分子的对称性与点群
分子的对称性与群论基础群与分子点群
群与分子点群
3、分子点群
立方群
3)、 Ih 点群
对称元素: 6个 C5 轴(相对顶点)、 10个 C3 轴(相对面心)、 15个 C2 轴(相对棱心)、 对称中心.
120个对称操作,分为10个共轭类:
Eˆ , 6 Cˆ5 ,Cˆ54 , 6 Cˆ52,Cˆ53 , 10 Cˆ3 , Cˆ32 , iˆ , 6 Sˆ10 , Sˆ190 , 6 Sˆ130 , Sˆ170 , 10 Sˆ6 , Sˆ65 ,
24
群与分子点群
4、子群与类
如果群的某个元素与其他元素的乘积都可交换,则该元素
自成一类(不与其他元素共轭)。
若:
PA = AP ,
PB =
BP , … ...
必有:
A-1PA = P , B-1PB =
P , …… 即:对元于素分子P 点不群与:其他元素共轭。 恒等操作自成一类; 反演操作自成一类。
O2 , CO2 , C2 H 2
13
群与分子点群
3、分子点群
立方群
具有多于一个高次轴(Cn,n>2)的群,对应于凸正 多面体
4个 C3 轴 3个 C2 轴
T
Th (i)
Td (6d)
正四面体
3个 C4 轴 4个 C3 轴 6个 C2 轴
O Oh (i)
正八面体 正六面体
6个 C5 轴 10个 C3 轴
27
群与分子点群
5、同构与同态
2)、同态 定义:考虑群G与群H,若G的一组元素对应与H的一个元 素,且群G的元素的乘积对应于群H的相应元素的乘积, 则称群H 是群G的一个同态映像。
群G: …., {Aik} , …, {Aj l }, …., {AikAjl} , ….
第三章:分子对称性和点群
σv2 σv2 σd1 σv1 σd2 C42 E
C41 C43
σd1 σd1 σv1 σd2 σv2 C41 C43 E
C42
σd2 σd2 σv2 σd1 σv1 C43 C41 C42 E
第三章:分子对称性和点群
1
群元素 群
乘法
对称操作 点群
操作动作的连续
2
本章目录
3.1对称元素和对称操作 3.2 对称操作的乘积 3.3分子点群
3.3.1 构成群 3.3.2 点群乘法表 3.3.3 类和子群 3.3.4 分子点群的类型 ****
3
3.1对称元素和对称操作
• 对称元素的定义(Symmetry Elements) 几何实体,如一个点,一条直线,一个平面;
(x,y,z) -C-2-(-x-)-> (x,-y,-z)-C--2(-y-)> (-x,-y,z) (x,y,z) -C--2(-z-)-> (-x,-y,z)
so, C2(y)C2(x)= C2(z)
34
例3:C4(z)和σ (xz)的存在,自动地要求σ d的存在 普通点[x1,y1,z1]通过xz平面的反映效果可以表为
分子点群满足数学群四准则。
点群中点的含义:(1)这些对称操作都是点操作,操作时 分子中至少有一点不动;(2) 分子的全部对称元素至少通 过一个公共点。
37
满足群的四点要求:
• (1)群中任意两个元素的乘积必为群中的 一个元素。
以NH3为例,逐一求出所有的对称操作的二元乘 积,发现两个操作的乘积仍为集合中的一个操作。
Snm = hmCnm (1)若独立地存在一个Cn轴和一个垂直于它 的平面h,那么就存在Sn。 (2)当分别地既不存在Cn也不存在垂直的h 时,Sn也可以存在。
点群及分子的对称性
ˆ i ˆ i ˆ i ˆC ˆE ˆ I
3 3 3 3 3
6 6 ˆ6 ˆ ˆE ˆE ˆ ˆ I 3 i C3 E
I3包括6个对称动作。
2014-11-6 20
第一章 分子的对称性
2 ˆ ˆ i ˆ ˆ 由于 : C3 , C3 , E C3 iˆ, E
其余动作为二者的联合。
y (x', y')
0
x x y y 0 1 z z
sin cos 0 0 x y 0 1 z
α
(x, y)
x' x cos ' ˆ y sin y C ( ) z' z 0
第一章 分子的对称性
