武汉六中上智中学2017年九年级数学四调模拟试卷c
勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)
勤学早·2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分) 1.9的值是( ) A .3B .-3C .±3D .32.若代数式21x 在实数范围内有意义,则x 的取值范围是( ) A .x <2B .x ≠2C .x >2D .x =23.下列计算结果是a 6的是( )A .a 2·a 3B .a 2+a 4C .a 9-a 3D .(a 3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球.从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x -2)2的结果是( )A .x 2-4x +4B .x 2-4C .x 2+4x +4D .x 2-2x +4 6.已知点A (2,a )与点B (b ,3)关于坐标原点对称,则实数a 、b 的值是( ) A .a =-3,b =2B .a =3,b =2C .a =-3,b =-2D .a =3,b =-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )8.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16 人数316192 则该班40名同学年龄的众数和中位数分别是( )A .19、15B .15、14.5C .19、14.5D .15、159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.已知二次函数y =ax 2+bx +c ,函数y 与自变量x 的部分对应值如下表:x …… -1 0 2 3 4 …… y……105225……若A (m ,y 1)、B (m -1,y 2)两点都在函数的图象上,则当m 满足( )时,y 1<y 2 A .m ≤2B .m ≥3C .m <25 D .m >25二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算8+(-5)的结果为____________ 12.化简:xx x 11-+=___________ 13.甲盒子中有编号为1、2的2个白色兵乓球,乙盒子中有编号为4、5的2个黄色兵乓球.现分别从每个盒子中随机地取出1个兵乓球,则取出兵乓球的标号之和大于6个概率为___________ 14.如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,把四边形ABCD 沿EF 翻折,得到四边形GFEH ,A 的对应点为G ,B 的对应点为H .若∠B =50°,EH ∥CD ,则∠AFE 的度数是_________15.如图,△ABC 中,∠ABC =45°,∠C =30°,AD ⊥AC 交BC 于D ,以AD 为边作正方形ADEF ,F 在AC 边上,则CFBD的值为___________ 16.如图,AB 为⊙O 的直径,C 为半圆的中点,D 为弧AC 上一动点,延长DC 至E ,使CE =CD .若AB =24,当点D 从点A 运动到点C 时,线段BE 扫过的面积为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:3x +2=5(x -2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,BE =CF ,求证:AC =DF19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计,他通过收集数据后绘制的两幅不完整的统计图如下图所示,请你根据图中提供的信息解答下列问题: (1) 该班有___________名学生,其中步行的有___________人;在扇形统计图中“骑自行车”所对应扇形的圆心角大小是___________(2) 根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元(1) A 、B 两种商品的单价分别是多少元?(2) 已知该商品购买B 商品的件数比购买A 商品的件数的2倍少4件,设购买A 商品的件数为x 件,该商品购买A 、B 两种商品的总费用为y 元 ① 求y 关于x 的函数关系式② 若该商品购买的A 、B 两种商品的总费用不超过296元,那么购买A 商品的件数最多只能买多少件?21.(本题8分)在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线 (2) 设⊙O 与PE 相切于点C ,若43EC EB ,连接PB ,求tan ∠APB 的值22.(本题10分)已知反比例函数xy 6=(1) 若该反比例函数的图象与直线y =-x +b 相交于A 、B 两点,若A (3,2),求点B 的坐标 (2) 如图,反比例函数xy 6=(1≤x ≤6)的图象记为曲线C 1,将C 1沿y 轴翻折,得到曲线C 2 ① 请在图中画出曲线C 1、C 2② 若直线y =-x +b 与C 1、C 2一共只有两个公共点,直接写出b 的取值范围23.(本题10分)在等边△ABC 中,D 为AB 上一点,连接CD ,E 为CD 上一点,∠BED =60° (1) 延长BE 交AC 于F ,求证:AD =CF (2) 若32=BD AD ,连接AE 、BE ,求BE AE 的值 (3) 若E 为CD 的中点,直接写出BDAD的值24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0)、B,与y轴交于点C(1) 求抛物线的解析式(2)P为抛物线第一象限上的一点,若∠P AB=2∠ACO,求点P的坐标(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN、AM交y轴于E、D,求OE-OD的值。
2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷(参考答案word版) -
2017-2018学年度武汉市部分学校九年级调研测试数学参考答案及评分标准1112、21 1x-;13、13;14、105;15、83或163;16、14.三、解答题17、解:①+②,得5x=10x=2…………………4分把x=2代入①,得4+y=4y=0…………………7分∴这个方程组的解是2xy=⎧⎨=⎩…………………8分18、证明:∵BE=CF,∴BC=EF…………………2分在△ABC和△DEF中,∵AC DF AB DE CB FE=⎧⎪=⎨⎪=⎩∴△ABC≌△DEF…………………5分∴∠ABC=∠DEF…………………6分∴AB∥DE…………………8分19、⑴100;…………………2分⑵108°;………………4分⑶解:根据样本信息,可知订A类套餐的人数占30%,订B类套餐的人数占45%,、估计食堂当天中餐的总销售额大约是:1000×(0.3×5+0.48×12+0.22×18)=11220(元)答:食堂当天中餐的总销售额大约是11220元.…………………8分20、解:设主叫时间为xmin⑴当x≤200时,方式一收费低于方式二收费;当200<x≤400时,依题意,得0.2(x-200)+58=88 ……………………2分解这个方程,得x=350 ……………………………3分答:当主叫时间为350min时,两种方式收费相同…………………4分⑵当x>400时,方式一收费:0.2(x-200)+58=0.2x+18……………5分方式二收费:0.25(x-400)+88=0.25x-12……………6分计算两种收费的差,得0.2x+18-(0.25x-12)=-0.05x+30当x=600时,-0.05x+30=0;当x>600时,-0.05x+30<0;当x>600时,-0.05x+30>0.所以,当主叫时间大于600min时,选择方式一更省钱;当主叫时间等于600min时,选择两种方式收费相同;当主叫时间少于600min时,选择方式二更省钱;21、⑴证明:连接OE ,OG ,过点O 作OH ⊥BC 于点H ,则∠BHO =90°∵AB ⊥BC ,∴∠B =90° ∵AD ∥BC ,∠A =90°∵AB 、AD 与⊙O 相切 ∴∠AEO =∠AGO =90° ∴四边形AEOG 为矩形 ……………………2分 ∴OG =AE∵AE =BE , ∴BE =OG∵∠BEO =∠B =∠BHO =90°∴四边形EBHO 为矩形 ∴OH =BE , ∴OH =OG∴BC 与⊙O 相切 ……………………4分⑵过点D 作DP ⊥BC 于点P ,延长BA 、CD 相交于点N ,连接ON 交EF 于点M . 设⊙O 的半径为r ,则DF =DG =3-r ,PD =AB =2r ,PC =3,CF =CH =6-r , 在Rt △DPC 中,(3-r +6-r )2=(2r )2+9,解得 r =2 ……………5分 ∴AB =4,AE =OE =2∵△NAD ∽△NBC ,BC =2AD ,NB =2AB =8∴NE =6∵NE 、NF 与⊙O 相切,∴NE =NF ,NO 平分∠ENF ,NO 垂直平分EF 在Rt △NEO 中,ON……………………6分 因为EM ⊥ON ,∴∠OEM =∠ONE因为tan ∠ONE =OE NE =13, tan ∠OEM =OM EM =13,tan ∠EMN =EM NM =13,即EM =3OM ,NM =3EM =9OM ,EM =310ON所以,EF =2EM ……………………8分22.).…………………………………3分(2)以AB 为边作正方形ABCD ,过点C 作CM ⊥y 轴于M ,过点D 作DN ⊥x 轴于N . 则△BCM ≌△ABO ≌△DAN , ∴CM =BO =AN ,BM =AO =DN , ∴C (q ,q +p ),D (q +p ,p ). ………………………………5分 ∵点C ,D 在同一双曲线上,∴q (q +p )=p (q +p )=k .∵点D 的横坐标是3,∴q +p =3,∴p =q =32.∴k =92 ………………………………7分同理k =-92. ………………………………8分(3)453 或457. ………………………………10分23、解:(1)∵CD 2=DP ·DB ,∴DC DP =DBDC.∵∠PDC =∠CDB ,∴△PDC ∽△CDB . ………………………2分∴∠PCD =∠CBD .∵AB ∥CD ,∴∠PCD =∠CAB . ∴∠PBC =∠BAC .∴∠BCP =∠ACB . ……………………………………4分(2)延长EP 交BC 于点N .∵EP ∥DC ,∴△APE ∽△ACD .∴EP DC =AP AC. 同理,PN DC =BPBD .∵AB ∥CD ,∴BP BD =APAC.∴EP =PN . ……………………………………6分 ∵EF ⊥BC ,∴PF =PN ∴∠PFN =∠PNF∵PN ∥DC ∴∠PNF =∠DCB∵△PDC ∽△CDB ∴∠CPD =∠DCB∴∠PFC =∠CPD ………………………………8分………………………………10分24、⑴∵抛物线经过A (1,0),B (3,0)两点∴a +b +0,9a +3b +0 解得a b =-∴抛物线的解析式为:y 2-+ ………………3分 ⑵连接BC ,延长CD 交x 轴于点M∵B (3,0),C (, ∴OC =OB =3∴tan ∠OBC ∴∠ABC =60°∵∠ACD =60°, ∴∠ABC =∠ACD∵∠CAM =∠BAC , ∴△ACB ∽△AMC …………………………4分 ∴AC 2=AB AM ∵A (1,0), ∴OA =1在Rt △OAC 中,AC 2=OA 2+OC 2=28 ∵AB =OB -OA =2, ∴AM =14∴OM =15, ∴M (15,0) …………………………5分设直线CM的解析式为y=kx+∴15k+0,解得k∴直线CM的解析式为y+与抛物线解析式y2-+解得x=195或x=0(舍去)∴点D的横坐标是195……………7分⑶过点P作PQ⊥直线DE,垂足为Q,抛物线的对称轴与x轴和直线y分别为点H、M,则M(2,设直线AD的解析式为y=mx+n ∵点A(1,0),∴m+n=0,即m=-n则点P的坐标为(2,m)联立y=mx-m和y2-+得2-(m)x+m=0(x-1)-m)=0∴x1=1,x2=3m………………9分∴点D的横坐标是3∴ME+1在Rt△PME中,PM=m ME+1,∴tan∠PEM∴∠PEM=60°∴∠PEQ=30°∴PE=2PQ∵PE,∴PQ∴∠PQD=45°…………………………11分∵PQ∥x轴,所以直线AP与x轴的夹角为45°,则△PHA为等腰直角三角形∴PH=AH=1∴点P的坐标是P(2,1)…………………………12分。
