2019年全国研究生考试数学(二)真题
2019考研数学二答案解析
= lim +
x →0
所以 f (0) 不存在,因此
2x 2 x (1 + ln x), x 0, f ( x) = x x 0. ( x + 1)e ,
1 ;另外 f ( x) 还有一个不可导点 x2 = 0 ; e 1 1 又 (−, −1) 为单调递减区间 , ( −1, 0) 为单调递增区间, (0, ) 为单调递减区间, ( , +) 为单 e e
2
= e (
1 2 x
dx + C ) = e ( x + C ) ;
x2 2
又由 y (0) = e 得 C = 0 ,最终有
y ( x) = xe .
(2)所求体积
x2 2
x2 2
V = π( xe ) 2 dx = π xe x dx
2
2
2
1
1
π 2 π = e x = (e 4 − e) . 2 1 2
18、已知平面区域 D 满足 x
2
y, ( x 2 + y 2 )3 y 4 ,求
x+ y x2 + y 2
D
dxdy .
解:由 x
2
y 可知区域 D 关于 y 轴对称,在极坐标系中,
2 3
π 3π ;将 x = r cos , y = r sin 4 4
代入 ( x + y )
y 4 得 r sin 2 ;
解:
( x − 1) ( x
3x + 6 2 3 2x +1 dx = [− + + 2 ]dx 2 2 2 + x + 1) x − 1 ( x − 1) x + x +1
2019考研数学二考试真题及答案详解(完整版)
f (a ) g (a )
lim
f' (x)
g
' (
x)
xa 2(x a)
f (a) g(a)
lim f (x) g(x) = f (a) g(a) f ( a) g( a)
xa
2
2
f(x)与 g(x)相切于点 a.且曲率相等.选择(B)
f
+ y × f + 2y 2 f x
= - 2 y3 f + yf + 2 y3 f
x
x
=
yf
ççç
y2 x
÷÷÷÷
12. 设函数 y lncosx(0≤x≤ )的弧长为
.
6
解析:
y ln cos x, 0 x 6
l
6 0
1
sin x cos x
2019 考研数学二考试真题及答案详解 来源:文都教育
一、选择题 1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项是符合题目要求 的.
1.当 x→0 时, x tan x与x k 同阶,求 k( )
A.1
B.2
C.3
D.4
解析:
x - tan x - x3 若要 x - tan x 与 xb 同阶无穷小, \ k = 3 3
A. y12 y22 y32
B. y12 y22 y32
C. y12 y22 y32
D. y12 y22 y32
解析: 由 A2 + A = 2E 得 λ2 + λ=2 , λ 为 A 的特征值, l=-2 或 1, 又 A λ1λ2 λ3=4 ,故 λ1=λ2=-2,λ3=1 ,
2019全国硕士研究生考研数学二真题及答案解析
一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当→x 0时,若−x x tan 与x k是同阶无穷小,则=k A. 1. B. 2.C. 3. D.4.【答案】C【解析】−−x x x 3tan ~3,所以选C.2、设函数=+−y x x x x 22sin 2cos ()π3π的拐点 A. 22(,).ππB.(0,2).C.−,2).π( D. −22(,).π3π3【答案】C.【解析】令=−=''y x x sin 0,可得=x π,因此拐点坐标为(,)−2π. 3、下列反常积分发散的是A. ⎰−+∞x xx e d 0B. ⎰−+∞x xx e d 02C.⎰++∞x x x1d arctan 02D.⎰++∞x x x 1d 02【答案】D 【解析】⎰+=+=+∞+∞+∞x x x x 12d ln(1)1022,其他的都收敛,选D. 4、已知微分方程x ce =by +y ¢a +y ¢¢的通解为x e +x -e )x 2C +1C (=y ,则a 、b 、c 依次为A 、1,0,1B 、 1,0,2C 、2,1,3D 、2,1,4【答案】 D.【解析】由通解形式知,==−λλ112,故特征方程为()+++λλλ1=21=022,所以==a b 2,1,又由于=y x e 是+='''y y y ce x +2的特解,代入得=c 4.5、已知积分区域=+D x y x y2{(,)|}π,⎰⎰=I x y d 1,2019全国硕士研究生考研数学二真题及答案解析(官方)2d DI x y =⎰⎰,3(1d DI x y =−⎰⎰,试比较123,,I I I 的大小A. 321I I I <<B. 123I I I <<C. 213I I I << D. 231I I I <<【答案】C【解析】在区域D上2220,4x y π≤+≤∴≤,进而213.I I I <<6、已知(),()f x g x 的二阶导数在x a =处连续,则2()g()lim0()x af x x x a →−=−是曲线(),()y f x y g x ==在x a =处相切及曲率相等的A.充分非必要条件.B.充分必要条件.C.必要非充分条件.D.既非充分又非必要条件.【答案】A【解析】充分性:利用洛必达法则,有2()g()()g ()()g ()limlim lim 0.()2()2x ax a x a f x x f x x f x x x a x a →→→''''''−−−===−−从而有()(),()(),()()f a g a f a g a f a g a ''''''===,即相切,曲率也相等. 反之不成立,这是因为曲率322(1)y K y ''='+,其分子部分带有绝对值,因此()()f a g a ''''=或()()f a g a ''''=−;选A.7、设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组Ax =0的基础解系中只有2个向量,则*A 的秩是() A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有2个向量,则()2r A =,()3r A <,()0r A *=.8、设A 是3阶实对称矩阵,E 是3阶单位矩阵. 