对称性的概念 对称性普遍存在于自然界。
2014-11-6
1
第一章 分子的对称性
分子的对称性 是指分子的几何 构型或构象的对
称性。它是电子
运动状态和分子
结构特点的内在
反映。
2014-11-6
2
第一章 分子的对称性
§1-1 对称操作和对称元素
对称操作 不改变图形
对称操作: 旋转
中任意两点间的
结合律: A(BC)=(AB)C;
单位元素: 0;
2+(3+4)=(2+3)+4
0+3=3+0=3
逆元素: A-1=-A ;
3-1=-3
3+(-3)=(-3)+3=0
2014-11-6
28
第一 分子的对称性
群的乘法表
C2v 群的乘法表
分子的对称性和群论初步
H3BO3分
子
C3h C31, C32 , C33 E, h , S31, S35
属6阶群 S31 hC31,S32 C32,S33 h S34 C31,S35 hC32,S36 E
Cnh Cnk (k 1,n 1), E, h , hCnl (l 1,l 1)
非全同:不能通过平移或转动等第一类对称操 作使两个图形叠合。
2.旋光异构体:一对等同而非全同的分子构成 的一对对映体。
3.手性分子:没有第二类对称元素的分子。
R(右,顺时针方向转)和 S(左,逆时针旋转) 外消旋体:等量的R和S异构体混合物一定无旋光
性方向相反
4.对称性和旋光性的关系
✓ 若分子具有反轴Ι(先旋转360°/n,再反演)的对 称性,一定无旋光性;若分子不具有反轴的对称性, 则可能出现旋光性。
元的数目有限的群称为有限群,数目无限的群 称为无限群。
点群:一个有限分子的对称操作群 ☞“点”的含义 ✔这些对称操作都是点操作,操作时分子中至少
有一个点不动。 ✔分子的对称元素至少通过一个公共点。
2.2 群的乘法表
※顺序
乘法表由行和列组成,在行坐标x和列坐标y的 交点上找到的元是yx,即先操作x,后操作y。每一 行和每一列都是元的重新排列。
C6轴: C6轴包括C2 和C3 的全部对称操作。
1.3 反演操作和对称中心 i
反演操作: 将分子的各点移到对称中心连线的延长线上,
且两边的距离相等。若分子能恢复原状,即反演操 作。
✔对称因素:对称中心 i ✔特点:延长线,等距
除位于对称中心的原子外,其余均成对出现
若对称中心位置在原点 (0,0,0)处,反演操作i的表 示矩阵为:
✓ 一重反轴=对称中心,二重反轴=镜面,独立的反 轴只有I4 。则具有这三种对称操作的无旋光性, 不具有这3种对称元素的分子都可能有旋光性。
第三章-分子的对称性
对称操作只能产生等价构型分子,不能改变其 物理性质(偶极矩)。因此,分子的偶极矩必定在 分子的每一个对称元素上。
(1) 若分子有一个Cn轴,则DM必在轴上; (2) 若分子有一个σ面,则DM必在面上; (3) 若分子有n个σ面,则DM必在面的交线上; (4) 若分子有n个Cn轴,则DM必在轴的交点上,DM=0; (5) 分子有对称中心 i ( Sn ),则DM=0。
群的乘法表
把群元素的乘积列为表,则得到乘法表。乘 积为列×行,行元素先作用,列元素后作用。群 的元素数目 n为群的阶数。 例:H2O,对称元素,C2, σv, σv’ ,对称操作
ˆ ˆ ˆ ˆ C2,σv ,σv ', E , 属4阶群。
C2v
ˆ E ˆ C2 ˆ σv ˆ σv'
ˆ E ˆ ˆ σv σv' ˆ ˆ σv' σv
判据:若分子中有对称中心或有两个对称元素相交 于一点, 则分子不存在偶极矩。 推论:只有属于Cn 和Cnv(n=1,2,3,…,∞)这两类点群 的分子才具有偶极矩,而其他点群的分子偶极矩为 0。因C1v≡C1h≡Cs,Cs点群也包括在Cnv之中。
H C Cl
H C Cl
1,2 -二氯乙烯(顺式) , C2v,有
C60
闭合式[B12H12]2-
非真旋轴群: 包括Cs 、Ci 、S4 只有虚轴(不计包含在Sn中的Cn/2. 此外, i= S2 , σ = S1, 只有n为4的倍数时Sn是独立的).
