,但其中常常存在最科学、 最合理的方案.方案设计题有利于考查学生的创新意识和实践能力, 它已成为中考命题的一大热点.
方案设计问题大多取材于生活,命题背景富有浓厚的生活气息, 有利于激发同学们学习数学的兴趣.它改变了只依赖模仿和记忆的 “重结果,轻过程”的学习方式,培养了同学们动手操作和实践的能力, 有助于帮助同学们养成在生活中应用数学的习惯.
M,N,P,Q表示安装点,并简要说明理由; (2)能否找到这样的3个安装点,使得在这些点安装了这种转发装
置后能达到预设的要求?在图②中画出示意图,并用大写字母M,N,P
表示安装点,用计算、推理和文字来说明你的理由.
考向一 考向二 考向三
解:(1)如图①(图案设计不唯一).
热点考向例析
图①
理由:计算可得 AM=15cos 45°=15× 22≈10.61<321,同理 DQ=PC=BN≈10.61<321.
初三数学优化设计试卷答案
1. 已知函数f(x) = 2x - 1,则f(3)的值为()A. 5B. 6C. 7D. 8答案:C解析:将x=3代入函数f(x) = 2x - 1中,得f(3) = 2×3 - 1 = 6 - 1 = 5。
2. 若|a| = 5,则a的取值范围是()A. a > 0B. a < 0C. a = 5D. -5 ≤ a ≤ 5答案:D解析:绝对值表示一个数到0的距离,所以|a| = 5意味着a到0的距离是5,即a可以是5或者-5,所以取值范围是-5 ≤ a ≤ 5。
3. 下列各数中,有理数是()A. √2B. πC. 3/2D. √-1答案:C解析:有理数是可以表示为两个整数之比的数,所以3/2是有理数。
而√2、π和√-1都是无理数。
4. 若a、b、c是等差数列,且a+b+c=15,则b的值为()A. 5B. 7C. 8D. 10答案:A解析:等差数列中,任意两项之和等于它们中间项的两倍,即a+b = 2b,所以a+b+c = 3b,由题意知3b=15,解得b=5。
5. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x + 2 = 0D. 2x + 3 = 0答案:D解析:对于方程2x + 3 = 0,移项得2x = -3,解得x = -3/2,所以方程有解。
其他方程均可以找到x的值。
6. 若m^2 - 4m + 3 = 0,则m的值为______。
答案:1 或 3解析:这是一个一元二次方程,可以通过因式分解或者使用求根公式求解。
因式分解得(m-1)(m-3) = 0,所以m的值为1或3。
7. 已知等差数列{an}的第一项为a1,公差为d,第n项an = 5,则a3的值为______。
答案:a3 = 5 - 2d解析:等差数列的通项公式为an = a1 + (n-1)d,代入an = 5,得a1 + (n-1)d= 5,解得a1 = 5 - (n-1)d。
2020版中考数学总复习优化设计:第21-25讲练ppt课件全集(含答案)(共30讲)
+4 +8
=
23,
解得x=4,故PA=4.
故选A.
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
方法点拨先直接利用切线的性质得出∠PDO=90°,再利用相似三 角形的判定与性质分析得出答案.考点:1.切线的性质;2.相似三角形 的判定与性质.
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
例2(2018山东泰安)如图,A.40° B.50° C.60° D.70°
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
答案:A
解析:如图,连接OA,OB,
∵BM是☉O的切线, ∴∠OBM=90°, ∵∠MBA=140°, ∴∠ABO=50°, ∵OA=OB, ∴∠ABO=∠BAO=50°, ∴∠AOB=80°, ∴∠ACB= ∠12 AOB=40°,
(1)过点N作☉O的切线NE与AB相交于点E,求证:NE⊥AB; (2)连接MD,求证:MD=NB.
考法1
考法2
考法3
考点必备梳理
考法4
考法必研突破
考题初做诊断
证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB, ∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB, ∵NE为切线,∴ON⊥NE,∴NE⊥AB.
线与圆相切.
(2)根据数量关系来判定:设圆的半径为r,圆心到直线的距离为d,
则当d=r 时,直线与圆相切.
(3)判定定理:经过半径外端,并且垂直于这条半径 的直线是圆
【附2套中考卷】2020年重庆中考数学考试趋势解读及复习策略
2020年重庆中考数学考试趋势解读及复习策略数学张垂权重庆育才中学校初中数学教研组组长,中学数学高级教师,重庆市骨干教师,育才中学校数学名师工作室主持人,多篇教学论文获全国、市级一、二等奖,主编《高分突破》等多本数学教学参考书,在重庆市初中数学命题技能大赛活动中获得一等奖。
朱晓昀重庆鲁能巴蜀中学数学教研组长,中学数学高级教师,重庆市骨干教师,获得巴蜀中学“管理育人”奖,重庆师范大学数学科学学院硕士生指导教师,2017年重庆中考数学阅卷组长,主编《高分突破》等参考书,在各级刊物发表论文十余篇。
张垂权老师认为,2018年重庆市中考数学试卷考查全面,难易适中,层次分明,贴近学生生活实际,体现了数学的核心素养。
2019年将仍保持“考查基础,注重过程,渗透思想,突出能力,强调应用,着意创新”的指导思想,稳中求变,变中求新。
2019年中考数学试题应该会继续落实“四基”,即基础知识、基本技能、基本数学思想、基本活动经验;发展“四能”,即发现问题的能力、提出问题的能力、分析问题的能力、解决问题的能力;贯穿“六素养”,即数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析;逐步重视对学生动手能力的考查和数学文化渗透等。
朱晓昀老师认为,2019年重庆中考数学试卷会以义务教育《数学课程标准》《考试说明》为命题依据,呈现新课程标准的基本理念,既重视基础知识、基本技能,又充分体现对数学思想方法、数学活动经验以及中学数学核心素养的考查。
复习策略精讲精练,建易错题典型题解法档案张垂权老师建议:1.把握方向,明确重点。
关注核心内容,如方程,函数,三角形,四边形,图形的对称、平移、旋转等的考查形式。
2.夯实基础,提升能力。
第一阶段复习,必须过“三关”:一过“记忆”关,必须做到记牢记准所有的概念、公式、定理、性质、法则等,并弄清各概念之间的联系与区别。
中考选择题,要靠清晰的概念来明辨对错;二过“基本方法”关,熟练掌握待定系数法、配方法、换元法、分析法、综合法、穷举法、反证法、图象法、表格法等,弄清楚它们的关系,归纳出它们的“通性通法”;三过“基本技能”关,通过复习要获得基本计算能力、作图能力、表达能力、逻辑推理能力、数据分析能力、图表识别能力、抽象概括能力等。
2020年中考数学-《方案设计问题》专题练习(含答案)
《方案设计问题》专题【命题趋势】方案设计问题是也是中考数学中一个热门题型,一般题量为1题,多为解答题,分值约8-10分.方案设计型问题是通过一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的知识技能和方法,通过设计或操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求半断哪个方案最优.它包括经济类方案设计、作图类方案设计、测量类方案设计等类型.方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又其有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【满分技巧】一.方案设计型问题一般解决步骤﹕一般包括“审题——建立相应模型——应用相关知识解决问题”三个步骤.其中根据具体问题建立相应的数学模型是解决这类问题的关键.二.初中数学主要数学模型﹕1.方程(组)模型.2.函数模型(一次函数、二次函数、反比例函数)3.不等式模型根据具体问题建立相应的数学模型,其实质就是利用相关知识解决生活实际问题,所谓建立数学模型,主要是因为实际问题中可能没有使用数学化的语言表示一些具体的量或数值,需要我们自己去建立或设出相应的符号,把生活实际问题数学化.以方便我们去利用相关数学知识解决这类问题.三.熟练掌握和运用数学的常用思想方法我们在解决任何问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决问题,我们一定要把实际问题转化成数学问题,利用现有的知识和方法,结合模型、转化、类比等数学思想解决问题.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种【答案】B【解析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有17xy=⎧⎨=⎩,34xy=⎧⎨=⎩,51xy=⎧⎨=⎩,∴方案一共有3种;故选:B.2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【解析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,1≤x<3,∵x为整数,∴x=1或2或3,∴有3种购买方案.故选:C.3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种【答案】D【解析】共有6种拼接法,如图所示.故选:D.5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种【答案】C【解析】设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【解析】如图所示7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解析】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【解析】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元,43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩, 答:租用A ,B 两型客车,每辆费用分别是1700元、1300元;(2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +⎧⎨+⎩…„, 解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元,方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元,方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元,由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【解析】(1)设购买一个甲种文具a 元,一个乙种文具b 元,由题意得:235330a b a b +=⎧⎨+=⎩,解得155a b =⎧⎨=⎩, 答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955155(120)1000x x +-剟,解得35.540x 剟,x Q 是整数,36x ∴=,37,38,39,40.∴有5种购买方案;(3)155(120)10600W x x x =+-=+,100>Q ,W ∴随x 的增大而增大,当36x =时,1036600960W =⨯+=最小(元),1203684∴-=.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示: 甲型客车 乙型客车 载客量(人/辆)35 30 租金(元/辆) 400 320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;(3)学校共有几种租车方案?最少租车费用是多少?【解析】(1)设参加此次研学活动的老师有x 人,学生有y 人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【解析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【解析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,50x=9800,x=196,∴购买甲种树苗196棵,乙种树苗352棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解析】(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:,解得:6>x ≥4,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【解析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55﹣y )件由题意得:5000≤100y +90(55﹣y )≤5050解得5≤y ≤10∴共有6种选购方案.16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【解析】(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解析】(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a =10,则费用为100×10+100×b ×0.8≤1200,得b ≤2.5,∴b 的最大值是2,此时a +b =12,费用为1160元;若a =11,则费用为100×11+100×b ×0.8≤1200,得b ≤54∴b 的最大值是1,此时a +b =12,费用为1180元;若a ≥12,100a ≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a <10时,若a =9,则费用为100×9+100b ×0.8+100×1×0.6≤1200,得b ≤3,∴b 的最大值是3,a +b =12,费用为1200元;若a =8,则费用为100×8+100b ×0.8+100×2×0.6≤1200,得b ≤3.5,∴b 的最大值是3,a +b =11<12,不合题意,舍去;同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13,请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得,∴,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30﹣z )个,购买奖品的花费为W 元,由题意可知,z ≥13(30﹣z ),∴z ≥152W =30z +15(30﹣z )=450+15z ,当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.。
通用版2020年中考数学二轮专题提升训练课件 难点题型专练(三)
图1
图2
图3
解:(1)BC=DC+EC.理由如下:∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.
AB=AC, 在△ BAD 和△ CAE 中,∠BAD=∠CAE,
∵OA=OC,∴∠COD=∠AOD=α.
由对称性可知 OM′垂直平分 AC,∴∠OCA=90°-α.
∵OA=OB,OA=OC,∴OB=OC.
