静息电位和动作电位的测定
静息电位和动作电位
静息电位和动作电位
静息电位和动作电位
一、静息电位
1、概念表述
静息电位是指组织细胞静止状态下存在于膜内外两侧的电位差,呈外正内负的极化状态。
2、产生条件
(1)细胞膜内外离子分布不平衡。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
(2)膜对离子通透性的选择。在静息状态下,膜对K+的通透性大,对Na+的通透性则很小(Na+通道关闭),对膜内大分子A-则无通透性。
3、产生过程
K+顺浓度差向膜外扩散,膜内A-因不能透过细胞膜被阻止在膜内。致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。
当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。
二、动作电位
1、概念表述
动作电位是指可兴奋细胞受到刺激时,在静息电位的基础上发生的一次快速扩布性电位变化。
2、产生条件
(1)细胞膜内外离子分布不平衡。细胞内外存在着Na+浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
(2)膜对离子通透性的选择。细胞受到一定刺激时,膜对Na+的通透性增加
3、产生过程
(1)去极化:细胞受到阀上刺激→细胞外Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时Na+通道全部开放→Na+顺浓度梯度瞬间大量内流(正反馈倍增)→细胞内正电荷增加→膜内负电位从减小到消失,进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→膜两侧电位达到一个新的平衡点。该过程主要是Na+内流形成的平衡电位,可表示为动作电位模式图的上升支。(2)复极化:达峰值时Na+通道迅速关闭而失活→Na+内流停止→K+通道被激活→膜对K+的通透性增加→K+借助于浓度差和电位差快速外流→膜内电位迅速下降(负值迅速上升)→电位恢复静息值。该过程是K+外流形成的,可表示为动作电位模式图的下降支。
第3章5模块静息电位与动作电位
第3章5模块静息电位与动作电位
掌握:
概念:静息电位、动作电位、极化、去极化、复极化。
了解:
静息电位和动作电位的形成机制。
活的细胞无论处于静息状态还是活动状态都存在电现象,这种电现象称为生物电。生物电是一种普遍存在又十分重要的生命现象,也是生理学的重要基础理论。临床应用的心电图、脑电图、肌电图等检查,都是生物电理论在实际工作中的应用。
生物电现象的发生,都是以细胞水平的生物电现象为基础的。而且,生物电是发生在细胞膜两侧的,故称为跨膜电位,简称膜电位,包括静息电位和动作电位。
一、静息电位
1.静息电位的概念
静息电位是指细胞处于静息状态时,存在于细胞膜两侧的电位差。应用细胞内微电极记录法,当微电极未刺入细胞内时,细胞膜表面没有电位差,如图3-5(a)所示。将微电极尖端刺破细胞膜的瞬间,在记录仪上显示出一个电位的突然跃变,即示波器扫描线产生位移,由0mV变为约-70mV,这就说明细胞膜内外有电位差存在。研究表明,大多数细胞的静息电位都表现为膜内电位低于膜外,如以膜外电位为正,膜内电位即为负值,故呈内负外正状态。
细胞静息电位测定示意图
(a)细胞外记录;(b)细胞内微电极记录
不同细胞的静息电位的数值有所不同。通常将细胞静息状态下膜内为负、膜外为正的状态称为极化状态。静息电位减小的过程或状态称为去极化;反之,如果静息电位值增大,如从-70mV到-80mV,表明膜内外电位差增大,极化状态加强,称为超极化。
极化状态示意图
去极化
2.静息电位的产生机制
哺乳类动物神经细胞内的K+浓度高于细胞外,而细胞外Na+浓度高于细胞内。细胞内外Na+和K+的浓度差是由钠—钾泵的活动来维持的。细胞内的负离子主要是大分子的有机负离子(A-),多是蛋白质离子,而细胞外有机负离子极少。如果细胞膜允许这些离子自由通过的话,将顺浓度差产生K+、A-的外向流及Na+的内向流。但是,细胞处于静息状态时,细胞膜对K+的通透性较大,对Na+的通透性很小,仅为K+通透性的1/100~1/50,而对A-几乎没有通透性。因此,细胞静息时,K+顺浓度差外流,则必然带有正电荷的向外转移,同时膜内的A-不能通过细胞膜而留在细胞内,这样就形成了细胞膜外侧带正电荷,电位升高,细胞膜内侧带负电荷,电位降低的状态。但是,K+外流并不能无限制地进行下去,因为随着K+顺浓度差外流形成的外正内负的电场力会阻止带正电荷的K+继续外流。当浓度差形成的促使K+外流的扩散力与电场力形成的阻止K+外流的力量达到平衡时,K+的净移动就会等于零,此时,细胞膜两侧就形成了一个相对稳定的电位差,这就是静息电位。因为静息电位主要是K+外流达到平衡时的电位,所以又称它为K+平衡电位。
静息电位与动作电位
一、静息电位(resting potential, RP)
1、概念:
静息电位:细胞在静息(未受刺激)状态下膜两侧的电位差称静息电位(膜电位)