湖北省武汉市2017届九年级四月调考数学模拟试卷2
湖北省武汉市2017届九年级四月调考数学模拟试卷2一、选择题(共10小题,每小题3分,共30分)1.4的值是( )A .2B .-2C .±2D .42.若代数式31 x 在实数范围内有意义,则x 的取值范围是( ) A .x <-3B .x >-3C .x ≠-3D .x =-3 3.下列计算结果是a 5的是( )A .a 6÷aB .(a 3)2C .a 5·aD .3a +2a 4.下列说法正确的是( )A .打开电视,正在播放新闻节目是必然事件B .抛一枚硬币,正面朝上的概率为21,表示每抛两次就有一次正面朝上 C .抛一枚均匀的正方体骰子,朝上的点数是3的概率为61 D .任意画一个三角形,它的内角和等于360°5.运用乘法公式计算(x +3)(x -3)的结果是( )A .x 2+9B .x 2-6x +9C .x 2-9D .x 2+6x +9 6.将点A (-2,1)向右平移3个单位,再向下平移2个单位后,得到点B ,则点B 的坐标为( ) A .(-5,-1) B .(1,3) C .(-5,3)D .(1,-1) 7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的主视图是( )8.某小组5名同学在一周内参加劳动的时间如下表所示,关于“劳动时间”的这组数据,以下列说法正确的是( )A .中位数是4B .众数是4.5C .极差是1D .平均数是3.759.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +110.已知二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0;当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .0≤c ≤3B .c ≥3C .1≤c ≤3D .c ≤3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:6-(-3)的结果为___________12.计算:aa a +++112=___________ 13.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是白球的概率为___________14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 的度数是___________15.如图,在△ABC 中,∠ABC =60°,23=BC AB ,D 为△ABC 外一点,连接AD 、CD .若∠ADC =30°,AC =AD ,则ABBD 的值为___________ 16.如图,△ABC 中,∠ABC =90°,AB =BC =4,D 为BC 边上一动点,点O 是正方形ADEF 的中心.当点D 沿BC 边从点B 运动到点C 时,点O 运动的路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x -4=3(2x +2)18.(本题8分)如图,△ABC 和△EFD 分别在线段AE 的两侧,点C 、D 在线段AE 上,AC =DE ,AB ∥EF ,BC ∥DF ,求证:BC =FD19.(本题8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工平时成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1) 写出本次调查共抽取的职工数为__________(2) 若将得分转化为等级,规定:得分低于100分评为“D ”,100~130分评为“C ”,130~145分评为“B ”,145~160分评为“A ”,那么该年级1500名考生中,考试成绩评为“B ”的人员大约有多少名?20.(本题8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品,小红与小明去文化商店购买甲乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元(1) 求甲、乙两种笔记本的单价各是多少元?(2) 若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案21.(本题8分)如图,BC 为⊙O 的直径,AB 为⊙O 的弦,D 为弧BC 的中点,CE ⊥AD 于E ,AD 交BC 于点F ,tanB =21 (1) 求证:DE =2AE(2) 求sin ∠BFD 的值22.(本题10分)如图1,反比例函数x k y =的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线xk y =在第二、四象限分别相交于P 、Q 两点,与x 轴、y 轴分别相交于C 、D 两点 (1) 当b =-3时,求P 点坐标(2) 连接OQ ,存在实数b ,使得S △ODQ =S △OCD ,请求出b 的值(3) 如图2,当b =-3时,直线y =a (a >0)与直线PQ 交于点M ,与双曲线交于点N (不同于M ).若PM =PN ,则a 的值是____________(直接写出结果)23.(本题10分)在△ABC 中,AB =AC ,CD ⊥AB 于D ,E 为AC 上一点,EF ⊥BC 于F ,交CD 于G(1) 如图1,若∠BAC =120°,求证:CG =3EG(2) 如图2,点E 为AC 的中点.若BF =26,CG =5,求DG 的长(3) 如图3,若EG =2CF ,直接写出ABAD 的值24.(本题12分)已知抛物线y =21x 2+2mx -4m -2(m ≥0)与x 轴交于A 、B 两点,A 点在B 点的左边,与y 轴交于点C(1) 当AB =6时,求点C 的坐标(2) 抛物线上有两点M (-1,a )、N (4,b ),若△AMN 的面积为17.5,求m 的值(3) 在抛物线第一象限上有一点G ,连接AG 、GB 并延长分别交y 轴于F 、E .若∠AFO =∠EBO ,求证:点G 总在一条定直线上。
湖北省武汉市江岸区武汉市六中上智中学2023-2024学年九年级上学期月考数学试题
湖北省武汉市江岸区武汉市六中上智中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.35︒B.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57个,则这种植物每个支干长出的小分支的个数是(A.8个B.77.若α,β是方程232017--x x-B.A.20118.已知A(﹣3,y1),B(﹣二、填空题15.已知二次函数()()1y a x x m =+-(a 为非零常数,增大而增大,则下列命题:①当2x >时,y 随x 的增大而减小;②若图象经过点()0,1,则10a -<<;③若()12021,y -,()22021,y 是函数图象上的两点,则(4)若图象上两点11,4y ⎛⎫ ⎪⎝⎭,21,4n y ⎛⎫+ ⎪⎝⎭对一切正数其中正确的是结论.三、解答题17.解方程:22310x x +-=.18.如图,ABC 和ECD 都是等边三角形,求证:AD BE =.19.如图,某中学准备在校园里利用围墙的一段MN ,再砌三面墙,围成一个矩形花园(2)结合图像直接写出当0≤x ≤4时,21.如图是由小正方形组成的76⨯个顶点都是格点,D 也是格点,仅用无刻度的直尺在给定网格中完成画图,虚线表示.(1)先在边AB 上画点E ,使DE BC ∥,再在边AC 上画点F ,使DFA BFC ∠=∠(1)某次喷水浇灌时,测得x 与y 的几组数据如下:x0261012y0.882.162.802.88①根据上述数据,求满足的函数关系;②求喷水头喷出的水柱最大高度;(2)又一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y 与水平距离关系20.04y x bx =-+.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出同时满足这两个要求的常数b 的范围_________.23.【操作发现】(1)如图1,在ABC 和ADE V ,DAE BAC ∠=∠,AD AE =证:ABD ACE △△≌;【问题解决】(2)如图2,在ABC 和ADE V 中,DAE BAC ∠=∠,AD =90ADB ∠=︒,点E 在ABC 内,延长DE 交BC 于点F ,求证:点F 是【灵活应用】(3)如图3,已知ABC 中,30ABC ∠=︒,2AB =,BC =底边在ABC 外作等腰三角形ADC ,且120ADC ∠=︒,连接BD ,则BD ____________.(1)求二次函数的表达式;(2)如图1,直线21y mx m =-+与二次函数的图象交于A 、B 两点(点C 在直线若32ABC S =,求m 的值;(3)如图2,直线2y kx k =-与二次函数的图象交于D 、E 两点,过点D 的直线二次函数的图象于点F ,求证:直线EF 过定点.。
武汉六中上智中学2019-2020学年度12月考九年级数学试卷(word版)
武汉第六初级中学、上智中学2019- 2020学年度上学期九年级12月月考数学试题一选择题(10X3分=30分)1、将一元二次方程5x 2+1=6x 化为一般形式后,常数项为I,二次项系数和一次项系数( )A 、5,-6B 、5,6C 、5,1D 、5x 2, -6x 2、下列图案中是中心对称图形但不是轴对称图形的是( )3、下列事件中,属于必然事件的是( )A 、经过路口,恰好遇到红灯B 、 抛一枚硬币,正面朝上C 、打开电视,正在滑放动画片D 、四个人分成三组,这三组中有一组必有2人 4、如图,-位运动员推铅球,铅球行进高度y (m) 与水平距高x (m)之间的关系是y= - -rgx 号则此运动员把铅球推出多远( )A 、12mB 、10mC 、3mD 、4m5、己知⊙O 的半径为5.直线EF 经过⊙O 上一点P(点E, F 在点P 的两旁),下列条件能判定直线EF 与⊙相切的是( )A 、OP=5B 、OE=OFC 、O 到直线EF 上的一点距离是5D 、OP ⊥EF 6、 已知点A 、B. C 是直径为6cm 的⊙O 上的点,且AB=3cm, AC=23cm,则∠BAC 的度数为( )A 、15°B 、75°或15°C 、105°或15°D 、75°或105°7、一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球。
从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是(「 )A 、21 B 、32 C 、52 D 、107 8、 如图,正方形ABCD 的边长为8. 分别以正方形的三边为直直径在正方形内部作半圆,则阴影部分的面积之和是( )A 、32B 、2πC 、10π+2D 、8π+19、已知点A(ɑ+3,y 1)、p(-ɑ, y 2)均在抛物线y=mx 2-2mx+n 上, 者y 1<y 2≤n-m,则ɑ的取值范围是( )A 、 ɑ>-3B 、 ɑ>-23C 、 23-<ɑ<2. D 、 -3<ɑ<2 10、如图在短形ABCD 中,AB=3,AD=3,点P 是AD 边上的一个动点,连接BP ,作点A 关于直线BP 的对称点A 1,连接A 1C,设A 1C 的中点为Q,当点P 从点A 出发,沿边AD 运动到点D 时停止运动,点Q 的运动路径长为( )A 、π3B 、π332 C 、π33D 、π 二、填空题: (6X3分 =18分)11、点A(-2, 3)关于原点0对称的点B (b ,c ) 则b+c=12、在一次同学聚会时,大家一见面就相互握手,有人统计了一下,大家一共握了 45次手,参加这次聚会的同学共有x 人,根据题意列出方程(化为一般式) 13、王老师梅1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球试摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251 摸到黑球的频率nm0.230 0.231 0.300 0.260 0.254袋中白球的个数约为 。