∵∠BOC=120°-2α,∴∠BCO=30°+α,
∴∠BCA=90°-α+30°+α=120°,
∴∠ACD=180°-120°=60°,故②错误.
答图
∵CD=AD,∴△ACD 为等边三角形.
答图1
(3)如答图 2,作 AE⊥AD,使 AE=AD,连接 CE,DE.
∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.
AB=AC, 在△ BAD 和△ CAE 中,∠BAD=∠CAE,
AD=AE,
∴△BAD≌△CAE(SAS),∴BD=CE=9.
∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,
答图2
∵EH 是⊙O 的直径,∴EH=2r,∠EFH=90°=∠EGO.
∵∠OEG=∠HEF,∴△OEG∽△HEF,∴OHEE=EEGF,
∴OE·EF=HE·EG=2r(156-r)=-2(r-85)2+12258,
∴r=85时,OE·EF 的最大值为12258.
1.[2018·荆州]已知正方形 ABCD 与正方形 CEFG,M 是 AF 的中点, 连接 DM,EM.
2020年江西省中考数学第二轮专题复习教案及练习:专题六 二次函数压轴题(含答案)
专题六二次函数压轴题类型一二次函数与图形变换如图①,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m 也经过点A,其顶点为B,将该抛物线沿直线l平移,使顶点B落在直线l上的点D处,点D的横坐标为n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为__________________(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a关于n的函数关系式;②如图②,连接AC、CD,若∠ACD=90°,求a的值.【分析】(1)点B是抛物线顶点,要求点B的坐标,只需求抛物线解析式即可,将点A代入即可得解;(2)确定平移后的抛物线解析式,可根据抛物线平移规律直接得解;(3)①由点C是两抛物线交点,可联立解方程来确定a与n的关系;②由∠ACD=90°,可过点C作y轴的垂线,构造三垂直模型利用相似来解.【自主解答】1.已知平面直角坐标系中两定点A (-1,0)、B (4,0),抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位长度,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值,并说明抛物线平移的方向;若不存在,请说明理由.2.(2019·陕西)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D ,若△POD 与△AOB 相似,求符合条件的点P 的坐标.3.已知二次函数y=ax2-2ax-2的图象(记为抛物线C1)的顶点为M,直线l:y =2x-a与x轴、y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是________.①对称轴是:直线x=1;②顶点坐标是(1,-a-2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系式.(3)将二次函数y=ax2-2ax-2的图象C1绕点P(t,-2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当-2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t 的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q′,试探究四边形QMQ′N能否为正方形?若能,求出t的值;若不能,请说明理由.类型二二次函数与几何图形综合如图,已知二次函数L 1:y=mx2+2mx-3m+1(m≥1)和二次函数L2:y=-m(x-3)2+4m-1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A,B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx-3m+1(m≥1)的顶点坐标为________;当二次函数L1,L2的y值同时随x的增大而增大时,x的取值范围是________;(2)当AD=MN时,请直接写出四边形AMDN的形状;(3)抛物线L1,L2均会分别经过某些定点.①求所有定点的坐标;②若抛物线L1的位置固定不变,通过左右平移抛物线L2,使得这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将抛物线化为顶点式即可得到顶点坐标;由图象可得y随x的增大而增大的x的取值范围;(2)判断四边形AMDN的形状,可先证明四边形AMDN是平行四边形,再由AD =MN得到其为矩形;(3)①求抛物线经过的定点,可将抛物线化为关于m的代数式,令m的系数为0,代入求出对应的y值即可;②由所得图形为菱形,可先判定定点构成的图形是平行四边形,再根据菱形得到邻边相等,对角线互相垂直平分,从而利用勾股定理求解.【自主解答】1.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2.(2019·辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大,最大值是多少?(3)若点M是平面内任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形?若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.第2题图备用图类型三二次函数与规律探索(2019·江西)特例感知(1)如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论正确的序号是________.①抛物线y 1,y 2,y 3都经过点C (0,1);②抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位得到;③抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图②.①“系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n (k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.(3)在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.图① 图②【分析】 (1)逐一判断3个结论的正确性即可;(2)①由抛物线y n 即可表示P n ,消去参数即可得到顶点P n 的横、纵坐标之间的关系式;②分别求出C n ,C n -1的横、纵坐标,利用两点距离公式求线段C n C n -1的长;(3)要判断C n A n 与C n -1A n -1是否平行,只需判断直线C n A n 与直线C n -1A n -1的解析式中自变量的系数是否相同即可.【自主解答】1.已知抛物线y =-x 2+2x +3和抛物线y n =n 3x 2-2n 3x -n (n 为正整数). (1)抛物线y =-x 2+2x +3与x 轴的交点坐标为____________,顶点坐标为________.(2)当n =1时,请解答下列问题:①直接写出y n 与x 轴的交点坐标__________,顶点坐标________.请写出抛物线y ,y n 的一条相同的图象性质________________;②当直线y =12x +m 与y ,y n 相交共有4个交点时,求m 的取值范围;(3)若直线y =k (k <0)与抛物线y =-x 2+2x +3,抛物线y n =n 3x 2-2n 3x -n (n 为正整数)共有4个交点,从左至右依次标记为点A ,点B ,点C ,点D ,当AB =BC =CD 时,求k ,n 之间满足的关系式.2.已知抛物线y n =-(x -a n )2+b n (n 为正整数,且0<a 1<a 2<…<a n )与x 轴的交点为A (0,0)和A n (c n ,0),c n =c n -1+2,当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0)和A 1(2,0),其他依此类推.(1)求a 1,b 1的值及抛物线y 2的解析式.(2)抛物线y3的顶点B3的坐标为(______,______);依此类推,第n条抛物线y n 的顶点B n的坐标为(______,________);所有抛物线的顶点坐标满足的函数关系式是____________.(3)探究下列结论:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y n分别交于C1,C2,…,C n,则线段C1C2,C2C3,…,C n-1C n的长有何规律?请用含有m的代数式表示.3.如图,抛物线y1=-x2+c与x轴交于A,B两点,且AB=2.(1)求抛物线y1的函数解析式,并直接写出y1的顶点坐标.(2)将y1先向右平移1个单位,再向上平移1个单位,记为第一次操作,得到抛物线y2.按同样的操作方式,经过第二次操作,可得到抛物线y3,经过第三次操作,可得到抛物线y4,…,经过第(n-1)次操作可得到抛物线y n.①y1的顶点是否在y2上?请说明理由.②若抛物线y n恰好经过点B(不含y1),求抛物线y n的解析式.③定义:当抛物线与x轴有两个交点时,定义:以这两个交点及抛物线顶点构成的三角形叫做该抛物线的“轴截三角形”.如△ABC是抛物线y1的“轴截三角形”.记抛物线y1,y2,y3,…,y n的“轴截三角形”的面积分别为S1,S2,S3,…,S n.当S n=125时,求n的值.4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线y=-x2+bx-3经过点(-1,0),则b=________,顶点坐标为______,该抛物线关于点(0,1)成中心对称的抛物线表达式是___________.抽象感悟我们定义,对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决(3)已知抛物线y=ax2+2ax-b(a≠0).①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k +22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)(n为正整数)的衍生抛物线为y n,其顶点为A n;….求A n A n+1的长(用含n的式子表示).类型四二次函数与新定义如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为________;抛物线y =4x 2对应的碟宽为________;抛物线y =ax 2(a >0)对应的碟宽为________;抛物线y =a (x -2)2+3(a >0)对应的碟宽为________;(2)抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)对应的准碟形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准碟形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…,F n 的碟高为h n ,则h n =________,F n 的碟宽右端点横坐标为________;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.【分析】 (1)根据定义易算出抛物线y =12x 2,抛物线y =4x 2的碟宽,且都利用端点(第一象限)横、纵坐标相等求解.推广至含字母的抛物线y =ax 2(a >0)可类似求解.而抛物线y =a (x -2)2+3(a >0)为顶点式,可看成由抛物线y =ax 2平移得到,则发现碟宽只和a 有关.(2)由(1)的结论,根据碟宽与a 的关系求解.(3)①由y 1,易推y 2.②由相似的性质得到h n 与h n -1,h n -1与h n -2,…h 2与h 1之间的关系,从而得到h n 即可;由等腰直角三角形性质得到F n 的碟宽与h n 之间的关系,即可得到F n 的碟宽右端点横坐标,先证明F n ,F n -1,F n -2的碟宽右端点在一条直线上,从而作出判断,再确定F 1,F 2的碟宽右端点所在直线即可求解.【自主解答】1.如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.2.(2019·南昌二模)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y =2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标;(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式;(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D 两点,点P在直线l上方的抛物线上,求△PCD的面积的最大值.3.(2019·南昌5月模拟)已知:抛物线C1:y=-(x+m)2+m2(m>0),抛物线C2:y=(x-n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=-(x+1)2+1与抛物线C2:y=(x-2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C 1与D .