2、静息时细胞的特点
静息时细胞内外离子的特点:①细胞内[K+]一般比细胞外液高30倍;②细胞内带负电荷的生物大分子(主要是蛋白质)比细胞外液高10倍;③细胞外液中[Na+]和[CL-]都比细胞内高20倍。所以,细胞内正离子主要为K+,负离子主要为带负电荷的蛋白质分子。细胞外正离子主要为Na+,负离子主要为CL- 。
静息时细胞膜的选择通透性:①带负电荷的蛋白质分子完全不可通过;②Na+和CL-通透性极小;③K+有较大的通透性。
3、静息电位形成的机理:
细胞内的K+在细胞膜内外浓度差(内高外低)作用下携带正离子外流,当膜内外K+浓度差(K+外流动力)和K+外流所形成的电位差(K+外流阻力)达到动态平衡时,K+的净通量为零,此时所形成的电位差稳定于某一数值而不再增加,即形成静息电位;所以说静息电位实质为K+外流所形成的跨膜电位。
细胞内外的K+不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。
(二)动作电位
1. 动作电位的概念
动作电位(action potential):可兴奋组织接受刺激而发生兴奋时,细胞膜原有的极化状态立即消失,并在膜的内外两侧发生一系列的电位变化,这种变化的电位称为动作电位。
2. 动作电位形成的机理
证明:①人工地改变细胞外液Na+浓度,动作电位上升支及其幅度也随之改变,*海水实验;②用河豚毒阻断Na+通道后,动作电位幅度↓或消失;③膜片钳实验。
静息电位和动作电位的概念及形成机制
静息电位和动作电位的概念及形成机制
静息电位和动作电位的概念及形成机制
一、静息电位的概念及形成机制
1. 静息电位的概念
静息电位是指神经细胞在未被刺激时的电位状态。在静息状态下,细胞内外存在电化学梯度,使神经元内外细胞膜的电位差保持在负数水平,为-70mV左右。
2. 静息电位的形成机制
静息电位的形成主要与离子的通透性和Na+/K+泵有关。在静息状态下,细胞膜上的Na+和K+离子通道处于闭合状态,但是Na+/K+泵仍在起作用,将细胞内的Na+排出,K+输进,维持细胞内外的离子平衡,保持负电位。
3. 静息电位的重要性
静息电位是神经细胞正常功能的基础,它保证了细胞对外部刺激的敏感性,使神经元能够正常传递和处理信息。
二、动作电位的概念及形成机制
1. 动作电位的概念
动作电位是神经元在受到刺激时产生的短暂的电位变化。它是神经元传递信息的基本单位,具有快速传导和全或无的特点。
2. 动作电位的形成机制
动作电位的形成包括兴奋、去极化和复极化三个阶段。当神经元受到足够的刺激时,细胞膜上的Na+通道打开,Na+大量流入细胞内,使细胞内外电位逆转,形成去极化;随后Na+通道关闭,K+通道打开,K+大量流出,使细胞内外电位恢复,形成复极化。
3. 动作电位的重要性
动作电位是神经元传递信息的方式,它能够在神经元内外迅速传递信息,使神经元之间能够进行有效的通讯,实现信息的处理和传递。
总结与回顾:
静息电位和动作电位是神经元活动的重要基础。静息电位维持着神经元的正常状态,使其对外部刺激保持敏感;而动作电位则实现了神经元信息的传递,是神经元活动中最基本的过程之一。
静息电位与动作电位
静息电位
(Resting Potential , RP )
概念:静息电位是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理:静息电位产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。细胞膜内K+浓度高于细胞外。安静状态下膜对K+通透性大, K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法:插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。这种内负外正的状态,称为极化状态。静息电位是一种稳定的直流电位,但各种细胞的数值不同。哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。这就造成了膜外变正、膜内变负的极化状态。由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。当促使K+外移的浓度差和阻止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零,即K+外流和内流的量相等。此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位,也就是静息电位。其具体数值可按Nernst公式计算。
静息电位和动作电位
例1 (2010宁夏)将神经细胞置于相当于细胞
外液的溶液(溶液S)中,可测得静息电位。给
予细胞一个适宜的刺激,膜两侧出现一个暂时
性的电位变化,这种膜电位变化称为动作电位
。适当降低溶液S中的Na+浓度,测量该细胞的
静息电位和动作电位
1、静息电位值减小、增大、不变?