武汉六中上智中学2017年九年级数学四调模拟试卷及参考答案
武汉六中上智中学2017年九年级数学四调模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.4的平方根是( ) A .2B .±2C .-2D .±42.若代数式21+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <-2B .x >-2C .x ≠-2D .x =-2 3.下列运算正确的是( ) A .a +2a =2a 2B .(-2ab 2)2=4a 2b 4C .a 6÷a 3=a 2D .(a -3)2=a 2-94.下列事件是必然事件的是( ) A .通常加热100℃时,水沸腾B .篮球队员在罚球线上投篮一次,未投中C .任意画一个三角形,其内角和为360°D .经过信号灯时,遇到红灯 5.下列计算结果等于x 2-9的是( ) A .(3-x )(3+x ) B .(x -3)2C .(x +3)(x -3)D .(x +3)2 6.已知点A (-2,3)关于x 轴对称的点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,-3)D .(-3,2) 7.如图是一个几何体的三视图,则这个几何体是( )A .正方体B .长方体C .三棱柱D .三棱锥8.如图是某中学九(1)班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是( ) A .20、10B .10、20C .16、15D .15、169.已知点B (1,31+)、点C (3,31-),在坐标轴上再找一点A ,使△ABC 是直角三角形,则这样的点A 有( )个 A .2个B .6个C .7个D .8个10.(2016秋·江岸区期中)如图,△ABC 内接于⊙O ,AB 是的直径,∠B =30°,CE 平分∠ACB 交于E ,交AB 于点D .连接AE ,则S △CDB ∶S △ADE 的值等于( ) A .3∶2B .3∶1C .2∶1D .2∶1二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:-3+6的结果为___________ 12.计算1116---x x 的结果为___________ 13.在一个不透明的布袋中有1个红色和2个黑色小球,从中随机摸出2个小球,其中恰好为一个红色,一个黑色的概率为___________14.如图,在平行四边形ABCD 中,BE ⊥AB 交对角线AC 于点E .若∠1=20°,则∠2的度数为___________15.若点A(m,y1)、点B(m-1,y2)是函数y=2|x|+3图象上的两点,当y1>y2时,m的范围是________________16.如图,在四边形ABCD中,对角线BD、AC相交于点E,且AE=CE,BC=AC=DC,则tan∠ABD·tan∠ADB=___________三、解答题(共8题,共72分)17.(本题8分)解方程:3(x-5)=7x-118.(本题8分)如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AD∥DE,AC∥DF,BF=CE,求证:AC=DF19.(本题8分)为积极响应市委政府“加快建设美丽江城”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1) 这次参与调查的居民人数为___________(2) 请将条形统计图补充完整(3) 请计算扇形统计图中“枫树”所在扇形的圆心角度数(4) 已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?20.(本题8分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座南靖厦门26 22 16若师生均购买二等座票,则共需1020元(1) 参加活动的教师有__________人,学生有__________人(2) 由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元① 求y 关于x 的函数关系式② 若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?21.(本题8分)如图,已知AB 为⊙O 直径,AC 是⊙O 的弦,∠BAC 的平分线AD 交⊙O 于D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,OE 交AD 于点F ,cos ∠BAC =53(1) 求证:DE 是⊙O 的切线 (2) 若AF =8,求DF 的长22.(本题10分)如图1,点A (8,1)、B (n ,8)都在反比例函数xmy (x >0)的图象上,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥y 轴于D (1) 求m 的值和直线AB 的函数关系式(2) 动点P 从O 点出发,以每秒2个单位长度的速度沿折线OD —DB 向B 点运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿折线OC 向C 点运动.当动点P 运动到D 时,点Q 也停止运动,设运动的时间为t 秒① 设△OPQ 的面积为S ,写出S 与t 的函数关系式② 如图2,当的P 在线段OD 上运动时,如果作△OPQ 关于直线PQ 的对称图形△O ′PQ ,是否存在某时刻t ,使得点O ′恰好落在反比例函数的图象上?若存在,求O ′的坐标和t 的值;若不存在,请说明理由23.(本题10分)如图,已知△ABC 中,D 、G 分别是边BC 、AC 上的点,连AD 、BC 相交于点E ,BE =BD .过点C 作AD 的平行线与BG 的延长线交于点F ,21=BD CD ,32=EA DE (1) 求BGFG的值 (2) 若BC =3FC ,求证:AB =BF (3) 若AB =AD ,直接写出BCCF=___________24.(本题12分)已知抛物线y =2x 2+bx +c 与x 轴的交点为A 、B ,顶点为D (1) 若点A 、点B 的坐标分别为A (-1,0)、B (3,0),求抛物线的解析式(2) 在(1)的条件下,在抛物线的对称轴上是否存在点P 使△BCP 为直角三角形?若存在,求出P 的坐标;若不存在,请说明理由(3) 若抛物线y =2x 2+bx +c 与直线y =x +h 交于E 、F 两点,点M 在EF 之间的抛物线上运动,MN ∥y 轴,交直线y =x +h 于点N ,问NFEN MN∙是否为定值,并说明理由武汉六中上智中学2017年九年级数学四调模拟试卷参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBACCBBCA二、填空题(共6小题,每小题3分,共18分) 11.3 12.15-x 13.3214.110°15.21>m16.3116.提示:∵CB =CA =CD∴A 、B 、D 三点共圆 ∴31=∙=∙=∙EF BE BE AE DF AB BF AD BF AB DF AD 三、解答题(共8题,共72分) 17.解:27-=x 18.解:略19.解:(1) 100;(2) 如图所示;(3) 36°;(4) 2万20.解:(1) 10、50(2) ① y =26x +22(10-x )+16×50=4x +1020 ② 4x +1020≤1032,解得x ≤321.证明:(1) 连接OD∵OA =OD ∴∠OAD =∠ODA ∵AD 平分∠BAE ∴∠BAD =∠EAD ∴∠EAD =∠ODA ∴AE ∥OD ∵DE ⊥AC ∴OD ⊥DE ∴DE 是⊙O 的切线 (2) 连接CB ∵AB 为⊙O 的直径 ∴∠ACB =90°∵cos ∠BAC =53=AB AC 设AC =3x ,AB =5x ,则OA =OB =OD =x 25 设OD 与BC 交于点G ∵AD 平分∠BAE ∴弧CD =弧BD ∴OD ⊥BC ,CG =BG ∴OG =x 23,DG =x x x =-2325 ∵∠GCE =∠CED =∠EDG =90°∴四边形CEDG 为矩形 ∴CE =DG =x ∵AE ∥OD ∴ODAEDF AF =即xx DF 2548=,DF =5 22.解:(1) m =8,y =-x +9(2) 当P 在OD 上运动时,S =21×t ×2t =t 2(0<t ≤4) 当P 在DB 上运动时,S =21×t ×8=4t (4<t ≤4.5) (3) ∵Rt △PEO ′∽Rt △O ′FQ ∴''''QO PO QF EO F O PE == 设QF =b ,O ′F =a则PE =OF =t +b ,O ′E =2t -a ∴22=-=+b a t a b t ,解得t a 54=,t b 53= ∴O ′(t t 5458,)当O ′在反比例函数的图象上 ∴85458=⨯tt ,解得25=t23.解:(1)51(2) ∵BE =BD ∴∠BDE =∠BED ∵DE =FC ∴∠BFC =∠BCF ∴BF =BC设BD =BE =2,CD =EF =1,则FC =3连接CE∵CF 2=EF ·BF ,∠CFE =∠BFC ∴△CFE ∽△BFC ∴∠CEF =∠BCF =∠BFC ∴CE =CF由(1)可知,GE =GF ∴CG ⊥EF ∵AG =CG∴BG 为线段AC 的垂直平分线 ∴BA =BC =BF(3) ∵△ABD 、△BDE 等腰三角形 ∴∠BDE =∠BED =∠ABD ∴△ABD ∽△BED设CD =a ,BD =2a ,ED =2b ,则FC =3b ,BE =BD =2a ,AE =3b ∵BD 2=DE ·DA ∴4a 2=2b ·5b ∴510=a b ∴51033==a b BC CF 24.解:(1) y =2x 2-4x -6(2) 当∠BCP =90°时,P (1,213-) 当∠CBP =90°时,P (1,1)当∠CPB =90°时,P (1,113--)或(1,311-) (3) 设E (x 1,y 1)、F (x 2,y 2)联立⎪⎩⎪⎨⎧--=+=6422x x y h x y ,整理得2x 2-5x -6-h =0 ∴x 1+x 2=25,x 1x 2=26+-h 设M (t ,2t 2-4t -6)、N (t ,t +h )∴MN =t +h -(2t 2-4t -6)=-2t 2+5t +h +6 过点E 作EG ⊥MN 于G ,过点F 作FH ⊥MN 于H ∴△EGN 、△FHN 均为等腰直角三角形∴EN ·NF =2EG ·2NH =2(t -x 1)(x 2-t )==-2t 2+5t +h +6 ∴1=∙NFEN MN为定值。
武汉市2016-2017学年度年四月调考数学参考答案及评分标准(word版)