(1)已知抛物线:①y =-x 2-2x ,②y =(x -3)2+3,③y =(x -2)2+2,④y =x 2-x +12,则抛物线①②③④中互为派对抛物线的是________ (请在横线上填写抛物线的数字序号);(2)如图①,当m =1,n =2时,证明AC =BD ;(3)如图②,连接AB ,CD 交于点F ,延长BA 交x 轴的负半轴于点E ,记BD 交x 轴于G ,CD 交x 轴于点H ,∠BEO =∠BDC .①求证:四边形ACBD 是菱形;②若已知抛物线C 2:y =(x -2)2+4,请求出m 的值.图① 图②参考答案【例1】 解:(1)当x =0时,y =-x +2=2,∴A (0,2),把A (0,2)代入y =(x -1)2+m ,得1+m =2,∴m =1.∴B (1,1).(2)y =(x -n )2+2-n .(3)①∵点C 是两条抛物线的交点,∴点C 的纵坐标可以表示为(a -1)2+1或(a -n )2+2-n ,∴(a -1)2+1=(a -n )2+2-n ,即a 2-2a +1+1=a 2-2an +n 2+2-n , 2an -2a =n 2-n ,∵n >1,∴a =n 2-n 2n -2=n 2. ②如解图,过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F .例1题解图∵∠ACD =90°,∴∠ACE =∠CDF .又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ,∴AE EC =CF FD .又∵C (a ,a 2-2a +2),D (2a ,2-2a ),∴AE =a 2-2a ,DF =a 2,CE =CF =a ,∴a 2-2a a =a a 2,∴a 2-2a =1, 解得a =±2+1,∵n >1,∴a =n 2>12,∴a =2+1.跟踪训练1.解: (1)∵抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,∴⎩⎪⎨⎪⎧a -b -2=0,16a +4b -2=0,解得⎩⎪⎨⎪⎧a =12,b =-32, ∴抛物线的解析式为y =12x 2-32x -2.∵y =12x 2-32x -2=12(x -32)2-258, ∴C (32,-258).(2)如解图①,以AB 为直径作⊙M ,则抛物线在圆内的部分,能使∠APB 为钝角,第1题解图①易得M (32,0),⊙M 的半径为52.设P ′是抛物线与y 轴的交点,∴OP ′=2,∵MP ′=OP′2+OM 2=52. ∵P 关于抛物线对称轴的对称点为点(3,-2),∴当-1<m <0或3<m <4时,∠APB 为钝角.(3)存在.抛物线向左或向右平移,∵AB 、P ′C ′是定值,∴要使首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长第1题解图②最短,只要AC ′+BP ′最小.第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP .第二种情况:向左平移,如解图②所示,由(2)可知P (3,-2), 又∵C (32,-258),∴C ′(32-t ,-258),P ′(3-t ,-2),将BP ′平移至AP ″,∵AB =5,∴P ″(-2-t ,-2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可,∵点C ′关于x 轴的对称点C ″的坐标为(32-t ,258),设直线P ″C ″的解析式为y =kx +b ,则⎩⎨⎧-2=(-2-t )k +b ,258=(32-t )k +b ,解得⎩⎪⎨⎪⎧k =4128,b =4128t +1314,∴直线P ″C ″的解析式为y =4128x +4128t +1314,当P ″、A 、C ″在同一条直线上时,周长最小,∴-4128+4128t +1314=0,∴t =1541. 故将抛物线向左平移1541个单位长度时,首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短.2.解:(1)将点A (-3,0),B (0,-6)代入L 得⎩⎪⎨⎪⎧a (-3)2+(c -a )·(-3)+c =0,c =-6,解得⎩⎪⎨⎪⎧a =-1,c =-6,∴抛物线L 的表达式为y =-x 2-5x -6.(2)由题意,得∠PDO =90°,∠AOB =90°,由对称性可得L ′的表达式为y =x 2-5x +6.设点P 的坐标为(m ,m 2-5m +6),当△DPO ∽△OAB 时,DP DO =OA OB ,即m 2-5m +6=2m ,解得m 1=1,m 2=6,此时点P 的坐标为(1,2)或(6,12);当△DPO ∽△OBA 时,DP DO =OB OA ,即2m 2-10m +12=m ,解得m 3=4,m 4=32,此时点P 的坐标为(4,2)或(32,34).第2题解图3.解:(1)①②③(2)由抛物线的顶点公式求得:顶点M (1,-a -2).如解图①,当x =1时,y =2·1-a =2-a ,求得D (1,2-a );当y =0时,0=2x -a ,x =a 2,求得A (a 2,0),∴DM =2-a -(-a -2)= 4,∴S =S △BMD -S △AMD =12DM (OC -AC )=12DM ·AO =12·4·a 2=a .即S =a (a >0).(3)①当-2≤x ≤1时,C 1的y 的值会随x 的增大而减小,而C 1的对称轴为x =1, -2≤x ≤1在对称轴的左侧,C 1开口向上,∴a >0;同时C 2的开口向下,而当-2≤x ≤1时,y 的值会随x 的增大而减小,∴-2≤x ≤1要在C 2的对称轴右侧,令C 2的对称轴为x =m ,则m ≤2,而x =1和x =m 关于P (t ,-2)对称,∴P 到这两条对称轴的距离相等,∴1-t =t -m ,m =2t -1,∴2t -1≤-2,即t ≤-12.②当a =1时,M (1,-3),作PE ⊥CM 于E ,将Rt △PME 绕P 旋转90°,得到Rt △PQF ,则△MPQ 为等腰直角三角形,∵N ,Q ′分别是点M ,Q 的中心对称点,∴四边形MQNQ ′为正方形.第一种情况,当t ≤1时,求得PE =PF =1-t ,ME =QF =1,CE =2,∴Q (t +1,-t -1).把Q (t +1,-t -1)代入y =x 2-2x -2,得-t -1=(t +1)2-2(t +1)-2, t 2+t -2=0,解得:t 1=1,t 2=-2;第二种情况,当t >1时,求得PF =PE =t -1,ME =QF =1,CE =2, ∴Q (t -1,t -3),把Q (t -1,t -3)代入y =x 2-2x -2,得t -3=(t -1)2-2(t -1)-2,t 2-5t +4=0,解得t1=1 (舍去),t2=4综上t=-2或1或4.图①图②图③【例2】解:(1)(-1,-4m+1),-1<x<3(2)四边形AMDN是矩形.(3)①y=mx2+2mx-3m+1=m(x+3)(x-1)+1,∴当x=-3或1时,y=1,∴L1经过定点(-3,1)和(1,1).y=-m(x-3)2+4m-1=-m(x-5)(x-1)-1,∴当x=5或1时,y=-1,∴L2经过定点(5,-1)和(1,-1).②L1经过定点(-3,1)和(1,1),L2经过定点(5,-1)和(1,-1),设E(-3,1),F(1,1),G(5,-1),H(1,-1),则组成的四边形EFGH是平行四边形.如解图,另设平移距离为x,根据平移后的图形是菱形,由勾股定理得42=22+(4-x)2,解得x=4±23,故抛物线L2应平移的距离是4+23或4-2 3.例2题解图跟踪训练1.解:(1)将点A ,B 坐标代入抛物线表达式得⎩⎪⎨⎪⎧25a -25b +5=0,16a -4b +5=-3,解得⎩⎪⎨⎪⎧a =1,b =6, ∴抛物线的表达式为y =x 2+6x +5.(2)①令y =x 2+6x +5=0,得x 1=-1,x 2=-5,∴点C 的坐标为(-1,0). 由点B (-4,-3)得直线BC 的函数解析式为y =x +1,如解图①,过点P 作PG ∥y 轴交BC 于G ,第1题解图①设点P 的坐标为(t ,t 2+6t +5),则点G (t ,t +1),∴PG =(t +1)-(t 2+6t +5)=-t 2-5t -4,∴S △PBC =12PG ·|x C -x B |=32(-t 2-5t -4)=-32(t +52)2+278.∵-32<0,∴当t =-52时,△PBC 的面积最大,最大值为278.第1题解图②②设BP 交CD 于点H .当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的垂直平分线上,易得线段BC 的中点坐标为(-52,-32),过该点与直线BC 垂直的直线设为y =-x +m ,则-32=52+m ,解得m =-4,∴直线BC 的垂直平分线的函数解析式为y =-x -4.可得直线CD 的函数表达式为y =2x +2,联立得⎩⎪⎨⎪⎧y =-x -4,y =2x +2,解得⎩⎪⎨⎪⎧x =-2,y =-2,∴点H 的坐标为(-2,-2), 直线BH 的函数解析式为y =12x -1.联立得⎩⎨⎧y =x 2+6x +5,y =12x -1,解得⎩⎪⎨⎪⎧x =-32,y =-74,或⎩⎪⎨⎪⎧x =-4y =-3(舍去), ∴点P 的坐标为(-32,-74).当点P 在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ∥CD ,∴直线BP 的表达式为y =2x +5,联立得⎩⎪⎨⎪⎧y =x 2+6x +5,y =2x +5,解得⎩⎪⎨⎪⎧x =-4,y =-3(舍去)或⎩⎪⎨⎪⎧x =0,y =5,∴点P 的坐标为(0,5).综上,所有点P 的坐标为(-32,-74),(0,5)2.解:(1)将C (3,0),E (0,3)代入y =-x 2+bx +c 得⎩⎪⎨⎪⎧-32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3,∴抛物线的解析式是y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4).设直线AC 的解析式为y =mx +n ,将A ,C 代入得⎩⎪⎨⎪⎧m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6,∴直线AC 的解析式为y =-2x +6.设P (1,4-t ),∵PD ⊥AB ,∴y D =4-t ,∴4-t =-2x +6,解得x =1+t2,∴点D 的坐标为(1+t2,4-t ).∵l ∥y 轴,∴x Q =1+t2,∴y Q =-(1+t2-1)2+4=4-14t 2,∴S △ACQ =S △ADQ +S △CDQ=12DQ ·BC=12(4-14t 2-4+t )×2=-14(t -2)2+1,∴当t =2时,S △ACQ 最大,最大值为1.(3)存在,综合条件的M 点坐标为(2,2),(-2,3+14),(4,17).【解法提示】设点P (1,t )(t >0),∵以P ,M ,E ,C 为顶点的四边形是菱形, ∴①当CE 为对角线时,PC =PE ,且PM 与CE 互相垂直平分,∴(1-0)2+(t -3)2=(3-1)2+t 2,解得t =1,即点P 的坐标为(1,1), 由菱形中心对称性质可知,点M 的坐标为(2,2);②CP =CE =32,即(3-1)2+t 2=32,解得t =14(负的已舍去), 即点P 的坐标为(1,14),此时点M 的坐标为(-2,3+14);③EP =CE =32,即(1-0)2+(t -3)2=32,解得t =3+17(负值已舍去),∴此时点P 的坐标为(1,3+17),则点M 的坐标为(4,17).【例3】 解:(1)当x =0时,y 1=y 2=y 3=1,∴①正确;y 1,y 2,y 3的对称轴分别是直线x 1=-12,x 2=-1,x 3=-32,∴②正确;y 1,y 2,y 3与直线y =1的交点(除点C 外)的横坐标分别为-1,-2,-3,∴距离为1,都相等,∴③正确.故答案为①②③.(2)①y n =-x 2-nx +1=-(x +n 2)2+n 2+44,∴顶点P n (-n 2,n 2+44).令顶点P n 的横坐标为x =-n 2,纵坐标y =n 2+44,∴y =n 2+44=(-n 2)2+1=x 2+1,即顶点P n 的纵坐标y 与横坐标x 满足关系式y =x 2+1. ②令C n (x n ,y n ),C n -1(x n -1,y n -1),x n -1=-k -(n -1)=-k -n +1,y n -1=-x n -12-(n -1)x n -1+1,x n =-k -n ,y n =-x n 2-nx n +1, ∵x n -1-x n =1,y n -1-y n =-x n -12-(n -1)x n -1+1+x n 2+nx n -1=(x n -x n -1)(x n +x n -1)+n (x n -x n -1)+x n -1=-(-k -n +1-k -n +n )-k -n +1=2k +n -1-k -n +1=k .∴C n -1C n =(x n -1-x n )2+(y n -1-y n )2=1+k 2. ∵C n -1C n =1+k 2与n 无关, ∴相邻两点之间的距离为定值,定值为1+k 2.(3)令y n =1得-x 2-nx +1=1,解得x 1=0,x 2=-n , ∴A n (-n ,1),由②知C n (x n ,-x n 2-nx n +1),设直线A n C n :y =k n x +b n ,则k n =1-(-x n 2-nx n +1)-n -x n =x n (x n +n )-n -(-k -n )=(-k -n )(-k -n +n )-n +k +n =k +n ,同理A n -1(-n +1,1),C n -1(x n -1,-x n -12-(n -1)x n -1+1), 设直线A n -1C n -1:y =k n -1x +b n -1,则k n -1=k +n -1,∴k n -1≠k n ,∴直线C n A n 与直线C n -1A n -1不平行.