不变
2、动作电位峰值降低、升高、不变?
静息时
受刺激时
问题2:动作电位如何产生?
1、概念:可兴奋细胞受到刺激时在静息电位的基 础上产生的电位变化过程 2、动作电位产生的条件、机理: ①细胞膜两侧各种离子浓度分布不均; ②在不同状态下,细胞膜对各种离子的通透性 不同。 机理:受到刺激时钠离子内流,导致电位逆转 3、动作电位测量方法及动作电位的实验模式图
问题2:动作电位如何产生?
1、概念:可兴奋细胞受到刺激时在静息电位的基 础上产生的电位变化过程 2、动作电位产生的条件、机理: ①细胞膜两侧各种离子浓度分布不均; ②在不同状态下,细胞膜对各种离子的通透性 不同。 机理:受到刺激时钠离子内流,导致电位逆转 3、动作电位测量方法及动作电位的实验模式图 4、影响动作电位峰值的因素 动作电位峰值决定于细胞内外的Na+浓度差, 细胞外Na+浓度降低,动作电位的峰电位降低
细胞内
+ k
静息状态下钾离子的外流是产生和维持 静息电位的主要原因
测静息电位的电位计接法
测静息电位的电位计接法
摘要:
一、静息电位的概念
二、静息电位的测量方法
三、静息电位的影响因素
四、静息电位的应用
正文:
静息电位是生物膜在没有任何刺激时,膜内外电荷分布不平衡所表现出的电位差。它是生物体细胞内外电位差的一种基本状态,对于细胞功能的发挥具有重要意义。
一、静息电位的概念
静息电位是由于细胞膜内外离子浓度差异和离子通道的特性所导致的。在静息状态下,细胞膜内外的电荷分布呈现外正内负的特点。此时,细胞膜对不同离子的通透性不同,其中对钠离子的通透性较高,使得膜外钠离子浓度高于膜内。
二、静息电位的测量方法
测量静息电位的方法主要有两种:一种是使用电位计,将电极插入细胞内或细胞外,通过观察电位差的变化来测量静息电位;另一种是使用双电极法,将一个电极插入细胞内,另一个电极插入细胞外,通过测量细胞内外的电位差来确定静息电位。
三、静息电位的影响因素
静息电位受多种因素影响,如细胞膜的通透性、离子浓度、温度等。当细胞膜的通透性改变、离子浓度发生变化或温度升高时,都会影响静息电位的大小。
四、静息电位的应用
静息电位在生物医学领域具有广泛的应用,如在神经生理学、心肌生理学、细胞生物学等领域。通过研究静息电位,可以深入了解细胞的生理功能、离子通道的调控机制以及疾病发生发展过程中的细胞功能异常。
总之,静息电位是生物体细胞内外电位差的一种基本状态,测量静息电位有助于揭示细胞功能的调控机制和疾病发生发展过程中的细胞功能异常。
测静息电位的电位计接法
测静息电位的电位计接法
摘要:
一、前言
二、测静息电位的电位计接法
1.电位计的连接方式
2.电极的准备
3.测量过程
三、注意事项
四、总结
正文:
一、前言
在生物实验中,测量细胞的静息电位是一项基本操作。为了准确测量静息电位,选择合适的电位计接法非常关键。本文将介绍测静息电位的电位计接法。
二、测静息电位的电位计接法
1.电位计的连接方式
测量静息电位时,首先需要将电位计与电极相连接。电位计有阳极和阴极两个接口,分别与细胞膜内外电极相连。通常,红色接口代表阳极,黑色接口代表阴极。
2.电极的准备
测量静息电位前,需要确保电极表面干净,无杂质。电极可以是金属丝或
铂金电阻,根据实验需求选择合适的电极。电极需浸入细胞培养液中,使其与细胞充分接触。
3.测量过程
(1)将电位计连接到电极;
(2)将电极放置在细胞培养液中;
(3)打开电位计,让其稳定一段时间;
(4)记录此时的电位数值,即为细胞的静息电位。
三、注意事项
1.在测量过程中,避免剧烈晃动实验台,以免影响测量结果;
2.使用干净的电极,避免杂质影响测量精度;
3.在测量过程中,注意观察电位计的读数,避免过载或损坏电位计。
四、总结
测量细胞的静息电位是生物实验中的基本操作。通过了解测静息电位的电位计接法,可以确保实验过程顺利进行,为后续实验提供准确的数据支持。
静息电位和动作电位
简介
静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。
