Towards Automatic Recognition of Spontaneous Facial Actions
关于人工智能思考的英语作文
关于人工智能思考的英语作文英文回答:When we contemplate the intriguing realm of artificial intelligence (AI), a fundamental question arises: can AI think? This profound inquiry has captivated the minds of philosophers, scientists, and futurists alike, generating a rich tapestry of perspectives.One school of thought posits that AI can achieve true thought by emulating the intricate workings of the human brain. This approach, known as symbolic AI, seeks to encode human knowledge and reasoning processes into computational models. By simulating the cognitive functions of the mind, proponents argue, AI can unlock the ability to think, reason, and solve problems akin to humans.A contrasting perspective, known as connectionism, eschews symbolic representations and instead focuses on the interconnectedness of neurons and the emergence ofintelligent behavior from complex networks. This approach, inspired by biological neural systems, posits that thought and consciousness arise from the collective activity of vast numbers of nodes and connections within an artificial neural network.Yet another framework, termed embodied AI, emphasizes the role of physical interaction and embodiment in shaping thought. This perspective contends that intelligence is inextricably linked to the body and its experiences in the real world. By grounding AI systems in physical environments, proponents argue, we can foster a more naturalistic and intuitive form of thought.Beyond these overarching approaches, ongoing research in natural language processing (NLP) and machine learning (ML) is contributing to the development of AI systems that can engage in sophisticated dialogue, understand complex texts, and make predictions based on vast data sets. These advancements are gradually expanding the cognitive capabilities of AI, bringing us closer to the possibility of artificial thought.However, it is essential to recognize the limitations of current AI systems. While they may excel at performing specific tasks, they still lack the comprehensive understanding, self-awareness, and creativity that characterize human thought. The development of truly thinking machines remains a distant horizon, requiring significant breakthroughs in our understanding of consciousness, cognition, and embodiment.中文回答:人工智能是否能够思考?人工智能领域的核心问题之一就是人工智能是否能够思考。
一种基于词袋模型的新的显著性目标检测方法
第42卷第8期自动化学报Vol.42,No.8 2016年8月ACTA AUTOMATICA SINICA August,2016一种基于词袋模型的新的显著性目标检测方法杨赛1赵春霞2徐威2摘要提出一种基于词袋模型的新的显著性目标检测方法.该方法首先利用目标性计算先验概率显著图,然后在图像的超像素区域内建立词袋模型,并基于此特征计算条件概率显著图,最后根据贝叶斯推断将先验概率和条件概率显著图进行合成.在ASD、SED以及SOD显著性目标公开数据库上与目前16种主流方法进行对比,实验结果表明本文方法具有更高的精度和更好的查全率,能够一致高亮地凸显图像中的显著性目标.关键词词袋模型,目标性,贝叶斯模型,视觉显著性,显著性目标检测引用格式杨赛,赵春霞,徐威.一种基于词袋模型的新的显著性目标检测方法.自动化学报,2016,42(8):1259−1273DOI10.16383/j.aas.2016.c150387A Novel Salient Object Detection Method Using Bag-of-featuresYANG Sai1ZHAO Chun-Xia2XU Wei2Abstract A novel salient object detection algorithm via bag-of-features(BoF)is proposed.Specifically,it uses objectness to compute the prior saliency map.Then,BoF model is constructed in each superpixel and the conditional probabilities map is calculated.The prior and conditional probabilities saliency maps arefinally fused by Bayes theorem.Extensive experiments against state-of-art methods are carried out on ASD,SED and SOD benchmark datasets.Experimental results show that the proposed method performs favorably against the sixteen state-of-art methods in terms of precision and recall,and highlights the salient objects more effectively.Key words Bag-of-features(BOF),objective,Bayesian model,visual saliency,salient object detectionCitation Yang Sai,Zhao Chun-Xia,Xu Wei.A novel salient object detection method using bag-of-features.Acta Automatica Sinica,2016,42(8):1259−1273人类视觉在处理数量庞大的输入信息时,注意机制具有极其重要的作用[1].它能够将有限的资源优先分配给有用的信息,从而优先处理最有价值的数据.与人类的视觉注意行为相对应,计算机在处理输入图像时,通过检测显著性区域来实现判断其中视觉信息的重要程度.视觉显著性检测在诸如目标检测、图像压缩、基于内容的图像编辑等方面中具有广泛的应用,是计算视觉研究中非常重要的基础性课题[2].在显著性目标检测研究领域,基于区域的显著性检测方法由于检测速度快、精确度高等优点已经成为目前该领域中的主流方法.此类方法进行显著性检测的过程可以分为区域特征表示和对比度计算两个重要步骤,对图像区域的特征进行有效的表示收稿日期2015-06-23录用日期2015-10-10Manuscript received June23,2015;accepted October10,2015国家自然科学基金(61272220)资助Supported by National Natural Science Foundation of China (61272220)本文责任编委黄庆明Recommended by Associate Editor HUANG Qing-Ming1.南通大学电气工程学院南通2260192.