跟踪训练1.解:(1)(-1,0),(3,0);(1,4)(2)①(-1,0),(3,0);(1,-4n 3);对称轴为直线x =1[或与x 轴交点为(-1,0),(3,0)]②当直线y =12x +m 与y 相交只有1个交点时,由⎩⎨⎧y =12x +m ,y =-x 2+2x +3,整理得x 2-32x +m -3=0, ∴b 2-4ax =(32)2-4(m -3)=0,解得m =5716.当直线y =12x +m 与y n 相交只有1个交点时,由⎩⎪⎨⎪⎧y =12x +m ,y =13x 2-23x -1,整理得2x 2-7x -(6+6m )=0, ∴b 2-4ax =72-4×2×(-6-6m )=0,解得m =-9748,把点(-1,0)代入y =12x +m 得m =12,把(3,0)代入y =12x +m 得m =-32,如解图①,∴m 的取值范围是-9748<m <5716,且m ≠-32,m ≠12.(3)如解图②,由⎩⎪⎨⎪⎧y =k ,y =-x 2+2x +3得x 2-2x +k -3=0, ∴AD 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16-4k ,由⎩⎨⎧y =k ,y =n 3x 2-2n 3x -n得nx 2-2nx -(3n +3k )=0, ∴BC 2=(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=16+12k n , ∵AB =BC =CD ,∴AD 2=9BC 2,∴16-4k =9(16+12k n ), ∴32n +27k +nk =0.图① 图② 2.解: (1)当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0),A 1(2,0),∴y 1=-x (x -2)=-(x -1)2+1,则a 1=1,b 1=1. 由c n =c n -1+2可知,c 2=c 1+2=2+2=4, ∴抛物线y 2与x 轴的交点为A (0,0),A 2(4,0), ∴y 2=-x (x -4)=-x 2+4x .(2)3,9,n ,n 2,y =x 2;(3)①存在,由(1)(2)得A n (2n ,0),B n (n ,n 2). 当△AA n B n 为等腰直角三角形时,n 2=n ,解得n 1=1,n 2=0(舍去).∴存在抛物线y n ,使得△AA n B n 为等腰直角三角形,此时抛物线为y 1=-(x -1)2+1.②∵y n =-x (x -2n )=-x 2+2nx ,当x =m (m >0)时,C n (m ,-m 2+2mn ),C n -1(m ,-m 2+2mn -2m ), ∴C n C n -1=-m 2+2mn -(-m 2+2mn -2m )=2m .∴C 1C 2=C 2C 3=…=C n -1C n =2m .3.解: (1)∵AB =2,抛物线y 1=-x 2+c 的对称轴为直线x =0, ∴点A ,B 的坐标分别为(-1,0),(1,0),将点A (-1,0)代入得c =1,则抛物线y 1的解析式为y 1=-x 2+1,顶点坐标为(0,1).(2)①由平移性质得,抛物线y 2的顶点坐标为(1,2),则抛物线y 2的函数解析式为y 2=-(x -1)2+2,当x =0时,y 2=1,则y 1的顶点(0,1)在抛物线y 2上.②由题意,得抛物线y 3=-(x -2)2+3,y 4=-(x -3)2+4,y n =-(x -n +1)2+n ,将点B (1,0)代入y n ,得-(1-n +1)2+n =0,解得n =4或n =1(舍去).∴抛物线y n 的解析式为y 4=-(x -3)2+4.③令y n =-(x -n +1)2+n =0,解得x 1=n -1-n ,x 2=n -1+n ,则S n =12[(n -1+n)-(n -1-n)]·n =n·n =125,∵53=125,∴n =5,即n =25.4.解:(1)-4;(-2,1);y =(x -2)2+1(2)y =-x 2-2x +5即y =-(x +1)2+6,∴顶点为(-1,6).∵点(-1,6)关于点(0,m )的对称点为(1,2m -6),∴衍生抛物线为y =(x -1)2+2m -6,则-(x +1)2+6=(x -1)2+2m -6,化简得x 2=-m +5,∵两抛物线有交点,∴-m +5≥0,∴m ≤5.(3)①y =ax 2+2ax -b =a (x +1)2-a -b ,顶点为(-1,-a -b ).y ′=bx 2-2bx +a 2=b (x -1)2-b +a 2,顶点为(1,-b +a 2).∵两抛物线交点恰好是顶点,∴⎩⎪⎨⎪⎧-b +a 2=a·(1+1)2-a -b ,-a -b =b·(-1-1)2-b +a 2,解得⎩⎪⎨⎪⎧a =0,b =0(舍去)或⎩⎪⎨⎪⎧a =3,b =-3,∴顶点分别为(-1,0)和(1,12).∵(-1,0),(1,12)关于衍生中心对称,∴衍生中心为它们的中点,∵-1+12=0,0+122=6,∴衍生中心为(0,6).②由①可知衍生中心为抛物线y =a (x +1)2-a -b 的顶点与A 1,A 2,A 3,…,A 4的中点,∴A n (1,2k +2n 2+a +b ),A n +1(1,2k +2(n +1)2+a +b ),∴A n A n +1=2k +2(n +1)2+a +b -(2k +2n 2+a +b )=4n +2.【例4】 解:(1)4;12;2a ;2a .例4题解图①【解法提示】 ∵a >0,∴y =ax 2的图象大致如解图①,其顶点为原点O ,记AB 为其碟宽,AB 与y 轴的交点为C ,连接OA ,OB .∵△OAB 为等腰直角三角形,AB ∥x 轴, ∴OC ⊥AB , ∴∠AOC =∠BOC =12∠AOB =12×90°=45°,∴△ACO 与△BCO 亦为等腰直角三角形,∴AC =OC =BC ,∴x A =-y A ,x B =y B ,代入y =ax 2,∴A (-1a ,1a ),B (1a ,1a ),C (0,1a ),∴AB =2a ,OC =1a ,即抛物线y =ax 2对应的碟宽为2a .①抛物线y =12x 2对应的a =12,得碟宽2a 为4;②抛物线y =4x 2对应的a =4,得碟宽2a 为12;③抛物线y =ax 2(a >0)对应的碟宽为2a ; ④抛物线y =a (x -2)2+3(a >0)可看成抛物线y =ax 2向右平移2个单位长度,再向上平移3个单位长度后得到的,∵平移不改变形状、大小、开口方向,∴抛物线y =a (x -2)2+3(a >0)的准碟形与抛物线y =ax 2的准碟形全等. ∵抛物线y =ax 2(a >0)对应的碟宽为2a ,∴抛物线y =a (x -2)2+3(a >0)对应的碟宽为2a .(2)∵y =ax 2-4ax -53=a (x -2)2-(4a +53),∴同(1),其碟宽为2a .∵抛物线y =ax 2-4ax -53的碟宽为6,∴2a =6,解得a =13.(3)①∵F 1的碟宽∶F 2的碟宽=2∶1,∴2a 1=4a 2.∵a 1=13,∴a 2=23.∵y 1=13(x -2)2-3的碟宽AB 在x 轴上(A 在B 左边),∴A (-1,0),B (5,0),∴F 2的碟顶坐标为(2,0),∴y 2=23(x -2)2.②∵F n 的准碟形为等腰直角三角形,∴F n 的碟宽为2h n .∵2h n ∶2h n -1=1∶2,∴h n =12h n -1=(12)2h n -2=(12)3h n -3=…=(12)n -1h 1.∵h 1=3,∴h n =32n -1. ∵h n ∥h n -1,且都过F n -1的碟宽中点,∴h 1,h 2,h 3,…,h n -1,h n 都在一条直线上,∵h 1在直线x =2上,∴h 1,h 2,h 3,…,h n -1,h n 都在直线x =2上,∴F n 的碟宽右端点横坐标为2+32n -1. F 1,F 2,…,F n 的碟宽右端点在一条直线上,直线为y =-x +5.【解法提示】 考虑F n -2,F n -1,F n 情形,如解图②,例4题解图②F n -2,F n -1,F n 的碟宽分别为AB ,DE ,GH ;C ,F ,I 分别为其碟宽的中点,都在直线x =2上,连接右端点,BE ,EH .∵AB ∥x 轴,DE ∥x 轴,GH ∥x 轴,∴AB ∥DE ∥GH ,∴GH 平行且等于FE ,DE 平行且等于CB ,∴四边形GFEH ,四边形DCBE 都为平行四边形,∴HE ∥GF ,EB ∥DC .∵∠GFI =12∠GFH =12∠DCE =∠DCF ,∴GF ∥DC ,∴HE ∥EB ,∵HE ,EB 都过E 点,∴HE ,EB 在一条直线上,∴F n -2,F n -1,F n 的碟宽的右端点在一条直线上,∴F 1,F 2,…,F n 的碟宽的右端点在一条直线上.∵F 1:y 1=13(x -2)2-3对应的准碟形右端点坐标为(5,0),F 2:y 2=23(x -2)2对应的准碟形右端点坐标为(2+32,32),∴可得过以上两点的直线为y =-x +5,∴F 1,F 2,…,F n 的碟宽的右端点在直线y =-x +5上.跟踪训练1.解: (1)由y =-x 2+4x -3可得A 的坐标为(2,1),将x =4代入y =-x 2+4x -3,得y =-3,∴B 的坐标为(4,-3),设抛物线L 2的解析式为y =a (x -4)2-3.将A (2,1)代入,得1=a (2-4)2-3,解得a =1,∴抛物线L 2的表达式为y =(x -4)2-3;(2)a 1=-a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上,∴可列方程组⎩⎪⎨⎪⎧n =a 2(m -h )2+k k =a 1(h -m )2+n , 整理,得(a 1+a 2)(m -h )2=0,∵伴随抛物线的顶点不重合,∴m ≠h ,∴a 1=-a 2.(3)抛物线L 1:y =mx 2-2mx -3m 的顶点坐标为(1,-4m ),设抛物线L 2的顶点的横坐标为h ,则其纵坐标为mh 2-2mh -3m ,∴抛物线L 2的表达式为y =-m (x -h )2+mh 2-2mh -3m ,化简得,y =-mx 2+2mhx -2mh -3m ,所以点D 的坐标为(0,-2mh -3m ),又点C 的坐标为(0,-3m ),可得|(-2mh -3m )-(-3m )|=4m ,解得h =±2,∴抛物线L 2的对称轴为直线x =±2.2.解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点(3,0)代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)设“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,则y =12(x 2-12x )+c =12(x -6)2-18+c ,故-18+c =1,解得c =19,故“母函数”的表达式为:y =12x 2-6x +19;第2题解图(3)设点P (m ,-m 2-4m +8),由题意,得直线l 的表达式为:y =-2x -4,故点C 、D 的坐标分别为(-2,0)、(0,-4),如解图,过点P 作PQ ∥y 轴交直线CD 于Q ,则Q (m ,-2m -4), ∴PQ =(-m 2-4m +8)-(-2m -4)=-m 2-2m +12,∴S △PCD =12·PQ |x D -x C |=12`(-m 2-2m +12)·2=-(m +1)2+13,∵点P 在CD 上方的抛物线上且-1<0,∴当m =-1时△PCD 的面积最大,最大值为13.3.(1)解:①y =-x 2-2x =-(x +1)2+12,②y =(x -3)2+3=(x -3)2+(3)2,③y=(x -2)2+(2)2,④y =x 2-x +12=(x -12)2+(12)2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m =1,n =2时,抛物线C 1:y =-(x +1)2+1,抛物线C 2:y =(x -2)2+4,∴A(-1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为-1,点D的横坐标为2,当x=-1时,y=(x-2)2+4=13,则C(-1,13);当x=2时,y=-(x+1)2+1=-8,则D(2,-8),∴AC=13-1=12,BD=4-(-8)=12,∴AC=BD;(3)①证明:抛物线C1:y=-(x+m)2+m2(m>0),则A(-m,m2);抛物线C2:y=(x-n)2+n2(n>0),则B(n,n2);当x=-m时,y=(-m-n)2+n2=m2+2mn+2n2,则C(-m,m2+2mn+2n2);当x=n时,y=-(n+m)2+m2=-2mn-n2,则D(n,-2mn-n2);∴AC=m2+2mn+2n2-m2=2mn+2n2,BD=n2-(-2mn-n2)=2mn+2n2,∴AC=BD,∴四边形ACBD为平行四边形.∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x-2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(-m,m2),∴C(-m,m2+4m+8),∴BC2=(-m-2)2+(m2+4m+8-4)2=(m+2)2+(m+2)4.∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=15,∴m=15-2.。
2020版中考数学总复习优化设计:第6讲-一元二次方程及其应用课件全集2
∴Δ=b2-4ac=22-4(m-2)=12-4m≥0,∴m≤3. ∵m为正整数,∴m=1,2或3. 又当m=1时,Δ=8该方程的根不是整数,∴m≠1. ∴m=2或3.∴2+3=5.故选B.
