人教版2018年数学中考一次函数的图象及其性质专题复习及答案

合集下载

2018年中考数学《一次函数》专题检测试卷及答案解析

2018年中考数学《一次函数》专题检测试卷及答案解析

一次函数专题检测试卷一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<02.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b >0的解集是()A.x<2 B.x<0 C.x>0 D.x>23.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1 C.D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y16.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B. C.D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>29.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+210.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y ≤4,则kb的值为()A.12 B.﹣6 C.﹣6或﹣12 D.6或1212.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()A.(3,)B.(8,5) C.(4,3) D.(,)14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5 B.25 C.12.5a D.25a15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)30254045总价(元)396330528585A.甲B.乙C.丙D.丁16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个 B.7个 C.5个 D.3个二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B 运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为.(并写出自变量取值范围)18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为.21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为;(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h,乙的速度是km/h;(2)甲出发多少小时两人恰好相距5km?27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)参考答案与试题解析一.选择题(共16小题)1.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0 B.a﹣b>0 C.ab>0 D.<0【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选:D.2.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b >0的解集是()A.x<2 B.x<0 C.x>0 D.x>2【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选:A.3.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【解答】解:∵一次函数y=kx+b的图象经过一、三象限,∴k>0,又该直线与y轴交于正半轴,∴b>0.综上所述,k>0,b>0.故选:A.4.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为()A.B.1 C.D.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故选:D.5.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选:B.6.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.7.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选:B.8.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选:A.9.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2【解答】解:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选:B.10.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y (m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【解答】解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选:D.11.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y ≤4,则kb的值为()A.12 B.﹣6 C.﹣6或﹣12 D.6或12【解答】解:(1)当k>0时,y随x的增大而增大,即一次函数为增函数,∴当x=0时,y=﹣2,当x=2时,y=4,代入一次函数解析式y=kx+b得:,解得,∴kb=3×(﹣2)=﹣6;(2)当k<0时,y随x的增大而减小,即一次函数为减函数,∴当x=0时,y=4,当x=2时,y=﹣2,代入一次函数解析式y=kx+b得:,解得,∴kb=﹣3×4=﹣12.所以kb的值为﹣6或﹣12.故选:C.12.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px﹣2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对 C.5对 D.3对【解答】解:令px﹣2=x+q,解得x=,因为交点在直线x=2右侧,即>2,整理得q>2p﹣4.把p=2,3,4,5分别代入即可得相应的q的值,有序数对为(2,2),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5),(4,5),又因为p≠q,故(2,2),(3,3)舍去,满足条件的有6对.故选:B.13.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b=4,则分别与x轴,y轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD点P的坐标是()A.(3,)B.(8,5) C.(4,3) D.(,)【解答】解:由直线AB:y=x+1分别与x轴、y轴交于点A,点B,可知A,B的坐标分别是(﹣2,0),(0,1),由直线CD:y=x+b分别与x轴,y轴交于点C,点D,可知D的坐标是(0,b),C的坐标是(﹣b,0),=4,得BD•OA=8,根据S△ABD∵OA=2,∴BD=4,那么D的坐标就是(0,﹣3),C的坐标就应该是(3,0),CD的函数式应该是y=x﹣3,P点的坐标满足方程组,解得,即P的坐标是(8,5).故选:B.14.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5 B.25 C.12.5a D.25a【解答】解:把x=1分别代入y=ax,y=(a+1)x,y=(a+2)x得:AW=a+2,WQ=a+1﹣a=1,∴AQ=a+2﹣(a+1)=1,同理:BR=RK=2,CH=HP=3,DG=GL=4,EF=FT=5,2﹣1=1,3﹣2=1,4﹣3=1,5﹣4=1,∴图中阴影部分的面积是×1×1+×(1+2)×1+×(2+3)×1+×(3+4)×1+×(4+5)×1=12.5,故选:A.15.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18152427桂圆棒冰(枝)30254045总价(元)396330528585A.甲B.乙C.丙D.丁【解答】解:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.16.在平面直角坐标系内,直线y=x+3与两坐标轴交于A、B两点,点O为坐标原点,若在该坐标平面内有以点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P点个数为()A.9个 B.7个 C.5个 D.3个【解答】解:如图,图中的P1、P2、P3、P4、P5、P6、P7,就是符合要求的点P,注意以P1为公共点的直角三角形有3个.⊋故选:B.二.填空题(共5小题)17.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为y=4.5x﹣90(20≤x≤36).(并写出自变量取值范围)【解答】解:∵=36(s),观察图象可知乙的运动时间为45s,∴乙的速度==2cm/s,相遇时间==20,∴图中线段DE所表示的函数关系式:y=(2.5+2)(x﹣20)=4.5x﹣90(20≤x≤36).故答案为y=4.5x﹣90(20≤x≤36).18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3和C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2018的纵坐标是22017.【解答】解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵A1B1C1O为正方形,∴点C1的坐标为(1,0),点B1的坐标为(1,1).同理,可得:B2(3,2),B3(7,4),B4(15,8),∴点B n的坐标为(2n﹣1,2n﹣1),∴点B2018的坐标为(22018﹣1,22017).故答案为:22017.19.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x于点B1,以A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=.∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=.同理,可得出:A 3B3=,A4B4=,…,A n B n=,∴第n个等边三角形A n B n C n的面积为×A n B n2=.故答案为:.20.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x 交于点Q,则点Q的坐标为(,).【解答】解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD(AAS),∴DN=PM,PN=CM,∵BD=2AD,∴设AD=a,BD=2a,∵P(1,1),∴DN=2a﹣1,则2a﹣1=1,a=1,即BD=2.∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),②当点C在y轴的负半轴上时,作PN⊥AD于N,交y轴于H,此时不满足BD=2AD,故答案为:(,).21.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E,当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为(2,0);(2)若点B在直线l1上,且S2=S1,则∠BOA的度数为15°或75°.【解答】解:(1)设B的坐标是(2,m),∵直线l2:y=x+1交l1于点C,∴∠ACE=45°,∴△BCD是等腰直角三角形.BC=|3﹣m|,则BD=CD=BC=|3﹣m|,S1=×(|3﹣m|)2=(3﹣m)2.设直线l4的解析式是y=kx,过点B,则2k=m,解得:k=,则直线l4的解析式是y=x.根据题意得:,解得:,则E的坐标是(,).S△BCE=BC•||=|3﹣m|•||=.∴S2=S△BCE﹣S1=﹣(3﹣m)2.=S2时,﹣(3﹣m)2=(3﹣m)2.当S1解得:m1=4或m2=0,易得点C坐标为(2,3),即AC=3,∵点B在线段AC上,∴m1=4不合题意舍去,则B的坐标是(2,0);(2)分三种情况:①当点B在线段AC上时当S2=S1时,﹣(3﹣m)2=(3﹣m)2.解得:m=4﹣2或2(不在线段AC上,舍去),或m=3(l2和l4重合,舍去).则AB=4﹣2.在OA上取点F,使OF=BF,连接BF,设OF=BF=x.则AF=2﹣x,根据勾股定理,,解得:,∴sin∠BFA=,∴∠BFA=30°,∴∠BOA=15°;或由s1=s2可得CD=DE,所以BD是CE的中垂线,所以BC=BE,根据∠BCD=45°即可知CB⊥BO,所以B必须与A重合,所以B(2,0),②当点B在AC延长线上时,此时,当S2=S1时,得:,解得符合题意有:AB=4+2.在AB上取点G,使BG=OG,连接OG,设BG=OG=x,则AG=4+2﹣x.根据勾股定理,得,解得:x=4,∴sin∠OGA=,∴∠OGA=30°,∴∠OBA=15°,∴∠BOA=75°;③当点B在CA延长线上时,S1>S2,此时满足条件的点B不存在,综上所述,∠BOA的度数为15°或75°.三.解答题(共8小题)22.某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?【解答】解:(1)设第一批购进蒜薹x吨,第二批购进蒜薹y吨.由题意,解得,答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m吨,总利润为w元,则粗加工(100﹣m)吨.由m≤3(100﹣m),解得m≤75,利润w=1000m+400(100﹣m)=600m+40000,∵600>0,∴w随m的增大而增大,∴m=75时,w有最大值为85000元.23.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费45元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x>18),∵直线经过点(18,45)(28,75),∴,解得,∴函数的解析式为y=3x﹣9 (x>18),当y=81时,3x﹣9=81,解得x=30.答:这个月用水量为30立方米.24.如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点P,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AD=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E′F′∥AB ,BF′∥AE′∴BF′=AE=t ,∴F′(t ﹣3,﹣4),直线E′F′的解析式为:y=﹣2x +2t ﹣10, 解得,∴G (,t ﹣7), ∴S=S 四边形A BCD ﹣S △DE′G =20﹣×(7﹣t )×(7﹣t )=﹣t 2+7t ﹣, ③当t ≥7时,S=S 四边形ABCD =20,综上所述:S 关于t 的函数解析式为:S=;(3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的坐标为(m ,﹣2m ﹣6),∵PM ⊥直线BC 于M ,交x 轴于N ,∴M (m ,﹣4),N (m ,0),∴PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m +1|,PN=|﹣2m ﹣6|=2|m +3|,FM=|m ﹣(﹣1)|=|m +1|,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,则△PFM ≌△PFT ,∴PT=PM=2|m +1|,FT=FM=|m +1|,∴=2, 作FK ⊥x 轴于K ,则KF=4,由△TKF ∽△PNT 得,=2, ∴NT=2KF=8,∵PN 2+NT 2=PT 2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在坐标轴上.25.平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.26.A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是l2(填l1或l2);甲的速度是30km/h,乙的速度是20km/h;(2)甲出发多少小时两人恰好相距5km?【解答】解:(1)由题意可知,乙的函数图象是l2,甲的速度是=30km/h,乙的速度是=20km/h.故答案为l2,30,20.(2)设甲出发x小时两人恰好相距5km.由题意30x+20(x﹣0.5)+5=60或30x+20(x﹣0.5)﹣5=60解得x=1.3或1.5,答:甲出发1.3小时或1.5小时两人恰好相距5km.27.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,解得.所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.28.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.【解答】解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE +S四边形ABDO=12+20=32,(3)由(2)知,S=32,在△AOC中,OA=5,OC=13,=OA×OC==32.5,∴S△AOC,∴S≠S△AOC理由:由(1)知,直线AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S≠S.△AOC29.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后在x轴上确定对应的数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x n,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k 的取值范围及m的值(用含k,b的代数式表示)【解答】解:(1)若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大.(2)当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.(3)①在数轴上表示的x1,x2,x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m=.。