形成机理
静息电位
产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。细胞膜内K+浓度高于细胞外。安静状态下膜对K+通透性大,K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。膜内外电位差便维持在一个稳定的状态,即静息电位。
测定静息电位的方法
插入膜内的是尖端直径<1μm的玻璃管微电极,管内充以KCl溶液,膜外为参考电极,两电极连接到电位仪测定极间电位差。静息电位都表现为膜内比膜外电位低,即膜内带负电而膜外带正电。这种内负外正的状态,称为极化状态。静息电位是一种稳定的直流电位,但各种细胞的数值不同。哺乳动物的神经细胞的静息电位为-70mV(即膜内比膜外电位低70mV),骨骼肌细胞为-90mV,人的红细胞为-10mV。
静息电位的产生与细胞膜内外离子的分布和运动有关。正常时细胞内的K+浓度和有机负离子A-浓度比膜外高,而细胞外的Na+浓度和Cl-浓度比膜内高。在这种情况下,K+和A-有向膜外扩散的趋势,而Na+和Cl-有向膜内扩散的趋势。但细胞膜在安静时,对K+的通透性较大,对Na+和Cl-的通透性很小,而对A-几乎不通透。因此,K+顺着浓度梯度经膜扩散到膜外使膜外具有较多的正电荷,有机负离子A-由於不能透过膜而留在膜内使膜内具有较多的负电荷。这就造成了膜外变正、膜内变负的极化状态。由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。当促使K+外移的浓度差和阻
动作电位静息电位
动作电位静息电位
1. 什么是动作电位和静息电位?
动作电位和静息电位是神经元细胞膜的两种电位状态。动作电位是指神经元细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。而静息电位则是指神经元细胞膜在没有受到任何刺激时的电压状态。
2. 动作电位的过程
当神经元受到足够强度的刺激时,细胞膜内外的离子浓度发生瞬间变化,导致细胞膜内外电位的反转。这种电位反转的过程被称为动作电位。动作电位的过程
可以分为四个阶段:
- 静息状态:细胞膜内外的离子浓度分布保持不变,细胞膜内外电位差为-
70mV左右。
- 起始阶段:细胞膜受到刺激后,细胞膜内外的离子浓度发生瞬间变化,导致细胞
膜内外电位差快速反转到+30mV左右。
- 上升阶段:细胞膜内外电位差继续上升到峰值,此时细胞膜内外电位差为+30mV
左右。
- 下降阶段:细胞膜内外电位差开始迅速下降,恢复到静息状态。
3. 静息电位的维持
静息电位的维持与神经元细胞膜内外的离子浓度分布有关。在静息状态下,神经元细胞膜内外的离子浓度分布如下:
- 细胞内钾离子(K+)浓度高,细胞外钠离子(Na+)浓度高。
- 细胞内氯离子(Cl-)浓度低,细胞外氯离子(Cl-)浓度高。
这种离子分布的差异导致了细胞膜内外的电位差,使得细胞膜内电位为负电荷,外电位为正电荷。这种静息状态的电位差通常为-70mV左右。维持这种静息状态
需要通过细胞膜上的离子通道和离子泵来实现。
4. 总结
动作电位和静息电位是神经元细胞膜的两种电位状态。动作电位指细胞膜在受到足够强度的刺激后,发生短暂的电压变化的过程。静息电位指细胞膜在没有受到任何刺激时的电压状态。神经元细胞膜内外离子浓度分布的差异是维持静息电位的主要原因。通过细胞膜上的离子通道和离子泵来调节离子浓度分布,从而维持静息状态。动作电位和静息电位的研究有助于人们更好地理解神经元的工作原理,为治疗神经系统相关疾病提供参考。
静息电位与动作电位形成原因及相关练习
例5 电位变化曲线解读 ①图示:(09年安徽理综题图)离体神经纤维某 一部位受到适当刺激时,受刺激部位细胞膜两 侧会出现暂时性的电位变化,产生神经冲动。 图示该部位受刺激前后,膜两侧电位差的变化。 ②解读:a线段——静息电位、外正内负,K+ 通道开放; b点——0电位,动作电位形成过程中,Na+通 道开放; bc段——动作电位,Na+通道继续开放; cd段——静息电位恢复形成(Na+内流停止,K+ 迅速外流) de段——静息电位。