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研破
考题初做诊断
方法点拨一元二次方程根的判别式的应用主要有以下三种情 况:(1)不解方程,判定根的情况;(2)根据方程根的情况,确定方程系数 中字母的取值范围;(3)应用判别式证明方程根的情况.本题根据方 程的系数结合根的判别式Δ≥0,得出m≤3,由m为正整数结合该方 程的根都是整数,求出m的值,将其相加即可.
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考题初做诊断
例2解方程:(x-3)2+4x(x-3)=0. 分析:本题可以采用因式分解法或公式法解. 解法一把方程左边因式分解,得(x-3)(x-3+4x)=0,即(x-3)(5x-3)=0,
∴x-3=0 或 5x-3=0.∴x1=3,x2=35.
C.ax2-x+2=0
D.3x2-2x-1=0
答案:D
方法点拨解决此类问题的关键是牢记并理解一元二次方程的定
义,特别是二次项系数应为非零数,即a≠0这一隐含条件.
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考题初做诊断
一元二次方程的解法 一元二次方程的基本解法有四种:(1)直接开方法;(2)因式分解 法;(3)配方法;(4)公式法.在解一元二次方程时首先看是否能运用直 接开平方法,再看能否运用因式分解法,公式法适用于所有的一元 二次方程的求解.
2020版中考数学总复习优化设计:第17讲-直角三角形与锐角三角函数课件二
第二课时 考法必研突破
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考法6
考题初做诊断
30°角所对直角边是斜边的一半 含30°角的直角三角形具有特殊的性质:在直角三角形中,30°角所 对的直角边等于斜边的一半. 此结论是由等边三角形的性质推出,它在解直角三角形的相关问 题中常用来求边的长度和角的度数.
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考法6
考题初做诊断
方法点拨在直角三角形中,如果一个锐角等于30°,那么它所对的 直角边等于斜边的一半.本性质适用的大前提是“在直角三角形中”. 在题中如果有一个30°的角,而无直角时,必须依条件构造符合性质 特征的直角三角形,才能由角的大小关系,得出边的倍分关系.
考点必备梳理
考法必研突破
考题初做诊断
考法1
考法2
考法3
考法4
考法5
考法6
直角三角形的性质和判定
例2(2018广西柳州)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则
sin B= ���������=���������������(
)
A.35
B.45
C.37
D.34
答案:A
解析:∵∠C=90°,BC=4,AC=3,
注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊性 质,在非直角三角形或一般直角三角形中不能应用;②应用时,要注
意找准30°的角所对的直角边,以及斜边.
考法1
考法2
考法3
考点必备梳理
考法4
2020版中考数学总复习优化设计:第12讲-二次函数-讲练课件2
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考法6
考题初做诊断
例2(2017贵州安顺)二次函数y=ax2+bx+c(a≠0)的图象如图,给出
下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④
m(am+b)+b<a(m≠1),其中正确结论的个数是( )
A.1 B.2 C.3 D.4 答案:C
轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其
中正确的结论是
.(只填写序号)
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考法6
考题初做诊断
答案:②⑤
解析:由图象可知:a<0,b>0,c>0,故abc<0,故①错误;观察图象可知,
抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的
考法1
考法2
考法3
考点必备梳理
考法4
考法5
考法必研突破
考法6
考题初做诊断
二次函数的性质
1.结合开口方向、对称轴可理解二次函数的增减性;结合开口方
向和顶点的纵坐标可理解二次函数的最值.
2.已知点A(a,b)和B(c,b)是抛物线上两点,由于它们的纵坐标相同,
所以,这条抛物线的对称轴是x=
������ + ������ 2
考点必备梳理
考法必研突破
考题初做诊断
考法1
2020年浙江省嘉兴市中考数学优化重组试卷附解析
2020年浙江省嘉兴市中考数学优化重组试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,那么这个几何体的主视图是( )2.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( )A . 明天本市70%的时间下雨,30%的时间不下雨B . 明天本市70%的地区下雨,30%的地区不下雨C . 明天本市一定下雨D . 明天本市下雨的可能性是70%3.下列特征中,菱形具有而矩形不一定具有的特征是( )A .对边平行且相等B .对角线互相平分C .内角和等于外角和D .每一条对角线所在直线都是它的对称轴4.如果把多边形的边数增加l 倍,它的内角和是2160°,那么原多边形的边数是( )A .24B .12C .7D .6 5.如图,已知AB=AD ,BC=CD ,AC ,BD 相交于点E ,下列结论中错误..的是( ) A .AC ⊥BD B .AC 平分BD C .AC 平分∠DCB D .BD 平分∠ABC6.如果点M (3a ,-5)在第三象限,那么点N (5-3a ,-5)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.用代入解方程组52231x y x y -=⎧⎨-=⎩时,下列代入方法正确的是( ) A .231x x -= B .21531x x -+= C .23(52)1x x --= D . 21561x x --=8.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是( )A .1个B .2个C .3个D .4个 9.用科学记数法表示的数1.2×103,则这个数的原数是( )A . 1200B .120C .12D .12000 10.数学课上老师给出下面的数据,精确的是( )A .2002年美国在阿富汗的战争每月耗费10亿美元B .地球上煤储量为5万亿吨以上C .人的大脑有l ×1010个细胞D .七年级某班有51个人二、填空题11.在Rt △ABC 中,∠C=90°,AB=5,AC=4,则cosB 的值等于 .12.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.13.如图,AB 、AC 为⊙O 的两条弦,延长 CA 到D ,使AD=AB ,若∠ADB = 35°,则∠BOC= .14.边长为 10 的等边三角形外接圆直径是 .15.已知□ABCD 的对角线AC ,BD 交于点O ,△AOB 的面积为2,那么□ABCD 的面积为_____.16.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度.17.小明练习投篮,共投篮40次,其中投中25次,那么小明投中的频率是 .18.某人到菜市场买鸡蛋,她对所要购买的鸡蛋逐一进行检查,最后她买到了自己满意的鸡蛋.在这个事件中用的是哪种数学方法?19.已知ab=1,则20061111a b ⎛⎫+ ⎪++⎝⎭= .20.把234x y 、243x y -、2x 、7y -、5这五个单项式按次数由高到低的顺序写出: .21.在直线上顺次取A 、B 、C 三点,使得 AB=9 cm ,BC =4 cm ,如果 0 是线段 AC 的中点,则线段 OB = cm.三、解答题22.如图,在△ABC 中,∠C= 90°,∠A = 30°,0 为AB 上一点,BO=m ,⊙O 的半径为12cm ,当m 在什么范围内取值,直线BC 与⊙O 相离?相切?相交?23.如图,已知以O 为圆心的两个同心圆中,大圆的弦CD 交小圆于E 、F ,•OE 、OF 的延长线交大圆于A 、B ,求证:AC=BD .24.如图,为了测量有小河相隔的 A .B 两点间的距离,可先在点A 、B 处立上标杆,在适当的位置放一水平桌面,铺上白纸,在纸上选一点 0,立一大头针,通过观测,再在纸上确定点 C ,使0、C 、A 在同一直线上,并且OA 的长是OC 长的 100倍,间接下来如何做,才能得出A .B 两点间的距离?25.已知,如图①,在△ABC 中,∠ABC=45°,H 是两条高线AD 和BE 的交点.(1)求证:BH=AC ;(2)现将原题图中的∠BAC 改为钝角,题设条件不变,请你按题设要求在钝角三角形ABC (如图②)中画出该题的图形;(3)∠BAC 改成钝角后,结论BH=AC 还成立吗?若成立,请证明;若不成立,请说明理由.AB CD E HAB C26.如图,六边形ABCDEF 的每个内角都是120°,AF=AB=2,BC=CD=3,求DE ,EF 的长.27.如图所示,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°(即∠α),如果甲、乙两地同时开工,那么在乙地公路按是多少度施工时,才能使公路准确接通?28. (1)计算:22(105)5x y xy xy -÷; (2)因式分解:3228m mn -29.为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计,分别绘制了如下统计表和频数分布直方图.请你先将统计表补充完整,再根据统计表和频数分布直方图回答下列问题:平均成绩012345678910人数0133461O(1)由题可知,参加这次射击比赛的队员有名.(2)这次射击比赛平均成绩的中位数为第个数,落在频数分布直方图的第组内.(3)这次射击比赛平均成绩为众数的有人,落在频数分布直方图的第组内.30.如图所示,长方形ABCD与长方形BEFG等长等宽,如将长方形BEFG向右平移,距离为EF,长方形ABCD向右平移距离为3个BC,则恰好构成新长方形AEPQ,若AEPQ周长为56,求长方形AEPQ的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.D4.C5.D6.D7.C8.C9.A10.D二、填空题11.5312.60度13.140°14..816.10017.0.62518.普查19.120.243x y-,234x y,37y-,2x,521.2.5三、解答题22.当m>时相离;当m=时相切;当0m<<时相交.23.连结OC、OD,∵OC=OD,OE=OF,∴∠OCD=∠ODC,∠OEF=∠OFE,∴∠AOC=∠BOD,•∴AC=BD.24.连结 OB,在纸上确定 D,使0、D、B在同一直线上,并且OB 长是 OD 长的 100倍,连结 CD,则OC ODAO OB=,∠O=∠OM∴△OCD∽△OAB.∴OC1100CDAB OA==,∴量出 CD 的长,它的 100倍就是AB 的长.25.⑴证明:∵H 是高AD 、BE 的交点,∴∠CAD+∠C=90°,∠CBE+∠C=90° ∴∠CAD=∠CBE在△ABD 中,∠ABC=45°,∠ADB=90°,∴∠BAD=∠ABC=45°,∴BD=AD ∵AD 是高线,∴∠ADB=∠ADC=90°在△BDH 和△ADC 中⎪⎩⎪⎨⎧∠=∠=∠=∠ADC ADB ADBD CBE CAD ∴△BDH ≌△ADC (ASA )∴BH=AC⑵如图.⑶成立,证明过程同⑴,略. 26.把边AB ,CD ,EF 向两方延长,构成等边三角形,可得EF=4,DE=1 27.125°28.(1)2x y - (2)2(2)(2)m mn n m n +-29.表中填3,3,9 (1)33;(2)17,3;(3)9,430.192 AB C D E H 5题图2。
中考数学总复习优化设计 第二板块 热点问题突破 专题4 归纳与猜想专题提升演练 新人教版-新人教版初