2018年全国一次函数中考题(含答案)

2018年全国一次函数中考题(含答案)

3. (2018年山东省枣庄市,5,3分) 如图,直线l 是一次函数b kx y +=的图象,如果点),3(m A 在直线l 上,则m 的值为( )A .5-B .23C .25D .7 【答案】C【解析】由图像可得直线l 与x 轴的两个交点的坐标为(0,1)(-2,0),代入到b kx y +=求得直线 l 的解析式为112y x =+,再把点),3(m A 代入到直线l 的解析式中,求得m 的值为25.故选C. 【知识点】点的坐标;待定系数法求一次函数的表达式;4. (2018四川省南充市,第7题,3分)直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 【答案】C【解析】直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C. 【知识点】一次函数的平移5. (2018浙江绍兴,6,3分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点(1,2)A -,(1,3)B ,(2,1)C ,(6,5)D ,则此函数( )(第6题图)A .当1x <时,y 随x 的增大而增大B .当1x <时,y 随x 的增大而减小C .当1x >时,y 随x 的增大而增大D .当1x >时,y 随x 的增大而减小【答案】A【解析】由函数图像可知,当1x <时,y 随x 的增大而增大,A 正确;当x 1<<2时,y 随x 的增大而减小,B 错误;当2x >时,y 随x 的增大而增大,C 错误,当1x >时,y 随x 的增大而增大,D 错误,故选A 。

【知识点】一次函数的性质 1. (2018贵州遵义,7题,3分)如图,直线y=kx+3经过点(2,0),则关于x 的不等式kx+3>0的解集是A.x>2B.x<2C.x≥2D.x≤2【答案】B【解析】由图可知,函数y=kx+3随着x 的增大而减小,与x 轴的交点为(2,0),kx+3>0,即y>0,即图像在x 轴上方的部分,故不等式的解集为x<2 【知识点】一次函数与一元一次不等式的关系,数形结合3. (2018湖南省湘潭市,7,3分)若b >0,则一次函数y=-x+b 的图象大致是( )【答案】C【解析】根据一次函数y=kx+b 中,k >0时,图象从左到右上升;k <0时,图象从左到右下降;b >0时,图象与y 轴的交点在y 轴上方;b=0时,图象与y 轴的交点在原点;b <0时,图象与y 轴的交点在y 轴下方.∵-1<0,所以图象从左到右下降,b >0所以图象与y 轴交于y 轴上方,故选择C.【知识点】一次函数的图象和性质4. (2018山东德州,10,3分)给出下列函数:①32y x =-+;②3y x=;③22y x =;④3y x =.上述函数中符合条件“当1x >时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C.②④ D .②③ 【答案】B【解析】函数32y x =-+的y 随自变量x 增大而减小;因为函数3y x=在每个象限内时的y 随自变量x 增大而减小,所以在当1x >时的y 随自变量x 增大而减小;函数22y x =在0x >时的y 随自变量x 增大而增大,所以在当1x >时的y 随自变量x 增大而增大;函数3y x =的y 随自变量x 增大而增大. 故选B.【知识点】函数增减性5. (2018广东省深圳市,7,3分)把函数y =x 向上平移3个单位,下列在该平移后的直线上的点是( ) A .(2,2) B .(2,3) C .(2,4) D .(2,5) 【答案】D【解析】一次函数的平移规律是:左加右减,上加下减,故把函数y =x 向上平移3个单位后的函数关系式为y =x +3,当x =2时,y =2+3=5,故选D . 【知识点】一次函数的平移;点的坐标6.(2018湖北荆州,T7,F3)已知:将直线1y x =-向上平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A.经过第一、二、四象限B.与x 轴交于(1,0)C.与y 轴交于(0,1)D.y 随x 的增大而减小 【答案】C【解析】解:根据题意,将直线y=x ﹣1向上平移2个单位后得到的直线解析式为:y=x-1+2,即y=x +1,当x=0时,y=1, ∴与y 轴交于点(0,1);当y=0时,x=-1,与x轴交于点(-1,0);图象经过第一、二、三象限;y 随x 的增大而增大.故选B . 【知识点】一次函数图象的平移、坐标轴的交点、函数值随自变量的增减情况.7. (2018广西玉林,5题,3分)等腰三角形底角与顶角之间的函数关系是 A.正比例函数 B.一次函数 C.反比例函数 D.二次函数 【答案】B【解析】设顶角为x ,底角为y ,由三角形内角和定理可得,y=12(180-x)=-12x+90,所以二者之间为一次函数关系,故选B【知识点】三角形内角和,一次函数8. (2018陕西,4,3分)如图,在矩形ABCD 中,A (-2,0),B (0,1). 若正比例函数y =kx 的图象经过点C ,则k 的值为( ) A .12-B .12C .-2D .2【答案】A【解析】由A(-2,0),B(0,1)可得C(-2,1).把点C代入y=kx,得:-2k=1,1 2k=-,故选择A.【知识点】正比例函数,图形与坐标9.(2018陕西,7,3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)【答案】B【解析】设直线l1解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4联立方程组,解得:x=2,y=0.∴交点坐标为(2,0),故选择B.【知识点】一次函数2.(2018浙江衢州,第14题,4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。

【中考课件】2018年人教版中考数学考点聚焦《第11讲:一次函数的图象及其性质》课件

【中考课件】2018年人教版中考数学考点聚焦《第11讲:一次函数的图象及其性质》课件

(0,0),(1,k) 正比例函数y=kx的图象是过_______________________ 两点的一条直线.
3.一次函数y=kx+b的图象
b (0,b),(-k,0) 一次函数y=kx+b的图象是过________________________ 两点的一条直线.
4.正比例函数y=kx、一次函数y=kx+b的性质
A)
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D.k<0,b<0
3.(2017·呼和浩特)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则
此函数的图象不经过( A)
A.第一象限 B.第二象限
C.第三象限 D.第四象限
命题点3:一次函数解析式的确定
4.(2017·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线
随x的增大而减小;图象与y轴的交点坐标为(0,b).
[对应训练] 1.(1)(2017·广安)当k<0时,一次函数y=kx-k的图象不经过( C)
A.第一象限 B.第二象限
C.第三象限 D.第四象限
(2)(2017·福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n-1),且0<k
<2,则n的值可以是( A.3 B.4 C.5 D.6 C )
【点评】
本题解题的关键是掌握勾股定理以及待定系数法.k,b是一次函数
y=kx+b的未知系数,这种先设待求函数关系式,再根据条件列出方程或方程
组,求出未知数,从而得出所求结果的方法,就是待定系数法.
[对应训练]
2.(1)(2017·通辽)如图,将八个边长为1的小正方形摆放在平面直角坐标系中 , 若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单

2018年中考总复习之一次函数及反比例函数题的经典题型汇总(含答案)

2018年中考总复习之一次函数及反比例函数题的经典题型汇总(含答案)

面积,S2 为△OAB的面积,若 = ,则b的值是

解:(1)设点 P 的坐标为(m,n),则点 Q 的坐标为(m﹣1,n+2),
依题意得:
,解得:k=﹣2.故答案 为:﹣2.
(2)∵BO⊥x 轴,CE⊥x 轴,∴BO∥CE,∴△AOB∽△AEC.
∵点 M 是一次函数 Y=2x-4 与 Y 轴的交点,∴点 M 的坐标为(0,-4) 设 C 点的坐标为(0,Yc),由题意知
点的坐标为0yc由题意知3yc41yc410解得yc4当yc40时yc45解得yc1当yc40时yc45解得yc9的坐标为01或0922已知点p在一次函数ykxbkb向左平移1个单位再向上平移2个单位得到点q点q也在该函数ykxb2如图该一次函数的图象分别与x轴y轴交于ab两点且与反比例函数y图象交于cd两点点c在第二为四边形ceob的面积s2box轴cex轴boceaobaec
并求
的面积。
(2)若反比例函数 y= (x>0)的图象经过点 M, 求该反比函数的解析式,并通过计算判断点 N 是否在该函数的图象上.
1、如图,在平面直角坐标系 xoy 中,反比例函数 y = 的图象与一次函数 y =k(x -2 )
的图象交点为 A(3,2),B(x,y)。 (1)求反比例函数与一次函数的解析式及 B 点坐标; (2)若 C 是 y 轴上的点,且满足△ABC 的面积为 10, 求 C 点坐标。
3、如图,直线 y=x+4 与双曲线 y= (k≠0)相交于 A(﹣1,a)、B 两点,在 y
轴上找一点 P,当 PA+PB 的值最小时,点 P 的坐标为?
(1)k的值是

