循环伏安,交流阻抗与锂离子电池扩散系数19页PPT
锂离子扩散系数的电化学测量方法课件
目 录
• 锂离子电池简介 • 电化学测量方法基础 • 锂离子扩散系数的测量原理 • 实验设计与操作 • 数据处理与分析 • 实验结果的应用与展望
contents
01
CATALOGUE
锂离子电池简介
锂离子电池的工作原理
锂离子电池通过锂离子在正负极之间的迁移实现充放电过程。
02
CATALOGUE
电化学测量方法基础
电化学测量方法的原理
测量原理
通过测量电极上电流或电 位随时间的变化,利用相 关公式计算锂离子的扩散 系数。
实验装置
包括电解池、恒电位仪、 恒流仪、数据采集系统等。
实验操作
将电极置于含有锂离子的 电解液中,施加一定的电 位或电流,记录相关电学 参数。
电极反应动力学基础
数据采集与处理系统
选择合适的数据采集与处理系统,用于实时 采集和记录实验数据。
实验步骤的设计与操作
准备电极和电解液
根据上述材料选择与准备要求,准备 好电极和电解液。
02
组装电解池
将电极和隔膜放入电解池中,加入电 解液,密封电解池。
01
03
启动实验
通过电化学工作站设置恒电位或恒电 流条件,启动实验。
D= MSD ,其中 D 为锂离子扩散 系数,M为锂离子迁移数,S为电 极表面积,D为锂离子在电极材 料中的平均自由程。
锂离子扩散系数的测量方法
交流阻抗法
通过测量电极系统的交流阻抗随 频率的变化,推算锂离子在电极
材料中的扩散系数。
恒电位阶跃法
通过测量恒电位阶跃下电流响应随 时间的变化,利用Cottrell方程计 算锂离子的扩散系数。
实验结果的展望
锂离子固相扩散系数.精选PPT
方法特点
可以直观的看出是否受扩散控制
缺点1:得到的结果也只是一个表观 的扩散系数
缺点2:要求所测体系的摩尔体积Vm 不发生变化
应用举例[2]:
从Nyquist图上取出扩散控制部分(即图2中低频区的红线部分) 的数据,根据公式3或4,用Zω的实部或虚部对ω-1/2作图,即可求 得系数B,将B带入公式5,即可求得扩散系数 。
(5)
其中:ω为角频率,B为Warburg系数,DLi为Li在电极中的扩散系数,Vm为活 性物质的摩尔体积,F为法拉第常量(96500C/mol),A为浸入溶液中的电极 面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某 浓度处的斜率。
[2] Journal of Power Sources 76 (1998) 81-90
▪ 电位弛豫法(Potential Relax Technique, PRT) ▪ 恒电流间歇滴定法(Galvanostatic Intermittent
Titration Technique, GITT)等等
常用的测量方法
(1) 循环伏安法(Cyclic Voltammetry, CV)
对于扩散步骤控制的可逆体系,用循环伏安法测化学扩 散系数如公式1和2所示[1]:
▪ 化学扩散系数:扩散过程伴随着固相反应,此时扩
散系数具有反应速度常数的含义,称为化学扩散系 数。 (例:O在Fe3O4中的扩散、Li在TiS2中的扩散等)
《固体离子学》工藤彻一、笛木和雄著,董治长译,北京工业大学出版社;
关于本节题目的说明:
为何是“锂”而不是“锂离子”?
▪ 从所查阅的文献来看,既有使用“锂离子”
锂离子固相扩散系数
锂离子固相扩散系数
循环伏安及能级计算PPT演示课件
实例六:
EHOMO=-(Eoxonset→SCE+4.4eV)=-(Eox+4.4eV+0.34eV) ELUMO=-(Eredonset→SCE+4.4eV)=-(Ered+4.4eV+0.34eV)
J.Phys.Chem.B,Vol.114,No.1,2010.141-150 •19
实例七:
实例五:
Eox=0.91eV Ered=-1.39eV
Eox=0.59eV Ered=-1.43eV
The optical band gap is estimated from the onset of the absorption edge (MLCT) of the thin film.