若22+=A A E ,且4=A ,则二次型T x Ax 规范形为A. 222123.y y y ++ B. 222123.y y y +−C. 222123.y y y −− D. 222123.y y y −−−【答案】C【解答】由22+=A A E ,可知矩阵的特征值满足方程220λλ+−=,解得,1λ=或2λ=−. 再由4=A ,可知1231,2λλλ===−,所以规范形为222123.y y y −−故答案选C.二、填空题:9~14小题,每小题4分,共24分. 9. 2lim(2)x xx x →+=___________.【解析】022lim ln(2)lim(2)ex x x x xxx x →+→+=其中000221lim ln(2)2lim 2lim(12ln 2)2(1ln 2)x xx x x x x x x x→→→+−+==+=+所以222ln 22lim(2)e4x xx x e +→+==10.曲线sin 1cos x t t y t=−⎧⎨=−⎩在32t π=对应点处切线在y 轴上的截距___________.【解析】d sin d 1cos y tx t=−当32t π=时,3d 1,1,12d yx y xπ=+==−所以在32t π=对应点处切线方程为322y x π=−++所以切线在y 轴上的截距为322π+11.设函数()f u 可导,2()y z yf x=,则2z zx y x y ∂∂+=∂∂___________.【解析】223222()()()z y y y y yf f x x x x x∂''=−=−∂2222222()()()()()z y y y y y y f yf f f y x x x x x x ∂''=+=+∂所以22()z z y x y yf x y x∂∂+=∂∂12.设函数ln cos (0)6y x xπ=的弧长为___________.【解析】弧长61d cos s x x x xπ===⎰6011ln |tan |ln 3cos 2x x π=+==13.已知函数21sin ()d xt f x xt t=⎰,则10()d f x x =⎰___________.【解析】设21sin ()d xt F x t t=⎰,则1100()d ()d f x x xF x x=⎰⎰112212000111()d [()]d ()222F x x x F x x F x ==−⎰⎰211220011sin ()d d 22x x F x x x xx '=−=−⎰⎰122100111sin d cos (cos11)244x x x x =−==−⎰14.已知矩阵1100211132210034−⎛⎫ ⎪−− ⎪= ⎪−− ⎪⎝⎭A ,ij A 表示||A 中(,)i j 元的代数余子式,则1112A A −=___________.【解析】11121100100021112111||3221312100340034A A −−−−−−−===−−−A 1111111210104034034−−−−=−==−三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知2,0,()e 1,0,xx x x f x x x ⎧>⎪=⎨+⎪⎩求()f x ',并求()f x 的极值.解:0x >时,2ln 2ln (0)(e)e (2ln 2)x xx x f x ''==+;0x <时,()(1)e x f x x '=+;又2ln 00()(0)e 1(0)lim lim0x x x x f x f f x x+++→→−−'==−002ln lim lim 2ln x x x xx x++→→===−∞, 所以(0)f '不存在,因此22(1ln ),0,()(1)e ,0.xxx x x f x x x ⎧+>⎪'=⎨+<⎪⎩令()0f x '=,得驻点1311,ex x =−=;另外()f x 还有一个不可导点20x =; 又(,1)−∞−为单调递减区间,(1,0)−为单调递增区间,1(0,)e 为单调递减区间,1(,)e+∞为单调递增区间;因此有极小值1(1)1e f −=−和极小值2e 1()e ef −=,极大值(0)1f =.16、(本题满分10分) 求不定积分2236d .(1)(1)x x x x x +−++⎰解:2222362321d []d (1)(1)1(1)1x x x xx x x x x x x ++=−++−++−−++⎰⎰ 232ln 1ln(1)1x x x C x =−−−++++−17、(本题满分10分)()y y x =是微分方程22e x y xy '−=满足(1)y =.(1)求()y x ;(2)设平面区域{(,}|12,0()}D x y x y y x =,求D 绕x 轴旋转一周所得旋转体的体积.解(1)2d d 2()e [e e d ]x x xx xy x x C −⎰⎰=+⎰2222e ()e )x x x C C =+=+;又由(0)y =得0C =,最终有22()e x y x =.(2)所求体积22222211πe )d πe d x x V x x x==⎰⎰2241ππe (e e)22x ==−.18、已知平面区域D 满足2234,()xy x y y +,求d x y ⎰⎰.解:由xy 可知区域D 关于y 轴对称,在极坐标系中,π3π44θ;将cos ,sin x r y r θθ==代入2234()x y y +得2sin r θ;由奇偶对称性,有2πsin 2π04sin d d 2d d r x y x y r r r==⎰⎰⎰⎰⎰⎰θθθππ52222ππ44sin d (1cos )dcos 120==−−=⎰⎰θθθθ19、设n 为正整数,记n S 为曲线e sin (0π)xy x x n −=与x 轴所围图形的面积,求n S ,并求lim n n S →∞.