4、如图,在直角坐标系中,直线 y=﹣ x 与反比例函数 y= 的图象交于关于原点对

中考数学考点知识与典型题专题讲解练习13 一次函数的图象及其性质

中考数学考点知识与典型题专题讲解练习13 一次函数的图象及其性质

中考数学考点知识与典型题专题讲解练习13 一次函数的图象及其性质1.一次函数的概念: 一般地,如果y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.结构特征:①k ≠0;②x 的次数是1;③常数项b 可以是任意实数.2.正比例函数的概念:特别地,当一次函数y =kx +b 中的b 为0时,y =kx (k 为常数,k ≠0).这时,y 叫做x 的正比例函数.结构特征:①k ≠0;②x 的次数是1;③常数项为0.3. 一次函数与正比例函数的联系:正比例函数是一次函数的特殊形式.【例1】(2019•梧州)下列函数中,正比例函数是( )A .y =﹣8xB .8y x = C .y =8x 2D .y =8x ﹣4 【分析】A 、y =﹣8x ,是正比例函数,符合题意;B 、8y x =,是反比例函数,不合题意;C 、y =8x 2,是二次函数,不合题意;D 、y =8x ﹣4,是一次函数,不合题意.故选A .【答案】A .1.正比例函数的图象:正比例函数y =kx (常数k ≠0)的图象是一条经过原点(0,0)与点(1,k )的直线.2.一次函数的图象:所有一次函数的图象都是一条直线;一次函数y =kx +b (k ,b 是常数,k ≠0)的图象是一条与y 轴交于点(0,b ),与x 轴交于点(b k-,0)的直线.【注意】(1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b ),(b k -,0)两点.(2)当b =0时,一次函数变为正比例函数,正比例函数是一次函数的特例.3.一次函数图象的平移:直线y =kx +b (k ≠0,b ≠0)可由直线y =kx (k ≠0)向上或向下平移得到. 当b >0时,将直线y =kx 向上平移b 个单位长度,得到直线y =kx +b ;当b <0时,将直线y =kx 向上平移|b|个单位长度,得到直线y =kx +b . 【例2】(2020•陕西7/25)在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =-2x 交于点A 、B ,则△AOB 的面积为( )A .2B .3C .4D .6【考点】一次函数的性质;两条直线相交或平行问题【分析】根据方程或方程组得到A (-3,0),B (-1,2),根据三角形的面积公式即可得到结论.【解答】解:在y=x+3中,令y=0,得x=-3,解32y xy x=+⎧⎨=-⎩得:12xy=-⎧⎨=⎩,∴A(-3,0),B(-1,2),∴△AOB的面积13232=⨯⨯=.故选:B.【点评】本题考查了直线围成图形面积问题,其中涉及了一次函数的性质,三角形的面积的计算,正确的理解题意是解题的关键.【例3】(2019•天津)直线y=2x﹣1与x轴的交点坐标为_________.【分析】根据题意知,当直线y=2x﹣1与x轴相交时,y=0.∴2x﹣1=0,解得x=12.∴直线y=2x+1与x轴的交点坐标是(12,0).故答案为(12,0).【答案】(12,0).【例4】(2020•天津16/25)将直线y=-2x向上平移1个单位长度,平移后直线的解析式为.【考点】一次函数图象与几何变换【分析】根据一次函数图象上下平移时解析式的变化规律求解.【解答】解:将直线y=-2x向上平移1个单位,得到的直线的解析式为y=-2x+1.故答案为y=-2x+1.【点评】本题考查了一次函数图象与几何变换:对于一次函数y=kx+b,若函数图象向上平移m(m>0)个单位,则平移的直线解析式为y=kx+b+m.1.正比例函数的性质:一般地,正比例函数y=kx(k≠0)有下列性质:(1)当k>0时,图象经过第一、三象限,y随x的增大而增大.(2)当k<0时,图象经过第二、四象限,y随x的增大而减小.2.一次函数的性质:一般地,一次函数y=kx+b(k≠0,b≠0)有下列性质:(1)k>0,b>0时,图象经过一、二、三象限,y随x的增大而增大.(2)k>0,b<0时,图象经过一、三、四象限,y随x的增大而增大.(3)k<0,b>0时,图象经过一、二、四象限,y随x的增大而减小.(4)k<0,b<0时,图象经过二、三、四象限,y随x的增大而减小.【例5】(2020•上海9/25)已知正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,那么y的值随着x的值增大而.(填“增大”或“减小”)【考点】正比例函数的性质【分析】根据正比例函数的性质进行解答即可.【解答】解:函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而减小,故答案为:减小.【点评】此题主要考查了正比例函数的性质,关键是掌握正比例函数的性质:正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,该直线经过第一、三象限,且y的值随x的值增大而增大;当k<0时,该直线经过第二、四象限,且y的值随x的值增大而减小.【例6】(2020•安徽7/23)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(-1,2)B.(1,-2)C.(2,3)D.(3,4)【考点】一次函数图象上点的坐标特征;一次函数的性质【分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为(-1,2)时,-k +3=2,解得:k =1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,-2)时,k +3=-2,解得:k =-5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k +3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k +3=4,解得:10k=>,3∴y随x的增大而增大,选项D不符合题意.故选:B.【点评】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.【例7】(2019•成都)已知一次函数y =(k ﹣3)x +1的图象经过第一、二、四象限,则k 的取值范围是_________.【分析】y =(k ﹣3)x +1的图象经过第一、二、四象限,∴k ﹣3<0,∴k <3.故答案为k <3.【答案】k <3.1. 一元一次方程:关于x 的一元一次方程kx +b =0(k ≠0)的解是直线y =kx +b 与x 轴交点的横坐标.2. 二元一次方程组:关于x ,y 的二元一次方程组1122k x b y k x b y +=⎧⎨+=⎩的解是直线y =k 1x +b 1和y =k 2x +b 2的交点坐标. 3. 一元一次不等式:关于x 的一元一次不等式kx +b >0(<0)的解集是以直线y =kx +b 和x 轴的交点为分界点,x 轴上(下)方的图象所对应的x 的取值范围.【例8】(2019•烟台)如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为_________.【分析】点P(m,3)代入y=x+2,得m=1,∴P(1,3).结合图象可知x+2≤ax+c的解为x≤1.故答案为x≤1.【答案】x≤1.1.要使函数y=(m–2)x n–1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2 C.m≠2,n=2 D.m=2,n=02.(2019•本溪)函数y=5x的图象经过的象限是_________.3.(2019•辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.4.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.5.(2019•包头)正比例函数y=kx的图象如图所示,则k的值为()A.43-B.43C.34-D.346.(2019•陕西)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.27.(2018·兴安盟·呼伦贝尔9/26)若式子0(1)m-有意义,则一次函数(1)1y m x m=-+-的图象可能()A.B.C.D.8.(2019•邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y29.(2019•锦州)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.14B.12C.2 D.410.(2019•梧州)直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣111.(2019•陕西)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)12.(2019•大庆)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.13.(2019•广安)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四14.设正比例函数y = mx 的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m =( )A . 2B . -2C . 4D .-415.(2019•潍坊)当直线y =(2﹣2k )x +k ﹣3经过第二、三、四象限时,则k 的取值范围是_________.16.(2019•贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是_________.17.(2019•遵义)如图所示,直线l 1:y =32x +6与直线l 2:y =52-x –2交于点P (–2,3),不等式32x +6>52-x –2的解集是( )A .x >–2B .x ≥–2C .x <–2D .x ≤–218.(2019•黔东南州)如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为_________.19.(2019•南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x ﹣3.(1)当k =﹣2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.1.要使函数y=(m–2)x n–1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2 C.m≠2,n=2 D.m=2,n=0【答案】C.【解析】∵函数y=(m–2)x n–1+n是一次函数,∴m–2≠0,n–1=1.∴m≠2,n=2.故选C.2.(2019•本溪)函数y=5x的图象经过的象限是_________.【答案】一、三.【解析】函数y=5x的图象经过第一、三象限.故答案为:一、三.3.(2019•辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.【答案】A.【解析】∵ab<0且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限,故选A.4.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【答案】A.【解析】A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选A.5.(2019•包头)正比例函数y=kx的图象如图所示,则k的值为()A.43-B.43C.34-D.34【分析】由图知,点(3,4)在函数y=kx上,∴3k=4,解得k=43.故选B.【答案】B.6.(2019•陕西)若正比例函数y=﹣2x的图象经过点O(a﹣1,4),则a的值为()A.﹣1 B.0 C.1 D.2【分析】∵正比例函数y=﹣2x的图象经过点O(a﹣1,4),∴4=﹣2(a﹣1),解得:a=﹣1.故选A.【答案】A.7.(2018·兴安盟·呼伦贝尔9/26)若式子0(1)m-有意义,则一次函数(1)1y m x m=-+-的图象可能()A.B.C.D.【考点】零指数幂;一次函数的图象【分析】根据非负性得出10m-,10m-≠,进而利用一次函数的性质解答即可.【解答】解:由题意可得10m-,10m-≠,解得:1m>,m∴->,10-<,m10所以一次函数(1)1=-+-的图象经过一,三,四象限,y m x m故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y kx b=+所在的位置与k、b的符号有直接的关系.0k>时,直线必经过一、三象限;0b>时,直线与y轴正半轴相交;0b= k<时,直线必经过二、四象限.0时,直线过原点;0b<时,直线与y轴负半轴相交.8.(2019•邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【分析】∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选B.【答案】B.9.(2019•锦州)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.14B.12C.2 D.4【答案】A.【解析】∵在一次函数y=2x+1中,当x=0时,y=1,当y=0时,x=0.5,∴OA=0.5,OB=1.∴△AOB的面积=0.5×1÷2=14.故选A.10.(2019•梧州)直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣1【答案】D.【解析】直线y=3x+1向下平移2个单位,所得直线的解析式是:y=3x+1﹣2=3x﹣1.故选D.11.(2019•陕西)在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(6,0)D.(﹣6,0)【答案】B.【解析】由“上加下减”的原则可知,将函数y=3x的图象向上平移6个单位长度所得函数的解析式为y=3x+6.∵此时与x轴相交,则y=0,∴3x+6=0,即x=﹣2,∴点坐标为(﹣2,0),故选B.12.(2019•大庆)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】A.【解析】∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,且与y轴的负半轴相交.故选A.13.(2019•广安)一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【分析】∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限.故选C.【答案】C.14.设正比例函数y = mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.-2 C. 4 D.-4【考点】正比例函数的性质.【分析】直接根据正比例函数的性质和待定系数法求解即可.【解答】解:把x =m ,y =4代入y =mx 中,可得:m =±2,因为y 的值随x 值的增大而减小,所以m =﹣2,故选B .【点评】本题考查了正比例函数的性质:正比例函数y =kx (k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 值随x 的增大而增大;当k <0,图象经过第二、四象限,y 值随x 的增大而减小.15.(2019•潍坊)当直线y =(2﹣2k )x +k ﹣3经过第二、三、四象限时,则k 的取值范围是_________.【答案】1<k <3.【解析】y =(2﹣2k )x +k ﹣3经过第二、三、四象限,∴2﹣2k <0,k ﹣3<0.∴k >1,k <3.∴1<k <3.故答案为1<k <3.16.(2019•贵阳)在平面直角坐标系内,一次函数y =k 1x +b 1与y =k 2x +b 2的图象如图所示,则关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是_________.【答案】21x y =⎧⎨=⎩.【解析】∵一次函数y =k 1x +b 1与y =k 2x +b 2的图象的交点坐标为(2,1),∴关于x ,y 的方程组1122y k x b y k x b -=⎧⎨-=⎩的解是21x y =⎧⎨=⎩.故答案为21x y =⎧⎨=⎩. 17.(2019•遵义)如图所示,直线l 1:y =32x +6与直线l 2:y =52-x –2交于点P (–2,3),不等式32x +6>52-x –2的解集是( )A .x >–2B .x ≥–2C .x <–2D .x ≤–2【答案】A .【解析】由图象可知,当x >–2时,32x +6>52-x –2.∴不等式32x +6>52-x –2的解集是x >–2.故选A .18.(2019•黔东南州)如图所示,一次函数y =ax +b (a 、b 为常数,且a >0)的图象经过点A (4,1),则不等式ax +b <1的解集为_________.【答案】x <4.【解析】∵一次函数y =ax +b (a 、b 为常数,且a >0)的图象如图所示,经过点A (4,1),且函数值y 随x 的增大而增大,∴不等式ax +b <1的解集为x <4.故答案为x <4. 19.(2019•南京)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x ﹣3. (1)当k =﹣2时,若y 1>y 2,求x 的取值范围.(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.【答案】(1)x <53;(2)﹣4≤k <0或0<k ≤1. 【解析】(1)k =﹣2时,y 1=﹣2x +2,根据题意得﹣2x+2>x﹣3,解得x<53;(2)当x=1时,y2=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.。