专题四归纳与猜想专题提升演练1.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……,根据你所发现的规律,请直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1的值为()A.100B.1 000C.10 000D.100 0002.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)3.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.4.下图是用长度相等的小棒按一定规律摆成的一组图案,第(1)个图案中有6根小棒,第(2)个图案中有11根小棒……则第(n)个图案中有根小棒.n+1)5.【问题情境】如图①,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC.(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图②,探究展示(1)(2)中的结论是否成立?请分别作出判断.证明:延长AE ,BC 并交于点N ,如图①甲,图①甲∵四边形ABCD 是正方形,∴AD ∥BC.∴∠DAE=∠ENC.∵AE 平分∠DAM ,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE 和△NCE 中,{∠DDD =∠D ,∠DDD =∠DDD ,DD =DD ,∴△ADE ≌△NCE (AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM 成立.证明:过点A 作AF ⊥AE ,交CB 的延长线于点F , 如图①乙所示.图①乙∵四边形ABCD 是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD ,AB ∥DC. ∵AF ⊥AE ,∴∠FAE=90°.∴∠FAB=90°-∠BAE=∠DAE.在△ABF 和△ADE 中,{∠DDD =∠DDD ,DD =DD ,∠DDD =∠D =90°,∴△ABF ≌△ADE (ASA).∴BF=DE ,∠F=∠AED.∵AB ∥DC ,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM ,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC 仍然成立.证明:延长AE ,BC 并交于点P ,如图②甲.图②甲∵四边形ABCD 是矩形,∴AD ∥BC.∴∠DAE=∠EPC.∵AE 平分∠DAM ,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE 和△PCE 中,{∠DDD =∠DDD ,∠DDD =∠DDD ,DD =DD ,∴△ADE ≌△PCE (AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM 不成立.证明:假设AM=DE+BM 成立.过点A 作AQ ⊥AE ,交CB 的延长线于点Q , 如图②乙所示.图②乙∵四边形ABCD 是矩形,∴∠BAD=∠D=∠ABC=90°,AB ∥DC.∵AQ ⊥AE ,∴∠QAE=90°.∴∠QAB=90°-∠BAE=∠DAE.∴∠Q=90°-∠QAB=90°-∠DAE=∠AED. ∵AB ∥DC ,∴∠AED=∠BAE.∵∠QAB=∠DAE=∠EAM ,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM. ∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM ,∴QB=DE.在△ABQ 和△ADE 中,{∠DDD =∠DDD ,∠DDD =∠D =90°,DD =DD ,∴△ABQ ≌△ADE (AAS).∴AB=AD.与条件“AB ≠AD ”矛盾,故假设不成立. ∴AM=DE+BM 不成立.。
中考数学总复习优化设计 第二板块 热点问题突破 专题1 图表信息课件
②缆车(lǎnchē)到山顶的线路长为3 600÷2=1 800(m),
缆车到达终点所需时间为1 800÷180=10(min).
小颖到达缆车终点时,小亮行走的时间为10+50=60(min).
把x=60代入y=55x-800,得y=55×60-800=2 500.
考向二
考向三
考向四
解:(1)补全的表格(biǎogé)为
三个角上三
个数的积
三个角上三
个数的和
积与和的商
图①
图②
图③
1×(-1)×2=-2
(-3)×(-4)×
(-5)=-60
(-2)×(-5)×
17=170
(-3)+(-4)+
(-5)=-12
(-60)÷(-12)=5
(-2)+(-5)+
17=10
170÷10=17
考向三
考向四
统计图表问题
【例4】 某超市销售同款多种颜色的运动服,其中平均(píngjūn)每天销
考向三
售红、黄、蓝、白四种颜色运动服的数量如下表,由此绘制的不完整的扇形
统计图如下:
运动服颜色
数量/件
所对扇形的圆心角
红
20
黄
n
蓝
40
α
90°
第十三页,共二十页。
白
1.5n
合计
m
360°
热点考向例析
考向一
所以n=40.
40
所以 α=160×360°=90°.
所以在销售的运动服中,红色运动服的数量所对扇形的圆心角
20
2020年中考数学热点冲刺6 方案设计问题(含答案解析)
热点专题7 方案设计问题《全日制义务教育数学课程标准(实验稿)》中明确提出要培养学生“用数学的眼光去认识自己所生活的环境与社会”,学会“数学地思考”,即运用数学的知识、方法去分析事物、思考问题,2019年中考试卷中有一类方案设计题,特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐,它要求学生根据題意设计符合条件的方案,或对己知方案进行评判,涉及的知识点主要有函数思想、分类讨论的思想、统计与概率、锐角三角函数方程或不等式(组)的应用以及图形变换等,对学生的能力要求较高,符合新课标的理念.考向1 设计测量安装方案问题1.(2019·山西)某"综合与实践"小组开展了测量本校旗杆高度的实践活动.他们制定了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整).课题测量旗杆的高度成员组长:××× 组员:×××,×××,×××测量工具测量角度的仪器,皮尺等任务一:两次测量A ,B 之间的距离的平均值是______m.任务二:根据以上测量结果,请你帮助该"综合与实践"小组求出学校旗杆GH 的高度.(参考数据:sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)任务三:该"综合与实践"小组在制定方案时,讨论过"利用物体在阳光下的影子测量旗杆的高度"的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)解:任务一:平均值=(5.4+5.6)÷2=5.5m任务二:由题意可得,四边形ACDB ,ACEH 都是矩形,∴EH=AC=1.5,CD=AB=5.5,设EG=xm , 在Rt △DEG 中,∠DEG=90°,∠GDE=31°,∵tan31°=EG DE ,∴DE=tan 31x o, 在Rt △CEG 中,∠CEG=90°,∠GCE=25.7°,∵tan25.7°=EG CE ,∴CE=tan 25.7x o , ∵CD=CE -DE ,∴tan 25.7x o -tan 31x o =5.5,∴x=13.2, ∴GH=GE+EH=13.2+1.5=14.7.答:旗杆GH 的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.2.(2019·常德)如图是一种淋浴喷头,右图是的示意图,若用支架把喷头固定在A 点处,手柄长AB=25cm ,AB 与墙壁D D '的夹角∠D 'AB=37°,喷出的水流BC 与AB 行程的夹角∠ABC=72°,现在住户要求:当人站在E 处淋浴时,水流正好喷洒在人体的C 处,且使DE=50cm ,CE=130cm .问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).解:过B点作MN∥DE,分别交直线AD和直线EC于点M、N,由题意可知AD∥CE,∠ADE=90°∴四边形DMNE为矩形,∴∠AMB=∠BNC=9 0°,MN=DE,MD=NE.在Rt△ABM中,∠D AB=37°,sin∠MAB=MBAB,∴MB=AB·sin37°=25×0.6=15,cos∠MAB=AMAB,∴AM=AB·cos37°=25×0.8=20,∵MN=DE=50,∴NB=50-15=35,∵∠ABM=90°-37°=53°,∠ABC=72°,∴∠NBC=180°-53°-72°=55°,∴∠BCN=90°-55°=35°.在Rt△BNC中,tan∠BCN=BNCN,∴CN=350.75=50,∴EN=CN+CE=50+130=180=MD,∴AD=MD-AM=180-20=160(cm).答:安装师傅应将支架固定在离地面160cm高的位置.考向2 设计方案搭配问题1.(2019·遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动,旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人,若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有几种租车方案?哪种方案最省钱?解(1)设租用A型客车的费用是x元,B型客车的费用是y元,根据题意得4x+3y=10700;3x+4y=10300,解得,x=1700,y=1300;答:租用A 型客车的费用1700元,B 型客车的费用是1300元.(2)设租用A 型客车a 辆,B 型客车b 辆,根据题意得45a+30b≥240;1700a+1300b≤10000; ∴17b 13-1003b 2-16≤≤a ,∵a ,b 均为正整数,∴a=2,b=5;a=4,b=2两种方案, 当a=2,b=5时,费用为99005130021700=⨯+⨯(元),当a=4,b=2时,费用为94002130041700=⨯+⨯(元),答:租用A 型客车4辆,B 型客车2辆时费用最低,最低费用为9400元.2.(2019山东滨州,22,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.解:(1)设辆甲种客车与1辆乙种客车的载客量分别为a 人,b 人,23=1802=105a b a b ,ì+ïïíï+ïî, 解得=45=30.a b ,ìïïíïïî答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人. (2)设租用甲种客车x 辆,租车费用为y 元,根据题意,得y=400x+280(6-x )=120x+1680.由45x+30(6-x )≥240,得x≥4. ∵120>0,∴y 随x 的增大而增大,∴当x 为最小值4时,y 值最小. 即租用甲种客车4辆,乙种客车2辆,费用最低, 此时,最低费用y=120×4+1680=2160(元).3.(2019浙江省温州市)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩.答:该旅行团中成人有17人,少年有5人;(2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元).②设可以安排成人a人、少年b人带队,则1≤a≤17,1≤b≤5.设10≤a≤17时,(i) 当a=10时,100×10+80b≤1200,∴b≤52,∴b最大值=2,此时a+b=12,费用为1160元;(ii) 当a=11时,100×11+80b≤1200,∴b≤54,∴b最大值=1,此时a+b=12,费用为1180元;(iii) 当a≥12时,100a≥1200,即成人门票至少需要1200元,不符合题意,舍去.设1≤a<10时,(i) 当a=9时,100×9+80b+60≤1200,∴b≤3,∴b最大值=3,此时a+b=12,费用为1200元;(ii) 当a=8时,100×8+80b+60×2≤1200,∴b≤72,∴b最大值=3,此时a+b=11<12,不符合题意,舍去;(iii) 同理,当a<8时,a+b<12,不符合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少.考向3 设计产品销售方案问题1.(2019·赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?解:(1)设小明原计划购买文具袋x个,则实际购买了(x+1)个,依题意得:10(x+1)×0.85=10x﹣17.解得x=17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y支,则购买签字笔(50﹣x)支,依题意得:[8y+6(50﹣y)]×80%≤400---17×10+17.解得y≤4.375.即y最大值=4.答:明最多可购买钢笔4支.2.(2019·孝感)为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1) 求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元由题意得:y-x=0.6500x+200y=960⎧⎨⎩解得x=1.2y=1.8⎧⎨⎩故今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元.(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意得:1.8(1100-m)≥1.2(1+25%)m,解得m≤600设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980∵-0.3<0,∴W随m的增大而减小∵m≤600,∴当m=600时,W有最小值为-0.3×600+1980=1800.故该市明年至少需投入1800万元才能完成采购计划.考向4 设计图案问题1.(2019·河北)如图3,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂照n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【答案】C【解析】如图所示,∴n的最小值为3.2. (2019·宁波)图1,图2都是有边长为1的小等边三角形构成的网格,每个网格图中由5个小等边三角形已图上阴影,请在余下的空白小等边三角形中,按下列要求选取一个图上阴影:(1)使得6个阴影小等边三角形中组成一个轴对称图形;(2)使得6个阴影小等边三角形中组成一个中心对称图形.(请将两个小题一次作答在图1,图2中,均只需画出符合条件的一种情形)解:(1)画出下列其中一种即可(2)画出下列其中一种即可.。
2020年浙江省宁波市中考数学优化重组试卷附解析