南京理工大学计算机科学与工程学院南京2100941.School of Electrical Engineering,Nantong University,Nan-tong2260192.School of Computer Science and Engineering, Nanjing University of Science and Technology,Nanjing210094直接影响到显著图的质量.然而目前的方法几乎都是使用底层视觉特征对分割区域内的像素集合进行特征表示,例如文献[3−4]使用CIELab颜色直方图表示图像区域的特征;文献[5]使用RGB颜色特征、方向特征和纹理特征表示图像区域.与底层视觉特征相比较,中层语义特征具有更好的区分度,本文提出一种基于词袋模型的新的显著性目标检测算法.1相关工作自Koch等[6]提出显著图的定义以来,目前已经出现了大量的显著性检测算法.Achanta等[7]将这些方法总体上概括为以下三类:第一类为基于生物模型的方法,经典IT算法[8]是其中的典型代表.由于人类视觉系统的生物学结构非常复杂,此类方法计算复杂度非常高,而纯数学计算型的方法在很多环节使用简单的计算直接实现,大幅提高了计算速度和检测效果,是目前显著性检测算法中的主流研究方向.还有些方法采用了纯数学计算并融合生物学模型,例如Harel等提出的GBVS(Graph based visual saliency)模型[9].对比度是引起人类视觉注意的最大因素,基于纯数学计算的显著性检测方法又因为所使用的对比度计算方式不同而有所区别.Ma等[10]提出了一种1260自动化学报42卷局部对比度的显著性检测方法,它使用CIELuv颜色表示图像中每个像素的特征,并使用欧式距离度量每个像素与其邻域像素之间的差异程度;MZ方法在计算局部对比度时,将邻域的大小设为固定值,无法实现多尺度的显著性计算,为此Achanta 等[11]提出通过改变感知单元邻域的尺寸大小实行显著性的多尺度计算;LC(Luminance-based con-trast)方法[12]同样是以图像中的每个像素作为基本处理单元,但与MZ不同的是,使用图像像素的灰度特征计算像素在整幅图像上的全局对比度;Cheng 等[3]提出的HC(Histogram-based contrast)方法在CIELab颜色空间的三个通道计算像素在整幅图像上的全局对比度;Achanta等[7]提出的FT(Fre-quency tuned)方法同样也是一种全局对比度计算方法,其所使用的全局信息是图像的平均信息; Goferman等[13]提出的CA(Contex aware)方法也是从感知单元之间的差异性出发计算显著性,但是与上面方法不同的是,CA考虑了感知单元之间的空间位置关系.上述显著性检测方法都是在像素级别计算显著性,而基于区域的显著性检测方法以图像区域为基本处理单元,速度更快,精度更高.此类方法又因为使用不同的分割方法,区域的图像特征表示和显著性计算而有所不同.Cheng等[3]提出的RC (Region-based contrast)方法使用图割对图像进行分割,然后使用颜色直方图表示每个图像区域的特征,在计算每个图像小块的全局对比度的同时考虑了颜色对比度、空间距离和分块大小三个因素;与RC方法基于超像素分割获得图像区域不同,Cheng 等[14]提出的GC(Global cues)方法利用对所有像素进行初始聚类得到的聚类中心计算颜色对比度,利用对高斯成分进行二次聚类得到聚类中心计算颜色空间分布,最后使用文献[15]中的方法将颜色对比度与颜色空间分布相结合得到最终显著图;Mar-golin等[16]提出的PD(Patch distinct)方法通过分析图像小块的内部统计特性,使用主成分分析表示图像小块进而计算图像小块的显著性;Jiang等[4]提出的CBS(Context-based saliency)方法使用图割方法将图像快速分成不同的子区域,使用CIELab 颜色直方图表示图像区域的特征,然后使用距离函数计算每个图像小块与近邻图像小块之间的差异性生成显著图;Shen等[5]提出的LR(Low rank)方法使用RGB颜色特征、方向特征和纹理特征表示图像区域,使用鲁棒PCA(Principal component analysis)算法对特征矩阵进行分解计算显著性.基于区域的显著性检测过程可以分为区域的图像特征表示和对比度计算两个重要步骤,目前此类方法几乎都是使用底层视觉特征进行对比度计算.相对于底层视觉特征,中层语义特征更加符合人类视觉模型,为此本文提出一种基于词袋模型的新的显著性目标检测方法.2本文方法2.1方法描述对于一幅给定的图像I,显著性检测的目的是将图像中任意像素x归于前景目标区域或者背景区域两种可能状态之一,将这两种状态分别简记为S (Salient)和B(Background),它们的先验概率相应地简记为P(S)和P(B),则根据贝叶斯推断原理,像素x的显著性计算公式为:P(S|x)=P(S)P(x|S)P(S)P(x|S)+P(B)P(x|B) P(S)+P(B)=1(1)式中,P(x|S)表示显著区域已知的情况下观测像素x的条件概率密度,P(x|B)表示背景区域已知的情况下观测像素x的条件概率密度.2.2基于目标性的先验概率本文使用目标性计算式(1)中的先验概率,对于图像中的任意像素x,以此像素为中心,随机抽取图像中的W个窗口,文献[17]分别从以下四个方面计算每个窗口的目标性:1)窗口显著性.首先利用任意显著性检测方法计算得到图像中每个像素的显著值I(p),则窗口w∈W的显著性计算公式为:S(w,θs)={p∈W|I(P)≥θs}I(p)×{p∈W|I(P)≥θs}|w|(2)式中,θs表示待学习的显著性阈值参数.2)颜色对比度.对于窗口w∈W,以θcc为固定倍数在每个方向将其扩展到周围区域得到某一矩形区域Surr(w,θcc),则窗口w在此区域内的颜色对比度计算公式为:CC(w,θcc)=χ2(h(w),h(Surr(w,θcc)))(3)式中,h(w)、h(Surr(w,θcc))分别表示窗口w与矩形区域Surr(w,θcc)的颜色直方图,χ2(·)表示卡方距离函数.3)边缘密度.对于窗口w∈W,以θED为固定倍数将其收缩到内部环状区域Inn(w,θED),则此窗口w在区域Inn(w,θED)内的边缘性计算公式为: ED(w,θED)=p∈Inn(w,θED)I ED(p)Len(Inn(w,θED))(4)8期杨赛等:一种基于词袋模型的新的显著性目标检测方法1261式中,I ED(p)表示使用Canny算子得到的二值图,Len(·)表示计算区域Inn(w,θED)的周长.4)轮廓闭合性.首先将图像分割为若干超像素S,则窗口w∈W的轮廓闭合性的计算公式为:SS(w)=1−s∈S min(|s\w|,|s∩w|)|w|(5)式中,s∈S表示图像中的第s个超像素,|s\w|表示超像素s位于窗口w之外的面积,而|s∩w|表示超像素s位于窗口w内部的面积.将上述得到的窗口显著性S(w,θs)、颜色对比度CC(w,θcc)、边缘密度ED(w,θED)以及轮廓闭合性SS(w)进行融合就得到每个窗口被判定为显著性目标的概率值P(w),那么基于目标性的先验概率计算公式为:P s(x)=w∈W∩x∈WP(w x)(6) 2.3超像素词袋特征已知一个图像数据集D={d1,d2,···,d N},由于CIELab颜色模型能够将亮度和色度分量分开,相关研究工作[3−4,7,16]也表明在此颜色空间进行检测得到的显著图的准确度更高,因此将图像变换到CIELab颜色空间,然后随机抽取其中的300k个像素的颜色特征组成局部特征集合X,对X进行聚类得到视觉词典V=[v1,v2,···,v K]∈R D×K, v k∈R D×1,k=1,2,···,K表示第k个视觉单词向量,K为视觉单词数目,D为像素颜色特征的维数.在得到视觉词典后,使用硬分配编码方法对图像中的每个像素进行编码[18].对于数据集中任意一幅图像,c j∈R D×1表示第j个像素颜色特征,其对应的编码矢量U j∈R K×1第k维值的计算公式为:U jk=1,若j=arg min j=1,2,···,K c j−v k 2 0,其他(7)式中,矢量c j与v k之间的距离计算采用欧氏函数.完成对图像中所有像素的编码操作之后,使用SLIC(Simple linear iterative clustering)方法对图像进行分割,如图1(b)所示,图像被相应地分割成为N个尺寸均匀的超像素,假设其中第n个超像素区域内共有P n个像素,则此区域内所有像素编码矢量的总和统计值为:BoF n=P nj=1U j(8)式中,U j表示超像素区域内第j个像素颜色特征的编码矢量,可以利用式(7)计算其第k维值,则BoF n就为图像中第n个超像素的词袋特征.(a)原图像(a)Original image(b)超像素分割(b)Superpixel of original image(c)背景区域(c)Background regions图1背景超像素示意图Fig.1Illustration of background s superpixels2.4条件概率为了估计式(1)中观测像素x的条件概率密度,本文假定图像周边的超像素区域为背景区域,如图1(c)所示.假设背景区域内超像素的数目为N b,背景超像素词袋特征记为BoF B,其中第j个超像素区域的词袋特征表示为BoF Bj,使用Parzen窗法[19]得到背景超像素特征BoF B的概率密度分布,表达式为:P(ˆBoF B)=1N bσKN bj=1KBoF B−BoF Bjσ(9)1262自动化学报42卷式中,K为核函数,σ为窗宽,K为背景超像素特征的维数,即词袋特征的维数.如果核函数选用高斯核函数,式(9)变为:P(ˆBoF B)=1N bσKN bj=1exp−BoF B−BoF Bj 22σ2(10)式中, · 2表示l2范数,则在背景区域已知的情况下,图像中任意超像素区域R n的条件概率密度计算公式为:P(ˆR i|B)=1N bσKN bj=1exp(− BoF i−BoF Bj 22σ2)P(R i|ˆS)=1−P(ˆR i|B)(11)将区域的显著性值传递给此区域内的所有像素就得到了基于中层语义特征的条件概率显著图P(x|B)和P(x|S).将式(6)中得到的先验概率和式(11)中得到的条件概率P(x|B)和P(x|S)代入式(1)中就得到了图像的最终显著图.3实验与分析3.1数据库及评价准则本节实验在4个显著性目标公开数据库上验证本文方法的性能.