2018年全国中考数学真题《函数与一次函数》分类汇编解析

2018年全国中考数学真题《函数与一次函数》分类汇编解析

函数与一次函数考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征 点P(x ,y )在第一象限0,0>>⇔y x点P(x ,y )在第二象限0,0><⇔y x 点P(x ,y )在第三象限0,0<<⇔y x 点P(x ,y )在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x ,y )在x 轴上0=⇔y ,x 为任意实数 点P(x ,y )在y 轴上0=⇔x ,y 为任意实数点P(x ,y )既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x ,y )在第一、三象限夹角平分线上⇔x 与y 相等 点P(x ,y )在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x ,y )到坐标轴及原点的距离: (1)点P(x ,y )到x 轴的距离等于y (2)点P(x ,y )到y 轴的距离等于x(3)点P(x ,y )到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

八年级数学上册一次函数图像应用题(带解析版答案)

八年级数学上册一次函数图像应用题(带解析版答案)

2018年一次函数中考专题参考答案与试题解析一.选择题(共5小题)1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元【分析】由图象可知,不超过100面时,一面收50÷100=0.5元,超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元;【解答】超过100面部分每面收费(70﹣50)÷(150﹣100)=0.4元。

故选A.2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2【分析】写出直线y=kx(k≠0)在y=ax+4(a≠0)上方部分的x的取值范围即可;【解答】由图可知,不等式kx>ax+4的解集为x>2;故选C.3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选B.4.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s (千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t 的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个 B.1个 C.2个 D.3个【分析】①由图象的数量关系,由速度=路程÷时间就可以直接求出结论;②先由图象条件求出行驶后面路程的时间,然后可求出维修用的时间;③由图象求出BC和EF的解析式,然后由其解析式构成二元一次方程组就可以求出t的值;④当t=3时,甲车行的路程为120km,乙车行的路程为:80×(3﹣2)=80km,两车相距的路程为:120﹣80=40km.【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【分析】(1)先由函数图象中的信息求出m的值,再根据“路程÷时间=速度”求出甲的速度,并求出a的值;(2)根据函数图象可得乙车行驶3.5﹣2=1小时后的路程为120km进行计算;(3)先根据图形判断甲、乙两车中先到达B地的是乙车,再把y=260代入y=40x ﹣20求得甲车到达B地的时间,再求出乙车行驶260km需要260÷80=3.25h,即可得到结论;(4)根据甲、乙两车行驶的路程y与时间x之间的解析式,由解析式之间的关系建立方程求出其解即可.【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度:80km/h,∴乙车的行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【分析】由已知可以得到A1,A2,A3,…点的坐标分别为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),…,由此可推出点A n,B n,A n+1,B n+1的坐标为(n,0),(n,),(n+1,0),(n+1,).由函数图象和已知可知要求的P n 的坐标是直线A n B n+1和直线A n+1B n的交点.在这里可以根据推出的四点求出两直线的方程,从而求出点P n.【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为,(n,0),(n,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为:y﹣0=(x﹣n)+0,y﹣0=(x﹣n﹣1)+0,即,解得:,故答案为:(n+,).7.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为38.15℃.(精确到0.01℃)【分析】由于图象是表示的是时间与体温的关系,而在10﹣14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【解答】∵图象在10﹣14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=﹣,b=39.05,∴y=﹣x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.8.“渝黔高速铁路”即将在2017年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.9月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【分析】先设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A地停留20分钟后,以zkm/h的速度返回重庆,依据题意列方程,求得未知数的值,进而得到重庆到A地的路程,以及乙列车到达A地的时间,最后得出当乙列车到达A地时,甲列车距离重庆的路程.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【分析】(1)连续骑行5h,要分两个阶段计费:前两个小时,按每个小时2元计算,后3个小时按每个小时计算,可得结论;(2)根据超过2h的计费方式可得:y与x的函数表达式;(3)根据题意可知:里程超过2个小时,根据(2)的表达式可得结果.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x 的函数表达式即可;(2)当y1=y2时,15x+80=30x,可得x的值;(3)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