• 例4:如图是一个反射弧的部分结构图,甲、乙表示连接 在神经纤维上的电流表。当在A点以一定的电流刺激,甲、 乙电流表的指针发生的变化正确的是( D )
• A.甲、乙都发生两次方向相反的偏转
• B.甲发生两次方向相反的偏转,乙不偏转
• C.甲不偏转,乙发生两次方向相反的偏转
• D.甲发生一次偏转,乙不偏转
静息电位和动作电位的测定
1.静息电位和动作电位: 静息电位:在神经未受到刺激时,神经纤维处于静息状态,这时,由于细胞膜内外特异 的离子分布特点,细胞膜两侧的电位表现为内负外正,称为静息电位。 动作电位:当神经纤维某一部位受到刺激时,这个部位的膜两侧出现暂时性的电位变化, 由内负外正变为外负内正,这就是动作电位。 2.基本原理: 神经细胞内K+明显高于膜外,而膜外Na+明显高于膜内。静息时,由于膜主要对K+有通 透性,造成K+外流,使膜外阳离子多于膜内,所以外正内负。受到刺激时,细胞膜对 Na+的通透性增加,钠离子内流,使膜内阳离子浓度高于外侧,所以表现为内正外负。之 后,在膜上由于存在钠钾泵,在其作用下,将外流的钾离子运输进膜内,将内流的钠离 子运出膜外,从而成膜电位又慢慢恢复到静息状态。
动作电位和静息电位
动作电位和静息电位是生理学上描述神经细胞功能状态的重要概念。动作电位指的是
神经元在收到外界刺激后产生的电位变化,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位指的是神经元在没有任何刺激的情况下产生的电位变化,它是一种持续的电信号传递,可以用来维持神经元的基础功能。
动作电位的构成主要来自于膜电位的变化,膜电位是由离子通道的选择性渗透决定的,它的变化反映了细胞内外离子的平衡状态的变化;静息电位的构成主要来自于安定电位的变化,它是由膜蛋白电位决定的,它的变化反映了细胞内外离子的偏置态的变化。
动作电位主要由膜电位变化产生,它是一种瞬时的电信号传递,可以用来传递神经信号;静息电位主要由安定电位变化产生,它是一种持续的电信号传递,可以用来维持神经
元的基础功能。动作电位变化可以使神经元间的电信号传递得以实现,而静息电位则可以维持神经元内部的稳定性。因此,动作电位和静息电位都是神经元功能的重要指标,为神经元功能的研究提供了重要的参考依据。
静息电位动作电位
静息电位动作电位
静息电位动作电位(Resting Membrane Potential Action Potential,简称RMP-AP)是指由一个细胞的内外电位差引发的生物电位过程。在此过程中,当外界环境中的电位变化时,会引起细胞内外电位差,从而产生电位上升或降低。
RMP-AP是由三个不同的周期组成的,即静息电位、动作电位和恢复期。首先,当细胞的外界环境中的电位变化时,会导致细胞内外电位差的变化,从而使细胞内外电位差发生变化,这就是静息电位(RMP)。此时,细胞内外电位差处于一个稳定的水平,这样细胞就可以保持正常的功能。
接下来是动作电位(AP),当细胞内外电位差超过一定的阈值时,会产生一个动作电位,它具有较快的上升速度和较高的电压水平,从而使细胞内外电位差急剧上升,这样细胞便会发出电位信号,从而改变细胞的生理功能。
最后是恢复期。当动作电位(AP)发生后,细胞内外电位差会再次降低,直到恢复到原先的静息电位(RMP),此时会有一个恢复期,即当细胞内外电位差回到正常水平时,细胞便会恢复到正常的功能状态。
总之,静息电位动作电位(RMP-AP)是由一个细胞的内外电位差引发的生物电位过程,其主要由静息电位、动作电位和恢复期三个不同的周期组成,它能够使细胞内外电位差发生变化,从而使细胞发出的电位信号改变细胞的生理功能,从而使细胞获得正常的功能状态。
静息电位与动作电位ppt课件