第一个为瑞士洛桑理工大学Achanta等建立的ASD数据库[7],该数据库是MSRA-5000数据库的一个子集,共有1000幅图像,是目前最为广泛使用的、已经人工精确标注出显著性目标的显著性检测算法标准测试库.第二个和第三个为SED1和SED2数据库[20],这两个数据库都包含共100幅图像,并且提供了3个不同用户给出的精确人工标注,也是目前广泛使用的显著性检测算法标准测试库.这两个数据库的主要区别在于前者每幅图像包含一个目标物体,而后者包含两个目标物体.第四个为SOD数据库[21],该数据库是由伯克利图像分割数据集的300幅图像所组成,提供了七个不同用户给出的精确人工标注.在第一个评价准则中,假设使用某一固定阈值t 对显著图进行分割,得到二值分割后的图像,t的取值范围为[0,255].将二值分割(Binary segmenta-tion,BS)图像与人工标注图像(Groud-truth,GT)进行比较得到查准率(Precision)和查全率(Recall),计算公式为:P recision=(x,y)GT(x,y)BS(x,y)(x,y)BS(x,y)(12)Recall=(x,y)GT(x,y)BS(x,y)(x,y)GT(x,y)(13)式中,GT和BS分别表示人工标注图像和二值分割后的图像.将阈值t依次设定为1到255对数据库中的所有显著图进行二值分割,计算出相应的平均查准率和查全率,以查全率为横坐标,以查准率为纵坐标,就得到了关于阈值t在整个数据库上的PR(Precision-recall)曲线.在第二个评价准则中,使用文献[3,5,7]中的自适应阈值确定方法对图像进行二值分割,同样与人工标注图像进行比较,得到查准率和查全率,并计算F度量值(F-measure),计算公式为:Fβ=(1+β2)×P recision×Recallβ2×P recision+Recall(14)与文献[3,5,7]一致,本文也将β2设为0.3,并且将自适应阈值设为图像显著值的整数倍,即:tα=KW×HWx=1Hy=1S(x,y)(15)式中,W、H分别表示显著图的宽度和长度,S为显著图,K的经验值为2.为了进一步评价F度量值的综合性能,在区间[0.1,6]中以0.1为采样步长均匀选取一系列K的值,利用式(14)计算不同K值对应的平均F度量值,然后以K值为横坐标,F值为纵坐标,相应地画出Fβ−K曲线.由于查准率和查全率不能度量显著图中被正确标注为前景像素和背景像素的精确数目,为了更加全面均衡地对显著性检测方法进行客观评价,使用文献[22]中的平均绝对误差(Mean absolute error,MAE)作为第三个评价准则,该准则计算未进行二值分割的连续显著图S与人工标注图GT所有像素之间的绝对误差的平均值,计算公式为:MAE=1W×HWx=1Hy=1|S(x,y)−GT(x,y)|(16)式中,W、H分别表示S以及GT的宽度和长度.3.2参数本文方法中的重要参数为超像素的数目N和视觉单词数目K,使用第二个度量准则中的平均F度量值衡量各种参数对检测性能的影响.首先固定K=50,将N分别设为100、150、200、250、300、350、400、450、500、600,不同超像素数目下的平均F度量值如图2所示,由此可知,ASD、SED1、SED2以及SOD四个数据库上,当N大于200之后,各个超像素数目之间的性能相差不大.当超像素数目分别为200、350、250、350时,本文方法取得最高的F值,因此接下来的实验在8期杨赛等:一种基于词袋模型的新的显著性目标检测方法1263四个数据库上将N分别设为200、350、250、350.将K分别设为10、20、30、40、50、60、70、80、90、100,不同单词数目下的平均F度量值如图3所示,由此可知,ASD数据库上各个单词数目之间的性能相差很小,单词数目为70时,本文方法取得了最高的F值.SED1和SED2数据库上F值的最高与最低之差分别为0.011和0.013,单词数目分别为80和20时,本文方法取得了最高的F值.SOD数据库上的最高值与最低值之差超过0.02,这主要是因为此数据集比较复杂,当视觉单词数目比较少时,不能充分编码图像中的颜色特征,从而加剧了视觉单词数目之间的性能之差.单词数为90时,本文方法取得了最高的F值.因此在接下来的实验中, ASD、SED1、SED2以及SOD数据库上的单词数目分别被设为70、80、20和90.3.3与其他显著性检测算法的比较将本文方法与16种流行的显著性检测方法进行性能比较.为了便于对比,本文将这16种流行算法分为:1)在图像像素级别上进行显著性计算的方法,包括IT[8]、MZ[10]、AC[11]、LC[12]、HC[3]、FT[7]、CA[13]、GBVS[9],这类方法是本领域引用次数较多的经典方法;2)在图像区域级别上进行显著性计算的方法,包括RC[3]、GC[14]、PD[16]、CBS[4]、LR[5],这类方法是近三年出现在顶级期刊上的方法;3)基于贝叶斯模型的方法,包括SUN(Saliency using natual statistics)[23]、SEG(Segmentation)[24]、CHB(Convex hull and Bayesian)[25],此类方法是与本文方法最为相关的显著性计算方法.3.3.1定量对比图4至图7给出了本文算法与16种流行算法的PR曲线.本文方法在ASD、SED1、SED2以及SOD四个数据库上都取得了最优的性能.当分割阈值t为0时,所有方法具有相同的查准率,在ASD、SED1、SED2以及SOD数据库上的数值分别为0.1985、0.2674、0.2137、0.2748,即表明数据库中分别平均有19.85%、26.74%、21.37%、27.48%的像素属于显著性区域.当分割阈值t为255时查全率达到最小值.此时本文方法的查准率在ASD、SED1、SED2、SOD数据库上分别达到了0.9418、0.8808、0.9088、0.7781.当查全率为0.85时,本文方法在ASD数据库上的查准率保持在0.9以上,在SED1、SED2两个数据库上保持在0.75以上,在SOD数据库上也高于0.5,表明本文方法能够以更高精度检测到显著区域的同时覆盖更大的显著性区域.除此之外,将式(15)中K值设为2计算自适应阈值,使用式(12)∼(14)分别计算平均查准率、查全率和F值,本文方法与16种流行算法的的对比结果见图8.由图中的数据可知,ASD数据与SED1数据库上取得了一致的结果,与基于像素的和基于区域的13种检测方法相比,本文方法具有最高的查准率、查全率和F值,说明本文方法能够以最高的图2不同超像素数目下的平均F值Fig.2F-measure under different superpixel numbers图3不同单词数目下的平均F值Fig.3F-measure under different visual words numbers1264自动化学报42卷(a)与基于像素的检测算法的对比(a)Comparison with algorithmsbased on pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithmsbased on regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图4ASD数据库上本文方法与其他16种流行算法的PR曲线Fig.4Precision-recall curves of our method and sixteen state-of-the-art methods on ASD database(a)与基于像素的检测算法的对比(a)Comparison with algorithmsbased on pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithmsbased on regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图5SED1数据库上本文方法与其他16种流行算法的PR曲线Fig.5Precision-recall curves of our method and sixteen state-of-the-art methods on SED1database(a)与基于像素的检测算法的对比(a)Comparison with algorithmsbased on pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithmsbased on regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图6SED2数据库上本文方法与其他16种流行算法的PR曲线Fig.6Precision-recall curves of our method and sixteen state-of-the-art methods on SED2database精度检测显著性目标,同时能够最大覆盖显著性目标所在区域.与基于贝叶斯模型的显著性检测方法相比,本文方法具有最高的查准率,但是查全率仅仅低于CHB方法,这主要是因为CHB使用角点检测显著性区域作为先验信息时,很多角点会落在背景区域,造成检测到的显著性区域过大,如图22(d)中第4排、图23(d)中第2排所示.但本文方法仍然具有最高F度量值,说明仍具有更优的检测性能.在SED2和SOD数据库上取得了一致结果,与所有对比方法相比较,本文方法具有最高的查全率和F 值,但是查准率却分别低于SEG方法和CBS方法.为了更进一步评价F度量值的综合性能,将式8期杨赛等:一种基于词袋模型的新的显著性目标检测方法1265 (15)中K值分别设为[0.1:0.1:6]计算自适应阈值,使用式(14)计算得到一系列F值,以K值为横坐标,以F值为纵坐标得到Fβ−K曲线.本文方法与16种流行算法的Fβ−K曲线分别见图9∼图12.由图中的结果可知,在ASD数据库上,与基于像素的和基于区域的13种检测方法相比,本文方法在每个K值处都具有最高的F值,与基于贝叶斯模型的显著性检测算法相比较,在K∈[5.7,6]这个区间时(如图9(c)所示),本文方法的F值低于CHB方法,在K取其他值时,本文方法的F值仍然最高,这是因为CHB方法的检测结果会出现显著范围过大的现象.SED1、SED2和SOD数据库上取得了一致的结果,相较于所有对比方法,本文方法在每个K值处都具有最高的F值.