2018年中考数学总复习一次函数专题复习练习及答案

2018年中考数学总复习一次函数专题复习练习及答案

2018 初三中考数学复习一次函数专题复习练习1. 下列表达式中,y不是x的函数的是( B )A.y=-x2 B.y2=x C.y=|x| D.y=-x2+12.下列函数中,自变量x的取值范围是x>0的函数是( D )A.y=x B.y=1xC.y=x2+1 D.y=12x-13. 下列变量之间的变化关系不是一次函数的是( B )A.圆的周长和它的半径 B.圆的面积和它的半径C.2x+y=5中的y和x D.正方形的周长C和它的边长a4.下列说法中不正确的是( D )A.一次函数不一定是正比例函数B.不是一次函数就一定不是正比例函数C.正比例函数是特殊的一次函数D.不是正比例函数就一定不是一次函数5. 下列图象中,表示y是x的函数的个数有( B )A.1个 B.2个 C.3个 D.4个6.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长恰好为24米,要围的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是( B )A .y =-2x +24(0<x<12)B .y =-12x +12(0<x<24)C .y =2x -24(0<x<12)D .y =12x -12(0<x<24)7.一次函数y =mx +|m -1|的图象过点(0,2),且y 随x 的增大而增大,则m 等于( B )A .-1B .3C .1D .-1或38.下列四组点中可以在同一个正比例函数图象上的一组点是( A ) A .(2,-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 9.对于函数y =-12x +3,下列说法错误的是( C )A .图象经过点(2,2)B .y 随着x 的增大而减小C .图象与y 轴的交点是(6,0)D .图象与坐标轴围成的三角形面积是9 10.关于x 的一次函数y =kx +k 2+1的图象可能正确的是( C )11.P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-2x +5图象上的两点,且x 1<x 2,则y 1与y 2的大小关系是( C )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1>y 2>012.已知一次函数y =32x +m 和y =-12x +n 的图象都经过点A(-2,0),且与y 轴分别交于B ,C 两点,那么△ABC 的面积是( C ) A .2 B .3 C .4 D .613.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A ,B 的坐标分别为(1,0),(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( C )A .4B .8C .16D .8 214.如图,已知直线l ∶y =33x ,过点A(0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 2 013的坐标为( C )A .(0,22 013)B .(0,22 014)C .(0,24 026)D .(0,24 024) 15.将直线y =2x 向上平移1个单位长度后得到的直线是__y =2x +1__. 16.函数y =x +3x -4中,自变量x 的取值范围是__x ≥0且x ≠4__.17.一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是 __m >-2__.18.直线y =3x -m -4经过点A(m ,0),则关于x 的方程3x -m -4=0的解是 __x =2__.19.已知某一次函数的图象经过点A(0,2),B(1,3),C(a ,1)三点,则a 的值是__-1__.20.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是__4__.21.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式为__y =x -2或y =-x +2__.22.直线l 与y =-2x +1平行,与直线y =-x +2交点的纵坐标为1,则直线l 的解析式为__y =-2x +3__.23.已知:一次函数y =kx +b 的图象经过M(0,2),N(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴的交点为A(a ,0),求a 的值.解:(1)由条件得b =2,把⎩⎪⎨⎪⎧x =1y =3代入y =kx +2中得k =1(2)由(1)得y =x +2,当y =0时,x =-2,即a =-224.联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式; (2)月通话时间多长时,A ,B 两种套餐收费一样? (3)什么情况下A 套餐更省钱? 解:(1)y 1=0.1x +15,y 2=0.15x(2)由y 1=y 2得0.1x +15=0.15x 解得x =300 (3)当通话时间多于300分钟时,A 套餐省钱25.设函数y =x +n 的图象与y 轴交于点A ,函数y =-3x -m 的图象与y 轴交于点B ,两个函数的图象交于点C(-3,1),D 为AB 中点. (1)求m ,n 的值;(2)求直线DC 的一次函数表达式. 解:(1)m =8,n =4(2)由(1)得A(0,4),B(0,-8).因为D 是AB 的中点,所以D(0,-2),设直线CD 的表达式为y =kx +b ;⎩⎪⎨⎪⎧b =-2,-3k +b =1解得⎩⎪⎨⎪⎧k =-1b =-2,即y =-x -226.某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴.) (1)该植物从观察时起,多少天以后停止长高? (2)求直线AC 的表达式,并求该植物最高长多少厘米?解:(1)50天后(2)设直线AC 的表达式为y =kx +6,将(30,12)代入,得12=30k +6,解得k =15,表达式为y =15x +6,最高长16厘米27.1号探测气球从海拔5 m 处出发,以1 m/min 的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m/min 的速度上升,两个气球都匀速上升了50min.设气球上升时间为 x min(0≤x ≤50) (1)根据题意,填写下表:(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当30≤x ≤50时,两个气球所在位置的海拨最多相差多少米? 解:(1)35 x +5 20 0.5x +15(2)能.由x +5=0.5x +15得x =20,所以x +5=25,即气球上升20 min 时位于海拔25 m 处(3)当30≤x ≤50时,1号气球始终在2号汽球上方,设两气球的海拔差为y ,则y =(x +5)-(0.5x +15)=0.5x -10,y 随x 的增大而增大,所以当x =50时,y 的值最大,为15米28.如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0),点P(x ,y)是第二象限内的直线上的一个动点. (1)求k 的值;(2)在点P 的运动过程中,写出△OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置(求P 的坐标)时,△OPA 的面积为278?解:(1)k =34(2)由(1)得y =34x +6所以S =12×6×(34x +6)所以S =94x +18(-8<x<0)(3)由S =94x +18=278得x =-132,y =34×(-132)+6=98,所以P(-132,98)即P 运动到点(-132,98)时,△OPA 的面积为27829.阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y =k 1x +b 1(k 1≠0)的图象为直线l 1,一次函数y =k 2x +b 2(k 2≠0)的图象为直线l 2,若k 1=k 2,且b 1≠b 2,我们就称直线l 1与直线l 2互相平行.解答下面的问题:(1)求过点P(1,4)且与已知直线y =-2x -1平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A ,B ,如果直线m :y =kx +t(t >0)与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:(1)y =-2x +6,图略(2)当0<t<6时,S =9-32t ;当t ≥6时,S =32t -9。

3.2一次函数的图象与性质(第1部分)-2018年中考数学试题分类汇编(word解析版)

3.2一次函数的图象与性质(第1部分)-2018年中考数学试题分类汇编(word解析版)

第三部分函数及其图象3.2 一次函数的图象与性质【一】知识点清单1、正比例函数正比例函数的定义;正比例函数的图象;正比例函数的性质2、一次函数一次函数的定义;一次函数的图象;一次函数的性质;一次函数图象与系数的关系;一次函数图象上点的坐标特征;一次函数图象与几何变换;待定系数法求一次函数解析式;待定系数法求正比例函数解析式;两条直线相交或平行问题;一次函数与一元一次方程;一次函数与一元一次不等式;一次函数与二元一次方程(组)【二】分类试题及参考答案与解析一、选择题1.(2018年陕西-第4题-3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.12-B.12C.﹣2 D.2【知识考点】一次函数图象上点的坐标特征;矩形的性质.【思路分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【解答过程】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:12k=-,故选:A.【总结归纳】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.2.(2018年陕西-第7题-3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)【知识考点】一次函数图象与几何变换.【思路分析】根据对称的性质得出两个点关于x 轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x 轴的交点即可.【解答过程】解:∵直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,∴两直线相交于x 轴上,∵直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,∴直线l 1经过点(3,﹣2),l 2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l 1经过的解析式y=kx+b ,则, 解得:,故直线l 1经过的解析式为:y=﹣2x+4,可得l 1与l 2的交点坐标为l 1与l 2与x 轴的交点,解得:x=2,即l 1与l 2的交点坐标为(2,0).故选:B .【总结归纳】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l 1与l 2的交点坐标为l 1与l 2与x 轴的交点是解题关键.3.(2018年河南省-第10题-3分)如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A B .2 C .52D . 【知识考点】动点问题的函数图象.【思路分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=,应用两次勾股定理分别求BE 和a .【解答过程】解:过点D 作DE ⊥BC 于点E ,由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【总结归纳】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.4.(2018年海南省-第17题-4分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.【知识考点】一次函数图象上点的坐标特征.【思路分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答过程】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【总结归纳】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN是解本题的关键.二、填空题1.(2018年天津-第16题-3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为.【知识考点】一次函数图象与几何变换.【思路分析】直接根据“上加下减,左加右减”的平移规律求解即可.【解答过程】解:将直线y=2x直线y=x向上平移2个单位长度,平移后直线的解析式为y=x+2.故答案为:y=x+2.【总结归纳】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.2.(2018年上海-第14题-4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答过程】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.【总结归纳】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.三、解答题1.(2018年重庆A卷-第22题-10分)如图,在平面直角坐标系中,直线y=﹣x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x 平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.【知识考点】一次函数图象与几何变换;一次函数的性质;两条直线相交或平行问题.。