解:设在区间[π,(1)π]k k +(0,1,2,,1)k n =−L 上所围的面积记为k u ,则(1)π(1)πππe |sin |d (1)e sin d k k x kx k k k u x x x x ++−−==−⎰⎰;记e sin d x I x x −=⎰,则e d cos (e cos cos de )x x x I x x x −−−=−=−−⎰⎰e cos e dsin e cos (e sin sin de )x x x x x x x x x x −−−−−=−−=−−−⎰⎰e (cos sin )x x x I −=−+−,所以1e (cos sin )2xI x x C −=−++;因此(1)π(1)πππ11(1)()e (cos sin )(e e )22k kk k k k k u x x +−−+−=−−+=+;(这里需要注意cos π(1)kk =−)因此π(1)π1ππ111e e e 221e n n n k n k k k S u −−+−−−==−==+=+−∑∑; π(1)πππππ1e e 1e 11lim lim21e 21e 2e 1n n n n S −−+−−−→∞→∞−=+=+=+−−−20、已知函数(,)u x y 满足222222330u u u u x y x y∂∂∂∂−++=∂∂∂∂,求,a b 的值,使得在变换(,)(,)e ax by u x y v x y +=下,上述等式可化为(,)v x y 不含一阶偏导数的等式.解:e e ax byax by x u v va x++∂'=+∂, 222e e e e ax by ax by ax byax by xx x x u v v a v a va x++++∂''''=+++∂2e 2ee ax by ax byax by xx x v av a v +++'''=++同理,可得ee ax by ax by y u v bv y++∂'=+∂,222e 2e e ax by ax by ax by yy y u v bv b v y +++∂'''=++∂; 将所求偏导数代入原方程,有22e [22(43)(34)(2233)]0ax by xx yy x y v v a v b v a b a b v +''''''−+++−+−++=,从而430,340a b +=−=,因此33,44a b =−=. 21、已知函数(,)f x y 在[0,1]上具有二阶导数,且1(0)0,(1)1,()d 1f f f x x ===⎰,证明:(1)存在(0,1)ξ∈,使得()0f ξ'=; (2)存在(0,1)η∈,使得()2f η''<−. 证明:(1)由积分中值定理可知,存在(0,1)c ∈,使得1()d (10)()f x x f c =−⎰,即()1f c =.因此()(1)1f c f ==,由罗尔定理知存在(,1)((0,1))c ∈⊂ξ,使得()0f ξ'=.(2)设2()()F x f x x =+,则有2(0)0,()1,(1)2F F c c F ==+=;由拉格朗日中值定理可得:存在1(0,)c ∈η,使得21()(0)1()0F c F c F c c −+'==−η;存在2(,1)c ∈η,使得22(1)()1()111F F c c F c c c−−'===+−−η;对于函数()F x ',由拉格朗然中值定理同样可得,存在12(,((0,1))∈⊂ηηη,使得22121212111(1)1()()()0c c F F c c F ++−−''−''===<−−−ηηηηηηηηη, 即()20f ''+<η;结论得证.22.已知向量组(Ⅰ)232111=1=0,=2443a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦1ααα,,(Ⅱ)21231011,2,3,313a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+−+⎣⎦⎣⎦⎣⎦βββ,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a 的取值,并将3β用23,,1ααα线性表示.【解析】令123(,,)=A ααα,123(,,)=B βββ,所以,21a =−A ,22(1)a =−B . 因向量组I 与II 等价,故()()(,)r r r ==A B A B ,对矩阵(,)A B 作初等行变换.因为2222111101111101(,)102123011022.443313001111a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪=→− ⎪ ⎪ ⎪ ⎪++−+−−−−⎝⎭⎝⎭A B 当1a =时,()()(,)2r r r ===A B A B ;当1a =−时,()()2r r ==A B ,但(,)3r =A B ;当1a ≠±时,()()(,)3r r r ===A B A B . 综上,只需1a ≠−即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.①当1a =时,12331023(,,,)01120000⎛⎫ ⎪→−− ⎪ ⎪⎝⎭αααβ,故3112233x x x =++βααα的等价方程组为132332,2.x x x x =−⎧⎨=−+⎩故3123(3)(2)k k k =−+−++βααα(k 为任意常数);②当1a ≠±时,12331001(,,,)01010011⎛⎫⎪→− ⎪ ⎪⎝⎭αααβ,所以3123=−+βααα.23.已知矩阵22122002x −−⎡⎤⎢⎥=−⎢⎥⎢⎥−⎣⎦A 与21001000y ⎡⎤⎢⎥=−⎢⎥⎢⎥⎣⎦B 相似, (Ⅰ)求,x y ;(Ⅱ)求可逆矩阵P 使得1−P AP =B 解:(1)相似矩阵有相同的特征值,因此有2221,,x y −+−=−+⎧⎪⎨=⎪⎩A B 又2(42)x =−−A ,2y =−B ,所以3,2x y ==−. (2)易知B 的特征值为2,1,2−−;因此2102001000r⎛⎫⎪−⎯⎯→ ⎪ ⎪⎝⎭A E ,取T 1(1,2,0)ξ=−,120001000r⎛⎫ ⎪⎯⎯→ ⎪ ⎪⎝⎭A+E ,取T 2(2,1,0)ξ=−,4012021000r⎛⎫ ⎪⎯⎯→− ⎪ ⎪⎝⎭A+E ,取T3(1,2,4)ξ=−令1123(,,)P ξξξ=,则有111200010002P AP −⎛⎫⎪=− ⎪ ⎪−⎝⎭;同理可得,对于矩阵B ,有矩阵2110030001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,122200010002P BP −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭,所以111122P AP P BP −−=,即112112B P P APP −−=,所以112111212004P PP −−−−⎛⎫⎪== ⎪ ⎪⎝⎭.。