J.Mater.Chem.,2006, 16,1281–1286 •18
用饱和甘汞电极(SCE)作参比电极,它相对于NHE电位为0.24eV ,则计算能级的公式为:
EHOMO=eEox+4.5+0.24=eEox+4.74eV
ELUMO=eEred+4.5+0.24=eEred+4.74eV
Eg=EHOMO-ELUMO 能还可以由吸收光谱得出隙:Eg= hc/λabs=1240/λabs
•12
测试方法
氧化: 所用溶剂为二氯甲烷(5ml),电解质(四丁基六氟磷酸铵)180mg,样品2mg;二氯甲烷经氢化 钙干燥,重蒸。 从图中看出在0.9V到1.1V之间有小的凸起,测试时延长通氮气时间,凸起没有消失,说明不是氧 气。有可能是二氯甲烷中的杂质。 仪器参数设置:High E=3V, Low E= 0V, Scan Rate(V/s)= 0.1, Segment=4, Smpl interval(V)= 0.001, Quiet Time(s)= 4, Sensitivity(A/V)=1e-4
交流阻抗分析和扩散系数分析 ppt课件
w (ZRe
Rp )2 2
Z
2 Im
Rp*
4
化解:
( Z Re
Rp 2)2Z2 Im
Rp2 4
Rp
设为求在出w*半C,则p圆。在的半最圆高上点确(定tRgp及 ZZwRIme*之wR后pC,p 可1)根对据应的Cp角频w*率1Rp
电极系统的交流阻抗
电解池是一个相当复杂的体系,其中进行着电量的转移、化
交流阻抗分析和扩散系数分析
交流阻抗测试分析介绍
电化学阻抗法是电化学测量的重要方法之一 。以小振幅的正弦波电势(或电流)为扰动信号 ,使电极系统产生近似线性关系的响应,测量 电极系统在很宽频率范围的阻抗谱,以此来研 究电极系统的方法就是电化学阻抗谱
(Electrochemical Impedance Spectroscopy —— EIS),又称交流阻抗法(AC Impedance)。电极过 程模拟为由电阻与电容串、并联组成的等效电 路,并通过阻抗图谱测得各元件的大小,来分 析电化学系统的结构和电极过程的性质等。
Faraday阻抗。Cd和Faraday阻抗的并联值称为界面阻抗。
电极系统的交流阻抗
POTENTIOSTAT
GALVANOSTAT
A
H
I
Diff.
ampl.
s
CE RE
WE
G
B
E
C
D
F
+++++-
+++++-
电极过程示意图
电为了极测系量统研的究电交极流的阻双抗电层电容和Faraday阻抗,可创造条件
子活度等状态变量的函数。如果电极反应是电化学控制,则通过交流电时
《循环伏安法》PPT课件
图3.5 对—氨基苯酚循环伏安图
精选ppt
11
❖ 对于图的现象可作如下解释:
❖ 在第一次阳极扫描时,电极附近溶液中 只有对—氨基苯酚是电活性物质.在电极 大被氧化生成对—亚氨基苯醌。产生的电 流响应为阳极峰1。
精选ppt
12
❖ 电极反应产物对—亚氨基苯醌在电极附近溶 液中,与水和氢离子发生化学反应:
精选ppt
19
精选ppt
20
3.2.3 电极过程的研究 ❖ 1.可逆过程 可利用前式判断电极过程的可逆性。如
1,则为不可逆。
精选ppt
21
❖ wopschall用循环伏安法 研究了各种电极过程,从 理论上计算了电极反应速 率常数k的大小对伏安曲 线的影响。他采用了特殊 的符号“电荷越迁参数ψ”, 实际上ψ反映了电极反应 速率常数的大小。理论上 计算时,设电子转移系数 为0.5,反应速度很快,符 合Nernst方程,则所得结 果与图相符。如k小,偏 离Nernst方程,则波变宽。 k越小,两峰电位差越大, 则电极过程越不可逆。
❖ 例如,四苯基叶啉(TPP) 溶于碳酸乙酰(MC)中,可 得到如图所示的循环伏安 图,出现两个电流响应, 一个是TPP被还原后的阴 离子再被氧化;另一个是 阳离子被还原后再被氧化。
❖
两个电流响应信号表明。 反应得到的阴离子和阳离
图3.3
子均稳定,否则不会得到
循环伏安图上的两个峰.