2016-2017学年度武汉市部分学校九年级调研测试数学参考答案及评分标准武汉市教育科学研究院命制一、选择题(每小题3分,共30分)二、填空题(每小题3分,共18分) 11. 3 12. 1 13.5914. 40 15. 16. 三、解答题(每小题3分,共18分)17.解: 6x+1=3x+7 …………………………………………………2分 6x-3x=7-1 …………………………………………………4分 3x=6 …………………………………………………6分∴ x=2 …………………………………………………8分18.证明:在△ACB 与△DFE 中,AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩…………………………………………………3分 ∴△ACB ≌△DFE …………………………………………………5分 ∴ AB=DE∴ AD=BE …………………………………………………8分19.(1)200 …………………………………………………3分 (2)作出正确的条形给2分 …………………………………………………5分 (3)解:5000×78200=1950 …………………………………………………7分 答:估计该地区体育成绩为B 级的学生人数为1950人. ………………………8分20.解:(1)设每辆大货车一次可以运货xt,每辆小货车一次可以运货yt,依题意,……1分 得:2315.55635x y x y +=⎧⎨+=⎩………………………………………2分解这个方程组,得42.5x y =⎧⎨=⎩ ………………………………………3分答:每辆大货车一次可以运货4t,每辆小货车一次可以运货2.5t, …………………4分 (2)设租用大货车m 辆,依题意,得: ………………………………………5分 4m+2.5(10-m)≥30 ………………………………………6分解这个不等式,得m≥103…………………………………………7分∴m至少为4答:大货车至少租用4辆. …………………………………………8分21.(1)证明:连接OA交BC于点F∵四边形ABCD是平行四边形∴AD∥BC.∴∠DAF=∠CFO∵AD与O⊙相切∴∠OAD=90º…………………………………………2分∴∠OFC=90º∴OA平分弧BC即弧BA=弧CA …………………………………………3分(2)分别过AB两点作DE的垂线,垂足分别为N,M,连接AC.∵四边形ABCD是平行四边形∴∠D=∠ABC=∠BCE,∴弧EB=弧CA.∵弧BA=弧CA,∴弧EB=弧CA =弧BA,∴BE=AB=AC,弧EA=弧CB ,∴∠E=∠ACE.在Rt△BEM中,sin∠E=BMBE=1213,设BE=13m,则BM=12m,EM=5m.……………5分在Rt△ANC中,sin∠ANC=ANAC=sin∠E=1213,AC=BE=13m,则AN=12m,CN=5m.∵BM∥AN且BM=AN∴四边形BMNA是平行四边形∴MN=AB=13m,∴CM=18m∴tan∠BCE=122183BM mCM m==,∴tan∠D=23………………………………8分22. 解:(1)∵点A在直线32y x=上,且A点的横坐标为2,∴3232y=⨯=,即点A的坐标为A(2,3)∵A(2,3)在双曲线kyx=上∴k=6 ………………………………………3分F(2)①12或0 (12与0各1分) ………………………………………5分 ②∵PM 垂直于x 轴,点P 的坐标为(m ,3) ∴N 3(,)2m m ,M 6(,)m m∴PN=332m -,PM=63m-. ………………………………………6分 当m=2时,P 、M 、N 三点重合,PM=PN=0; …………………………………7分 当0<m <2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2mm ---=6362m m -+=2>0. ∴PM >PN ; ………………………………………9分 当m >2时,PM=6633m m -=-.PN=333322m m -=-, PM-PN=633(3)2m m---=6362m m -+-=2--<0. ∴PM <PN.综上,当m=2时,PM=PN ;当0<m <2时,PM >PN ;当m >2时,PM <PN. ………………………………………10分23. (1)证明:在正六边形ABCDEF 中, AB=BC ,∠ABC=∠BCD=120°,∵BN=CM ,∴△ABN ≌△BCM ………………………………………2分 ∴∠ANB=∠BCM ∵∠PBN=∠CBM ∴△BPN ∽△BCM∴BP BNBC BM= ∴BP BM BN BC ⋅=⋅ ………………………………………4分(2)延长BC ,ED 交于点H ,延长BN 交DH 于G ,取BG 得中点K ,连接KC. 在正六边形ABCDEF 中,∠BCD=∠CDE=120°,∴∠HCD=∠CDH=60°,∴∠H=60°,∴DC=DH=CH.∵DC=BC ,∴CH=BC.∵BK=GK ,∴2KC=GH ,KC ∥DH. ∴∠GDN=∠KCN.∵CN=DN ,∠DNG=∠CNK ,∴△DNG ≌△CNK. ∴KC=DG ,∴DG=13DH=13DE ∵MG ∥AB ,AM ∥BG ,∴四边形MABG 是平行四边形 ∴MG=AB=DE. ∴ME=DG=13DE. 即13ME DE =………………………………………8分 (3)5………………………………………10分 24. 解:(1)∵1x ,2x 是方程2280x x --=的两根,且1x <2x , ∴1x = -2,2x =4,∴A (-2,2)C (4,8) ………………………………………3分 (2)①若直线y 轴,则直线l 的解析式为x=-2; ………………………………4分 ②若直线l 不平行于y 轴,设其解析式为y=kx+b. ∵直线l 经过点A (-2,2),∴-2k+b=2,∴直线l 解析式为y=kx+2k+2.∵直线l 与抛物线只有一个公共点,解析式为y=kx+2k+2. ∴方程21(22)02x kx k -++=有两个相等的实数根. ∴2420k k ++=,k= -2.∴直线l 的解析式为y= -2x-2.综上,直线l 的解析式为x= -2或y= -2x-2. ………………………………………7分 (3)直线AC 的解析式为y= x+4. 设点B(t ,t+4),则D(t ,212t ),E(t ,-2t-2), ∴DB=2142t t +-=1(4)(2)2t t -+, EB=t+4-(-2t-2)=3t+6 ………………………9分过点C作直线CH ∥y 轴,过点B 作直线BH ∥x 轴, 两平行线相交于H(4,t+4) ∴BH=CH=4-t ∴∵EF ∥DC,∴BD BC BE BF =.∴1(4)6BC t BF =-. ∴BF = ………………………………………12分。
湖北省武汉市九年级数学四月调考模拟试卷(一)
湖北省武汉市九年级数学四月调考模拟试卷(一)一、选择题1.﹣2的倒数是()A.2B.﹣2C.0.5D.﹣0.52.任意画一个三角形,其内角和是360°.这个事件是()A.必然事件B.不可能事件C.随机事件D.不确定性事件3.下列常用手机APP的图标中,是中心对称图形的是()A.B.C.D.4.下列计算正确的是()A.a4+a2=a6B.a5•a2=a7C.(ab5)2=ab10D.a10÷a2=a55.如图所示的几何体是由6个大小相同的小正方体组成,它的俯视图是()A.B.C.D.6.若点A(a,﹣3),B(b,﹣2),C(c,1)在反比例函数y=﹣的图象上,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b7.根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是()A.B.C.D.8.如图1,四边形ABCD中,AB∥CD,∠ADC=90°,点P从点A出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为ts,△P AD 的面积为S,S关于t的函数图象如图2所示.当点P运动到BC的中点时,△P AD的面积为()A.7B.7.5C.8D.8.69.如图,P A,PB是⊙O的两条切线,A,B是切点,过半径OB的中点C作CD⊥OB交P A 于点D,若PD=3,AD=5,则⊙O的半径长为()A.2B.4C.3D.210.把反比例函数C1:y=8x﹣1的图象绕O点顺时针旋转45°后得到双曲线的图象.若直线y=kx与C2在第一,三象限交于A,B两点,且,则k的值是()A.0.6B.0.8C.±0.8D.±0.6二、填空题:11.计算的结果是.12.学校实行课后服务后,某班5个兴趣小组的人数分别为9,10,7,9,8,则这组数据的中位数是.13.计算﹣的结果是.14.如图是某厂家新开发的一款摩托车,它的大灯射出的光线AB、AC与地面MN的夹角分别为8°和10°,该大灯照亮地面的宽度BC的长为1.4米,则该大灯距地面的高度约为.(参考数据:sin8°≈,tan8°≈,sin10°≈,tan10°≈).15.已知抛物线y=ax2+bx+c(a,b,c是常数),a﹣b+c=0.下列四个结论:①若a>0,则c>0;②若4a+2b+c<0,则a+b<0;③若a=c,则抛物线的顶点坐标为(﹣1,0);④若c=﹣3a,b>0,点M(t,y1),N(t+1,y2)在抛物线上,当t<时,y2>y1.其中正确的是(填写序号).16.如图,正方形ABCD的对角线AC⊥AE,射线EB交射线DC于点F,连接AF,若AF =BF,AE=4,则BE的长为.三、解答题:(共8小题,共72分)17.(8分)解不等式组:,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.18.(8分)如图,DE∥BC,CD⊥AB于D,FG⊥AB于G,∠1=40°.(1)求∠2的度数;(2)若CD平分∠ACB,求∠A的度数.19.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A组(60≤x<70)、B组(70≤x<80)、C组(80≤x<90)、D组(90≤x≤100),并绘制出如图不完整的统计图.(1)被抽取的学生一共有人;并把条形统计图补完整;(2)所抽取学生成绩的中位数落在组内;扇形A的圆心角度数是;(3)若该学校有1300名学生,估计这次竞赛成绩在D组的学生有多少人?20.如图,在Rt△ABC中,∠C=90°,点O在AC边上,以OA为半径的半圆O交AB于点D,交AC于点E,在BC边上取一点F,连接FD,使得DF=BF.(1)求证:DF为半圆O的切线;(2)若AC=6,BC=4,CF=1,求半圆O的半径长.21.(8分)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使;(4)如图2,在AB上作点M,使∠ACM=∠ABC.22.(10分)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?23.(10分)已知△ABC是等边三角形,D是直线AB上的一点.(1)问题背景:如图1,点D,E分别在边AB,AC上,且BD=AE,CD与BE交于点F,求证:∠EFC=60°;(2)点G,H分别在边BC,AC上,GH与CD交于点O,且∠HOC=60°.①尝试运用:如图2,点D在边AB上,且,求的值;②类比拓展:如图3,点D在AB的延长线上,且,直接写出的值.24.(12分)如图,直线y=﹣2x+8分别交x轴,y轴于点B,C,抛物线y=﹣x2+bx+c过B,C两点,其顶点为M,对称轴MN与直线BC交于点N.(1)直接写出抛物线的解析式;(2)如图1,点P是线段BC上一动点,过点P作PD⊥x轴于点D,交抛物线于点Q,问:是否存在点P,使四边形MNPQ为菱形?并说明理由;(3)如图2,点G为y轴负半轴上的一动点,过点G作EF∥BC,直线EF与抛物线交于点E,F,与直线y=﹣4x交于点H,若,求点G的坐标.。
2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷(Word含答案)