2019年考研数学二真题及全面解析(Word版)
2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与k x 是 同阶无穷小量,则k =( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C . 【解析】因为3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22. 【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。
当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。
故选 C .3、下列反常积分发散的是( )A 、0xxe dx +∞-⎰. B 、2x xe dx +∞-⎰. C 、20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛;D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。
4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r =-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == 。
2019年考研数学二真题及答案
考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的. 1 若1)(lim 212=++→x xx bx ax e ,则( )A 1,21-==b a B 1,21-=-=b a C 1,21==b a D 1,21=-=b a2下列函数中不可导的是( )A. )sin()(x x x f =B.)sin()(x x x f =C.x x f cos )(= D.)cos()(x x f =3设函数⎪⎩⎪⎨⎧≥-<<--≤-=⎩⎨⎧≥<-=0011,2)(0,10,1)(x b x x x x ax x g x x x f 若)()(x g x f +在R 上连续,则( ) A 1,3==b a B2,3==b a C1,3=-=b a D 2,3=-=b a4 设函数)(x f 在]1,0[上二阶可导,且)(1=⎰dx x f 则 ( )A 当0)(<'x f 时,0)21(<f B 当0)(<''x f 时,0)21(<fC 当0210)(<>')(时,f x fD 当0)21(0)(<>''f x f 时, 5 dx x K dx e xN dx x x M x ⎰⎰⎰---+=+=++=22222222)cos 1(,1,1)1(ππππππ则M,N,K 大小关系为( ) A.K N M >> B.N K M >>C.N M K >>D.M N K >> 6⎰⎰⎰⎰=-+-----1220122)1()1(dy xy dx dy xy dx x xx x( )A 35B 65C 37D 677 下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为()A. ⎪⎪⎪⎭⎫ ⎝⎛-100110111B.⎪⎪⎪⎭⎫⎝⎛-100110101⎪⎪⎪⎭⎫ ⎝⎛-100010111.C D.⎪⎪⎪⎭⎫ ⎝⎛-1000101018设A,B 为n 阶矩阵,记)(x r 为矩阵x 的秩,)(Y X 表示分块矩阵,则( )A.)()(A r AB A r =B.)()(A r BA A r =C.{})(m ax )(A r B A r =D.)()(T TB A r B A r =二、填空题:9~14题,每小题4分,共24分.请将答案写在答题纸指定位置上。
2019考研数学二考试真题答案解析(完整版)
13.解析:
1
0
f ( x) d x ( x
0
1
x
1
sin t 2 d t ) dx t
1 1 x sin t 2 2 dtd x 2 0 1 t
2 x sin t 1 1 sin x 2 x2 d t |10 x 2 d x 1 0 2 t x 1 1 x sin x 2 d x 0 2 1 1 1 1 1 sin x 2 d x 2 ( cos x 2 ) |10 (cos1 1) 0 2 2 4 4
I e x d cos x (e x cos x cos x d e x ) e x cos x e x d sin x e x cos x (e x sin x sin x d e x ) e x (cos x sin x) I
2y ÷ 2y 2 ç = f + f ÷ ç çx ÷ x
2x
z z y3 2y 2 +y = -2 x × 2 f + y × f + f x y x x =-
2 y3 2 y3 f + yf + f x x y2 ÷ = yf ç ç ÷ ÷ ç x÷
12.解析: y ln cos x, 0 x
x2 x2 2 x2 2 x2
x2
2
(
x+C
)
由 f (1)= e = (C + 1) e 得 C = 0 所以 f ( x)= x × e 2
Vx = p ò
2 x2
1 2
ç ç x×e 2 ç ç
2019考研数学二答案解析
+
1)e
x
ln ,
x),
x 0, x 0.
令
f
( x)
=
0 ,得驻点
x1
=
−1,
x3
=
1 e
;另外
f
(x)
还有一个不可导点
x2
=
0;
又 (−, −1) 为单调递减区间, (−1, 0) 为单调递增区间, (0, 1) 为单调递减区间, (1 , +) 为单
e
e
调递增区间;因此有极小值
f
(−1)
=1−
y = f (x), y = g(x) 在 x = a 处相切及曲率相等的
A. 充分非必要条件.
B. 充分必要条件.
C. 必要非充分条件.
D. 既非充分又非必要条件.
【答案】A
【解析】充分性:利用洛必达法则,有
lim
x→a
f
(x) − g(x) (x − a)2
= lim x→a
f (x) − g(x) 2(x − a)
2019 年全国硕士研究生入学统一考试 数学(二)试题及答案解析
一、选择题:1~8 小题,每小题 4 分,共32 分.下列每题给出的四个选项中,只有一个 选项是符合题目要求的.