精选ppt
9
❖ 又例如,由四个铁、 四个五茂环和四个一 氧化碳组成的金属有 机化合 物 ,如将其溶于乙 中,
制,研究双电层、吸附现象和电极反应动力
学,成为最有用的电化学方法之一。
精选ppt
1
3.1 基本原理 ❖ 循环伏安法是以线性扫描伏
《循环伏安法》课件
04
CATALOGUE
循环伏安法的应用实例
在电池研究中的应用
电池性能评估
01
循环伏安法可以用来评估电池的电化学性能,如容量、能量密
度和功率密度等。
电池老化研究
02
通过循环伏安法可以研究电池的老化过程,了解电池在不同循
环次数下的性能变化。
电池反应机制研究
03
循环伏安法可以用来研究电池的电化学反应机制,深入了解电
05
CATALOGUE
循环伏安法的优缺点
循环伏安法的优点
01
高灵敏度
循环伏安法能够检测到微小的电 化学反应,因此对于痕量物质的 检测具有高灵敏度。
结构简单
02
03
信息丰富
该方法使用的实验装置相对简单 ,操作方便,适合于多种应用场 景。
循环伏安法可以提供关于电化学 反应动力学的信息,如反应速率 常数、扩散系数等。
THANKS
感谢观看
污染的影响。
02
采用适当的支持电解质
选择合适的支持电解质可以提高电化学测量的灵敏度和线性范围。
03
采用适当的扫描速率
适当的扫描速率可以平衡电化学反应的测量时间和精度,提高测量结果
的准确性。
06
CATALOGUE
未来展望
循环伏安法的发展趋势
技术进步
随着科学技术的不断进步,循环伏安法在实验设 备、测量精度和数据处理方面将得到进一步优化 。这可能包括使用更高性能的电极、更稳定的电 解质和更先进的信号处理技术。
电子转移
电化学反应中,电子从反 应物转移到受体,是实现 化学能转化为电能的关键 过程。
离子传输
在电化学反应过程中,离 子在溶液中的迁移对于电 荷平衡和电流的产生具有 重要意义。
最新循环伏安法介绍PPT课件
Fig.4典型准可逆体系和不可逆体系的循环伏安图。
Fig.5 线性扫描曲线
反应可逆性的判断
对一个可逆反应,峰电位与扫描速度和浓度无关。
Epa与Epc 之差
也可用来判断电极反应的可逆程度。
Ep Epa Epc
EpEpaEpc
2.3R T5m 9 V nF n
(at 25°C)
(3)
对于不可逆体系, Δ Ep > 59/n(mV), ipa / ipc < 1。 ΔEp越大, 阴阳峰电流比值越小,则该电极体系越不可逆。对于不可逆电 极电程来说,反向电压扫描时不出现阳极波。
•
5.电极过程可逆性判断
电极反应机理研究
首先阳极扫描,对-胺基苯酚被氧化产 生了峰1的阳极波。
反向阴极扫描,得到峰2、3的阴极波, 是由于前面阳极扫描的氧化产物对-亚 胺基苯醌在电极表面上发生化学反应, 部分对-亚胺基苯酚转化为苯醌:
对-亚胺基苯醌及苯醌均在电极上还原 , 分别产生对-胺基苯酚和对苯二酚
峰电位的确定
• 一般情况下,伏安图谱上的峰比较宽,因而难以确定峰电位。所以,有时以 0.5 ip的电位(称为半峰电位EP/2)来对电极反应进行表征更方便。理论上,
: 半峰电位与半波电位的关系为
Ep/2E1/21.09R nFT
• Ep 和 Ep/2的差别为
(4)
EpEp/2
2.2R T 5.6 5mV nF n
电化学极化: 因电化学反应本身的迟缓而造成电极电位偏离可逆平衡电位的现象 称为电化学极化。