2017~2018学年度武汉市部分学校九年级四月调研测试数学试卷考试时间:2018年4月17日14:30~16:30 一、选择题(共10小题,每小题3分,共30分)1.武汉地区春季日均最高气温15℃,最低7℃,日均最高气温比最低气温高( ) A .22℃ B .15℃ C .8℃D .7℃2.若代数式41+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-4 B .x =-4 C .x ≠0 D .x ≠-4 3.计算3x 2-2x 2的结果( )A .1B .x 2C .x 4D .5x 2 4.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( )投篮次数 10 50 100 150 200 250 300 500 投中次数 4 35 60 78 104 123 152 251 投中频率0.400.700.600.520.520.490.51 0.50A .0.7B .0.6C .0.5D .0.4 5.计算(a +2)(a -3)的结果是( ) A .a 2-6B .a 2+6C .a 2-a -6D .a 2+a -6 6.点A (-2,5)关于y 轴对称的点的坐标是( ) A .(2,5) B .(-2,-5)C .(2,-5)D .(5,-2)7.一个几何体的三视图如左图所示,则该几何体是( )8.某公司有10名工作人员,他们的月工资情况如下表(其中x 为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( ) A .2、4B .1.8、1.6C .2、1.6D .1.6、1.89.某居民小区的俯视图如图所示,点A 处为小区的大门,小方块处是建筑物, 圆饼处是花坛,扇形处是休闲广场,空白处是道路.从小区大门口向东或向南 走到休闲广场,走法共有( )A .7种B .8种C .9种D .10种10.在⊙O 中,AB 、CD 是互相垂直的两条直径,点E 在BC 弧上,CF ⊥AE 于点F .若点F 三等分弦AE ,⊙O 的直径为12,则CF 的长是( ) A .552 B .5102 C .556 D .5106 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:2)32(-+的结果是__________ 12.计算1112+--x x x的结果是__________ 13.两个人玩“石头、剪子、布”的游戏,随机出手一次,其中一人获胜的概率是__________14.一副三角板如图所示摆放,含45°角的三角板与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是__________°15.如图,在□ABCD 中,AB =8 cm ,BC =16 cm ,∠A =60°.点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 运动速度为2 cm /s ,点F 运动速度为1 cm /s ,它们同时出发,同时停止运动.经过__________s 时,EF =AB16.已知二次函数y =x 2+2hx +h ,当自变量x 的取值在-1≤x ≤1的范围中时,函数有最小值n ,则n 的最大值是__________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组⎩⎨⎧=-=+6342y x y x18.(本题8分)如图,B 、E 、C 、F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE19.(本题8分)学校食堂提供A 、B 、C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图订购各类套餐人数条形统计图 订购各类套餐人数所占百分比扇形统计图 (1) 一共抽查了_________人(2) 购买A 套餐人数对应的圆心角的度数是_________(3) 如果A 、B 、C 套餐售价分别为5元、12元、18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元20.(本题8分)下表中有两种移动电话计费方式月使用费/元主叫限定时间/min主叫超时费/(元/min )方式一 58 200 0.20 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费 (1) 如果每月主叫时间不超过400 min ,当主叫时间为多少min 时,两种方式收费相同? (2) 如果每月主叫时间超过400 min ,选择哪种方式更省钱?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,⊙O 分别与边AB 、AD 、DC 相切,切点分别为E 、G 、F ,其中E 为边AB 的中点 (1) 求证:BC 与⊙O 相切(2) 如图2,若AD =3,BC =6,求EF 的长22.(本题10分)如图,点A 、B 分别是x 轴、y 轴上的动点,A (p ,0)、B (0,q ).以AB 为边,画正方形ABCD(1) 在图1中的第一象限内,画出正方形ABCD .若p =4,q =3,直接写出点C 、D 的坐标 (2) 如图2,若点C 、D 在双曲线xky(x >0)上,且点D 的横坐标是3,求k 的值 (3) 如图3,若点C 、D 在直线y =2x +4上,直接写出正方形ABCD 的边长23.(本题10分)如图1,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于点P ,CD 2=DP ·DB(1) 求证:∠BAC =∠CBD(2) 如图2,E 、F 分别为边AD 、BC 上的点,PE ∥DC ,EF ⊥BC ① 求证:∠PFC =∠CPD② 若BP =2,PD =1,锐角∠BCD 的正弦值为33,直接写出BF 的长24.(本题12分)已知抛物线332++=bx ax y 与x 轴交于点A (1,0)、B (3,0)两点,与y 轴交于点C .P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D (1) 求抛物线的解析式(2) 如图1,连接AC 、DC .若∠ACD =60°,求点D 的横坐标(3) 如图2,过点D 作直线3-=y 的垂线,垂足为点E .若PD PE 2=,求点P 的坐标2 3也算对.注意:其中13题填。
武汉六中2016~2017学年度第二学期九年级数学中考模拟试卷
武汉六中2016~2017学年度第二学期九年级数学中考模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.设m =+13,则( ) A .1<m <2B .2<m <3C .3<m <4D .4<m <52.如果分式03=+x x,那么x 满足( ) A .x ≠-3B .x =0C .x ≠0D .x >-3 3.下列多项式相乘结果为a 2-3a -18的是( ) A .(a -2)(a +9)B .(a +2)(a -9)C .(a +3)(a -6)D .(a -3)(a +6)4.签筒中有5根纸签,上面分别标有数字1,2,3,4,5,从中随机抽取一根,下列事件属于随机事件的是( )A .抽到的纸签上标有的数字0B .抽到的纸签上标有的数字小于6C .抽到的纸签上标有的数字是1D .抽到的纸签上标有的数字大于6 5.下列计算正确的是( ) A .3a +2a 2=5a 3B .-3a -2a =-5aC .6a 2÷2a 2=3a 2D .3a ·2a =6a6.如图,在8×5的小正方形网格中,小正方形的边长为1,点O 在格点(网格线的交点)上,且点A 的坐标为(0,4).将线段OA 沿x 轴的正方向平移4个单位,得到对应线段BC .D 为线段BC 的中点,再将△ABD 绕点A 顺时针旋转90°得到对应△AEG ,则G 点坐标是( ) A .(0,0)B .(0,-2)C .(-2,0)D .(2,0)7.4个大小相同的正方体积木摆放成如图所示的几何体,其俯视图是( )8.近来,校园安全问题引起了社会的极大关注,为了让学生了解安全知识,增强安全意识,某校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下).根据图中提供的信息可知:若该校共有2000名学生,请你用此样本估计安全知识竞赛中A 级和B 级的学生共约有( )A .980人B .1700人C .85人D .1600人9.两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗.已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是( )A .37,38B .48,49C .51,52D .72,7310.如图,⊙O 的半径为2,A 、B 在⊙O 上且∠AOB =120°.若点Q 、P 、R 分别为OA 、OB 、AB 上任意一点,则PR +QR 的最小值为( ) A .1B .3C .2D .13-二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算-5-(-7)的结果为_________12.第九届中博会由湖北武汉举行,共吸引了20万人逛展,其中20万人用科学记数法表示为___ 13.任意抛掷一枚质地均匀的骰子一次,朝上的点数大于4的概率为_________ 14.如图,把一张正方形纸条ABCD 沿EF 折叠.若∠1=58°,则∠AEG =_________度15.如图,AC 是矩形ABCD 的对角线,AB =2,BC =32,点E 、F 分别是线段AB 、AD 上的点,连接CE 、CF .当∠BCE =∠ACF ,且CE =CF 时,AE +AF =_________ 16.关于x 的方程|x 2-x -2|=kx +4有且只有三个实数解,则k =_________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:x x 33123=--18.(本题8分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE ,求证:∠A =∠D19.(本题8分)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题: (1) 求图②中“科技类”所在扇形的圆心角α的度数(2) 该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人? (3) 该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数20.(本题8分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xmy =(m ≠0)的图象交于A (-3,1)、B (1,n )两点 (1) 求反比例函数和一次函数解析式 (2) 结合图象直接写出不等式0>--b kx xm的解集21.(本题8分)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,过点C 作⊙O 与边AB 相切于点E ,交BC 于点F ,CE 为⊙O 的直径 (1) 求证:OD ⊥CE(2) 若DF =1,DC =3,求AE 的长22.(本题10分)某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资50万元用于该产品的广告促销,已知该产品的本地销售量y 1(万台)与本地的广告费用x (万元)之间的函数关系满足y 1=3x (0≤x ≤50);该产品的外地销售量y 2(万台)与外地广告费用t (万元)之间的函数关系可用如图所示的抛物线和线段AB 来表示.其中点A 为抛物线的顶点 (1) 结合图象,写出y 2(万台)与外地广告费用t (万元)之间的函数关系式 (2) 求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式 (3) 如何安排广告费用才能使销售总量最大?23.(本题10分)如图,已知四边形ABCD 中,∠A =∠B =90°,AB =a ,AD =b ,BC =2b (a >b ),过D 作DE ⊥DC 交AB 于E ,连接EC (1) 求证:△EAD ∽△EDC(2) 当a 、b 满足什么数量关系时,△EDC 与△BCE 相似,证明你的结论 (3) 当a ∶b =_________时,BD 与CE 相交于点F ,且61CF EF24.(本题12分)如图①,直线l :y =mx +n (m <0,n >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线P 叫做l 的关联抛物线,而l 叫做P 的关联直线(1) 若l :y =-2x +2,则P 表示的函数解析式为_________________;若P :y =-x 2-3x +4,则l 表示的函数解析式为_________________ (2) 求P 的对称轴(用含m 、n 的代数式表示)(3) 如图②,若l :y =-2x +4,P 的对称轴与CD 相交于点E ,点F 在l 上,点Q 在P 的对称轴上.当以点C 、E 、Q 、F 为顶点的四边形是以CE 为一边的平行四边形时,求点Q 的坐标 (4) 如图③,若l :y =mx -4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM =10,直接写出l 、P 表示的函数解析式。