(a)与基于像素的检测算法的对比(a)Comparison with algorithmsbased on pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithmsbased on regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图7SOD数据库上本文方法与其他16种流行算法的PR曲线Fig.7Precision-recall curves of our method and sixteen state-of-the-art methods on SOD database(a)ASD数据库(a)ASD database(b)SED1数据库(b)SED1database(c)SED2数据库(c)SED2database(d)SOD数据库(d)SOD database图8本文方法与16种流行算法的平均查准率、平均查全率、F度量值对比图Fig.8Precision,recall and F-measure of our method and sixteen state-of-the-art methods1266自动化学报42卷(a)与基于像素的检测算法的对比(a)Comparison with algorithms basedon pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithms basedon regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图9ASD数据库上本文方法与16种流行算法的Fβ−K曲线Fig.9Fβ−K curves of our method and sixteen state-of-the-art methods on ASD database(a)与基于像素的检测算法的对比(a)Comparison with algorithms basedon pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithms basedon regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图10SED1数据库上本文方法与16种流行算法的Fβ−K曲线Fig.10Fβ−K curves of our method and sixteen state-of-the-art methods on SED1database(a)与基于像素的检测算法的对比(a)Comparison with algorithms basedon pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithms basedon regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图11SED2数据库上本文方法与16种流行算法的Fβ−K曲线Fig.11Fβ−K curves of our method and sixteen state-of-the-art methods on SED2database为了全面评价显著性检测方法的性能,根据式(16)计算显著图与人工标注图之间的MAE值,本文方法与16种流行算法在所有数据库上的对比结果分别见图13.由图中的结果可知,四个数据库上取得了一致的结果,本文方法具有最低的MAE值, SUN方法的MAE值最高.在ASD、SED1以及SOD数据库上,所有对比方法中,GC的MAE值最低,与该方法相比较,本文方法的MAE值又分别降低了22%、12%和17%;在SED2数据库上,所有对比方法中,HC的MAE值最低,与该方法相比较,本文方法的MAE值又降低了13%.3.3.2视觉效果对比本文方法与基于像素的显著性检测算法的视觉对比结果见图14∼17.由图14(b)和14(i)、图8期杨赛等:一种基于词袋模型的新的显著性目标检测方法1267(a)与基于像素的检测算法的对比(a)Comparison with algorithms basedon pixels(b)与基于区域的检测算法的对比(b)Comparison with algorithms basedon regions(c)与基于贝叶斯模型的检测算法的对比(c)Comparison with algorithms basedon Bayesian model图12SOD数据库上本文方法与16种流行算法的Fβ−K曲线Fig.12Fβ−K curves of our method and sixteen state-of-the-art methods on SOD database(a)ASD数据库(a)ASD database(b)SED1数据库(b)SED1database(c)SED2数据库(c)SED2database(d)SOD数据库(d)SOD database图13本文方法与其他16种流行算法的MAE值对比图Fig.13MAE of our method and sixteen state-of-the-art methods15(b)和15(i)、图16(b)和16(i)以及图17(b)和17(i)可知,IT和GBVS方法得到的显著图分辨率比较低,这是因为IT方法采用下采样的方式实现多尺度显著性计算,而GBVS方法中的马尔科夫链平衡状态的计算复杂度比较高,同样需要减小图像的分辨率实现快速计算.由图14(c)、图15(c)、图16(c)以及图17(c)可知,MZ方法得到的显著图过分强调显著性目标边缘部分,这是因为在计算局部对比度时使用的邻域比较少.相对于MZ方法,AC 方法是一种多尺度局部对比度方法,多个尺度的范围比较大,如图14(d)、图15(d)、图16(d)以及图17(d)所示,该方法能够检测到整个显著性目标.LC 和HC都是使用颜色的全局对比度,导致稀有颜色占优,只能检测到显著性目标的部分区域,例如图14(e)和14(f)的第4排,两种方法只将鸡蛋中最明亮的颜色检测出来.图15(e)和15(f)中的第1排1268自动化学报42卷图14ASD 数据库上本文方法与基于像素的典型显著性检测算法的视觉效果对比图Fig.14Visual comparison with detection methods based on pixels on ASDdatabase图15SED1数据库上本文方法与基于像素的典型显著性检测算法的视觉效果对比图Fig.15Visual comparison with detection methods based on pixels on SED1database图16SED2数据库上本文方法与基于像素的典型显著性检测算法的视觉效果对比图Fig.16Visual comparison with detection methods based on pixels on SED2database图17SOD 数据库上本文方法与基于像素的典型显著性检测算法的视觉效果对比图Fig.17Visual comparison with detection methods based on pixels on SOD database和第2排也出现了相同的现象,两种方法将图像中颜色最明亮的水面和草地错误地检测为显著性区域.与MZ 方法相比,CA 方法考虑了像素之间的距离因素,检测性能有很大的提高,但是仍然只是使用K 个近邻计算局部对比度,因此同样会过分强调显著性目标边缘,如图14(h)、图15(h)、图16(h)以及图17(h)所示.与基于像素的典型显著性检测算法相比,本文方法以区域为处理单位,如图14(j)、图15(j)、图16(j)以及图17(j)所示,显著图具有很高的分辨率,能够一致高亮地凸显图像中的显著。
一种基于加速度与表面肌电信息融合和统计语言模型的连续手语识别方法
sa it a a g a e mo e sc n t td t ee ta d c re ter ri h r c s ft er c g i o . F rt e tt i lln u g d lwa o sr e o d tc n o rc ro n te p o e so h e o nt n sc uc i o h r c g iin o 0 C L s b r sa d2 0 sn e c s h v rg e o n t n a c r ce fo rmeh d c ud u e o n t f1 S u wo d n 0 e tn e ,te a e a e rc g i o c u a iso u t o o l p o 2 i t % o91 ad8 % n 4 rs e tv l . T e c mp r t e a ay i f e p rme tl rs l h we h t te ttsia e p ciey h o aai n lss x ei n a e u t s o d t a h saitc l v o s a d h rc g i o n t e e o n t n i
机器学习与人工智能领域中常用的英语词汇