Cs 群 : 只有镜面 Ci 群: 只有对称中心 S4 群: 只有四次旋映轴
亚硝酸酐 N2O3
分子点群的确定
起点 线性分子
2
ˆ E ˆ E ˆ C
ˆ C2 ˆ C
第三章 分子的对称性与点群
III. 1,3,5-三甲基苯
1,3,5-三甲基苯 (图III)是C3点 群的例子,若不考 虑甲基上H原子, 分子的对称性可以 很高,但整体考虑, C6H3(CH3)3只有C3 对称元素。C3轴位 于苯环中心,垂直 于苯环平面,分子 绕C3轴转动120°, 240°都能复原。
旋转一定角度的 三氯乙烷(图IV) 也是C3对称性分 子。
一、对称性、对称操作与对称元素
对称操作是指不改变物体内部任何两点间的 距离而使物体复原的操作。对称操作所依据的几 何元素称为对称元素。对于分子等有限物体,在 进行操作时,物体中至少有一点是不动的,这种 对称操作叫点操作。
二、 旋转轴和转动
旋转操作是将分子绕通过其中心的轴旋转一定的 角度使分子复原的操作,旋转所依据的对称元素为旋 转轴。n次旋转轴的记号为Cn .使物体复原的最小旋转 角( 0 度除外)称为基转角α,对 C n 轴的基转角α= 3600/n。旋转角度按逆时针方向计算。 和 C n 轴相应的基本旋转操作为 C n 1 ,它为绕轴转 3600 /n的操作。分子中若有多个旋转轴,轴次最高的 轴一般叫主轴。
Cnh群中有1个C n轴,垂直于此轴有1个σh 。阶 次为2n。C1h点群用Cs 记号。 若分子有一个n重旋转轴和一个垂直于轴的水平 对称面就得到Cnh群,它有2n个对称操作,{E,Cn1,
Cn2……Cnn-1,σh, Sn1 , Sn2……Snn-1}包括(n-1)
个旋转、一个反映面,及旋转与反映结合的(n-1) 个映转操作。当n为偶次轴时,S2nn即为对称中心。
O
H
C2轴
H
与水分子类似的V型分子,如SO2、NO2、ClO2、 H2S, 船式环已烷(图IV)、N2H4(图V)等均属C2v点群。 属C2v点群的其它构型的分子有稠环化合物菲 (C14H10)(图VI),茚,杂环化合物呋喃(C4H4O)、 吡啶(C5H5N)等。
化学竞赛分子的对称性和点群
D2 群
主轴C2垂直于荧光屏
D3:这种分子比较少见,其对称元素也不易看出.
[Co(NH2CH2CH2NH2)3]3+是一实例.
何其相似!
C2
唯一的C3旋转轴从xyz轴连成的 正三角形中心穿过, 通向Co; 三条C2旋转轴分别从每个N–N 键中心穿过通向Co. z C2 x y
C2
Dnh : 在Dn 基础上,还有垂直于主轴的镜面σh .
第二种情况: 分子不具有Sn (也就没有σ、或i、或S4), 分 子与其镜象只是镜象关系,并不全同. 这种分子不能用实际 操作与其镜象完全迭合, 称为手性分子. 图解如下: 旋转反映
(没有Sn的)分子 反映 镜象 旋转
分子
Байду номын сангаас
橙色虚线框表明,分子与其镜象不能够通过实操作 ( 旋
转)而完全迭合,原因来自“分子不具有Sn”这一前提(从而也 没有σ、没有i、没有S4 ) .
左手与右手互为镜象. 你能用一种实际操作把左 手变成右手吗? 对于手做不到的, 对 于许多分子也做不到. 这 种分子就是手性分子.
结论:不能用实际操作将分子与其镜象完全迭合的分子
是手性分子,分子没有虚轴Sn ,也就没有σ、没有i、没有S4
(任何分子, 包括手性分子, 都能用“镜子”产生镜象, 但手性分子本身并无镜面 ).
其镜象迭合, 是非手性分子.