2018中考数学真题分类汇编解析版-19.2.一次函数图象及其性质

2018中考数学真题分类汇编解析版-19.2.一次函数图象及其性质

一、选择题1.(2018·济宁,12,3分)在平面直角坐标系中,已知一次函数y =21x -+的图象经过P 1(1x ,1y )、P 2(2x ,2y )两点,若1x <2x ,则1y ________2y .(填“>”“<”或“=”)答案:>.解析:在y =21x -+中,因为k =-2,所以y 随x 的增大而减小.因为1x <2x ,则1y >2y . 2. (2018·南充,7,3分)直线y =2x 向下平移2个单位得到的直线是 A .y =2(x +2) B .y =2(x -2) C .y =2x -2 D .y =2x +2答案:C .解析:y =2x 向下平移2个单位得到的直线是y =2x -2,也可以从(0,0)平移到(0,-2)得到答案C .3.(2018·德州,10,4)给出下列函数:①y =-3x +2;②y =3x;③y =2x 2;④y =3x .上述函数中符合条件”当x >1时,函数值y 随自变量x 的增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③答案:.B ,解析:∵x >1>0,y =2x 2的对称轴是y 轴,开口向上,∴y =3x 和y =2x 2的函数值y 随自变量x 的增大而增大,故③④符合题意. 4.(2018•枣庄市,5,3) 如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )第5题图A .-5B .32C .52D .7答案:B ,解析:∵y =kx +b 的图象l 过(0,1)和(-2,0),∴1-20b k b =⎧⎨+=⎩,,解得1=21k b ⎧⎪⎨⎪=⎩,,∴y =12x +1,又A (3,m )在直线l 上,∴m =32+1=52,故选C .5.(2018·常德,4,3分)若一次函数y =(k -2)x +1的函数值y 随x 的增大而增大,则A .k <2B .k >2C .k >0D .k <0答案.B ,解析:因为一次函数y =kx +b 的函数值y 随x 的增大而增大,所以k -2>0,解得k >2,故选B . 6.(2018江苏宿迁,8,3分)在平面直角坐标系中,过点A (1,2)作直线l 与两坐标轴围成的三角形的面积为4,则满足条件的直线l 的条数是A .5B .4C .3D .2答案:C ,解析:设直线l 的解析式为y=kx+b ,把A (1,2)代入得2=k+b ,即b=2-k ,∴y=kx+2-k ,与坐标轴交点坐标为(0,2-k ),(kk 2-,0).∵与两坐标轴围成的三角形的面积为4,∴42221=-⋅-k k k ,①当k<0时,原式可化为:8)2(2=--kk ,解得k=-2;②当0<k<2时,原式可化为k k 8)2(2=-,解得246-=k ;③当k>2时,原式可化为k k 8)2(2=-,解得246+=k 故选C .7.(2018·株洲市,10,3分)已知一系列直线y =a k x +b (a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子ji j i x x a a --(1≤i ≤k ,1≤j ≤k ,i ≠j ),下列一定正确的是( )A .大于1B .大于0C .小于-1D . 小于0 B ,解析:对于y =a k x +b ,令y =0,则x =k a b -,所以x i -x j =i a b-+j a b =ji j i a a a a b )(-,ji j i x x a a --=ji j i ji a a a a b a a )(--=b a a j i .因为a k 均不相等且不为零,a k 同号,b >0,所以0>b a a j i ,故选B . 8.(2018·娄底市,9,3分)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位,所得的直线的表达式为( ) A .y=2x ﹣4 B .y=2x+4 C .y=2x+2 D .y=2x ﹣2A ,解析:在平面直角坐标系中,直线平移时k 的值不变,只有b 发生变化,将图形的平移转化为图形上某点的平移,找出一个特殊的点代入求k 的值;或直接根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.写出平移后的直线解析式:y=2(x ﹣2)﹣3+3=2x ﹣4. 9.(2018·绍兴,6,4分)如图,一个函数的图象由射线BA 、线段BC 、射线CD 组成,其中点A (-1,2),B (1,3),C (2,1),D (6,5),则此函数A .当x <1时,y 随x 的增大而增大B .当x <1时,y 随x 的增大而减小C .当x >1时,y 随x 的增大而增大D .当x >1时,y 随x 的增大而减小答案:A ,解析:从图像可知,当x ≤1时,y 随x 的增大而增大;当1≤x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大.因此本题的正确答案是A . 10(2018·内江市,12,3分)如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 坐标分别为(2,1),(6,1),∠BAC=90°,∠BAC=90°,AB=AC ,直线AB 交y 轴于点P,若△ABC 与△ABC 关于点P 成中心对称,则点A′的坐标为( )A.(-4,-5)B.(-5,-4)C.(-3,-4)D.(-4,-)A 解析:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形, ∴A (4,3),设直线AB 解析式为y=kx+b ,则 43,21,k b k b +=⎧⎨+=⎩解得1,1,k b =⎧⎨=-⎩∴直线AB 解析式为y=x ﹣1, 令x=0,则y=﹣1, ∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称, ∴点P 为AA'的中点,设A'(m ,n ),则42m +=0,32n+=﹣1, ∴m=﹣4,n=﹣5, ∴A'(﹣4,﹣5)二、填空题1.(2018安徽,13,5分)如图,正比例函数y =kx 与反比例函数y =x6的图象有一个交点A (2,m ),AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l .则直线l 对应的函数表达式是答案.y =23x -3.,解析:∵点A (2,m )在反比例函数y =x 6的图象上,∴m =26=3,∴点A 坐标为(2,3),∵AB ⊥x 轴于点B ,∴点B 坐标为(2,0),∵点A (2,3)在直线y =kx 上,∴3=2k ,k =23,根据题意设直线l 对应的函数表达式为y =23x +b ,∵点B (2,0)在直线l 上,∴0=2×23+b ,b =-3.∴直线l 对应的函数表达式为y =23x -3.4.(2018眉山市,14,3分)已知点A (x 1,y 1)、B (x 2,y 2)在直线y =kx +b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为 .答案:y 1>y 2,解析:由于一次函数图象经过二、四象限,∴k <0,y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2 5.(2018·扬州市,18,3分)如图,在等腰Rt △ABO ,∠A =90°,点B 的坐标为(0,2),若直线:l )0(≠+=m m mx y 把△ABO 分成面积相等的两部分,则m 的值为 .5.5132-,解析:直线:l )0(≠+=m m mx y 与x 轴交于点(-1,0),与y 轴交于点(0,m ),与AB 交于点C ,由题意可知:直线AB 的表达式为y =-x +2,解方程组2y mx my x =+⎧⎨=-+⎩得x =21m m -+,∴CD=21m m -+;S △BCE =12S △ABO =12=12×BE ×CD =12·21mm -+·(2-m ),解得m =5132±,由于5132+>2,故舍去,∴m 的值为5132-. 6. 已知点A 是直线y =x +1上一点,其横坐标为– 12,若点B 与点A 关于y 轴对称,则点B 的坐标为 .答案:(12,12),解析:∵点A 是直线y =x +1上一点,其横坐标为– 12,∴y =– 12+1= 12,∴A (– 12,12),∵点B 与点A 关于y 轴对称,∴点B 坐标为(12,12).7.(2018·温州市,15,3分) 如图,直线 343y x =-+与 x 轴、y 轴分别交于 A ,B 两点,C 是 OB 的中点,D 是 AB 上一点,四边形 OEDC 是菱形,则△OAE 的面积为.答案:23,解析:已知直线方程,且A ,B 两点分别为直线与x 轴、y 轴的交点,则A 点坐标为(43,0),B 点坐标为(0,4),则OB =4,OA =43,又因为△OAB 为直角三角形,所以∠OBA = 60°;C 点坐标为(0,2),又因为四边形 OEDC 是菱形,所以OC =CD =BC ,又因为∠OBA = 60°,所以△BCD 为等边三角形,D 点坐标为(3,3),则E 点坐标为(3,1),则△OEA 的面积S =14312⨯⨯=23. 8.(2018·天津市,16,3分)将直线y =x 向上平移2个单位长度,平移后直线的解析式为 . 答案:y =x +2 解析:设平移后直线的解析式为y =kx +b ,易知k =2,平移后直线经过点(0,2),将(0,2)代入y =x +b 得b =2,∴平移后直线的解析式为y =x +2. 95. (2018·内江市,25,6分)如图,直线y=-x+1与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等分,分点分别为1231,,,n P P P P -……,,过每个分点作x 轴的垂线分别交直线AB 于1231,,,n T T T T -……,,用1231,,,n S S S S -……,分别表示11212,,Rt T OP Rt T PP ∆∆……,第18题答图xy E DAB OC xy ABO第18题图121n n n Rt T P P ---∆的面积,则1231n S S S S -+++……+= .14n n- 解析:∵P 1,P 2,P 3,…,P n ﹣1是x 轴上的点,且OP 1=P 1P2=P 2P3=…=P n ﹣2P n ﹣1=1n ,分别过点p 1、p 2、p 3、…、p n ﹣2、p n ﹣1作x 轴的垂线交直线y=﹣x+1于点T 1,T 2,T 3,…,T n ﹣1,∴T 1的横坐标为:1n ,纵坐标为:1﹣1n,∴S 1=12×1n (1﹣1n )=12n(1﹣1n )同理可得:T 2的横坐标为:2n ,纵坐标为:1﹣2n,∴S 2=12n(1﹣2n ),T 3的横坐标为:3n ,纵坐标为:1﹣3n ,S 3=12n(1﹣3n )…S n ﹣1=12n (1﹣1n n-)∴S 1+S 2+S 3+…+S n ﹣1=12n [n ﹣1﹣12(n ﹣1)]= 14×1n (n ﹣1)=14n n-.三、解答题 1.(2018·山东泰安,22,9分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数y =xm的图象经过点E ,与AB 交于点F . (1)若点B 的坐标为(-6,0),求m 的值及图象经过A 、E 两点的一次函数的表达式; (2)若AF -AE =2,求反比例函数的表达式.思路分析:(1)由B 点坐标及边AD 、AB 的长,可求点A 与点E 的坐标,这样利用待定系数法即可求反比例函数、一次函数的表达式;(2)在Rt △ADE 中,由勾股定理可求AE 的长,再由AF -AE =2求得AF 的长,进而得BF 的长.不妨设E 点横标为a ,则F 点横标为a -3,由于点E 、F 均在反比例函数图象上,故它们的坐标之积相等,据此列方程求得a 的值,则易于计算m 的值,确定出反比例函数的表达式.解答过程:解:(1)∵B (-6,0),AD =3,AB =8,E 为CD 的中点,∴E (-3,4),A (-6,8). ∵反比例函数图象过点E (-3,4),∴m =-3×4=-12.设图象经过A 、E 两点的一次函数表达式为:y =kx +b ,∴⎩⎨⎧=+-=+-.43,86b k b k 解得⎪⎩⎪⎨⎧=-=.0,34b x k∴y =34-x .(2)∵AD =3,DE =4,∴AE =5.∵AF -AE =2,∴AF =7.∴BF =1. 设E 点坐标为(a ,4),则F 点坐标为(a -3,1).∵E ,F 两点在y =x m 图象上,∴4a =a -3,解得a =-1.∴E (-1,4),∴m =-4,∴y =x4-. 2(2018·重庆B 卷,22,10)如图,在平面直角坐标系中,直线l 1:y =12x 与直线l 2交点A 的横坐标为2,将直线l 1沿y 轴向下平移4个单位长度,得到直线l 3,直线l 3与y 轴交于点B ,与直线l 2交于点C ,点C 的纵坐标为-2,直线l 2与y 轴交于点D . (1)求直线l 2的解析式; (2)求△BDC 的面积.【思路分析】(1)先求出点A 的坐标,再由平移求出直线l 3的为y =12x -4,进而求出点C 的坐标;直线l 2的解析式为y =kx +b ,将A 、C 两点坐标代入得方程组解答即可锁定直线l 2的解析式;(2)先求出B 、D 两点坐标,进而得到线段BD 的长,C 点的横坐标的绝对值即为△BDC 的边BD 上的高,由三角形的面积公式计算即可.l 3l 2l 1y xOCDBA 22题图A B C DEFO xy【解题过程】22.解:(1)在y=12x中,当x=2时,y=1;易知直线l3的解析式为y=12x-4,当y=-2时,x=4,故A(2,1),C(4,-2).设直线l2的解析式为y=kx+b,则2142k bk b+=⎧⎨+=-⎩,解得324kb⎧=-⎪⎨⎪=⎩,故直线l2的解析式为y=-32x+4.(2)易知D(0,4),B(0,-4),从而DB=8.由C(4,-2),知C点到y轴的距离为4,故S△BDC=12BD•Cx=12×8×4=16.【知识点】一次函数的应用平移一次函数解析式的求法3.(2018·无锡市,26,10)如图,平面直角坐标系中,已知点B的坐标为(6,4)(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x轴和y轴的正半轴分别交于点A和点C,且使∠ABC=90°,△ABC与△AOC的面积相等.(作图不必写作法,但要保留作图痕迹.)(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC,并写出与之对应的函数表达式.思路分析:(1)①当△ABC与△AOC全等且拼成矩形,可通过作垂线构造矩形的方法,也可找OB中点画圆的方法找到AC两点,再作直线AC;②当△ABC与△AOC全等且拼成筝形时,作OB的垂直平分线即可;(2),当△ABC与△AOC全等且拼成筝形时,先借助勾股定理列方程求出OA和OC的长,从而得A、C的坐标,在用待定系数法求AC的解析式;当△ABC与△AOC全等且拼成矩形,直接利用待定系数法求AC得解析式.解答过程:答案:解:(1)方法一:过B作BA⊥x轴于A,过B作BC⊥y轴于C,作直线AC(见答图①);方法二:连接OB,作OB的垂直平分线交OB于D,以D为圆心,DO为半径作圆D,交x轴于A,交y 轴于C,作直线AC(见答图②);方法三:连接OB,作OB的垂直平分线交x轴于A,交y轴于C,作直线AC(见答图③);① ②③ ④(2)不唯一,①当∵△AOC ≌△ABC 时,过B 作BC ⊥y 轴于E ,过B 作BA ⊥x 轴于F (见答图④),则四边形OEBF 是矩形,∴OE =6,OF =4,设OA =a ,则AE =6-a ,∵OA =BA =a ,AB 2=AE 2+BE 2 ,∴a 2=(6-a )2+42,解得a =313,∴A (313,0);同法,设OC =c ,CF =c -4, ∵CO =CB =c ,CB 2=CF 2+BF 2, ∴c 2=(c -4)2+62,解得c =213,∴C (0,213),设AC 解析式为y =kx +b ,把A (313,0)、C (0,213),代入得1303132k b b ⎧+=⎪⎪⎨⎪=⎪⎩,,解得32132k b ⎧=-⎪⎪⎨⎪=⎪⎩,,∴AC 得表达式为31322y x =-+;②当∵△AOC ≌△CBA 时(见答图①),可得∴OA =6,OB =4,点A 的坐标为(6,0),C (0,4),设AC 解析式为y =kx +b ,把A 、C 代入得604k b b +=⎧⎨=⎩,,解得234k b ⎧=-⎪⎨⎪=⎩,,∴AC 得表达式为243y x =-+.4.(2018·杭州,20,10分)设一次函数b kx y +=(b k ,是常数,0≠k )的图象过A (1,3),B (-1,-1)两点,(1)求该一次函数的表达式; (2)若点()2,22aa +在该一次函数图象上,求a 的值;(3)已知点C ()11,y x ,D ()22,y x 在该一次函数图象上,设()()2121y y x x m --=,判断反比例函数xm y 1+=的图象所在的象限,说明理由。