机器学习与人工智能领域中常用的英语词汇1.General Concepts (基础概念)•Artificial Intelligence (AI) - 人工智能1)Artificial Intelligence (AI) - 人工智能2)Machine Learning (ML) - 机器学习3)Deep Learning (DL) - 深度学习4)Neural Network - 神经网络5)Natural Language Processing (NLP) - 自然语言处理6)Computer Vision - 计算机视觉7)Robotics - 机器人技术8)Speech Recognition - 语音识别9)Expert Systems - 专家系统10)Knowledge Representation - 知识表示11)Pattern Recognition - 模式识别12)Cognitive Computing - 认知计算13)Autonomous Systems - 自主系统14)Human-Machine Interaction - 人机交互15)Intelligent Agents - 智能代理16)Machine Translation - 机器翻译17)Swarm Intelligence - 群体智能18)Genetic Algorithms - 遗传算法19)Fuzzy Logic - 模糊逻辑20)Reinforcement Learning - 强化学习•Machine Learning (ML) - 机器学习1)Machine Learning (ML) - 机器学习2)Artificial Neural Network - 人工神经网络3)Deep Learning - 深度学习4)Supervised Learning - 有监督学习5)Unsupervised Learning - 无监督学习6)Reinforcement Learning - 强化学习7)Semi-Supervised Learning - 半监督学习8)Training Data - 训练数据9)Test Data - 测试数据10)Validation Data - 验证数据11)Feature - 特征12)Label - 标签13)Model - 模型14)Algorithm - 算法15)Regression - 回归16)Classification - 分类17)Clustering - 聚类18)Dimensionality Reduction - 降维19)Overfitting - 过拟合20)Underfitting - 欠拟合•Deep Learning (DL) - 深度学习1)Deep Learning - 深度学习2)Neural Network - 神经网络3)Artificial Neural Network (ANN) - 人工神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Autoencoder - 自编码器9)Generative Adversarial Network (GAN) - 生成对抗网络10)Transfer Learning - 迁移学习11)Pre-trained Model - 预训练模型12)Fine-tuning - 微调13)Feature Extraction - 特征提取14)Activation Function - 激活函数15)Loss Function - 损失函数16)Gradient Descent - 梯度下降17)Backpropagation - 反向传播18)Epoch - 训练周期19)Batch Size - 批量大小20)Dropout - 丢弃法•Neural Network - 神经网络1)Neural Network - 神经网络2)Artificial Neural Network (ANN) - 人工神经网络3)Deep Neural Network (DNN) - 深度神经网络4)Convolutional Neural Network (CNN) - 卷积神经网络5)Recurrent Neural Network (RNN) - 循环神经网络6)Long Short-Term Memory (LSTM) - 长短期记忆网络7)Gated Recurrent Unit (GRU) - 门控循环单元8)Feedforward Neural Network - 前馈神经网络9)Multi-layer Perceptron (MLP) - 多层感知器10)Radial Basis Function Network (RBFN) - 径向基函数网络11)Hopfield Network - 霍普菲尔德网络12)Boltzmann Machine - 玻尔兹曼机13)Autoencoder - 自编码器14)Spiking Neural Network (SNN) - 脉冲神经网络15)Self-organizing Map (SOM) - 自组织映射16)Restricted Boltzmann Machine (RBM) - 受限玻尔兹曼机17)Hebbian Learning - 海比安学习18)Competitive Learning - 竞争学习19)Neuroevolutionary - 神经进化20)Neuron - 神经元•Algorithm - 算法1)Algorithm - 算法2)Supervised Learning Algorithm - 有监督学习算法3)Unsupervised Learning Algorithm - 无监督学习算法4)Reinforcement Learning Algorithm - 强化学习算法5)Classification Algorithm - 分类算法6)Regression Algorithm - 回归算法7)Clustering Algorithm - 聚类算法8)Dimensionality Reduction Algorithm - 降维算法9)Decision Tree Algorithm - 决策树算法10)Random Forest Algorithm - 随机森林算法11)Support Vector Machine (SVM) Algorithm - 支持向量机算法12)K-Nearest Neighbors (KNN) Algorithm - K近邻算法13)Naive Bayes Algorithm - 朴素贝叶斯算法14)Gradient Descent Algorithm - 梯度下降算法15)Genetic Algorithm - 遗传算法16)Neural Network Algorithm - 神经网络算法17)Deep Learning Algorithm - 深度学习算法18)Ensemble Learning Algorithm - 集成学习算法19)Reinforcement Learning Algorithm - 强化学习算法20)Metaheuristic Algorithm - 元启发式算法•Model - 模型1)Model - 模型2)Machine Learning Model - 机器学习模型3)Artificial Intelligence Model - 人工智能模型4)Predictive Model - 预测模型5)Classification Model - 分类模型6)Regression Model - 回归模型7)Generative Model - 生成模型8)Discriminative Model - 判别模型9)Probabilistic Model - 概率模型10)Statistical Model - 统计模型11)Neural Network Model - 神经网络模型12)Deep Learning Model - 深度学习模型13)Ensemble Model - 集成模型14)Reinforcement Learning Model - 强化学习模型15)Support Vector Machine (SVM) Model - 支持向量机模型16)Decision Tree Model - 决策树模型17)Random Forest Model - 随机森林模型18)Naive Bayes Model - 朴素贝叶斯模型19)Autoencoder Model - 自编码器模型20)Convolutional Neural Network (CNN) Model - 卷积神经网络模型•Dataset - 数据集1)Dataset - 数据集2)Training Dataset - 训练数据集3)Test Dataset - 测试数据集4)Validation Dataset - 验证数据集5)Balanced Dataset - 平衡数据集6)Imbalanced Dataset - 不平衡数据集7)Synthetic Dataset - 合成数据集8)Benchmark Dataset - 基准数据集9)Open Dataset - 开放数据集10)Labeled Dataset - 标记数据集11)Unlabeled Dataset - 未标记数据集12)Semi-Supervised Dataset - 半监督数据集13)Multiclass Dataset - 多分类数据集14)Feature Set - 特征集15)Data Augmentation - 数据增强16)Data Preprocessing - 数据预处理17)Missing Data - 缺失数据18)Outlier Detection - 异常值检测19)Data Imputation - 数据插补20)Metadata - 元数据•Training - 训练1)Training - 训练2)Training Data - 训练数据3)Training Phase - 训练阶段4)Training Set - 训练集5)Training Examples - 训练样本6)Training Instance - 训练实例7)Training Algorithm - 训练算法8)Training Model - 训练模型9)Training Process - 训练过程10)Training Loss - 训练损失11)Training Epoch - 训练周期12)Training Batch - 训练批次13)Online Training - 在线训练14)Offline Training - 离线训练15)Continuous Training - 连续训练16)Transfer Learning - 迁移学习17)Fine-Tuning - 微调18)Curriculum Learning - 课程学习19)Self-Supervised Learning - 自监督学习20)Active Learning - 主动学习•Testing - 测试1)Testing - 测试2)Test Data - 测试数据3)Test Set - 测试集4)Test Examples - 测试样本5)Test Instance - 测试实例6)Test Phase - 测试阶段7)Test Accuracy - 测试准确率8)Test Loss - 测试损失9)Test