1、当 x → 0 时,若 x − tan x 与 xk 是同阶无穷小,则 k =
A. 1. C. 3.
【答案】C
B. 2. D. 4.
A
=
−2
3
1 −2
−1 2
1
−1
,
Aij
表示
|
A|
中
(i,
j)
元的代数余子式,则
2019考研数学二真题
2019考研数学二真题2019年考研数学二真题分为了两个部分,第一部分是选择题,包括14道单选和6道多选,第二部分是主观题,包括5道计算题和2道证明题。
选择题部分的难度大致分为了两个层级,前7道单选题难度较低,难点主要在于计算和细节,后7道单选题难度较高,涉及知识点广泛而且需要一定的思维能力。
以下是部分选择题的参考答案和解析:单选题1. 设f(x) = cos(x+a),其中0<a<π/2,则f(x)在[0,π/2]上的最大值为 ()。
正确答案:cos a解析:f(x) 的最大值为 cos(a-x),当x=a/2时,cos(a/2) 取最大值为 cos a。
单选题2. 曲线y=3x2-x3与x轴交于点(0,0)和(3,0),则其上的拐点个数为()。
正确答案:2解析:拐点出现在 f''(x)=0 的点上,由于 f(x) 的导数为f'(x)=6x-3x2,f''(x)=6-6x=0,可解得 x=1,x=2,两个点都是拐点。
多选题3. 设A、B是n阶实对称矩阵,C是m阶实矩阵,若tr(ABC)=tr(BCA),则()。
正确答案:AB和BA的特征值相同;n=m。
解析:设A的特征值为λi,B的特征值为μj,C的特征值为νk,则tr(ABC)=∑i=1^n ∑j=1^m ∑k=1^m λi μj νk cij bkj ai 与tr(BCA)=∑j=1^m ∑k=1^m ∑i=1^n μj νk λi aij cjk bij 相等,它们等价于∑i=1^n ∑j=1^m λi μj νj (bijcjkaij-aijcikbkj)=0,则 AB 和BA 的特征值相同,n=m。
多选题4. 已知函数f(x)在[-1,1]上的取值为[-1,1],试确定函数∫-1^1 f(x)g(x)dx的最小值,其中g(x)是[-1,1]上的连续函数。
正确答案:0解析:由于f(x) ∈ [-1,1],所以∫-1^1 f(x)g(x)dx ≤ ∫-1^1 |g(x)|dx,令 g(x) = sign(x),即 g(x) = 1 (x>0),g(x) = -1 (x<0),则有∫-1^1 f(x)g(x)dx ≤ ∫-1^1 |g(x)|dx = 2,而当 g(x) = 0 (x=0) 时,∫-1^1f(x)g(x)dx = 0,所以最小值为0。
2019年考研数学二真题及答案
考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的. 1 若1)(lim 212=++→x xx bx ax e ,则( )A 1,21-==b a B 1,21-=-=b a C 1,21==b a D 1,21=-=b a2下列函数中不可导的是( )A. )sin()(x x x f =B.)sin()(x x x f =C.x x f cos )(= D.)cos()(x x f =3设函数⎪⎩⎪⎨⎧≥-<<--≤-=⎩⎨⎧≥<-=0011,2)(0,10,1)(x b x x x x ax x g x x x f 若)()(x g x f +在R 上连续,则( ) A 1,3==b a B2,3==b a C1,3=-=b a D 2,3=-=b a4 设函数)(x f 在]1,0[上二阶可导,且)(1=⎰dx x f 则 ( )A 当0)(<'x f 时,0)21(<f B 当0)(<''x f 时,0)21(<fC 当0210)(<>')(时,f x fD 当0)21(0)(<>''f x f 时, 5 dx x K dx e xN dx x x M x ⎰⎰⎰---+=+=++=22222222)cos 1(,1,1)1(ππππππ则M,N,K 大小关系为( ) A.K N M >> B.N K M >>C.N M K >>D.M N K >> 6⎰⎰⎰⎰=-+-----1220122)1()1(dy xy dx dy xy dx x xx x( )A 35B 65C 37D 677 下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为()A. ⎪⎪⎪⎭⎫ ⎝⎛-100110111B.⎪⎪⎪⎭⎫⎝⎛-100110101⎪⎪⎪⎭⎫ ⎝⎛-100010111.C D.⎪⎪⎪⎭⎫ ⎝⎛-1000101018设A,B 为n 阶矩阵,记)(x r 为矩阵x 的秩,)(Y X 表示分块矩阵,则( )A.)()(A r AB A r =B.)()(A r BA A r =C.{})(m ax )(A r B A r =D.)()(T TB A r B A r =二、填空题:9~14题,每小题4分,共24分.请将答案写在答题纸指定位置上。
2019考研数学二真题
一、选择题:1~8 小题,每小题 4 分,共 32 分。下列每题给出的四个选项中,只有一个选项是符合题目要 求的.
(1)当 x 0 时,若 x tan x 与 xk 是同阶无穷小,则 k =( )
(A) 1
(B) 2
(C) 3
(D) 4
(2)曲线y x sin x 2 cos x( x 2 )的拐点是 ( ) 2
(A)1,0,1
(B)1,0,2
(C) 2,1,3
(D) 2,1,4
(5)已知平面区域 D (x, y)
x
y
2
,
记I1
D
x2 y2 dxdy, I2 sin
D
x2 y2 dxdy,
I3 (1 cos x2 y2 )dxdy 则( )
D
(A) I3 I2 I1
(B) I2 I1 I3
(1) 存在 (0,1),使得f ( ) 0
(2) 存在 (0,1),使得f () 2
(22)(本题满分 11 分) 已知向量组
I:1 (1,1,4)T ,2 (1,0,4)T ,3 (1,2, a2 3)T II: 1 (1,1, a 3)T , 2 (0,2,1 a)T , 3 (1,3, a2 3)T 若向量组 I 与向量组 II 等价,求 a 的取值,并将 3用1,2,3 线性表示
(16)(本题满分 10 分)
求不定积分
(
x
3x 1)2 (x2
6
x
dx. 1)
(17)(本题满分 10 分)
设函数y(x)是微分方程y xy
1
x2
e 2 满足条件y(1)
e的特解.