注意:由于电解过程中电极表面的浓差极化是不可避免的现象,外加电压要严格控 制工作电极上的电位大小就要求另一支电极为稳定电位的参比电极,实际上由于电 解池的电流很大,一般不易找到这种参比电极,故只能再加一支辅助电极组成三电 极系统来进行伏安分析。
锂离子固相扩散系数课件
溶液中的电极面积,DLi为Li在电极中的扩散系数,υ为扫描速
率,△Co为反应前后Li浓度的变化。
[1] Journal of Power S学ou习r交c流esPP1T 39 (2005) 261-268
8
方法特点
要求是可逆体系(电化学步骤可逆) 优点:设备简单,数据处理容易 缺点1:得到的只是表观的扩散系数
缺点2:浓度变化△Co的确切值很难求得
学习交流PPT
9
应用举例[1]:
首先测量材料在不同扫描速率下的循环伏安图(如图1-a)
图1 (a)Li1.40Mn2.0O4薄膜材料不同扫描速率下的CV
图 学习交流PPT
10
将不同扫描速率下的峰值电流对扫描速率的平方根作图 (图2-1-b)
图2-1 (b) Li1.40Mn2.0O4薄膜材料峰值电流对扫描速率的平方根曲线[1]。
面积,(dE)/(dx)库仑滴定曲线的斜率,即为开路电位对电极中Li浓度曲线上某
浓度处的斜率。
[2] Journal of P学ow习交er流SPPoTurces 76 (1998) 81-90
13
方法特点
可以直观的看出是否受扩散控制
缺点1:得到的结果也只是一个表观 的扩散系数
缺点2:要求所测体系的摩尔体积Vm 不发生变化
学习交流PPT
6
锂的扩散系数测量主要有如下一些方法:
• 循环伏安法(Cyclic Voltammetry, CV)
• 电化学阻抗法(Electrochemical Impedance Spectroscopy, EIS)
• 恒电位间歇滴定法(Potentiostatic Intermittent Titration Technique, PITT)
测试锂离子扩散系数的
,测试锂离子扩散系数的,(锂离子电池方面哦)主要的方法就是EIS+容量滴定,和PITT 方法。
GITT以为测试在理论上存在不准确的问题.
循环伏安可以测试扩散系数,但主要是控制步骤的扩散。
电势阶跃也可以测试扩散系数,如果阶跃电势是极限扩散区,这个扩散系数只是溶液中的扩散。
EIS测试扩散系数,是通过测试扩散控制区对应的warburg阻抗,然后通过warburg阻抗系数西格玛,结合dE/dx值得到离子扩散系数
求D过程:由Z’’与1/(√w)的关系式:
Z’’= σ/(√w)+2σ*σCd,当w趋向于无穷时,Z’’与1/(√w)一定是通过原点的直线,即此直线的截距为零。
然后由图读出任意一条直线的斜率,即为Warburg系数σ。
再根据Warburg系数的关系式:σ=RT/(√2*n*n*F*FC√D)其中C为锂离子在材料中体相浓度,n为转移电子数,F为法拉第常数,而D即为扩散系数。
以磷酸铁锂为例,求解它的浓度,一个磷酸铁锂晶胞中有4个锂原子,而它的晶胞尺寸是8.64×10-22cm3则C=4/(6.02*1023)/(8.64*10-22)=7.69*103mol/m3,ps:乘方打不出来将就下吧。
重点解析如何用交流阻抗数据确定锂电材料的扩散系数
如何用交流阻抗数据确定锂电材料的扩散系数锂离子电池是利用Li+在正负极之间的迁移和扩散,在正负极之间建立Li的浓度差,从而储存电能。