有髓纤维上的兴奋传导比较特殊,因为在有髓纤维的 轴突外面包裹着一层很厚的髓鞘,髓鞘的主要成分是 脂质,而脂质是不导电或不允许带电离子通过的。只 有在髓鞘暂时中断的朗飞结处,轴突膜才能和细胞外 液接触,使跨膜离子移动得以进行。因此,当有髓纤 维受到外来刺激时,动作电位只能在邻近刺激点的朗 飞结处产生,而局部电流也就在相邻的朗飞结之间形 成(图2-12)。这一局部电流对邻近的朗飞结起着刺激 作用,使之兴奋;然后又以同样的方式使下一个朗飞 结兴奋。这样,兴奋就以跳跃的方式 ,从一个朗飞结 传至另一个朗飞结而不断向前传导。这种传导方式称 为跳跃式传导(saltatory conduction)。跳跃式传导 使冲动的传导速度大为加快,因此,有髓纤维的传导 速度远比无髓纤维为快。另外,跳跃式传导时,单位 长度内每传导一次兴奋所涉及的跨膜离子运动的总数 要少得多,因此它还是一种更“节能”的传导方式。
双向性 安全性 不衰减性
传导的特点
综上所述,阈刺激或阈上刺激,能使静 息电位去极化达到阈电位,从而爆发动 作电位,即发生兴奋。而单个阈下刺激 虽不能引发动作电位,但却能使受刺激 部位的细胞膜轻度去极化,几个阈下刺 激引起的局部兴奋总和起来,也可使静 息电位减小到阈电位而发生兴奋。
兴奋在同一细胞上的传导
在无髓神经纤维的某一段,因受到足够强的外来刺激而出现了动 作电位,也就是说,受刺激的局部细胞膜发生了短暂的电位倒转, 由静息时的内负外正变为内正外负,但与该段神经相邻的神经段 仍处于安静时的极化状态。由于膜两侧的溶液都是导电的,于是 在已兴奋的神经段和相邻的未兴奋的神经段之间,将由于电位差 的存在而有电荷移动,形成了局部电流(local current)。局部 电流的方向是由正到负,即在膜外由未兴奋段移向兴奋段,膜内 侧由已兴奋段移向未兴奋段。这样通过未兴奋段膜的电流即对未 兴奋段形成刺激而使该段的膜去极化,当去极化达到阈电位水平 时,大量激活该处的Na+通道而导致动作电位的出现,使邻近的 未兴奋段变为兴奋段。新的兴奋段与相邻未兴奋段之间又存在电 位差,又产生局部电流的刺激作用,于是引起又一个未兴奋段产 生兴奋。这样的过程沿着神经纤维的膜继续进行下去,就表现为
静息电位动作电位
细胞膜的生物电现象主要有两种表现形式,即安静时的静息电位和受刺激时产生的膜电位的改变(包括局部电位和动作电位)。生物电现象是以细胞为单位产生的,以细胞膜两侧带电离子的不均衡分布和离子的选择性跨膜转运为基础。
1.静息电位(resting potential,RP):指细胞未受刺激时存在于细胞膜内外两侧的电位差。将一对测量电极中的一个放在细胞的外表面,另一个与微电极相连,准备刺入细胞膜内。当两个电极都位于膜外时,电极之间不存在电位差。在微电极尖端刺入膜内的一瞬间,示波器上显示一突然的电位跃变,表明两个电极间出现电位差,膜内侧的电位低于膜外侧电位。该电位差是细胞安静时记录到的,因此称为静息电位。几乎所有的动植物细胞的静息电位都表现为膜内电位值较膜外为负,如规定膜外电位为0,膜内电位可以负值表示,即大多数细胞的静息电位在-10~-100mV之间。神经细胞的静息电位约为-70mV,红细胞的约为-10mV。细胞膜两侧存在电位差,以及此电位差在某种条件下会发生波动,使细胞膜处于不同的电学状态。人们将细胞安静时膜两侧保持的内负外正的的状态称为膜的极化;当膜电位向膜内负值加大的方向变化时,称为膜的超极化;相反,膜电位向膜内负值减小的方向变化,称为膜的去极化;细胞受刺激后先发生去极化,再向膜内为负的静息电位水平恢复,称为膜的复极化。
2.静息电位形成的原理