湖北省武汉市2017年中考数学模拟试卷附答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
2017-2018学年度武汉市九年级四月调考数学试卷(word版含答案)
10 .在O O 中,AB CD 是互相垂直的两条直径,点弦AE O O 的直径为12,则CF 的长是(2.5 52.106.5 52017〜2018学年度武汉市部分学校九年级四月调研测试数学试卷8 .某公司有10名工作人员,他们的月工资情况如下表(其中 X 为未知数).他们的月平均工资是2. 22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( )考试时间:2018年4月17日14:30〜16:30 一、选择题(共 10小题,每小题3分,共 武汉地区春季日均最高气温 15 C ,最低 B . 15CA . 22C30分)7C ,日均最高气温比最低气温高( C.8C)D. 7C2. 若代数式 A . x > —计算3X 2 1一 在实数范围内有意义,则实数X 44 B . X =— 4—2X 2的结果是( x 的取值范围是(.X 工一4) A . 1 B . X 2下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是(D. 5X 2投篮次数 10 50 100 150 200 250 300 500 投中次数4 35 60 78 104 123 152 251 投中频率0. 40 0. 70 0.600. 520. 52 0. 490. 510. 50A . 0. 7B. 0. 6C. 0. 5计算(a +2)( a — 3)的结果是( )A . a 2-6 B . a 2+ 6 2C . a — a — 点 A — 2, 5)关于y 轴对称的点的坐标是( )A . (2 , 5)B . (—2,- 5)C . (2 , — 5)D. (5 , - 2)(D)A . 2,4 9.某居民小区的俯视图如图所示,点 扇形处是休闲广场,空白处是道路. 走法共有( ) A . 7种 B . 8种C . 9种D . 10 种A 处为小区的大门,小方块处是建筑物,圆饼处是花坛,从小区大门口向东或向南走到休闲广场,D. 0. 45 .6 .一个几何体的三视图如左图所示,则该几何体是()(A)E 在弧BC 上, CF 丄AE 于点F .若点F 三等分B . 1. 8,1. 6C . 2,1. 6D 1. 6,1.8二、填空题(共 6个小题,每小题 3分,共18分) 11 •计算:(Q +J3)的结果是 ___________ .12 •计算J -的结果是 _____________________x 2 -1 x +113 •两个人玩“石头、剪子、布”的游戏,随机岀手一次,其中一人获胜的概率是 _______14. 一副三角板如图所示摆放,含45 °的三角板的斜边与含30 °的三角板的较长直角边重合.AEL CD 于点E ,则/ ABE 的度数是 ____________15 •如图,在 口ABCDK AB= 8 cm, BC= 16 cm / A = 60°.点E 从点D 岀发沿DA 边运动到点A 点F 从点B 岀发沿BC 边向点C 运动,点E 运动速度为2 cms ,点F 运动速度为1 cm / s ,它们同时岀发,同时停止运动.经过 _______________ s 时,EF = AB16 .已知二次函数 y = x 2- 2hx + h ,当自变量x 的取值在一1 < x < 1的范围中时,函数有最小值 n.则n 的最大值是______________________________ . 三、解答题(共 8小题,共 17.(本题8分)解方程组求证:AB// DE72分) dx +y =4 gx _y =618.(本题8分)如图, B, E ,C F 四点顺次在同一条直线上,AC= DF, BE= CF AB= DE19. (本题8分)学校食堂提供 A B, C 三种套餐,某日中餐有1000名学生购买套餐,随机抽查部分订购三种套餐的人数,得到如下统计图.订购各类套餐人数条形统计图(1) _________________ 一共抽查了 人;订购各类套餐人数所占百分比扇形统计图22.(本题10分)如图,点A, B分别是x轴,y轴上的动点,A( p, 0)、B(0 , q) •以AB为边,画正方形ABCD(1)在图1 1中的第-坐标;⑵如图2, 若点'⑶如图3, 若点'象限内,画岀正方形ABCD若p= 4, q= 3,直接写岀点C, D的kD在双曲线y二上(x> 0) 上,且点D的横坐标是3,求k的值;xD在直线y= 2x+ 4上,直接写岀正方形ABCD勺边长.(2) 购买A套餐人数对应的扇形的圆心角的度数是_____________ ;(3) 如果A, B, C套餐售价分别为5元,12元,18元,根据以上统计估计食堂当天中餐的总销售额大约是多少元.20. (本题8分)下表中有两种移动电话计费方式.月使用费/元主叫限定时间/ min主叫超时费/ (元/ min) 方式一582000. 20方式二884000. 25(1)如果每月主叫时间不超过400 min,当主叫时间为多少min时,两种方式收费相同?⑵如果每月主叫时间超过400 min,选择哪种方式更省钱?切点分别为E,G, F,其中E为边AB的中点.(1)求证:BC与O O相切;如图2,若AD= 3,BC= 6,求EF的长.21 .(本题8分)如图,在四边形ABCDK AD// BC 分别与边相切,图1图2C,C,如图2,过点D 作直线y -「3的垂线,垂足为点E,若PE = 2PD ,求点P 的坐标.d4J >x內 厂23.(本题10分)如图1,在四边形ABCD 中, AB// CD ,对角线AC BD 相交于点P ,CD = DP- DB⑴求证:/ BAC=Z CBD⑵如图2, E , F 分别为边AD, BC 上的点,PE// DC EF 丄BC①求证:/ PFC=Z CPD24.(本题12分)已知抛物线 y =ax 2 ・bx3. 3与x 轴交于点A (1 , 0) ,B (3 , 0)两点,与y轴交于点C. P 为抛物线的对称轴上的动点,且在x 轴的上方,直线AP 与抛物线交于另一点D.(1)求抛物线的解析式;⑵ 如图1,连接AC DC 若/ ACD= 60 °,求点D 的横坐标;囹1©专k李T时.fc*j寓*|箱取*•*值:k汉味创冷耐利缺血此盂卄十i ft 二-k+1©专呻小“时切护八0寸柬卡Hi:创(V- "心k. T““-U|, k»l2^8跖呻注纯砒碉专報孚冰超时呵一迭吟軀---,|z丄H R卜(73 1 - —”Y1 --- JOM Ic)厉§E©0c B D D1 」3L A6 X£.vl^^ 厶吒斛氐«=4<CitfpCf »X 「• Afzjcj/ 二-=_:、A" J F+尸二TSx - 6<i 仁M導Lfei%旳]4>腹:分|4対対血越帚:泸识山"上耐対符和令Q匸二V婁艮粗从巫q.解;旳。
湖北省武汉市中考数学四模试卷
湖北省武汉市中考数学四模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·县期中) 下列所画的数轴中,正确的是()A .B .C .D .2. (2分)如果不等式 ax < b 的解集是 x < ,那么 a 的取值范围是()A . a≥0B . a≤0C . a>0D . a<03. (2分) (2020七下·槐荫期末) 某种微粒的直径为0.000058米,那么该微粒的直径用科学记数法可以表示为()A . 0.58×10-6米B . 5.8×10-5米C . 58×10-6米D . 5.8×10-6米4. (2分) (2016八上·靖江期末) 若a>0,b<﹣2,则点(a,b+2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (2分)(2020·德州) 函数和在同一平面直角坐标系中的大致图象可能是()A .B .C .D .6. (2分)如图,将三角尺的直角顶点放在直尺的一边,∠1=30°,∠2=70°,则∠3等于()A . 20°B . 30°C . 40°D . 50°7. (2分) (2019七下·卧龙期末) 如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB 边上的点E处,AD是折痕,则△BDE的周长为()A . 6B . 8C . 12D . 148. (2分) (2020八下·木兰期末) 下列各图中,表示y是x的函数的是()A .B .C .D .二、填空题 (共8题;共9分)9. (1分) (2018九上·阜宁期末) 在△ABC中,(tanC-1)2 +∣ -2cosB∣=0,则∠A=________10. (1分) (2016七上·抚顺期中) 若﹣4xay+x2yb=﹣3x2y,则a+b=________.11. (2分)多项式x2+mx+5因式分解得(x+5)(x+n),则m=________,n=________.12. (1分)(2017·松江模拟) 已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是________.13. (1分)(2020·韶关期末) 如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是________。
武汉市九年级数学四月调考模拟试题及答案
武汉市九年级数学四月调考模拟试题及答案一、选择题(共10小题,每小题3分,共30分) 1.4的值为() A .2B .±2C .-2D .22.如果分式1x x没有意义,那么x 的取值范围是() A .x ≠0B .x =0C .x ≠1D .x =1 3.(a +3b )(a -3b )计算的结果是()A .a 2-6b 2B .a 2-9b 2C .a 2-6ab +9b 2D .a 2+6ab +9b 24.下列说法中,正确的是()A .“打开电视,正在播放湖北新闻节目”是必然事件B .某种彩票中奖概率为10%是指买十张一定有一张中奖C .“明天降雨的概率是50%表示明天有半天都在降雨”D .“掷一次骰子,向上一面的数字是2”是随机事件 5.下列运算正确的是() A .a ·a 3=a 3B .(ab )3=a 3bC .(a 3)2=a 6D .a 8÷a 4=a 26.如图,将△ABE 向右平移2 cm 得到△DCF .如果△ABE 的周长是16 cm ,那么四边形ABFD的周长是() A .16 cmB .18 cmC .20 cmD .21 cm7.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的表面积是() A .2πB .6πC .7πD .8π8.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是() A .3B .3.2C .4D .4.59.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第17次碰到矩形的边时,点P 的坐标为() A .(3,0)B .(0,3)C .(1,4)D .(8,3)10.在平面直角坐标系中,点O 为坐标原点,A (3,0)、B (33,0)、C (0,5),点D 在直角坐标系中,且∠ADB =60°,则线段CD 的长的最大值为() A .272-B .272+C .234-D .234+二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:-9+5=___________ 12.计算:1313+-+x xx =___________ 13.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为___________14.