Error - 测试错误10)Test Metrics - 测试指标11)Test Suite - 测试套件12)Test Case - 测试用例13)Test Coverage - 测试覆盖率14)Cross-Validation - 交叉验证15)Holdout Validation - 留出验证16)K-Fold Cross-Validation - K折交叉验证17)Stratified Cross-Validation - 分层交叉验证18)Test Driven Development (TDD) - 测试驱动开发19)A/B Testing - A/B 测试20)Model Evaluation - 模型评估•Validation - 验证1)Validation - 验证2)Validation Data - 验证数据3)Validation Set - 验证集4)Validation Examples - 验证样本5)Validation Instance - 验证实例6)Validation Phase - 验证阶段7)Validation Accuracy - 验证准确率8)Validation Loss - 验证损失9)Validation Error - 验证错误10)Validation Metrics - 验证指标11)Cross-Validation - 交叉验证12)Holdout Validation - 留出验证13)K-Fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation - 留一法交叉验证16)Validation Curve - 验证曲线17)Hyperparameter Validation - 超参数验证18)Model Validation - 模型验证19)Early Stopping - 提前停止20)Validation Strategy - 验证策略•Supervised Learning - 有监督学习1)Supervised Learning - 有监督学习2)Label - 标签3)Feature - 特征4)Target - 目标5)Training Labels - 训练标签6)Training Features - 训练特征7)Training Targets - 训练目标8)Training Examples - 训练样本9)Training Instance - 训练实例10)Regression - 回归11)Classification - 分类12)Predictor - 预测器13)Regression Model - 回归模型14)Classifier - 分类器15)Decision Tree - 决策树16)Support Vector Machine (SVM) - 支持向量机17)Neural Network - 神经网络18)Feature Engineering - 特征工程19)Model Evaluation - 模型评估20)Overfitting - 过拟合21)Underfitting - 欠拟合22)Bias-Variance Tradeoff - 偏差-方差权衡•Unsupervised Learning - 无监督学习1)Unsupervised Learning - 无监督学习2)Clustering - 聚类3)Dimensionality Reduction - 降维4)Anomaly Detection - 异常检测5)Association Rule Learning - 关联规则学习6)Feature Extraction - 特征提取7)Feature Selection - 特征选择8)K-Means - K均值9)Hierarchical Clustering - 层次聚类10)Density-Based Clustering - 基于密度的聚类11)Principal Component Analysis (PCA) - 主成分分析12)Independent Component Analysis (ICA) - 独立成分分析13)T-distributed Stochastic Neighbor Embedding (t-SNE) - t分布随机邻居嵌入14)Gaussian Mixture Model (GMM) - 高斯混合模型15)Self-Organizing Maps (SOM) - 自组织映射16)Autoencoder - 自动编码器17)Latent Variable - 潜变量18)Data Preprocessing - 数据预处理19)Outlier Detection - 异常值检测20)Clustering Algorithm - 聚类算法•Reinforcement Learning - 强化学习1)Reinforcement Learning - 强化学习2)Agent - 代理3)Environment - 环境4)State - 状态5)Action - 动作6)Reward - 奖励7)Policy - 策略8)Value Function - 值函数9)Q-Learning - Q学习10)Deep Q-Network (DQN) - 深度Q网络11)Policy Gradient - 策略梯度12)Actor-Critic - 演员-评论家13)Exploration - 探索14)Exploitation - 开发15)Temporal Difference (TD) - 时间差分16)Markov Decision Process (MDP) - 马尔可夫决策过程17)State-Action-Reward-State-Action (SARSA) - 状态-动作-奖励-状态-动作18)Policy Iteration - 策略迭代19)Value Iteration - 值迭代20)Monte Carlo Methods - 蒙特卡洛方法•Semi-Supervised Learning - 半监督学习1)Semi-Supervised Learning - 半监督学习2)Labeled Data - 有标签数据3)Unlabeled Data - 无标签数据4)Label Propagation - 标签传播5)Self-Training - 自训练6)Co-Training - 协同训练7)Transudative Learning - 传导学习8)Inductive Learning - 归纳学习9)Manifold Regularization - 流形正则化10)Graph-based Methods - 基于图的方法11)Cluster Assumption - 聚类假设12)Low-Density Separation - 低密度分离13)Semi-Supervised Support Vector Machines (S3VM) - 半监督支持向量机14)Expectation-Maximization (EM) - 期望最大化15)Co-EM - 协同期望最大化16)Entropy-Regularized EM - 熵正则化EM17)Mean Teacher - 平均教师18)Virtual Adversarial Training - 虚拟对抗训练19)Tri-training - 三重训练20)Mix Match - 混合匹配•Feature - 特征1)Feature - 特征2)Feature Engineering - 特征工程3)Feature Extraction - 特征提取4)Feature Selection - 特征选择5)Input Features - 输入特征6)Output Features - 输出特征7)Feature Vector - 特征向量8)Feature Space - 特征空间9)Feature Representation - 特征表示10)Feature Transformation - 特征转换11)Feature Importance - 特征重要性12)Feature Scaling - 特征缩放13)Feature Normalization - 特征归一化14)Feature Encoding - 特征编码15)Feature Fusion - 特征融合16)Feature Dimensionality Reduction - 特征维度减少17)Continuous Feature - 连续特征18)Categorical Feature - 分类特征19)Nominal Feature - 名义特征20)Ordinal Feature - 有序特征•Label - 标签1)Label - 标签2)Labeling - 标注3)Ground Truth - 地面真值4)Class Label - 类别标签5)Target Variable - 目标变量6)Labeling Scheme - 标注方案7)Multi-class Labeling - 多类别标注8)Binary Labeling - 二分类标注9)Label Noise - 标签噪声10)Labeling Error - 标注错误11)Label Propagation - 标签传播12)Unlabeled Data - 无标签数据13)Labeled Data - 有标签数据14)Semi-supervised Learning - 半监督学习15)Active Learning - 主动学习16)Weakly Supervised Learning - 弱监督学习17)Noisy Label Learning - 噪声标签学习18)Self-training - 自训练19)Crowdsourcing Labeling - 众包标注20)Label Smoothing - 标签平滑化•Prediction - 预测1)Prediction - 预测2)Forecasting - 预测3)Regression - 回归4)Classification - 分类5)Time Series Prediction - 时间序列预测6)Forecast Accuracy - 预测准确性7)Predictive