旋转反映
(具有Sn的)分子 反映 镜象 旋转 分子
橙色虚线框表明,分子与其镜象能够通过实操作旋转完
全迭合,而前提是“分子具有Sn”. 根据n的不同可以写出: S1=σ,S2=i,S4=S4。 结论:具有 σ、 或 i、 或 S4 的分子 , 可通过实际操作与其
镜象完全迭合,称为非手性分子。
分子对称性和分子点群课件
以烷烃为例,烷烃的对称性越高,其化学反应选择性越低,因为它们具有更稳定的分子结构。
以烯烃为例,烯烃的对称性较低,因此它们在加成反应中表现出较高的反应活性。
以芳香族化合物为例,由于芳香族化合物具有较低的对称性,它们在取代反应中表现出较高的反应活性。
确定分子的点群
分子的点群是根据分子的对称性进行分类的,通过确定分子的点群可以更好地理解分子的结构和性质。
指导药物设计和材料科学
分子对称性在药物设计和材料科学中具有重要意义,例如在药物设计中,可以利用分子对称性来设计具有特定性质的化合物。
分子点群的基本概念
CATALOGUE
02
第一类点群
第二类点群
总结与展望
CATALOGUE
06
分子对称性和分子点群是化学和物理领域中非常重要的概念,它们在化学反应动力学、光谱学、晶体工程和材料科学等领域有着广泛的应用。
通过了解分子的对称性和点群,我们可以更好地理解分子的结构和性质,预测其物理和化学行为,并设计具有特定功能的材料和分子。
对称性在化学反应中起着关键作用,可以影响反应的速率和选择性。了解分子的对称性可以有助于预测反应的产物和途径,从而优化反应条件和设计更有效的合成方法。
分子对称性分类
分子对称性与分子点群的关系
CATALOGUE
03
分子对称性是指分子在三维空间中的对称性质,包括对称轴、对称面和对称中心等。
分子点群是指分子的空间排列方式,不同的点群对应不同的空间结构。
分子对称性与分子点群之间存在一一对应的关系,即每个点群都有其独特的对称性。
以水分子为例,其具有对称中心和两个对称轴,属于点群$C_{2v}$。通过分析其对称性,可以了解水分子的稳定性、极性等性质。
第三节分子的对称性与点群
1
6
5
6
2 Revolve 5
1 Revolve 4
6
5
3
60º
4
4
2
3
60º 3
1
2
图形不变
图形不变
空间旋转对称操作是分子对称性讨论中的重要操作之 一。任何一种分子至少可找出一种空间旋转操作。
Revolve
2π
图形不变(复原)
……
Revolve 240º
1
6
2
5
3
4
图形复原
精品资料
⑵镜像反映
当一个体系对空间平面进行反映操作时,若其图形不变,该操作称为镜 像反映对称操作。
例如: CO2 分子(直线型)
1
OC
2
i
2
O 中心反演 O C
图形不变
又如:苯分子(正六边形)
1i
O 中心反演
1
2
OC O
图形复原
1
4
CH
CH
6 CH
CH 2
i
3 CH
CH 5
中心反演
图形不变
5 CH
CH 3
2 CH
CH 6
CH
CH
4
1
精品资料
⑷像转轴 — Sn
所谓“像转”对称操作,实际上是旋转与镜面反映的复合操作。像转
轴可表示为对称轴与对称面的组合。即:
Sn = Cn +σh =σh + Cn
例如:甲烷分子中的四次像转轴 S4 = Ch +σh
C4
2
1
1
C41操作
2 反映操作
图形不变
3 4
3
分子的对称性和群伦
O H
1
旋 转1 80
H 2
H 2
旋
转
O H
1
O
360º
H
H
1
2
水分子的旋转操作
2.1.1 旋转操作与对称轴
旋转操作(rotation operation):围绕通 过分子的某一根轴转动2/n能使分子复原的 操作。
旋转轴Cn:C表示旋转,n表示旋转阶次,
即使分子在2范围内作n次都能与原来的构 型相重合。
对称元素:4C3,3C2,3C4,6C2′, i,3S4,4S6, 3σd,6σd 。
C3轴:通过一对相对的三角形表面中心
C2轴:与x、y、z轴重合