2020年浙江省宁波市中考数学优化重组试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一箱灯泡有 24 个,灯泡的合格率是87.5%,则从中任意拿出一个是次品的概率是( ) A .0B .124C .78D .182.已知样本数据个数为30,且被分成4组,各组数据个数之比为2∶4∶3∶1,则第二小组的频数和第三小组的频率分别为( ) A .0.4和0.3B .0.4和9C .12和0.3D .12和93.如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( ) A .32 B .33 C .34 D .34.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E .若 BD+CE=9,则线段DE 的长为 ( )A .9B .8C .7D .6 5.如图所示,AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 的度数等于( )A .110°B .70°C .55°D .35°6.不等式组x ax b >⎧⎨>⎩的解集为x b >(a b ≠),则a 与b 的关系是( ) A .a b > B .a b < C .0a b >> D .0a b << 7.如图,AB ∥CD ,那么( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠4FADEBC8.计算32)(x x ⋅-所得的结果是( ) A .5x B .5x - C .6x D .6x - 9. 计算32()x 的结果是( )A .5xB .6xC .8xD .9x二、填空题10.任意选择电视的某一频道,正在播放动画片,这个事件是 事件(填“必然”“不可能”或“不确定”).11.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,2个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是 .12.如图,等边三角形ABC 的内切圆的面积为π9,则⊿ABC 的周长为 .13.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,则a的值为 .14.已知抛物线2(2)4y k x kx m =--+的对称轴是直线x=2,且其最高点在直线122y x =-+上,则此抛物线的解析式为 .15.在□ABCD 中,∠A 比∠B 大20°,则∠C 为 度. 16.已知关于x 的方程1460x kx -+=的一个根是 2,则k = . 17.按下列要求,写出仍能成立的不等式: (1633,得 ; (2)50x +<,两边都加上 (— 5),得 ; (3)3253n m >,两边都乘 15,得 ;(4)718x -≥,两边都乘87-,得 .18.已知方程组357(1)3511(2)x y x y +=⎧⎨-=⎩,①+②,得x = ;①-②,得x = .19. 若2a b -=,则221()2a b ab +-= . 20.在“石头、剪刀、布”的游戏中,两人做同样手势的概率是 .三、解答题21.某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图,BC ∥AD ,斜坡 AB 长22 m , 坡角∠BAD= 68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过 50°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离 BE 的长.(精确到0. 1 m)(2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿 BC 削进到F 点处,问BF 至少是多少? (精确到0.1 m)22.如图,AB ∥CD,AD 与BC 相交于点O ,31=BC OB .若OA=7cm,求OD 的长度.23.已知二次函数22(1)23y m x m m =++--的图象经过原点,试确定m 的值.24.写出下列命题的逆命题,并判断逆命题的真假,如果是假命题请反举例说明. (1)对顶角相等;(2)等腰三角形的两底角的平分线相等; (3)在三角形中,钝角所对的边最大.25.利用不等式性质,将下列不等式化成“x a >” 或“L x a <”的形式:(1)52x +>-;(2)436x >;(3)134x -> ;(4)102x +<26.王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.27.如图,画出△ABO 绕点O 逆时针旋转90°后的图形.28.因式分解:⑴322344x y x y xy -+- ⑵x 2―2x +1―y 229. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率;(2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.30.先化简,再求值:22()a b a ba b b a ab++÷--,其中1a =, 1b =.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.A5.D6.B7.C8.A9.B二、填空题10.不确定11.6112. 318 13.―2,―8,414.243y x x =-+-15.10016.1117.(1)630->;(2)x<-5;(3)9m>10n ;(4)87x ≤-18.3,25- 19.220.31三、解答题 21.(1)作 BE ⊥AD ,E 为垂足,0sin 6820.4BE AB =⋅≈(m) (2)作 FG ⊥AD ,G 为垂足,连,则 FG=BE,0tan 50FGAG =17.12=, 0cos688.24AE AB =⋅≈,∴BF=AG-AE=8. 88≈8. 9 (m),即 BF 至少是 8. 9 m .22.14㎝.23.∵图象经过原点,∴2230m m --=,∴11m =-,23m =,∵10m +≠∴m =3.24.(1)逆命题:相等的角是对顶角,是假命题,举例略;(2)逆命题:若一个三角形有两个角的平分线相等,则这个三角形是等腰三角形,是真命题;(3)逆命题:在三角形中,最大边所对的角是钝角,是假命题.如直角三角形25.(1)x>-7;(2)x>9;(3)x<-12;(4)12x <-26.略27.略28.(1)-xy(2x-y)2,(2)(x-1-y)(x-1+y)29.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种,4263P ∴==. (2所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. 30.ab ,24。
2020年江苏省泰州市中考数学优化重组试卷附解析
2020年江苏省泰州市中考数学优化重组试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,⊙O 是直角△ABC 的内切圆,切斜边AB 于D ,切直角边 BC 、CA 于点 E 、F ,已知 AC=5,BC=12,则四边形 OFCE 的面积为( )A .1B . 15C .152D .42.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( )A .相交B .相切C . 相离D . 相交或相离 3.二次函数342++=x x y 的图象可以由二次函数2x y =的图象平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,再向上平移1个单位长度B .先向左平移2个单位长度,再向下平移1个单位长度C .先向右平移2个单位长度,再向上平移1个单位长度D .先向右平移2个单位长度,再向下平移1个单位长度4. 图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是( )A .y =12 (x+2 )2 -2B y =12(x-2 )2 -2. C y =2(x+2 )2 -2. D .y =2(x-2 )2 -2 5.下列四个函数:①2y x =+;②6y x=;③23y x =;④2(26)y x x =--≤≤,四个函数图 象中是中心对称图形,且对称中心是原点的共有( )A .1 个B .2 个C .3 个D .4 个6.下列说法正确的是( )A .汽车沿一条公路从A 地驶往B 地,所需的时间 t 与平均速度v 成正比例B .圆的面积S 与圆的半径R 成反比例C .当矩形的周长为定值时,矩形的长与宽成反比例D .当电器两端的电压V 为 220 V 时,电器的功率 P (W )与电阻 R (Ω)成反比例(功 电压的平方功率=电阻)7.正方形具有而菱形不一定具有特征是( )A .对角线互相垂直平分B .内角和为360°C .对角线相等D .对角线平分每一组对角 8.了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的 ( )A .平均数B .方差C .众数D .频数分布9. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =10.下列各式中,是分式的个数有( ) ①2a ;②3a -;③2c d -;④2a b -;⑤s a b +;⑥4y x-. A .1 个 B . 2个C .3个D .4个 11.从1到20的20个自然数中,任取一个,既是2的倍数,又是3的倍数的概率是( ) A .120 B .320 C .12 D .310 12.如果线段AB=13 cm ,MA+MB=17 cm ,那么下面说法正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可以在直线AB 上,也可以在直线AB 外13.某中学现有 4200 人,计划一年后初中在校生增加 8%,高中在校生增加 11%,这样校在校生将增加10%. 这所学校现在的中在校生和高中在校生人数依次为( )A .1400 人和 2800 人B .1900 人和 2300人C .2800 人和 1400 人D .2300 人和 1900人二、填空题14.放大镜下的“5”和原来的“5”是 ,下列各组图形中,属于相似形的是 .(填序号).①两个三角形;②两个长方形;③两个平行四边形;④两个正方形;⑤两个圆15.点A(5,关于直角坐标系原点对称的点的坐标是 ,关于y 轴对称的点的坐标是 ,关于x 轴对称的点的坐标是 .16.将点A(1,-3)向右平移3个单位,再向下平移1个 单位后,得到点B(a ,b),则ab = .17. 若0a b +<,0ab <,a b <,,则a 、a -、b 、b -的大小关系用“<”连接起来是 .18.在横线上填上图中各图从甲到乙的变换关系:19.当x =__________时,分式x 2-9x -3的值为零. 20.根据下列关系,求下列方框内y 的值: ①42y x =-;②234x y -=;(2)方程组23442x y y x -=⎧⎨=+⎩的解是 . 21.如图.方格纸中的三角形要由位置①平移到位置②,应该先向 平移格,再向 平移 .22.点A 和点A ′关于直线l 成轴对称,则直线l 和线段AA ′的位置关系是: .23.完成下列角度的换算:(1)21.5°= ′= ″ ;360″= ′= °;(512)°= ″; 900′= °.(2)37.175°= ° ′ ″; 8°30 ′18″= °.24. 绝对值大于 3 而不大于 6 的所有负整数之和为 . 三、解答题25. 如图所示,△ABC 中,AB=a ,∠A=30°,∠B=45°,以直线 AB 为轴旋转一周得一几何体,则以 AC 为母线的圆锥的侧面积与以 BC 为母线的圆锥的侧面积之比是多少?26.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等. 高比长多0. 5 m.(1)长方体的长用 x(m)表示. 长方体需要涂漆的表面轵 S(m2)何表示?(2)如果涂漆每平方米需要的费用是 5元,油漆每个长方体所需费用用 y(元)表示,那么 y 的表达式是什么?27.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x元,一名小学生的学习需要y元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:捐款数额(元)资助贫困中学生人数资助贫困小学生人数初一年级400024初二年级420033初三年级4(1)求x、y的值;(2)已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).28.画出如图所示的图形(阴影部分)绕点0逆时针方向旋转90°、l80°后所成的图形.29.在下图所提供的汇率表中,汇 (钞 )卖价一栏表示银行卖出 100 外币元的人民币价格;钞买价一栏表示银行买入 100 外币元的人民币价格.(1)求银行卖a 美元的人民币价格. 若银行买入1550 美元,需人民币多少元?(2)求银行买入 b 欧元现钞的人民币价格. 若用1250 欧元向银行兑换人民币,可得到人民币多少元?(3)若用 c美元向银行兑换欧元,可得到多少欧元?30.公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不论推销多少都有 500 元的底薪,每推销一件产品加付推销费 2 元.方案二:不付底薪,每推销一件产品,付给推销费 5元.若小王一个月推销产品 200 件,则小王会选择哪一种工资方案?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.B4.A5.A6.D7.C8.D9.C10.C11.BC13.A二、填空题14.相似形, ④、⑤15.(-5,(-5,,(516.-l617.a b b a <-<<-18.轴对称,旋转,平移19.3-=x 20.(1)①,10,2,-2;(2)23-,0,43-,-2;12x y =-⎧⎨=-⎩ 21.右,2,上,322.垂直且平分23.(1)1290,77400;6,0.1;1500;15 (2)37,10,30;8.50524.-15三、解答题25.26.(1) 224(0.5)S x x x =++,即262(0)S x x x =+>(2)25(62)y x x =+,即23010y x x =+.(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7. 28.略29.(1) 8.2896a 元,12733.405 元;(2)9.O438b 元,11304.75元 (3)8.2151821519.148891488c c =欧元. 30.小王应选择方案二。