中考复习专题(五)《 一次函数的图象与性质的应用》经典题型(含答案)

中考复习专题(五)《 一次函数的图象与性质的应用》经典题型(含答案)

中考复习专题提升(五)一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎪⎨⎪⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(km)与乘车时间t(h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1 min到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过43 h与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b ,把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b ,解得⎩⎪⎨⎪⎧k =40,b =-60,∴直线BC 的表达式为y =40t -60.设直线CD 的函数表达式为y 1=k 1t +b 1,把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎨⎧1003=73k 1+b 1,0=4k 1+b 1,解得⎩⎪⎨⎪⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80; (2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得⎩⎨⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎪⎨⎪⎧a =60,b =20, ∴甲的速度为60 km/h ,乙的速度为20 km/h ,∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝ ⎛⎭⎪⎫1≤t ≤73, s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75,答:丙出发75 h 与甲相遇.【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式__y=60x(0<x≤6)__;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中画出它们的图象;(3)根据图象回答下列问题:印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3 000元用于印刷上述宣传材料,找哪一家印刷厂印制宣传材料多一些?解:(1)甲厂的收费函数表达式为y甲=x+1 500,乙厂的收费函数表达式为y乙=2.5x;(2)图略;(3)当x=800时,y甲=x+1 500=800+1 500=2 300(元),y乙=2.5x=2.5×800=2 000(元);当y=3 000时,y甲=x+1 500=3 000,解得x=1 500,y乙=2.5x=3 000,解得x=1 200,答:印制800份材料时,选择乙厂合算;花费3 000元时,甲厂印制的宣传材料多一些.【思想方法】解此类一次函数在实际生活中的应用的问题,需综合运用方程等知识,体现了数形结合思想.【中考变形】1.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示: 甲 乙 进价(元/部)4 000 2 500 售价(元/部) 4 300 3 000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元[毛利润=(售价-进价)×销售量].(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,才能使全部销售后获得的毛利润最大?求出最大毛利润.解:(1)设商场计划购进甲种手机x 部,乙种手机y 部,由题意,得⎩⎪⎨⎪⎧0.4x +0.25y =15.5,0.03x +0.05y =2.1,解得⎩⎪⎨⎪⎧x =20,y =30.答:商场计划购进甲种手机20部,乙种手机30部;(2)设甲种手机的购进数量减少a 部,则乙种手机的购进数量增加2a 部, 由题意,得0.4×(20-a )+0.25×(30+2a )≤16,解得a ≤5.设全部销售后获得的毛利润为W 万元,由题意,得W =0.03×(20-a )+0.05×(30+2a )=0.07a +2.1.∵k =0.07>0,∴W 随a 的增大而增大,∴当a =5时,W 最大=2.45万元.答:该商场购进甲种手机15部,乙种手机40部可使获得的毛利润最大,最大毛利润为2.45万元.2.[2017·绵阳]江南农场收割小麦,已知1台大型收割机和3台小型收割机1 h可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1 h 可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1 h 收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台,要求2 h 完成8公顷小麦的收割任务,且总费用不超过5 400元.有几种方案?请指出费用最低的一种,并求出相应的费用. 解:(1)设1台大型收割机每小时收割小麦a 公顷,1台小型收割机每小时收割小麦b 公顷,根据题意,得⎩⎪⎨⎪⎧a +3b =1.4,2a +5b =2.5,解得⎩⎪⎨⎪⎧a =0.5,b =0.3.答:1台大型收割机每小时收割小麦0.5公顷,1台小型收割机每小时收割小麦0.3公顷.(2)设需要大型收割机x 台,则需要小型收割机(10-x )台,根据题意, 得⎩⎪⎨⎪⎧600x +400(10-x )≤5 400,x +0.6(10-x )≥8,解得5≤x ≤7, 又∵x 取整数,∴x =5,6,7,一共有3种方案.设费用为W 元,则W =600x +400(10-x )=200x +4 000.由一次函数性质知,W 随x 增大而增大.∴当x =5时,W 值最小,即大型收割机5台,小型收割机5台时,费用最低,此时,所有费用W =600×5+400×5=5 000(元). 答:采用大型、小型收割机各5台时费用最低,最低费用为5 000元.【中考预测】某商店销售10台A 型和20台B 型电脑的利润为4 000元,销售20台A 型和10台B 型电脑的利润为3 500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型,B 型电脑各多少台,才能使销售总利润最大?解:(1)设每台A 型电脑销售利润为m 元,每台B 型电脑的销售利润为n 元,根据题意,得⎩⎪⎨⎪⎧10m +20n =4 000,20m +10n =3 500,解得⎩⎪⎨⎪⎧m =100,n =150.答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①根据题意,得y =100x +150×(100-x ),即y =-50x +15 000.②根据题意,得100-x ≤2x ,解得x ≥3313,∵y =-50x +15 000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 有最大值,则100-x =66.答:商店购进34台A 型电脑和66台B 型电脑时,销售利润最大.。

正比例函数与一次函数图象、性质及其应用(解析版)数学2018全国中考真题-2

正比例函数与一次函数图象、性质及其应用(解析版)数学2018全国中考真题-2

2018年数学全国中考真题正比例函数与一次函数图象、性质及其应用(试题二)解析版一、选择题1. (2018湖南娄底,10,3)将直线23y x 向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24yx B .24y x C .22y x D .22y x【答案】A【解析】根据图象平移时左加右减的规律,向右平移2个单位后为723)2(2-=--=x x y ,再向上平移3个单位后为42372-=+-=x x y ,故选A【知识点】函数图象的平移2. (2018辽宁省沈阳市,8,2分)在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是( )第8题图A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0 【答案】C【解析】∵一次函数y =kx +b 的图象过一、二、四象限,∴k<0,b>0.故选C. 【知识点】一次函数图象与系数的关系.3. (2018湖南湘西州,13,4分) 一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0) 【答案】:A4. (2018江苏常州,4,2)一个正比例函数的图像经过点(2,-1),则它的表达式为( ) A .y =-2x B .y =2x C .y =-21x D .y =21x 【答案】.A 【解析】两组对边相等的四边形是平行四边形,或一组对边平行且相等的四边形是平边四边形,因而A 为假命题.,故选A .5. (2018江苏徐州,8,3分)若函数y kx b =+的图象如图所示,则关于x 的不等式20kx b +<的解集为A .3x <B .3x >C .6x <D .6x >【答案】D6.(2018辽宁葫芦岛,8,3分)如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为( ) A .x >-2 B .x <-2 C .x >4 D .x <4【答案】A【解析】由图象得kx +b =4时, x =-2,∴kx +b >4时, x >-2, 故选A .7. (2018贵州贵阳,9,3分)一次函数y =kx -1的图像经过点P ,且y 的值随x 值的增大而增大,则点P 的( )A .(-5,3)B .(1,-3)C .(2,2)D .(5,-1) 【答案】C【解析】∵一次函数y =kx -1的图像经过点P ,且y 的值随x 值的增大而增大,∴k >0. 由y =kx -1得1y k x +=.分别将备选项中坐标代入该式,只有当(2,2)时213k 22+==>0.8. (2018黑龙江哈尔滨,9,3)已知反比例函数y =xk 32-的图象经过点(1,1),则k 的值为( ) A .-1 B .0 C .1 D .2【答案】D ,【解析】将点(1,1)代入反比例函数解析式可得到k 的一元一次方程,解得k =29.(2018湖南省株洲市,10,3)已知一系列直线y =a k x +b (a k 均不相等且不为零,a k 同号,k 为大于或等于2的整数,b >0)分别与直线y =0相交于一系列点A k ,设A k 的横坐标为x k ,则对于式子a i −aj x i−x j(1≤i ≤k , 1≤j ≤k ,i ≠j ),下列一定正确的是( )A .大于1B .大于0C .小于-1D .小于0 【答案】B【思路分析】解:a k x +b =0,则a k =−b x .a i −a jx i−x j=−b x i −−b x jx i−x j=b x i x j.∵b >0,x i x j >0,∴bx i x j>0.故选B .故选B .【知识点】一次函数的图象10. (2018辽宁省抚顺市,题号6,分值3)一次函数y=-x-2的图象经过 A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限【答案】D【解析】由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.-2<-1<0,∴一次函数y=-x-2的图象经过第二、三、四象限.故选D. 【知识点】一次函数图象的性质.二、填空题1. (2018海南省,17,4分值)如图,在平面直角坐标系中,点M 是直线y =-x 上的动点,过点M 作MN ⊥x轴,交直线y =x 于点N ,当MN ≤8时,设点M 的横坐标为m ,则m 的取值范围为________.【答案】-4≤m ≤4【思路分析】用m 表示出点M 、N 的坐标,用m 表示出MN 的长,根据MN ≤8,列出不等式,求解不等式就可得到m 的取值范围.【解题过程】点M 的横坐标为m ,所以点M 的纵坐标为﹣m ,点N 的纵坐标为m ,因此MN =m m m 2-=--, MN ≤8,所以82≤-m ,因此44≤≤-m .【知识点】正比例函数,不等式,数形结合2. (2018山东省东营市,17,3分) 在平面直角坐标系内有两点A 、B ,其坐标为A(-1,-1),B(2,7),点M 为x 轴上的一个动点,若要使MB-MA 的值最大,则点M 的坐标为 . 【答案】(32-,0)。