Modeling - 预测建模8)Predictive Analytics - 预测分析9)Forecasting Method - 预测方法10)Predictive Performance - 预测性能11)Predictive Power - 预测能力12)Prediction Error - 预测误差13)Prediction Interval - 预测区间14)Prediction Model - 预测模型15)Predictive Uncertainty - 预测不确定性16)Forecast Horizon - 预测时间跨度17)Predictive Maintenance - 预测性维护18)Predictive Policing - 预测式警务19)Predictive Healthcare - 预测性医疗20)Predictive Maintenance - 预测性维护•Classification - 分类1)Classification - 分类2)Classifier - 分类器3)Class - 类别4)Classify - 对数据进行分类5)Class Label - 类别标签6)Binary Classification - 二元分类7)Multiclass Classification - 多类分类8)Class Probability - 类别概率9)Decision Boundary - 决策边界10)Decision Tree - 决策树11)Support Vector Machine (SVM) - 支持向量机12)K-Nearest Neighbors (KNN) - K最近邻算法13)Naive Bayes - 朴素贝叶斯14)Logistic Regression - 逻辑回归15)Random Forest - 随机森林16)Neural Network - 神经网络17)SoftMax Function - SoftMax函数18)One-vs-All (One-vs-Rest) - 一对多(一对剩余)19)Ensemble Learning - 集成学习20)Confusion Matrix - 混淆矩阵•Regression - 回归1)Regression Analysis - 回归分析2)Linear Regression - 线性回归3)Multiple Regression - 多元回归4)Polynomial Regression - 多项式回归5)Logistic Regression - 逻辑回归6)Ridge Regression - 岭回归7)Lasso Regression - Lasso回归8)Elastic Net Regression - 弹性网络回归9)Regression Coefficients - 回归系数10)Residuals - 残差11)Ordinary Least Squares (OLS) - 普通最小二乘法12)Ridge Regression Coefficient - 岭回归系数13)Lasso Regression Coefficient - Lasso回归系数14)Elastic Net Regression Coefficient - 弹性网络回归系数15)Regression Line - 回归线16)Prediction Error - 预测误差17)Regression Model - 回归模型18)Nonlinear Regression - 非线性回归19)Generalized Linear Models (GLM) - 广义线性模型20)Coefficient of Determination (R-squared) - 决定系数21)F-test - F检验22)Homoscedasticity - 同方差性23)Heteroscedasticity - 异方差性24)Autocorrelation - 自相关25)Multicollinearity - 多重共线性26)Outliers - 异常值27)Cross-validation - 交叉验证28)Feature Selection - 特征选择29)Feature Engineering - 特征工程30)Regularization - 正则化2.Neural Networks and Deep Learning (神经网络与深度学习)•Convolutional Neural Network (CNN) - 卷积神经网络1)Convolutional Neural Network (CNN) - 卷积神经网络2)Convolution Layer - 卷积层3)Feature Map - 特征图4)Convolution Operation - 卷积操作5)Stride - 步幅6)Padding - 填充7)Pooling Layer - 池化层8)Max Pooling - 最大池化9)Average Pooling - 平均池化10)Fully Connected Layer - 全连接层11)Activation Function - 激活函数12)Rectified Linear Unit (ReLU) - 线性修正单元13)Dropout - 随机失活14)Batch Normalization - 批量归一化15)Transfer Learning - 迁移学习16)Fine-Tuning - 微调17)Image Classification - 图像分类18)Object Detection - 物体检测19)Semantic Segmentation - 语义分割20)Instance Segmentation - 实例分割21)Generative Adversarial Network (GAN) - 生成对抗网络22)Image Generation - 图像生成23)Style Transfer - 风格迁移24)Convolutional Autoencoder - 卷积自编码器25)Recurrent Neural Network (RNN) - 循环神经网络•Recurrent Neural Network (RNN) - 循环神经网络1)Recurrent Neural Network (RNN) - 循环神经网络2)Long Short-Term Memory (LSTM) - 长短期记忆网络3)Gated Recurrent Unit (GRU) - 门控循环单元4)Sequence Modeling - 序列建模5)Time Series Prediction - 时间序列预测6)Natural Language Processing (NLP) - 自然语言处理7)Text Generation - 文本生成8)Sentiment Analysis - 情感分析9)Named Entity Recognition (NER) - 命名实体识别10)Part-of-Speech Tagging (POS Tagging) - 词性标注11)Sequence-to-Sequence (Seq2Seq) - 序列到序列12)Attention Mechanism - 注意力机制13)Encoder-Decoder Architecture - 编码器-解码器架构14)Bidirectional RNN - 双向循环神经网络15)Teacher Forcing - 强制教师法16)Backpropagation Through Time (BPTT) - 通过时间的反向传播17)Vanishing Gradient Problem - 梯度消失问题18)Exploding Gradient Problem - 梯度爆炸问题19)Language Modeling - 语言建模20)Speech Recognition - 语音识别•Long Short-Term Memory (LSTM) - 长短期记忆网络1)Long Short-Term Memory (LSTM) - 长短期记忆网络2)Cell State - 细胞状态3)Hidden State - 隐藏状态4)Forget Gate - 遗忘门5)Input Gate - 输入门6)Output Gate - 输出门7)Peephole Connections - 窥视孔连接8)Gated Recurrent Unit (GRU) - 门控循环单元9)Vanishing Gradient Problem - 梯度消失问题10)Exploding Gradient Problem - 梯度爆炸问题11)Sequence Modeling - 序列建模12)Time Series Prediction - 时间序列预测13)Natural Language Processing (NLP) - 自然语言处理14)Text Generation - 文本生成15)Sentiment Analysis - 情感分析16)Named Entity Recognition (NER) - 命名实体识别17)Part-of-Speech Tagging (POS Tagging) - 词性标注18)Attention Mechanism - 注意力机制19)Encoder-Decoder Architecture - 编码器-解码器架构20)Bidirectional LSTM - 双向长短期记忆网络•Attention Mechanism - 注意力机制1)Attention Mechanism - 注意力机制2)Self-Attention - 自注意力3)Multi-Head Attention - 多头注意力4)Transformer - 变换器5)Query - 查询6)Key - 键7)Value - 值8)Query-Value Attention - 查询-值注意力9)Dot-Product Attention - 点积注意力10)Scaled Dot-Product Attention - 缩放点积注意力11)Additive Attention - 加性注意力12)Context Vector - 上下文向量13)Attention Score - 注意力分数14)SoftMax