(1)细胞膜内、外的离子浓度差RP的形成与细胞膜两侧的离子有关。下表显示枪乌贼巨轴突细胞膜两侧主要离子浓度。由表可见,细胞膜内外的离子呈不均衡分布,膜内K+多于膜外,Na+和Cl-低于膜外,即细胞内为高钾低钠低氯的状态。此外,A-表示带负电蛋白质基团,仅存在于膜内。(2)细胞膜对离子的选择通透性和K+平衡电位Hodgkin和Huxley推测:由于细胞内外存在K+的浓度差(细胞内高钾),K+具有从膜内侧向膜外侧扩散的趋势。如果细胞膜在安静时只能允许K+自由通透(K+通道开放),K+即可顺浓度差外流到细胞外。虽然胞内A-的浓度也很高,但细胞膜对A-不能通透,它只能因正负电荷的相互吸引作用,排列于细胞的内侧面。而扩散出细胞的K+也不能远离膜,而排列在膜的外侧面。这样在膜的内外两侧就形成了内负外正的电位差。K+的这种外向扩散不能无限制的进行,因为K+外流造成的外正内负的电场力,将阻碍带正电的K+继续外流,而且K+外流愈多,这种电势的阻碍就会愈大。当促使K+外流的膜两侧K+浓度差势能,与阻碍K+外流的电位差势能相等时,即膜两侧电-化学势的代数和为零时,K+外流量与回收(回到胞内)的量达到了动态平衡,K+的跨膜净移动为零,此时膜两侧电位差就稳定在某一不再增大的数值,即静息电位。因其是K+移动达到平衡时的膜电位,又可称作K+平衡电位(EK)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静息电位和动作电位的测定
1.静息电位和动作电位:
静息电位:在神经未受到刺激时,神经纤维处于静息状态,这时,由于细胞膜内外特异的离子分布特点,细胞膜两侧的电位表现为内负外正,称为静息电位。
动作电位:当神经纤维某一部位受到刺激时,这个部位的膜两侧出现暂时性的电位变化,由内负外正变为外负内正,这就是动作电位。
2.基本原理:
神经细胞内K+明显高于膜外,而膜外Na+明显高于膜内。静息时,由于膜主要对K+有通透性,造成K+外流,使膜外阳离子多于膜内,所以外正内负。受到刺激时,细胞膜对Na+的通透性增加,钠离子内流,使膜内阳离子浓度高于外侧,所以表现为内正外负。之后,在膜上由于存在钠钾泵,在其作用下,将外流的钾离子运输进膜内,将内流的钠离子运出膜外,从而成膜电位又慢慢恢复到静息状态。3.神经电位差测定的常见类型:
(1)静息电位测定方式:静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧(如右上图),由于内外两侧存在电势差,因此电流表指针会发生偏转。(2)动作电位测定方式:
①在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B处),来测定两个电极处是否有电位差。其放置方式如右下图。
对于一个神经纤维上电位的测定,如电流表指针发生了偏转,则说明A B两点存在电势差。一般的做法是在该神经纤维上C点给一个足够强度的刺激,从而观察电流表发生几次偏转,方向是否一致?
当刺激点C到达A、B两点距离相等时,神经冲动同时到达A、B两点,两点虽然均产生了动作电位,但是仍然不存在电势差,因此电流表不会发生偏转。
只要刺激点C与A、B点在同一神经元上,且CA与CB不相等,电流表就会发生两次方向相反的偏转。
②在两个神经纤维上的测定:是指将电流表的两个电极放在两个相邻神经元的外侧,来测定两个电极处是否有电位差。其放置方式如右图。在A点给一个足够强度的刺激,观察电流表发生几次偏转,方向是否一致?
若这个刺激发生在上游神经元上,则电流表会发生两次方向相反的偏转;若这个刺激发生在下游神经元上,则电流表只能发生一次偏转。
4.常见题型:
例1:右图表示枪乌贼离体神经纤维在Na+浓度不同的两种海水中受刺激后的膜电位变化情况。下列
描述错误的是()
A.曲线a代表正常海水中膜电位的变化
B.两种海水中神经纤维的静息电位相同
C.低Na+海水中神经纤维静息时,膜内Na+浓度高于膜外
D.正常海水中神经纤维受刺激时,膜外Na+浓度高于膜内
解析:从图中可看出,起始阶段两曲线重合,故其静息电位相同,B正确。正常海水中含有大量Na+,神经纤维受刺激后,大量的Na+内流,使膜内成为正电位,膜外成为负电位。若海水中Na+浓度较低,Na+内流少,产生的动作电位就较低,所以A是正确的。神经纤维静息电位时,外界Na+浓度高于内部,内部K+浓度高于外部,因此C是错误的。当神经纤维受到刺激时,尽管Na+浓度内流,导致内部Na+
浓度升高,但内部电位高是Na+和K+共同作用的结果,膜外仍存在大量Na+,膜外的Na+浓度仍高于膜内Na+浓度,D也是正确的。答案为C。