2018年全国各地中考数学真题汇编:一次函数(含答案)

2018年全国各地中考数学真题汇编:一次函数(含答案)

中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B.C.D.【答案】D3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A.5B.4C.3D.2【答案】C4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【答案】A5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C.D.【答案】B6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C.D.【答案】D7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B.C. D.【答案】A8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D9.一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.【答案】A10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是( )A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不可能始终经过某一定点【答案】B11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【答案】D二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.【答案】13.已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.【答案】y1>y214.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。

2018年中考数学【一次函数】试题汇集及解析(20190801064541)

2018年中考数学【一次函数】试题汇集及解析(20190801064541)

2018年中考数学【一次函数】试题汇集及解析
2018年中考数学
【一次函数】试题汇集训练卷
一、选择题
1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,
函数值y随自变量x增大而增大“的是()
A. ①③
B. ③④
C. ②④
D. ②③
2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )
A. B. C. D.
3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A.5
B.4
C.3
D.2
4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()
A. B.
C. D.
5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()
A. B. C. D.
6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至
点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )
1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学一次函数的图象及其性质专题复习1.在平面直角坐标系中,将直线l1:y=-2x-2平移后,得到直线l2:y=-2x+4,则下列平移作法正确的是( )A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度2.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1),B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0 B.y1+y2<0 C.y1-y2>0 D.y1-y2<03.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P (1,3),则关于x的不等式x+b>kx+4的解集是( )A.x>-2 B.x>0 C.x>1 D.x<15.若式子k-1+(k-1)0有意义,则一次函数y=(k-1)x+1-k的图象可能是( )6.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是____.7.若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k 的取值范围是__ __.8.过点(-1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线y=-3 2x+1平行.则在线段AB上,横、纵坐标都是整数的点的坐标是__ __.9.一次函数y=2x-6的图像与x轴的交点坐标为____.10.设一次函数y=mx+1的图象经过点A(m,5),且y的值随x值的增大而减小,则m=____.11.已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.12.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常销售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A ,B ,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.14.在△ABC 中,∠ABC =45°,tan ∠ACB =35.如图,把△ABC 的一边BC 放置在x 轴上,有OB =14,OC =10334,AC 与y 轴交于点E.(1)求AC 所在直线的函数解析式;(2)过点O 作OG⊥AC,垂足为G ,求△OEG 的面积;(3)已知点F(10,0),在△ABC 的边上取两点P ,Q ,是否存在以O ,P ,Q 为顶点的三角形与△OFP 全等,且这两个三角形在OP 的异侧?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.1.在平面直角坐标系中,将直线l 1:y =-2x -2平移后,得到直线l 2:y =-2x +4,则下列平移作法正确的是( A )A .将l 1向右平移3个单位长度B .将l 1向右平移6个单位长度C .将l 1向上平移2个单位长度D .将l 1向上平移4个单位长度2.已知正比例函数y =kx(k <0)的图象上两点A(x 1,y 1),B(x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( C )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<0 3.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过( A )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( C )A .x >-2B .x >0C .x >1D .x <15.若式子k -1+(k -1)0有意义,则一次函数y =(k -1)x +1-k 的图象可能是( A )6.一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是__m >-2__.7.若一次函数y =kx +1(k 为常数,k ≠0)的图象经过第一、二、三象限,则k 的取值范围是__k >0__.8.过点(-1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线y =-32x +1平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是__(1,4),(3,1)__.9.一次函数y =2x -6的图像与x 轴的交点坐标为__(3,0)__.10.设一次函数y =mx +1的图象经过点A(m ,5),且y 的值随x 值的增大而减小,则m =__-2__.11.已知一次函数y =kx +3的图象经过点(1,4). (1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.解:(1)把(1,4)代入y =kx +3,得k +3=4,解得k =1,即一次函数的解析式为y =x +3 (2)因为k =1,所以原不等式化为x +3≤6,解得x≤312.如图,直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且S △BOC =2,求点C 的坐标.解:(1)设直线AB 的解析式为y =kx +b ,∵直线AB 过点A(1,0),B(0,-2),∴⎩⎪⎨⎪⎧k +b =0,b =-2,解得⎩⎪⎨⎪⎧k =2,b =-2.∴直线AB 的解析式为y =2x -2 (2)设点C 的坐标为(x ,y),∵S △BOC =2,∴12×2×x=2,解得x =2,∴y =2×2-2=2,∴点C的坐标是(2,2)13.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡: ① 金卡售价600元/张,每次凭卡不再收费; ② 银卡售价150元/张,每次凭卡另收10元.暑假普通票正常销售,两种优惠卡仅限暑假使用,不限次数.设游泳x 次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A ,B ,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.解:(1)选择银卡消费时y =10x +150;选择普通票消费时y =20x(2)令解析式y =10x +150中的x =0,得A 点坐标(0,150).联立解析式⎩⎪⎨⎪⎧y =20x ,y =10x +150,解 得⎩⎪⎨⎪⎧x =15,y =300. 得B(15,300).令解析式y =10x +150中的y =600,解得x =45.∴C(45,600)(3)根据图象可知,当0≤x<15时,选择普通票消费更合算;当x =15时,选择银卡和普通票消费一样合算; 当15<x <45时,选择银卡消费合算; 当x =45时,选择金卡和银卡消费一样合算; 当x >45时,选择金卡消费合算14.在△ABC 中,∠ABC =45°,tan ∠ACB =35.如图,把△ABC 的一边BC 放置在x 轴上,有OB =14,OC =10334,AC 与y 轴交于点E.(1)求AC 所在直线的函数解析式;(2)过点O 作OG⊥AC,垂足为G ,求△OEG 的面积;(3)已知点F(10,0),在△ABC 的边上取两点P ,Q ,是否存在以O ,P ,Q 为顶点的三角形与△OFP 全等,且这两个三角形在OP 的异侧?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.解:(1)在Rt △OCE 中,OE =OC·tan ∠OCE =10334×35=234,∴点E(0,234),设直线AC 的函数解析式为y =kx +234,有10343k +234=0,解得k =-35,∴直线AC 的函数解析式为y =-35x +234(2)在Rt △OGE 中,tan ∠EOG =tan ∠OCE =EG GO =35.设EG =3t ,OG =5t ,OE =EG 2+OG 2=34t ,∴234=34t ,解得t =2,∴EG =6,OG =10,∴S △OEG =12OG×EG=12×10×6=30(3)存在.Ⅰ.当点Q 在AC 上时,点Q 即为点G ,如图①,作∠FOQ 的角平分线交CE 于点P 1,由△OP 1F ≌△OP 1Q ,则有P 1F ⊥x 轴,由于点P 1在直线AC 上,当x =10时,y =-35×10+234=234-6,∴点P 1(10,234-6)Ⅱ.当点Q 在AB 上时,如图②,有OQ =OF ,作∠FOQ 的角平分线交CE 于点P 2,过点Q 作QH⊥OB 于点H ,设OH =a ,则BH =QH =14-a ,在Rt △OQH 中,a 2+(14-a)2=100,解得a 1=6,a 2=8,∴Q(-6,8)或Q(-8,6),当Q(-6,8)时,连接QF 交OP 2于点M ,则点M(2,4).此时直线OM 的函数解析式为y =2x ,⎩⎪⎨⎪⎧y =2x ,y =-35x +234,得⎩⎪⎨⎪⎧x =103413,y =203413,∴P 2(103413,203413),当Q(-8,6)时,同理可求得P 3(5934,5334),如图③,有QP 4∥OF ,QP 4=OF =10,设点P 4的横坐标为x ,则点Q 的横坐标为(x -10),∵y Q =y P ,直线AB 的函数解析式为y =x +14,∴(x -10)+14=-35x +234,解得x =534-104,可得y =534+64,∴点P 4(534-104,534+64).Ⅲ.当Q 在BC 边上时,如图④,OQ =OF =10,点P 5在E 点,∴点P 5(0,234).综上所述,存在满足条件的点P 的坐标为:P 1(10,234-6),P 2(101334,201334),P 3(5934,5334),P 4(534-104,534+64),P 5(0,234)。

相关文档
最新文档