如图,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB =40°,在射线OB 上有一点P ,从点P 点射出的一束光线经OA 上的Q 点反射后,反射光线QR 恰好与OB 平行,则∠QPB 的度数是___________15.C 为线段AB 上一点,在线段AB 的同侧分别作等边△ACD 、△BCE ,连接AE 、BD 相交于F ,连接CF .若S △DEF =312,则CF =___________ 16.在平面直角坐标系中,直线y =x 和直线133+-=x y 与x 轴分别交于A 、B ,与y 轴分别交于O 、C ,点E 沿着某条路径运动,以点E 为旋转中心,将点C (0,1)逆时针方向旋转90°,刚好落在线段AB 上,则点E 的运动路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程;3x -2(x -1)=418.(本题8分)如图,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =BD19.(本题8分)某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:(1) 表中a =__________,b =__________,c =__________ (2) 请补全频数分布直方图(3) 该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数20.(本题8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元 (1) 求每吨水的政府补贴优惠价和市场价分别是多少?(2) 设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式 (3) 小明家5月份用水26吨,则他家应交水费多少元?21.(本题8分)如图,⊙O 为Rt △ACB 的外接圆,点P 是AB 延长线上的一点,PC 切⊙O 于点C ,连AC (1) 若AC =CP ,求APAC的值 (2) 若sin ∠APC =257,求tan ∠ABC22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky交于A 、B 两点,点A 在点B的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 直接写出m 、n 、k 的正负性(2) 若m =1,n =3,k =4,求直线EF 的解析式 (3) 写出AC 、BD 的数量关系,并证明23.(本题10分)△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,连接BE (1) 如图1,已知AB =6,AC =5,BC =4.若∠DBE =∠EBC ,求DE 的长 (2) 如图2,F 为BC 的中点,连接DF 交BE 于G ,连接AG 交BC 于H ,求BHHF的值 (3) 如图3,连接DC .若BC =6,AB=9, 且△CDE ∽△CAD ,直接写出AD 的长24.(本题12分)如图,已知抛物线y =x 2-(2m +1)x +m 2+m -2与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C ,P (s ,t )为抛物线上A 、B 之间一点(不包括A 、B ),连接AP 、BP 分别交y 轴于点E 、D(1) 若m =-1,求A 、B 两点的坐标 (2) 若s =1,求ED 的长度 (3) 若∠BAP =∠ODP ,求t 的值武汉市九年级数学四月调考模拟试题及答案一、选择题(共10小题,每小题3分,共30分)10.提示:二、填空题(共6小题,每小题3分,共18分) 11.-412.133+-x x13.43 14.80° 15.34 16.2615.提示:∵S △DEF =21DF ·EF ·sin 60°=312 ∴DF ·EF =48∵∠DCF +∠ECF =60°,∠FEC +∠ECF =60° ∴∠DCF =∠CEF ∴∠DCF =∠CEF ∴EFCFCF DF =∴CF 2=DF ·EF ,CF =3416.提示:作图可知,E 点的运动轨迹即为线段E 1E 2△ABC ∽△E 1E 2C三、解答题(共8题,共72分) 17.解:x =2 18.解:略19.解:(1) a =0.05,b =14,c =0.35;(2) 如图;(3) 135020.解:(1) 23.5(2) ⎩⎨⎧>-≤≤=)14(215.3)140(2x x x xy(3) 7021.证明:(1) ∵AC =CP∴∠A =∠P 连接OC∵PC 切⊙O 于点C ∴∠OCP =90° ∵∠ACB =90° ∴∠ACO =∠PCB 在△ACO 和△PCB 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠PC AC PCB ACO P A ∴△ACO ≌△PCB (AAS ) ∴OC =BC =OB ∴△OBC 为等边三角形 ∴∠OBC =60°,∠A =∠P =30° ∴33=AP AC (2) 连接OC ∵PC 切于点C ∴∠OCP =90° ∴∠PCB +∠OCB =90° ∵∠ACB =90° ∴∠CAB +∠CBA =90° ∵OB =OC ∴∠OBC =∠OCB ∴∠PCB =∠P AC ∴△PCB ∽△P AC∴PCPBAP PC BC AC == ∵sin ∠APC =257 ∴设OC =7,OP =25,则OB =OA =7,BP =18 ∴PCPC BC AC 3218== ∴PC =12 ∴tan ∠ABC =34=BC AC22.解:(1) m >0、n >0、k >0(2) 联立⎪⎩⎪⎨⎧=+=x y x y 43,解得x 1=1,x 2=-4∴A (-4,-1)、B (1,4) ∴E (-4,0)、F (0,4) ∴直线EF 的解析式为y =x +4(3) 方法一:联立⎪⎩⎪⎨⎧=+=x ky nmx y ,整理得mx 2+nx -k =0 ∴x A +x B =mn -令y =0,则mn x -= ∴x A +x B =x C∴x B +(-x C )=-x A ∴BCDx BCD x AC ∠cos -∠cos -x B =∴AD =BC (作垂线来理解) ∴AC =BD 方法二: 23.解:(1)1130 (2) ∵DE ∥BC∴DM HFME BH =∴BHHCDM ME HF BH == ∴BH 2=HF ·HC设BF =CF =1,BH =m ,则HF =1-m ,HC =2-m ∴m 2=(1-m )(1-2m ),解得m =32 ∴211=-=m m BH HF (3) 524.解:(1) A (-2,0)、B (1,0)(2) ∵y =[x -(m +2)][x -(m -1)] ∴A (m -1,0)、B (m +2,0) ∵s =1∴P (1,m 2-m -2)∴直线AP 的解析式为y =-(m +1)x +m 2-1 直线BP 的解析式为y =-(m -2)x +m 2-4 ∴DE =m 2-1-(m 2-4)=3 (3) ∵∠BAP =∠ODP ∴∠DPE =∠AOE =90° 过点P 作PQ ⊥x 轴于Q由射影定理得,t 2=(s -x A )(x B -s ) ∴s (x A +x B )-s 2-x A x B =t 2∴s ·(2m +1)-s 2-(m -1)(m +2)=t 2 当x =s 时,t =s 2-(2m +1)s +(m -1)(m +2) ∴t 2=-t ,解得t =-12017年超级考霸九年级四月调考模拟试题(二)一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为() A .2B .±2C .-2D .42.要使分式15x 有意义,则x 的取值范围是() A .x ≠1 B .x >1C .x <1D .x ≠-1 3.计算(a -2)2的结果是()A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是() A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是() A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为()A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有()条A .2B .4C .6D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为() A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________ 13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题:(1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案? (3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y =x 2-4x -5与x 轴分别交于A 、B (A 在B 的左边),与y 轴交于点C ,直线AP 与y 轴正半轴交于点M ,交抛物线于点P ,直线AQ 与y 轴负半轴交于点N ,交抛物线于点Q ,且OM =ON ,过P 、Q 作直线l (1) 探究与猜想:① 取点M (0,1),直接写出直线l 的解析式 取点M (0,2),直接写出直线l 的解析式 ② 猜想:我们猜想直线l 的解析式y =kx +b 中,k 总为定值,定值k 为__________,请取M 的纵坐标为n ,验证你的猜想(2) 如图2,连接BP 、BQ .若△ABP 的面积等于△ABQ 的面积的3倍,试求出直线l 的解析式2017年超级考霸九年级四月调考模拟试题(二)参考答案一、选择题(共10小题,每小题3分,共30分)10.提示:当CG ⊥AF 时,CD +DE 有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.1 13.53 14.25°15.216.π338 15.提示:方法一:过点A 作AE ⊥BC 于E ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC方法二:过点C 作CE ⊥AB 于E,设CE=DE=2,则AC=2,AD=3-1 , BE=2-3.BC 2=8-34,AD 2=4-23,∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元 ⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x (2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27 ∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元) 21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠F AO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF ==即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5 ∴k -b =53(m -n )=3 23.解:(1) 23(2) ∵I 为△ABC 的内心 ∴∠MAI=∠NAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA ) ∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β ∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴△BMI ∽△INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANANAM AM34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ 的解析式为y =6x -21。