C4轴:与 C2轴共线
S4轴:与C4轴共线
S6轴:与C3轴共线
C2′轴:平分八面体对边 σh :分别通过八面体6个顶点中的4个 σd :分别通过两个顶点并平分相对的棱边
11. Sn点群
只有一个的对称元素是Sn映轴,例如S4N4F4分子。 4个S原子和4个F原子
处在同一平面,具有一个 垂直于该平面的C4轴;4个 N原子中2个N原子在该平 面的上方, 2个N原子在平 面下方。C4旋转后,不能 分子复原,须以该平面为 对称面反映一次,才能使 分子复原
12. Td 点群
1个Cn轴和n个垂直于Cn轴的C2轴—Dn点群。 例如:[Co(en)3]2+属D3点群
[Co(en)3]2+配离子中的C3轴和C2轴
8. D nh点群
Dn点群的对称元素外,再加上一个水平反映面 σh,就得到Dnh点群。
C2O42-、N2O4—D2h XeF4、[PtCl4]2-—D4h C6H6 — D6h
记为A,反对称— B。
结构化学第三章教案
S4群
23
返回
总结 线性分子 线性分子 分 子 点 群 正四面体 正八面体
左右对称 反之
D∞h C∞v
Td Oh Dnd Cnv Dn Cn
有 轴 群
D群 C群
其它
Dnh Cnh
Cs Ci Sn C1
24
确定点群一定要按着上述顺序 确定点群一定要按着上述顺序 例1 :苯
σd
C6 C2
σh
D6d C6 + 6C2 ﹢σh D类群 D6h群
5
例 : H2 O C2 O H
σv
H
σv’
6
(4) 对称中心(i)和反演操作( 和反演操作(
ɵ) i
例:
i
∧ (5) 象转轴(Sn)和旋转反映操作( S ) 和旋转反映操作( n
旋转2 旋转 π/n, 并作垂直 反映操作 此轴的反映 此轴的反映操作
复合操作 顺序无关
7
例:CH4 本身并不存在C 本身并不存在 4 和σh 但存在 S4 H
32
· i
H C
S4
H H
通常, 通常,有Cn和σh,必有Sn 。
可有可无。 无Cn和σh, Sn可有可无。
8
5种对称元素
(1)恒等元素 恒等元素 (2)旋转轴 旋转轴 (3)对称面 对称面 每个分子都有 主轴 次轴 垂直主轴的对称面 ① σh : 垂直主轴的对称面
② σv : 包含主轴的对称面 包含主轴的对称面
例2:交叉式乙烷
C3, 3个C2 个 σ , D3d群
d
C3
C2 C2 C2
中点 过C-C中点,垂直于C3 - 中点
σd
C2
C2
14
返回
第二章 分子对称性与对称群
Cn轴的基转角α=2π/n。旋转角度按逆时针方向计算。
和Cn轴相应的基本旋转操作为 简Cˆ写n1 为: Cˆn
(1) 旋转轴和旋转操作
当旋转角度等于基转角的2倍、3倍等整数倍时, 分子也能复原。这些旋转操作分别记为:
Cˆn2 Cˆn1Cˆn1 , Cˆn3 Cˆn1Cˆn1Cˆn1 ,
2
x, y,z
1
iˆ
σˆ xy
3
x, y,z
(6) 对称元素和对称操作之间的关系
交换关系:(1)两个绕同一轴的转动。两个绕不同轴的 转动一般是不可交换的(有一特殊情况); (2)通过相互垂直的两个平面的反映;
(3)反演与任何一个反映或转动; (4)绕相互垂直的两个C2轴的转动; (5)转动和垂直于转动轴的平面的反映; (6)C2轴和通过C2轴的平面的反映。
(6) 对称元素和对称操作之间的关系
处理方法:某两个对称元素的存在要求其他元素存在,以 及应用交换关系。
乘积关系:(1)两个真转动的乘积必定是一个真转动。 特殊情况如上所证:两个C2轴的乘积为另外一条与之都垂 直的C2轴。
(2)两个相交成θ角的对称面的反映的乘积是绕其交线 所定义的旋转轴的2θ的转动。
(5) 对称操作的乘积
例如:证明:若有两个互成直角的二重轴,则必有与二者 成直角的第三个轴。
证明:假设两个给定的二重轴分别与x轴、y轴重合,我们
用C2(x)和C2(y)表示。
x1 , y1 , z1
Cˆ 2 x
Cˆ 2 y