2019考研数学二真题及答案
2019考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与 kx 昰 同阶无穷小量,则k=( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C .【解析】因为 3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点昰( )A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22.【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=.当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 昰拐点.故选 C . 3、下列反常积分发散的昰( )A 、x xe dx +∞-⎰. B 、 2x xe dx +∞-⎰. C 、 2tan 1arx xdx x+∞+⎰. D 、21xdx x +∞+⎰. 【答案】D . 【解析】A 、1x x xx xe dx xde xe e dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛; D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D .4、已知微分方程的x y ay by ce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r=-昰特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == .又知*x y e =昰方程2x y y y ce '''++=的特解,代入方程的4c =.故选D . 5、已知积分区域(),2D x y x y π⎧⎫=+≤⎨⎬⎩⎭ ,1D I =,2DI =⎰⎰,(31DI dxdy =-⎰⎰,则( )A 、321I I I <<.B 、 213I I I <<.C 、123I I I <<.D 、231I I I <<.【答案】A .【解析】比较积分的大小,当积分区域一致时,比较被积函数的大小即可解决问题.由 2x y π+≤,可得 2222x y π⎛⎫+≤ ⎪⎝⎭【画图发现2x y π+≤包含在圆2222x y π⎛⎫+= ⎪⎝⎭的内部】,令u ,则 02u π≤≤,于昰有 sin u u >,从而DD>⎰⎰.令()1cos sin f u u u =--,则()sin cos f u u u '=-,()04f π'=.()f u 在0,4π⎛⎫⎪⎝⎭内单调减少,在,42ππ⎛⎫⎪⎝⎭单调增加,又因为(0)()02f f π==,故在0,2π⎛⎫⎪⎝⎭内()0f u <,即1cos sin u u -<,从而(1DDdxdy >-⎰⎰⎰⎰.综上,选A .6、设函数(),()f x g x 的二阶导数在x a =处连续,则2()()lim0()x af xg x x a →-=-昰两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的( )A 、充分非必要条件.B 、充分必要条件.C 、必要非充分条件.D 、既非充分也非必要条件. 【答案】A .【解析】充分性:利用洛必达法则,由2()()lim0()x af xg x x a →-=-可得()()lim 02()x a f x g x x a →''-=-及()()lim02x a f x g x →''''-=, 进而推出 ()()f a g a =,()()f a g a ''=,()()f a g a ''''=.由此可知两曲线在x a =处有相同切线,且由曲率公式322[1()]y K y ''='+可知曲线在x a =处曲率也相等,充分性得证.必要性:由曲线()y f x =,()y g x =在x a =处相切,可得()()f a g a =,()()f a g a ''=; 由曲率相等332222()()[1(())][1(())]f ag a f a g a ''''=''++,可知()()f a g a ''''=或()()f a g a ''''=-.当()()f a g a ''''=-时,所求极限2()()()()()()limlim lim ()()2()2x ax a x a f x g x f x g x f x g x f a x a x a →→→''''''---''===--,而()f a ''未必等于0,因此必要性不一定成立.故选A .7、设A 昰4阶矩阵,*A 为A 的伴随矩阵,若线性方程组0Ax =的基础解系中只有2个向量,则*()r A =( ).A 、0.B 、 1.C 、2.D 、3.【答案】A .【解析】因为方程组0Ax =的基础解系中只有2个向量,,所以4()2r A -=,从而()241r A =≤-,则*()r A =0,故选 A .8、设A 昰3阶实对称矩阵,E 昰3阶单位矩阵,若22A A E +=,且4A =,则二次型Tx Ax 的规范型为( )A 、222123y y y ++.B 、 222123y y y +-.C 、222123y y y --.D 、222123y y y ---.【答案】C .【解析】设λ昰A 的特征值,根据22A A E +=得22λλ+=,解得1λ=或2λ=-;又因为4A =,所以A 的特征值为1,-2,-2,根据惯性定理,T x Ax 的规范型为222123y y y --.故选C .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、2lim(2)x xx x →+=.【答案】24e .【解析】0222lim ln[1(21)]0lim(2)lim[1(21)]x x x x xxxxx x x x e→++-→→+=++-=0212lim 2(1ln 2)24x x x xee e →+-+===.10、曲线sin 1cos x t t y t=-⎧⎨=-⎩在32t π=对应点处的切线在y 轴上的截距为 .【答案】322π+. 【解析】斜率32sin 11cos t dy t dx t π===--,切线方程为 322y x π=-++,截距为322π+. 11、设函数()f u 可导,2()y z yf x =,则2z zxy x y∂∂+=∂∂ . 【答案】2y yf x ⎛⎫⎪⎝⎭.【解析】3222222,z y y z y y y f f f x x x y x x x ⎛⎫⎛⎫⎛⎫∂∂''=-=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ ,22z zy x y yf x y x ⎛⎫∂∂+= ⎪∂∂⎝⎭.12、曲线ln cos (0)6y x x π=≤≤的弧长为 .