因此Li+在正负极之间的扩散会对锂离子电池性能产生显著的影响,如果我们按照从快到慢的速度为Li+扩散的各个环节排序的话,无疑Li+在电解液之中的扩散是最为迅速的,其次是Li+在正负极表面的电荷交换过程,这一过程的速度就相对较慢了,容易成为限制缓解,而Li+在正负极材料内部的扩散速度是最慢的,这一环节也往往成为限制锂离子电池倍率性能的关键。
作为衡量Li+在活性物质内部扩散速度快慢的关键参数——固相扩散系数也就成为衡量一款材料倍率性能的关键,但是获取材料的这一参数并非简单的事情。
通常来说,计算活性物质固相扩散系数的方法主要有恒电位滴定、恒电流滴定和交流阻抗数据等方法。
近日,德国德累斯顿工业大学的Tien Quang Nguyen(第一作者)和Cornelia Breitkopf(通讯作者)提出了一种新的通过交流阻抗数据获取扩散系数的方法。
采用EIS数据获取材料的扩散系数并不是新提出的概念,在此之前就已经有不少模型采用了交流阻抗中的扩散阻抗值来计算电极或材料的扩散系数,但是这些模型通常都需要结合扩散长度等参数进行计算,而这一数值通常采用电极厚度或颗粒半径等数值近似代替。
而Tien Quang Nguyen提出的方法仅仅需要采用交流阻抗数据就可以获得计算扩散系数所需要的全部参数。
根据扩散系数的定义,我们可以通过扩散长度ID和扩散时间τD之间的比值得到扩散系数(如下式所示)。
从上式能够看到,要想获得扩散系数我们需要通过实验数据或理论模型数据得到上述的两个参数。
在电化学体系中,离子淌度可以通过双电层的厚度λD和极化过程中的弛豫时间τ2根据下式计算得到。
为了获得扩散系数这一关键参数,我们首先要获得扩散层厚度这一数据,所谓扩散层是指的在扩散过程中物质浓度会受到影响的范围,Bandara & Mellander and Coelho等人通过界面电介质极化现象开发了一个模型用以计算扩散层的厚度。
循环伏安法详解PPT课件
实验步骤
• 3.以10mV·s-1的扫描速率分别对20mmol•L-1、10mmol•L-1、5mmol•L-1、 2mmol•L-1、1mmol•L-1的K3Fe(CN)6溶液进行循环伏安扫描,了解Ipc、Ipa、 Δp与浓度的关系。
• 实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。
实验目的
1.掌握循环伏安法的基本原理和测量技术。 2.通过对体系的循环伏安测量,了解如何根据峰电流、峰电势及峰电势差和扫描
速度之间的函数关系来判断电极反应可逆性,以及求算有关的热力学参数和动力学 参数 。
第1页/共18页
实验原理
• 循环伏安法是指在电极上施加一个线性扫描 电压,以恒定的变化速度扫描,当达到某设 定的终止电位时,再反向回归至某一设定的 起始电位,循环伏安法电位与时间的关系为 (见图a)
第14页/共18页
数据处理
• 从循环伏安图上读出Ipc、Ipa、Δp,作Ipc和Ipc~CO图。 第15页/共18页
注意事项
(1)测定前仔细了解仪器的使用方法。 (2)每一次循环伏安实验前,必须严格按照步骤1中所述,处理电极。
第16页/共18页
思考题
1.在三电极体系中,工作电极、辅助电极和参比电极各起什么作用。 2.按1式,当υ→0时,Ip→0,据此可以认为采用很慢的扫描速度时不出现
第12页/共18页
实验步骤
(3)分别以5mV•s-1、10mV·s-1、20 mV•s-1、50 mV•s-1、80 mV•s-1、100 mV•s-1的扫描速率对5mmol•L-1K3Fe(CN)6+0.5 mol•L-1KCl体系进行循环伏安实验, 求出Δp、Ipc、Ipa,了解Ipc、Ipa、Δp与扫描速率的关系。