武汉市2017年九年级四月调考数学试
武汉市2017年九年级四月调考数学试武汉市2017年九年级四月调考数学试卷以及答案一、选择题(共10小题,每小题3分,共30分) 1.计算的结果为() A.2B.-4C.4D.82.若代数式A.x=-2 A.x·x7 则()1在实数范围内有意义,则实数x的取值范围是() x2B.x>-2 B.x16-x2C.x≠0 C.x16÷x2D.x≠-2 D.(x4)43.下列计算的结果为x8的是()4.事件A:射击运动员射击一次,刚好射中靶心;事件B:连续掷两次硬币,都是正面朝上,A.事件A和事件B都是必然事件B.事件A是随机事件,事件B是不可能事件 C.事件A是必然事件,事件B是随机事件 D.事件A和事件B都是随机事件5.运用乘法公式计算(a+3)(a-3)的结果是() A.a2-6a+9 A.(1,4)B.a2+9C.a2-9D.a2-6a-9 D.(4,-1)6.点A(-1,4)关于x轴对称的点的坐标为()B.(-1,-4)C.(1,-4)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的左视图为()8A.1.70、1.75根据表中信息可以判断这些运动员成绩的中位数、众数分别为()B.1.70、1.80C.1.65、1.75D.1.65、1.809.在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m-n=() A.0B.0.5C.-0.5D.0.7510.已知关于x的二次函数y=(x-h)2+3,当1≤x≤3时,函数有最小值2h,则h的值为() A.3 2B.3或2 2C.3或6 2D.2、3或6 2二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:8+(-5)的结果为___________ 12.计算x1的结果为___________x1x113.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球。
2023-2024学年湖北省武汉六中上智中学九年级(上)月考数学试卷+答案解析
2023-2024学年湖北省武汉六中上智中学九年级(上)月考数学试卷(1月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.彩民李大叔购买1张彩票中奖,这个事件是( )A. 随机事件B. 确定性事件C. 不可能事件D. 必然事件2.下列图案中,是中心对称图形的是( )A. B. C. D.3.将进行配方变形,下列正确的是( )A. B. C. D.4.已知的半径等于3,圆心O到直线l的距离为5,那么直线l与的位置关系是( )A. 相交B. 相切C. 相离D. 无法确定5.如图,点A、B在上,点C在弧AB上,若,,则( )A.B.C.D.6.在平面直角坐标系中,将抛物线向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是( )A. B. C. D.7.已知二次函数为常数,且的图象上有四点,,,,则,,的大小关系是( )A. B. C. D.8.如果m、n是一元二次方程的两个实数根,则多项式的值是( )A. B. 4 C. 5 D. 79.如图,O为正方形ABCD的边AB上一点,以O为圆心、OB为半径作,交AD于点E,过点E作的切线EF交CD于点E,将沿EF翻折,点D的对应点恰好落在上,则的值为( )A.B.C.D.10.如图,四边形ABCD中,,,,则四边形ABCD的面积最小值为( )A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.点和点关于原点对称,则______.12.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______精确到13.为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为______.14.用一个半径为4的半圆形纸片制作一个圆锥的侧面,那么这个圆锥底面圆的半径是______.15.抛物线是常数的对称轴为直线,经过,两点,其中下列四个结论:①;②一元二次方程的一个根在和之间:③点,在抛物线上,当实数时,;④一元二次方程,当时,方程有两个不相等的实数根,其中正确的结论是______填写序号16.已知扇形AOB中,,,E是上一点,F是半径OA上一点,将扇形AOB沿EF折叠,使点A落在半径OB上点C处.如果E是中点如图,那么折痕EF的长为______.三、解答题:本题共8小题,共72分。
今天跟大家分享一套武汉市九年级四调数学试...
今天跟大家分享一套武汉市九年级四调数学试...
今天跟大家分享一套武汉市九年级四调数学试卷及详细解析。
武汉市四调也是中考前的一次全市统考,模拟考试。
这次四调主要是指导九年级的学生进行中考报名。
这套试卷中的第23题,今年是把正方形和相似三角形进行了结合,还与最短路径问题进行综合考查,此题难度不大,但孩子们不会从题目的条件和问题特点分析出解题方法。
也就是辅助线不会生成,我录制的相似三角形专题突破专栏主要就是帮助孩子们解决此类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉六中上智中学2017年九年级数学四调模拟试卷
一、选择题(共10小题,每小题3分,共30分) 1.4的平方根是( ) A .2
B .±2
C .-2
D .±4
2.若代数式2
1
+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <-2
B .x >-2
C .x ≠-2
D .x =-2 3.下列运算正确的是( ) A .a +2a =2a 2
B .(-2ab 2)2=4a 2b 4
C .a 6÷a 3=a 2
D .(a -3)2=a 2-9
4.下列事件是必然事件的是( ) A .通常加热100℃时,水沸腾
B .篮球队员在罚球线上投篮一次,未投中
C .任意画一个三角形,其内角和为360°
D .经过信号灯时,遇到红灯 5.下列计算结果等于x 2-9的是( ) A .(3-x )(3+x ) B .(x -3)2
C .(x +3)(x -3)
D .(x +3)2 6.已知点A (-2,3)关于x 轴对称的点的坐标是( )
A .(2,-3)
B .(3,-2)
C .(-2,-3)
D .(-3,2) 7.如图是一个几何体的三视图,则这个几何体是( )
A .正方体
B .长方体
C .三棱柱
D .三棱锥
8.如图是某中学九(1)班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是( ) A .20、10
B .10、20
C .16、15
D .15、16
9.已知点B (1,31+)、点C (3,31-),在坐标轴上再找一点A ,使△ABC 是直角三角形,则这样的点A 有( )个 A .2个
B .6个
C .7个
D .8个
10.(2016秋·江岸区期中)如图,△ABC 内接于⊙O ,AB 是的直径,∠B =30°,CE 平分∠ACB 交于E ,交AB 于点D .连接AE ,则S △CDB ∶S △ADE 的值等于( ) A .3∶2
B .3∶1
C .2∶1
D .2∶1
二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:-3+6的结果为___________ 12.计算
1
1
16--
-x x 的结果为___________ 13.在一个不透明的布袋中有1个红色和2个黑色小球,从中随机摸出2个小球,其中恰好为一个红色,一个黑色的概率为___________
14.如图,在平行四边形ABCD 中,BE ⊥AB 交对角线AC 于点E .若∠1=20°,则∠2的度数
为___________
15.若点A(m,y1)、点B(m-1,y2)是函数y=2|x|+3图象上的两点,当y1>y2时,m的范围是________________
16.如图,在四边形ABCD中,对角线BD、AC相交于点E,且AE=CE,BC=AC=DC,则tan
∠ABD·tan∠ADB=___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:3(x-5)=7x-1
18.(本题8分)如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AD∥DE,AC∥DF,BF=CE,求证:AC=DF
19.(本题8分)为积极响应市委政府“加快建设美丽江城”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:
请根据所给信息解答以下问题:
(1) 这次参与调查的居民人数为___________
(2) 请将条形统计图补充完整
(3) 请计算扇形统计图中“枫树”所在扇形的圆心角度数
(4) 已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?
20.(本题8分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买)
运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座
南靖厦门26 22 16
若师生均购买二等座票,则共需1020元
(1) 参加活动的教师有__________人,学生有__________人
(2) 由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元
① 求y 关于x 的函数关系式
② 若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?
21.(本题8分)如图,已知AB 为⊙O 直径,AC 是⊙O 的弦,∠BAC 的平分线AD 交⊙O 于D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,OE 交AD 于点F ,cos ∠BAC =5
3
(1) 求证:DE 是⊙O 的切线 (2) 若AF =8,求DF 的长
22.(本题10分)如图1,点A (8,1)、B (n ,8)都在反比例函数x
m
y (x >0)的图象上,过点A 作AC ⊥x 轴于C ,过点B 作BD ⊥y 轴于D (1) 求m 的值和直线AB 的函数关系式
(2) 动点P 从O 点出发,以每秒2个单位长度的速度沿折线OD —DB 向B 点运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿折线OC 向C 点运动.当动点P 运动到D 时,点Q 也停止运动,设运动的时间为t 秒
① 设△OPQ 的面积为S ,写出S 与t 的函数关系式
② 如图2,当的P 在线段OD 上运动时,如果作△OPQ 关于直线PQ 的对称图形△O ′PQ ,是否存在某时刻t ,使得点O ′恰好落在反比例函数的图象上?若存在,求O ′的坐标和t 的值;若不存在,请说明理由
23.(本题10分)如图,已知△ABC 中,D 、G 分别是边BC 、AC 上的点,连AD 、BC 相交于点E ,BE =BD .过点C 作AD 的平行线与BG 的延长线交于点F ,21=BD CD ,3
2
=EA DE (1) 求
BG
FG
的值 (2) 若BC =3FC ,求证:AB =BF (3) 若AB =AD ,直接写出
BC
CF
=___________
24.(本题12分)已知抛物线y =2x 2+bx +c 与x 轴的交点为A 、B ,顶点为D (1) 若点A 、点B 的坐标分别为A (-1,0)、B (3,0),求抛物线的解析式
(2) 在(1)的条件下,在抛物线的对称轴上是否存在点P 使△BCP 为直角三角形?若存在,求出P 的坐标;若不存在,请说明理由
(3) 若抛物线y =2x 2+bx +c 与直线y =x +h 交于E 、F 两点,点M 在EF 之间的抛物线上运动,MN ∥y 轴,交直线y =x +h 于点N ,问
NF
EN MN
∙是否为定值,并说明理由。