x1 ,-y1 ,-z1
- x1 ,-y1 , z1
可见,C2(x)和C2(y)乘积的Cˆ 2操z作的净效果与C2(z)是相同的,
第八节 分子对称性和分子点群
G中具有单位元素,它使集合G 中的任一元素足于 ER RE R
1 1
G中任一元素R均有其逆元素 R , R 有逆元素 且有 RR 1 R 1 R E
亦属于G,
B、群的阶和子群
群中元素的数目为群的阶,群中所包含的小群称为子群。群阶和 子群的关系为: 大群阶(h)/子群阶(g)=正整数(k)
C、共轭元素和群的分类 若X和A是群G中的两个元素,有 X 1 AX B ,这时,称A 和 B为共轭元素。群中相互共轭的元素的完整集合构成群的类。 Example 在 H 2O的 C2v群中的任意两个元素之积是可以交换
10vcconvc群群中含有一个群中含有一个cn轴还有一个垂直于轴还有一个垂直于cn轴面轴面h当当n为奇数时此群相当于为奇数时此群相当于cn和和h的乘积当的乘积当n为偶数时为偶数时cnh相当相当于于cn和和i的乘积因此群阶为的乘积因此群阶为2nnhc群nc1hchclo64chnnhnhnhnnnnhnnhcccccceccsssss1212点群示例点群示例点群定义点群定义2hchc群nd点群示例点群示例2221212nnnnnncccccced在群的基础上加上n个垂直于主轴的二重轴且分子中不存在任何对称面则有
C
2 E , C n , C n , C n3 , … , C n 1 n n E ) (C n
n
C1
CHFClBr
Cn 群
点群示例
C2
C3
H 2O2
部分交错
CCl3CH3
Cnv 群
点群定义 点群表示 点群示例
群中有Cn 轴,还有通过 Cn轴的n个对称面.
第三章分子对称性和点群
A(c) A(a) A( f ) 0 1
0
0
001
cos 4
3
sin 4
3 0
sin 4
3
cos 4
3 0
0 0Βιβλιοθήκη cos 43sin 4
3
1 0
sin 4
3
cos 4
3 0
0
0
1
A (a) 1
A (b) 1
A (c) 1
表示的分类:
(1)等价表示 若A(g)是群G的一个表示, X是一正交变换矩阵, 则 B(g)=X-1A(g)X
规则二. 点群中所有不可约表示的维数的平方和等于群的阶 n. l12 l22 lk 2 n
在 D3中, l12 l22 l32 6
从而 l1 l2 1, l3 2
规则三. 点群中不可约表示特征标间的正交关系:
k
h j r (R j ) * s (R j ) n rs
j 1
对不可约表示: (R) 2 n
3
y2 a21 a22 a23 x2 , yi aij x j
y3 a31 a32 a33 x3
j 1
(i=1,2,3)
矩阵的迹 (trace) 或特征标 (character):
( A) TrA aii
i
相似变换:
A S1AS
TrA TrA
(S为正交矩阵) St S SSt E
3.1 对称元素
对称性是指分子具有两个或更多的在空间不可区分的图象. 把等价原子进行交换的操作叫做对称操作. 对称操作依赖的几何集合(点,线,面)叫做对称元素.
3.1.1 n重对称轴, Cn (转动)
转角 2 / n
结构化学第三章
第一种情况: 分子与其镜象(对应体)完全相同, 可通 过实际操作将完全迭合,这种分子是非手性分子. 分子 实操作 镜象
从对称性看, 分子若有虚轴Sn , 就能用实操作将分子 与其镜象迭合, 是非手性分子.
va, vb , vc
a b c ˆ 1, C ˆ 2 , ˆ,C ˆ ˆ ˆ E , , 3 3 v v v
C ˆ C 3 3 ˆ2 ˆ2 C C
3
ˆ E ˆ E
ˆ1 C 3 ˆ1 C
vc
va
ˆ va ˆ ˆ vb ˆ ˆ vc ˆ
(2) 甲烷具有S4,所以, 只有 C2与S4共轴,但C4和与之垂 直的σ并不独立存在.