例2:根据下图分析神经细胞,叙述错误的是()
A.此图可表示突触小泡膜
B.静息电位的形成可能与膜上的②、⑤等载体有关
C.若此图为突触后膜,则突触间隙位于图示膜的A面
D.若将神经细胞膜的磷脂层平展在空气—水界面上,③与水面接触
解析:本题考查了与兴奋在神经纤维上的神经传导以及兴奋在神经元之间的传递有关的一些知识。突触小泡为细胞器,来源于高尔基体,其膜上一般不含多糖,此图不可能是突触小泡膜。电位的产生
与离子运输有关,离子的运输与载体蛋白有关。而突触后膜的识别则与糖蛋白有关,有糖蛋白一侧则位于细胞外侧面。磷脂分子③部分为亲水端,能与水接触。答案为A。
例3:在蛙的坐骨神经表面放置两个电极,连接到一个电表上(电表指针偏转方向代表电流方向)。静息时,电表没有测出电位差(如下图中①所示)。若在图①所示神经右侧的相应位置给予一适当的刺激,则电流表指针偏转的顺序依次为B→。
解析:在图①所示神经右侧的相应位置给予一适当的刺激,则刺激处电位发生变化,由外正内负变为外负内正,向周围传导到b点,首先出现A图所示现象,当兴奋传导过了b点,又未到达a点,则现象为B图所示,兴奋继续向a传导,到达a点后,a点的电位发生改变,现象为C图所示,兴奋经过a点后,又恢复B图所示。答案为:A→B→C→B。
例4:如图是一个反射弧的部分结构图,甲、乙表示连接在神经纤维上的电流表。当在A点以一定的电流刺激,甲、乙电流表的指针发生的变化正确的是()
A.甲、乙都发生两次方向相反的偏转
B.甲发生两次方向相反的偏转,乙不偏转
C.甲不偏转,乙发生两次方向相反的偏转
D.甲发生一次偏转,乙不偏转
解析:A点给予一个刺激,产生兴奋,向细胞体传导,电流表指针发生一次偏转,但当兴奋传导到细胞体后,无法传递到另外一个神经元,无法引起其兴奋,因此只有甲能发生一次偏转,乙不会发生偏转,答案为D。
例5:下图甲表示人体脊髓反射弧模式图,乙表示人体神经元结构模式图。据图回答:
(1)甲图中,刺激结构④时,会产生具体效应的结构是[],该结构在组成上包括。
(2)乙图中的C是下一个神经元的;兴奋不能从C传到A的原因
是。
(3)乙图中,若刺激A点,电流计B将偏转次;若抑制该细胞的呼吸作用,发现神经纤维在一次兴奋后,其细胞膜不能再恢复到静息状态,所以带电离子通过细胞膜的方式是。(4)甲图中,提供电刺激设备、电位测量仪等必要的实验用具,验证兴奋在神经元之间进行单向传导的步骤是:。
(5)若按(4)步骤进行,改为探究神经元之间的方向,其结论
为。
解析:甲图是一典型的人体脊髓反射弧的结构模式图,从图中可看出,①为感受器,②为传入神经,③为神经中枢,④为传出神经,⑤为效应器(传出神经末梢及其所支配的肌肉或腺体等)。乙图中C 为突触部分的突触后膜——下一个神经元的树突膜或胞体膜,由于神经递质只能由突触前膜释放并作用于突触后膜,所以神经冲动只能由前一个神经元传递到后一个神经元,而不能逆向传递。在乙图中若刺激A点,由于兴奋在神经纤维上的传导导致两个电流表指针不同时发生电位变化,所以指针要偏转两次。若抑制该细胞的呼吸作用(细胞中ATP量不足),则神经纤维在一次兴奋后,其细胞膜不能再恢复到内负外正的状态,说明离开了ATP,带电离子就不能通过细胞膜,所以,带电离子通过细胞膜的方式是主动运输。要验证兴奋在神经元之间进行单向传递,也就是说只能由前一个神经元传递给后一个神经元,而不能由后一个神经元传递给前一个神经元,应先用电刺激②(或②上一点),测量④上有无电位变化;再电刺激④(或④上一点),测量②上有无电位变化。
答案:(1)⑤;效应器;传出神经末梢及其所支配的肌肉或腺体等(2)树突膜或胞体膜;递质只能从突触前膜释放,作用于突触后膜(3)2;主动运输(4)先电刺激②(或②上一点),测量④上有无电位变化;再电刺激④(或④上一点),测量②上有无电位变化(5)若两次都测到电位变化,则为双向传导;若④上有电位变化而②上没有,则为单向传导且只能从②→④;若②上有电位变化而④上没有,则为单向传导且只能从④→②。
(注:可编辑下载,若有不当之处,请指正,谢谢!)