【答案】1ln 32【解析】sec ds xdx ===66001sec ln(sec tan )ln3.2s xdx x x ππ==+=⎰ 13、已知函数21sin ()xt f x x dt t=⎰,则10()f x dx =⎰ .【答案】1(cos11)4-. 【解析】设21sin ()xt F x dt t=⎰,则 1111122200000111()()()[()]()222f x dx xF x dx F x dx x F x x dF x ===-⎰⎰⎰⎰211112222000011sin 111()sin cos (cos11)22244x x F x dx x dx x x dx x x '=-=-=-==-⎰⎰⎰.14、已知矩阵1100211132210034A -⎛⎫⎪-- ⎪= ⎪-- ⎪⎝⎭,ij A 表示元素ij a 的代数余子式,则1112A A -= .【答案】4-.【解析】由行列式展开定理得111211001000111111211121111210104322131210343434034A A A -----------====-==----. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知函数2,0()1,0x x xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.【解析】当0x >时,22ln ()xx x f x xe ==,2()2(ln 1)xf x x x '=+;当0x <时,()(1)x f x x e '=+;22000()(0)12(ln 1)(0)lim lim lim 1x x x x x f x f x x x f x x ++++→→→---'====-∞,即()f x 在0x =处不可导.综合上述:22(ln 1),0()(1),0xxx x x f x x e x ⎧+>⎪'=⎨+<⎪⎩;令()0f x '=得驻点1211,x x e=-=;0x =昰函数()f x 的不可导点. 当1x <-时,()0f x '<;当10x -<<时,()0f x '>;当10x e<<时,()0f x '<;当1x e >时,()0f x '>;故11x =-昰函数的极小值点,极小值为1(1)1f e --=-;21x e=昰函数的极小值点,极小值为21()e f e e-=;函数()f x 在0x =处连续且有极大值(0)1f =.16、(本题满分10分)求不定积分2236(1)(1)x dx x x x +-++⎰.【解析】设222236(1)(1)1(1)1x A B Cx Dx x x x x x x ++=++-++--++ (1)两边同乘以2(1)x -且令1x =,可得3B =; (2)两边同乘以x 且令x →∞,可得0A C+=;(3)两边分别令0x =,1x =-,可得63244A B D A B C D -++=⎧⎪⎨-+-+=⎪⎩;解得2,2,1A C D =-==.则2222362321(1)(1)1(1)1x x x x x x x x x ++=-++-++--++,于昰2222362321(1)(1)1(1)1x x dx dx x x x x x x x ⎛⎫++=-++ ⎪-++--++⎝⎭⎰⎰2223(1)32ln 12ln 1ln(1)111d x x x x x x C x x x x ++=---+=---++++-++-⎰.17、(本题满分10分)设函数()y x昰微分方程22x y xy e '-=满足条件(1)y =解.(1)求()y x 的表达式;(2)设平面区域{(,)|12,0()}D x y x y y x =≤≤≤≤,求D 绕x 轴旋转一周所形成的旋转体的体积. 【解析】(1)方程为一阶线性非齐次微分方程.由通解公式可得222()222()()())x x x xdxx dxy x e ee dx C e C e C -⎰⎰=+=+=,把初始条件(1)y =,得0C =,从而得到 22().x y x xe =(2)旋转体的体积为2222411()()2x x V y x dx xe dx e e πππ===-⎰⎰.18、(本题满分10分)设平面区域2234{(,)|,()}D x y x y x y y =≤+≤,计算二重积分D.【解析】显然积分区域D 关于y 轴对称,由对称性可得0D=;将2234()x y y +≤化为极坐标,有 20sin rθ≤≤,于昰23sin 44sin DDd r dr πθπθθ==⎰⎰33522444411sin (1cos )cos 22120d d ππππθθθθ==--=⎰⎰. 19、(本题满分10分)设n 昰正整数,记n S 为曲线sin (0)xy e x x n π-=≤≤与x 轴所形成图形的面积,求n S ,并求lim .n n S →∞【解析】当()2,(21)x k k ππ∈+时,sin 0x >;当()(21),(22)x k k ππ∈++时,sin 0x <,故曲线sin (0)xy ex x n π-=≤≤与x 轴之间图形的面积应表示为(1)0sin sin nn k xx n k k S exdx e xdx πππ+--===∑⎰⎰,先计算(1)sin k x kk b e xdx ππ+-=⎰, 作变量替换 u x k π=-,于昰有 ()sin()u k kb eu k du πππ-+=+⎰0sin k u ee u du ππ--=⎰()01sin [sin cos ]2k u k u e e udu e e u u ππππ----==-+⎰12k e eππ--+=. 所以00(1)(1)(1)(1)(1)22(1)2(1)k n n nnn k k k e e e e e e S b e e ππππππππ------==++-+-====--∑∑, 因此 (1)(1)1lim lim 2(1)2(1)n n n n e e e S e e πππππ-→∞→∞+-+==--. 20、(本题满分11分)已知函数(,)u x y 满足关系式222222330u u u ux y x y∂∂∂∂-++=∂∂∂∂.求,a b的值,使得在变换(,)(,)ax byu x y v x y e +=之下,上述等式可化为函数(,)v x y 的不含一阶偏导数的等式.【解析】在变换(,)(,)ax by u x y v x y e+=之下(,)ax byax by u v e av x y e x x++∂∂=+∂∂,(,),ax by ax by u v e bv x y e y y ++∂∂=+∂∂ 222222(,)ax by ax by ax byu v v e a e a v x y e x x x+++∂∂∂=++∂∂∂, 222222(,)ax by ax by ax byu v v e b e b v x y e y y y+++∂∂∂=++∂∂∂; 把上述式子代入关系式222222330u u u ux y x y∂∂∂∂-++=∂∂∂∂,得到 22222222(43)(34)(223)(,)0v v v va b a b b v x y x y x y∂∂∂∂-+++-+-+=∂∂∂∂根据要求,显然当33,44a b =-=时,可化为函数(,)v x y 的不含一阶偏导数的等式. 