循环伏安法ppt课件
(2) 然后反向向阴极扫描,又出现 两个阴极峰2和3。
(1) 从起点S开始,电图位8-往19正方向进行阳极
扫描,得到阳极峰1。
13
(3) 再进行一次阳极扫描,则又出现两 个阳极峰4和5,且峰5的电位值与峰1 相同。
对-亚氨基苯醌又 还原成对-氨基苯
酚
O + 2H++2e-
NH
OH 苯醌在较负的电位 O
1
循环伏安法是最重要的电分析化学研究方法之一。在电化学、 无机化学、有机化学、生物化学等研究领域有着广泛的应用。用于 研究电极反应的性质、机理和电极过程动力学参数等。循环伏安法 还可用于电化学-化学偶联过程的研究,即在电极反应过程中,还伴 随有其他化学反应的发生。
2
一、循环伏安法
以快速线性扫描的形式施加三角波电压,一次三角波扫描完成一个还原过
OH
被还原成对苯二酚 解释:
+ 2H++ 2e-
NH2
O
OH
(2)此时,部分反应产物(对亚氨 基苯醌)由于不稳定,在电极表 面发生化学反应,生成苯醌。
O K
+ H3O+
峰5:同峰1
对苯二酚又氧 OH 化成苯醌
OH
O
+2H++ 2e-
O
NH
OH
(1)对氨基苯酚
O
此时溶液中含有:
的氧化峰
+ 2H++2e-
程和氧化过程的循环,然后根据i—φ曲线进行分析的方法称为循环伏安法。
3
(一) 基本装置
二、工作原理
同普通极谱法。 1. 三角波电压
将线性扫描电压施加到电极上,从起始电压 Ui开始沿某一方向扫描到终止电压Us后,再以同 样的速度反方向扫至起始电压,加压线路成等腰 三角形,完成一次循环。根据实际需要,可以进 行连续循环扫描。
电分析化学循环伏安法PPT资料
pc
电位(E )和阴极峰电位(E )。测量确定i 的 表1 列出了可逆、准可逆和完全不可逆电极反应的判据。
再ipa一与次ip阳c的极比扫值描为时1,,对是苯判二别酚反被映氧是化否p为a可苯逆醌体,系形的成重峰要4依;据。
pc
p
方法是:沿基线做切线外推至峰下,从峰顶做垂 以上讨论的是电极过程完全可逆的情况。
69×105n3/2AD1/2v1/2c
(5)
可见对于可逆电极过程,反应产物稳定,用循环伏安法测定标准电极电位(E0)是很方便的。
为还原产物重新被氧化的阳极过程。因此,一次三
角波扫描完成一个还原过程和氧化过程的循环,故
称为循环伏安法。
第三章 循环伏安法
5
基本原理
当工作电极被施加的扫描电压激发时,其上 将产生响应电流。以该电流(纵坐标)对电位 (横坐标)作图,称为循环伏安图。典型的循环 伏安图如图2 所示。该图是在1.0 mol/L KNO3电解 质溶液中,6×10-3mol/L K3Fe(CN)6在Pt工作电极 上的反应所得到的结果。
对于完全不可逆电极过程,循环伏安曲线图中, 只有阴极或阳极峰电流,上下两支曲线是完全不对称 的。介于两者之间的,称之为准可逆。见图3。
电分析化学
14
循环伏安法的应用
1、可逆过程标准电极电位的测定
对于可逆电极过程,用循环伏安法测定标准电
极电位(E0)是很方便的,即:
E0 (Ep aEp)c /2
(3 )
因此,一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。
一般溶液中Z过量,反应中Z的浓度可视为不变。
应该指出,⊿Ep的确线切值切与扫至描过切阴极线峰电,位之其后多间少毫高伏再度回扫即有关为。 (ip)。Ep可直接从横