CH4中的映轴S4与旋转反映操作
注意: C4和与之垂直的σ都不独立存在
环辛四烯衍生物中的 S4
分子中心是S4的图形符号
对称操作与对称元素
§3.2 点 群
一、群的定义 一个集合G含有A、B、C、D……元素,在这些元素之 间定义一种运算(通常称为“乘法”),如果满足下面4 个条件,则称集合G为群。 ▲封闭性:集合G={A、B、C、D…},其中任二个元素 的乘积 AB=C,AA=D也是群中元素。 ▲ 缔合性:G中各元素之间的运算满足乘法结合律, (AB)C=A(BC)。 ▲ 有单位元素:G中必存一单位元素E,它使群中任一元 素R满足于ER=RE=R。 ▲ 有逆元素:G中任一元素R都存在逆元素 R 1,R 1 亦属 于G,且 RR 1 R 1 R E
第三章 分子的对称性和点群
判天地之美,析万物之理。 —— 庄 子 在所有智慧的追求中,很难找到其他例子能 够在深刻的普遍性与优美简洁性方面与对称性原 理相比. —— 李政道
生 物 界 的 对 称 性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子的对称性与点群
摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。
分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。
例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。
关键词:对称性点群对称操作
一.对称操作与点群
如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。
一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。
描述分子的对称性时,常用到“点群”的概念。
所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
而全部对称元素的集合构成对称元素系。
每个点群具有一个持定的符号。
一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。
二.分子中的对称元素和对称操作
2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。
作
分别用E、E^表示。
这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。
2.2旋转轴和旋转操作
分别用C n 、 C ^n 表示。
如果一个分子沿着某一轴旋转角度α能使分
子复原,则该分子具有轴C n , α是使分子复原所旋转的最小角度,
若一个分子中存在着几个旋转轴,则轴次高的为主轴 (放在竖直位
置),其余的为副轴。
分子沿顺时针方向绕某轴旋转角度 α,α=360°
/n (n=360°/α(n=1,2,3……) 能使其构型成为等价构型或复原,
即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分
子具有 n 次对称轴。
n 是使分子完全复原所旋转的次数, 即为旋转
轴的轴次, 对应于次轴的对称操作有n 个。
C n n =E ﹙上标n 表示操
作的次数,下同﹚。
如NH3 (见图 1) 旋转 2π/3 等价于旋转 2π (复 原),
基转角 α=360°/n C3 - 三重轴;再如平面 BF3 分 子,
具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以 上
的旋转轴,则轴次最高的为主轴。
2.3 对称面与反映操作
分别用σ、σ^表示。
对称面也称为镜面, 它将分子分为两个互为镜
像的部分。
对称面所对应的操作是反映, 它使分子中互为镜像的两
个部分交换位置而使分子复原。
σ^ⁿ=E ^ ﹙n 为偶数﹚, σ^2n =E ^﹙n
为奇数﹚。
对称面又分为: σh 面﹙垂直于主轴的对称面﹚、σ
v 面﹙包含主轴的对称面﹚与σd 面﹙包含主轴并平分垂直于主轴的两
个C 2轴的夹角的平面﹚, σd 是σv 面的特殊类型。
图1
例如,水分子有两个对称面,一个面是分子平面,它 包含有 3 个原
子;另一个面垂直上述分子平面,并且平 分 H- O- H 键角(见图 2)
2.4 对称中心及反演操作
分别用i 及i ^表示。
选取分子的中心为笛卡尔坐标的原点, 将分子中
的任何一点﹙x ,y ,z ﹚移到另一点﹙-x ,-y ,-z ﹚后分子能复原的操
作称为反演, 进行反演时所依据的中心点称为对称中心i 。
i ^n =E ^﹙n
为偶数﹚, i ^2n =E ^
﹙n 为奇数﹚。
C- C 键的中点便是对称中心,如果从一 个 Cl 原子至中心连一直
线,则在其延长线的相等距离 处会遇到第二个 Cl 原子。
对于两个