21、(本题满分11分)已知函数()f x 在[]0,1上具有二阶导数,且(0)0,(1)1f f ==,1()1f x dx =⎰,证明:(1)至少存在一点(0,1)ξ∈,使得()0f ξ'=;(2)至少存在一点(0,1)η∈,使得()2f η''<-. 证明:(1)令0()()xx f t dt Φ=⎰,则1(0)0,(1)()1f x dx Φ=Φ==⎰,则由于()f x 在[]0,1连续,则()x Φ在[]0,1上可导,且()()x f x 'Φ=,则由拉格朗日中值定理,至少存在一点1(0,1)ξ∈,使得1()(1)(0)1ξ'Φ=Φ-Φ=,即1()1f ξ=;又因为(1)1f =,对()f x 在[]1,1ξ上用罗尔定理 ,则至少存在一点1(,1)(0,1)ξξ∈⊂,使得()0f ξ'=; (2)令2()()F x f x x=+,显然 ()F x 在[]0,1具有二阶导数,且211(0)0,(1)2,()1F F F ξξ===+.对()F x 分别在[][]110,,,1ξξ上用拉格朗日中值定理,至少存在一点11(0,)ηξ∈,使得2111111()(0)11()10F F F ξξηξξξ-+'===+-;至少存在一点21(,1)ηξ∈,使得1211()(1)()11F F F ξηξξ-'==+-;对()()2F x f x x ''=-在[]12,ηη上用拉格朗日中值定理,则至少存在一点12(,)(0,1)ηηη∈⊂,使得211212111()()()0F F F ηηξηηηηη-''-''==<--,又因为()()2F f ηη''''=+,故()2f η''<-.22.(本题满分11分)已知向量组Ⅰ:12321111,0,2443a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭;向量组Ⅱ:12321011,2,3313a a a βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭.若向量组Ⅰ和向量组Ⅱ等价,求常数a 的值,并将3β用123,,ααα线性表示.【解析】向量组Ⅰ和向量组Ⅱ等价的充分必要条件昰123123123123(,,)(,,)(,,;,,)r r r αααβββαααβββ==1231232222111101111101(,,;,,)102123011022443313001111a a a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪⎪ ⎪++-+----⎝⎭⎝⎭(1)当1a =时,显然, 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.此时,123311111023(,,;)0112011200000000αααβ⎛⎫⎛⎫ ⎪ ⎪→-→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 方程组112233x x x αααβ++=的通解为123231210x x x k x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,也就昰3123(23)(2)k k k βααα=-++-+,其中k 为任意常数;(2)当1a ≠时,继续进行初等行变换如下:12312322111101111101(,,;,,)011022011022001111001111a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪⎪ ⎪----+-+⎝⎭⎝⎭显然,当1a ≠-且1a ≠时,123123123(,,)(,,;,,)3r r ααααααβββ==,同时()123101101101,,02202201111101001a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭,123(,,)3r βββ=,也就昰123123123123(,,)(,,)(,,;,,)3r r r αααβββαααβββ===,两个向量组等价.这时,3β可由123,,ααα线性表示,表示法唯一:3123βααα=-+.(3)当=1a -时,()123123111101,,,,,011022000220αααβββ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦,此时两个向量组不等价.综上所述,综上所述,当向量组Ⅰ和向量组Ⅱ等价时,1a ≠-.23、(本题满分11分)已知矩阵22122002A x --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与 21001000B y ⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 相似, (I )求,x y ;(II )求可逆矩阵P ,使得 1P AP B -=.【解析】(I )由于A 与B 相似,根据矩阵相似必要条件,有 ()()A B tr A tr B ⎧=⎪⎨=⎪⎩ , 即2(24)22221x y x y--+=-⎧⎨-+-=-+⎩,解得 3,2x y ==-.(II )矩阵B 昰上三角矩阵,易得B 的特征值为2,1,2--.又因为A 与B 相似,所以A 的特征值也昰2,1,2--.对于矩阵A :解方程组()0(1,2,3)i E A x i λ-==,可得属于特征值12,λ=21,λ=-32λ=-的线性无关的特征向量为:1(1,2,0)T α=-,2(2,1,0)T α=-,3(1,2,4)T α=-对于矩阵B :解方程组()0(1,2,3)i E B x i λ-==,可得属于特征值12,λ=21,λ=-32λ=-的线性无关的特征向量为:1(1,0,0)T β=,2(1,3,0)T β=-,3(0,0,1)T β= 令1123(,,)P ααα=, 2123(,,)P βββ=,则有111122212P AP P BP --⎛⎫ ⎪=-= ⎪ ⎪-⎝⎭, 即 112112P P APP B --=, 令 1112121110111212030212004001004P PP -----⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==--=-- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则有 1PAP B -=,证毕.。