2020年江苏省扬州市中考数学优化重组试卷附解析
2020年江苏省扬州市中考数学优化重组试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( )A .外切B .内切C .外离D .外切或内切2.如图,已知锐角α的顶点在原点,始边在x 轴的正半轴上,终边上一点p 坐标为(1,3),那么tan α的值等于 ( )A .13B .3C .1010D .310103. 四位学生用计算器求 cos27o 40′的值正确的是( )A . 0.8857B .0.8856C . 0. 8852D . 0.8851 4.从500个数据中用适当的方法抽取50个作为样本进行统计,126.5~130.5之间数据的频率在频数分布表是0.12,那么估计总体数据落在126.5~130.5之间个数为( )A .60B .120C .12D .65.在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-16.函数4y x =+,142y x =+,24y x =-+,144y x =-+的共同特点是( ) A .图象位于相同象限B .y 随x 的增大而减小C .y 随x 的增大而增大D .图象都经过同一定点7.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( )A .3045300x -≥B .3045300x +≥C .3045300x -≤D .3045300x +≤8. 如果a<b<0,下列不等式中错误..的是( )A . ab >0B . a+b<0C . b a <1D . a-b<09.下列说法错误的是( )A .x=1是方程x+1=2 的解B .x= -1 是不等式13x +<的一个解C .x=3 是不等式13x +<的一个解D .不等式13x +<的解有无数个10.如图,AD=BC=BA ,那么∠1与∠2之间的关系是( )A .∠l=2∠2B .2∠1+∠2=180°C .∠l+3∠2=180°D .3∠1-∠2=180°11.从1到9这9个自然数中任取一个,是2的倍数的概率是( )A .93B . 94C . 95D .112. 如图,△ABC 的两个外角平分线交于点O, 若∠BOC=76°,则∠A 的值为( )A .76°B .52°C .28°D .38° 13.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是( )14.如图,0A ⊥OC ,OB ⊥OD ,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD乙:∠BOCC+∠AOD=180°丙:∠AOB+∠COD=90°丁:图中小于平角的角有5个其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题15.一个画家把 14 个边长为 lm 的正方体摆成如图的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为 m2.16.如图,已知直线AB是⊙O的切线,A为切点,∠OBA=52°,则∠AOB=_____°.17.命题“等腰三角形是轴对称图形”的逆命题是 (真或假)命题.18.一元二次方程(x+6)2=5可转化为两个一次方程,其中一个一次方程是x+6= 5 ,则另一个一次方程是.19.如图,在□ABCD中,对角线AC,BD相交于点O,已知△BOC与△ABO的周长之差为4cm,□ABCD的周长为24cm,那么AB= cm.20.如图,已知∠1=∠2=∠3,∠GFA=36°,∠ACB=60°,AQ平分∠FAC,则∠HAQ= .21.一水池有2个进水速度相同的进水口,l个出水口,单开一个进水口每小时可进水2 m3,单开一个出水口每小时可出水3m2.某天0 h到6 h水池的蓄水量与放水时间的关系如图所示(至少打开一个进水口),给出以下3个论断:①O h到3 h只进水不出水;②3 h到4 h时不进水只出水;③4 h到6 h不进水不出水.则错误的论断是 (填序号).22.计算:(1)72a b a b÷;()()()()-÷-;(3)232b b-÷-;(2)52(5)(5)÷⋅(4)32x y y x()()-÷-;(5)844a a a解答题23.把编号为 1、2、3、4、…的若干盆花按如图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第 6盆花的颜色为色.24.如图是根据某市l999年至2003年工业生产总值绘制的折线统计图.观察统计图可得:增长幅度最大的年份是年,比它的前一年增加亿元.工业生产总值,亿元三、解答题25.如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(3 1.73,计算结果保留整数)26.从甲地到乙地和从乙地到丙地都分别有火车和汽车两种交通工具,小波的爸爸要从甲地到乙地参加会议后,再去丙地办事,问小波爸爸任意选取交通工具,从甲地到丙地都乘火车的概率是多少?27.如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面(BD )刚好接触,20AB CD ==cm ,200BD =cm ,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?28.某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用 17 600元购进同种衬衫,数量是第一次的 2倍,但这次每件进价比第一次多4元,服装店仍接每件58元出售,全部售完,问:该服装店这笔生意是否盈利,若盈利,请你求出盈利多少元?29.计算:(23)(322)(32)-+--- (精确到 0.01).30. 在两个圈的重叠部分填入 3 个既属于负数集合,又属于整数集合的数,并说出它们属于什么集合.A CB D【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.A4.A5.A6.D7.B8.C9.C10.B11.B12.C13.A14.B二、填空题15.3316.38°17.假18.x+6=- 519.420.12°21.②22.(1)5b-;(2)-125;(3)42a b;(4)x y-;(5)8a23.黄24.2003,40三、解答题25.解:∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°∴DE=AE=23.在Rt△BEC中,∠CBE=60°∴CE =BE ·tan60°=153,∴CD =CE -DE =153-23≈2.95≈3,即这块广告牌的高度约为3米. 26.∴从甲地到丙地都乘火车的概率14P =. 27.解:过圆心O 作OE ⊥AC,垂足为D ,连结AO.设圆O 的半径为R,在Rt △AOE 中,AE=2AC =2BD =100, OE=R —AB=R —20.∵AE 2+OE 2=OA 2 ,∴1002+( R —20)2=R 2解得R=260cm .这个圆弧形门的最高点离地面的高度为2R=520cm答:这个圆弧形门的最高点离地面的高度为520cm . 28.设第一次购进衬衫x 件. 根据题意,得80001760042x x+=,解得200x =,经检验200x =是原方程的解.当200x =时,服装店这笔生意盈利= 58×(200+400)-(17600+8000)=9200(元)>0. 答:该服装店这笔生意是盈利的,盈利9200 29.-1. 7330.负整数集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六方案设计题
专题提升演练
1 .一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案•某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()
團①图②
答案 | C
3. 某化工厂
现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.
已知
生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原
料4 kg,则生产方案的种数为()
A.4
B.5
C.6
D.7
答案 | B
4. __________________________________ 某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8 罐液化气,则最省钱的方法是买站的.
答答案乙
5. 从边长为a的大正方形纸板中间挖去一个边长为b 的小正方形后,其截成的四个相同的等腰梯形
(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD如图③),已知/
A=45°, AB=6, AD斗.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为_____________ .
图①图②團③
_________________ H—-
答案111+6V2
6. 某酒厂生产A,B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的成本和利润如下表所示设每天共获利y元,每天生产A种品牌的酒x瓶.
A3
成本
/元
5035
利润/元2015
答案 | B
2. 小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再
交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()
D. 1种
(1)请写出y关于x的函数解析式
(2)如果该厂每天至少投入成本 25 000元,且生产B 种品牌的酒不少于全天产量的 55%,那么共有几
种生产方案?求出每天至少获利多少元•
解(1)由题意,知每天生产B 种品牌的酒(600-x )瓶,所以y=20x+15(600-x )=9000+5x.
500 - x 600 X 55%. 50x 十 35(600 - x)鼻 25000.
(2)根据题意得
2
解得 266 < x w 270, •/x 为整数,
二 x 的值可取 267,268,269,270,
该酒厂共有4种生产方案:
T y=9000+5x , y 是关于x 的一次函数,且y 随x 的增大而增大 •••当 x=267 时,y 有最小值,y 最小=9000+5X 267=10335. •••该酒厂共有4种生产方案,每天至少获利10335元• 7.
木匠黄师傅用长 AB=3,宽BC :2的矩形木板做一个尽可能大的圆形桌面
,他设计了四种方案
方案一:直接锯一个半径最大的圆;
方案二:圆心O , O 2分别在CDAB 上,半径分别是 OC QA ,锯两个外切的半圆拼成一个圆 ; 方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆 ; 方案四:锯一块小矩形 BCEF 拼到矩形AFEDF 面,利用拼成的木板锯一个尽可能大的圆 . (1) 写出方案一中圆的半径; (2) 通过计算说明方案二和方案三中
,哪个圆的半径较大
⑶ 在方案四中,设CE=x 0<x<1),圆的半径为y.
① 求y 关于x 的函数解析式;
② 当x 取何值时圆的半径最大 ?最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大
⑵ 方案二:如图甲,连接QO ,作EQ 丄AB 于点E ,设QC=x.
在 Rt △ QQE 中,由勾股定理得 QOgQE '+QE 2,即(2x ) 2=22+(3-2x )2,解得 x 卫.
方案三:如图乙,连接QG 则QGL CD.
因为/ D=90° ,所以 QG/ DE. 所以△ CGg CDE.
OG _ CG
所以
① 生产A 种品牌的酒 ② 生产A 种品牌的酒 ③ 生产A 种品牌的酒 ④ 生产A 种品牌的酒 267瓶,B 种品牌的酒 268瓶,B 种品牌的酒 269瓶,B 种品牌的酒 270瓶,B 种品牌的酒
333 瓶;
332 瓶; 331 瓶; 330 瓶
.
方案一 方案二
D ---------- C
方嗪:四
解(1)方案一中圆的半径为
3
4
设OG=y 所以 所以y=.
13
6
因为 ,所以方案三中的圆的半径较大
②由一次函数的增减性可知,当x=时,y 有最大值,y 最大=.
13
6
5
因为1<
,所以在四种方案中,第四种方案圆形桌面的半径最大
x + 2
I 3 - x
如图丁 ,当< xv l 时,y=
图丁。