H 原子也存在同样 的关系。
例如 C2H4Cl2(见图 3)
2.5 旋映轴和旋转反映操作
可用S n 及S ^
n 表示。
若分子绕某轴旋转 2π/n ,再用垂直此轴的平面进
行反映操作,得到分子的等价构型,将该轴与平面组合 所得的对称
元素称为旋映轴,以 Sn 表示。
S n n =E ﹙n 为偶数﹚,S n 2n =E ﹙n 为
奇数﹚。
图 2
图3
在CH4分子中,存在着S4轴,绕垂直轴z 轴旋转2π/4。
在经xy
4)
平面反映,则使分子的取向与原来的相重合。
例如CH4(见图
图4
三.对称群
3.1 对称群的定义
群是元素的集合G(元素是广义的,可以是矩阵、向量、操作等),在中G定义一种运算法则(通常称为乘法),如能满足封闭性、乘法的结合律、包含恒等元素与逆元等条件,
则称集合G为一个群。
对称操作的集合满足群的定义,可构成一个对称操作群。
对称群中的恒等元是不动E。
如NH3分子中有一个C3轴和三个包含C3轴的对称面σv,共有六个对称操作,G: {E, C13, C23, σv, σv', σv''},符合群
的四个条件,组成C3v群。
组成群的群元素的数目称为群阶,群阶越高,对称性越高。
任意一个分子的对称操作集合都可构成一个群,同时分子中所有对称元素至少交于一点,或者说分子中至少有一点在所有对称操作下保持不动,例如在对称操作时NH3中N原子始终保持不动,因而称这类群为点群。
3.2 点群的分类
常见的分子点群有:
Cn 群:分子中只有一个Cn 轴,共有n 个操作。
如H2O2分子属C2群。
Cnv群:分子中有一个Cn轴,且有n个包含Cn轴的σv面,共有2n个操作。
如H2S分子属C2v群。
Cnh群:分子中有一个Cn轴,且有垂直于Cn的σh 面,2n 有个操作。
n为偶数时必有C1h=Cs。
没有其他
对称元素的平面型分子群均属均属Cs群
如分子
Dn群:分子中有一个Cn轴,另有n个垂直于Cn 轴的C2轴,该点群共有2n个操作。
如既非交叉又非重叠的CH3CH3分子属
D3群。
Dnh群:Dn在基础上,另有一个垂直于Cn轴的σh 面,共有4n个操作(n个C2和σh作用自然地产生n个σv,Cn与σh也可产生n个独立操作,n为偶数时还有i)。
如C6H6分子属D6h 群。
Dnd群:在Dn基础上,有n个σd面,该点群共有4n个操作。
如交叉型CH3CH3分子属D3d群。
Sn群:有一个Sn轴,当n为偶数时,群中有n个操作,n
为奇数时,即为Cnh群。
S2轴相当于一个i,
因此S2群亦为群Ci。
如CHClBrCHClBr属S2群。
Td 群:具有正四面体构型的分子,如CH4、CCl4、SiH4等均属Td,它有4个C3轴(指向正四面体顶点),3个C2轴亦为S4轴(4个顶点两两相连成六条线,连接相对连线的中点即为3个C2轴)以及6个
σd面,共有24个操作。
Oh 群: 具有正八面体构型的分子, SF6、
[Fe(CN)6]4-、[Co(NH3)6]3+、[Cr(CN)6]3-等均属于群。
有4个C3轴(也是S6)(两个相对面中心的连线,八个面相应的有4个C3),3个C4 (也是S4,六个相对顶点的连线是3个C4),6个C2轴(12个相对棱中点的连线而成6 个C2)3个σh (与C4相垂直)和6个σd面以及对称中心。
共有48个操作。
分子所属点群的确定
为了使确定分子所属的点群不出差错,按照以下步骤进行。
1分子几何构型是否是直线型?
2是直线型,是否有对称中心i?如果对称中心属于D∞h点群。
无对称中心属于C∞v点群。
3不是直线型,是否有多个Cn(n>3)轴,如果有多个C n 轴,就属于T d或0h点群。
4若无多个C n轴,是否有C n?
5若无多个C n轴,是否有σ?如果有属于C S点群,没有σ,是否有i?如果有属于C i点群,没有属于C I点群。
6有C n轴,,是否有n个垂直于C n的C2轴?如果有,是否有σh?如果有则属于D nh点群,没有σh,是否有n个σd?如果有则属于D nd,,如果没有则属于D n点群。
7如果没有n个垂直于C n的C2轴?是否有σh?如果有则属于C nh点群。
8如果没有σh?是否有n个σv?如果有则属于C nv点群,如果没有则属于C n轴或属于S n点群。
分子点群类型和分子所属点群的确定用下表来表示,并得出结论。
参考文献:
[1] 周公度 . 结构和物性[M]. 北京:高等教育出版社,1993.184 ~185.
[2]东北师范大学、华东师范大学、西北师范大学合编.结构化学[M].北京:高等教育出版社,2003.121~122.
[3]刘国璞,白光美,廖松生. 大学化学[M]. 北京:清华大学出版社,1985:415- 421.
[4]杜少华. 分子极性判断二法[J]. 中学理科教学,1999:(9):41- 48.
[5]周端政. 辞海[M]. 上海:上海辞书出版社,1979:431.
[6]卢嘉锡.化学键的本质[M]. 上海:上海科技出版社,1996:36.。