Function - SoftMax函数15)Attention Weight - 注意力权重16)Global Attention - 全局注意力17)Local Attention - 局部注意力18)Positional Encoding - 位置编码19)Encoder-Decoder Attention - 编码器-解码器注意力20)Cross-Modal Attention - 跨模态注意力•Generative Adversarial Network (GAN) - 生成对抗网络1)Generative Adversarial Network (GAN) - 生成对抗网络2)Generator - 生成器3)Discriminator - 判别器4)Adversarial Training - 对抗训练5)Minimax Game - 极小极大博弈6)Nash Equilibrium - 纳什均衡7)Mode Collapse - 模式崩溃8)Training Stability - 训练稳定性9)Loss Function - 损失函数10)Discriminative Loss - 判别损失11)Generative Loss - 生成损失12)Wasserstein GAN (WGAN) - Wasserstein GAN(WGAN)13)Deep Convolutional GAN (DCGAN) - 深度卷积生成对抗网络(DCGAN)14)Conditional GAN (c GAN) - 条件生成对抗网络(c GAN)15)Style GAN - 风格生成对抗网络16)Cycle GAN - 循环生成对抗网络17)Progressive Growing GAN (PGGAN) - 渐进式增长生成对抗网络(PGGAN)18)Self-Attention GAN (SAGAN) - 自注意力生成对抗网络(SAGAN)19)Big GAN - 大规模生成对抗网络20)Adversarial Examples - 对抗样本•Encoder-Decoder - 编码器-解码器1)Encoder-Decoder Architecture - 编码器-解码器架构2)Encoder - 编码器3)Decoder - 解码器4)Sequence-to-Sequence Model (Seq2Seq) - 序列到序列模型5)State Vector - 状态向量6)Context Vector - 上下文向量7)Hidden State - 隐藏状态8)Attention Mechanism - 注意力机制9)Teacher Forcing - 强制教师法10)Beam Search - 束搜索11)Recurrent Neural Network (RNN) - 循环神经网络12)Long Short-Term Memory (LSTM) - 长短期记忆网络13)Gated Recurrent Unit (GRU) - 门控循环单元14)Bidirectional Encoder - 双向编码器15)Greedy Decoding - 贪婪解码16)Masking - 遮盖17)Dropout - 随机失活18)Embedding Layer - 嵌入层19)Cross-Entropy Loss - 交叉熵损失20)Tokenization - 令牌化•Transfer Learning - 迁移学习1)Transfer Learning - 迁移学习2)Source Domain - 源领域3)Target Domain - 目标领域4)Fine-Tuning - 微调5)Domain Adaptation - 领域自适应6)Pre-Trained Model - 预训练模型7)Feature Extraction - 特征提取8)Knowledge Transfer - 知识迁移9)Unsupervised Domain Adaptation - 无监督领域自适应10)Semi-Supervised Domain Adaptation - 半监督领域自适应11)Multi-Task Learning - 多任务学习12)Data Augmentation - 数据增强13)Task Transfer - 任务迁移14)Model Agnostic Meta-Learning (MAML) - 与模型无关的元学习(MAML)15)One-Shot Learning - 单样本学习16)Zero-Shot Learning - 零样本学习17)Few-Shot Learning - 少样本学习18)Knowledge Distillation - 知识蒸馏19)Representation Learning - 表征学习20)Adversarial Transfer Learning - 对抗迁移学习•Pre-trained Models - 预训练模型1)Pre-trained Model - 预训练模型2)Transfer Learning - 迁移学习3)Fine-Tuning - 微调4)Knowledge Transfer - 知识迁移5)Domain Adaptation - 领域自适应6)Feature Extraction - 特征提取7)Representation Learning - 表征学习8)Language Model - 语言模型9)Bidirectional Encoder Representations from Transformers (BERT) - 双向编码器结构转换器10)Generative Pre-trained Transformer (GPT) - 生成式预训练转换器11)Transformer-based Models - 基于转换器的模型12)Masked Language Model (MLM) - 掩蔽语言模型13)Cloze Task - 填空任务14)Tokenization - 令牌化15)Word Embeddings - 词嵌入16)Sentence Embeddings - 句子嵌入17)Contextual Embeddings - 上下文嵌入18)Self-Supervised Learning - 自监督学习19)Large-Scale Pre-trained Models - 大规模预训练模型•Loss Function - 损失函数1)Loss Function - 损失函数2)Mean Squared Error (MSE) - 均方误差3)Mean Absolute Error (MAE) - 平均绝对误差4)Cross-Entropy Loss - 交叉熵损失5)Binary Cross-Entropy Loss - 二元交叉熵损失6)Categorical Cross-Entropy Loss - 分类交叉熵损失7)Hinge Loss - 合页损失8)Huber Loss - Huber损失9)Wasserstein Distance - Wasserstein距离10)Triplet Loss - 三元组损失11)Contrastive Loss - 对比损失12)Dice Loss - Dice损失13)Focal Loss - 焦点损失14)GAN Loss - GAN损失15)Adversarial Loss - 对抗损失16)L1 Loss - L1损失17)L2 Loss - L2损失18)Huber Loss - Huber损失19)Quantile Loss - 分位数损失•Activation Function - 激活函数1)Activation Function - 激活函数2)Sigmoid Function - Sigmoid函数3)Hyperbolic Tangent Function (Tanh) - 双曲正切函数4)Rectified Linear Unit (Re LU) - 矩形线性单元5)Parametric Re LU (P Re LU) - 参数化Re LU6)Exponential Linear Unit (ELU) - 指数线性单元7)Swish Function - Swish函数8)Softplus Function - Soft plus函数9)Softmax Function - SoftMax函数10)Hard Tanh Function - 硬双曲正切函数11)Softsign Function - Softsign函数12)GELU (Gaussian Error Linear Unit) - GELU(高斯误差线性单元)13)Mish Function - Mish函数14)CELU (Continuous Exponential Linear Unit) - CELU(连续指数线性单元)15)Bent Identity Function - 弯曲恒等函数16)Gaussian Error Linear Units (GELUs) - 高斯误差线性单元17)Adaptive Piecewise Linear (APL) - 自适应分段线性函数18)Radial Basis Function (RBF) - 径向基函数•Backpropagation - 反向传播1)Backpropagation - 反向传播2)Gradient Descent - 梯度下降3)Partial Derivative - 偏导数4)Chain Rule - 链式法则5)Forward Pass - 前向传播6)Backward Pass - 反向传播7)Computational Graph - 计算图8)Neural Network - 神经网络9)Loss Function - 损失函数10)Gradient Calculation - 梯度计算11)Weight Update - 权重更新12)Activation Function - 激活函数13)Optimizer - 优化器14)Learning Rate - 学习率15)Mini-Batch Gradient Descent - 小批量梯度下降16)Stochastic Gradient Descent (SGD) - 随机梯度下降17)Batch Gradient Descent - 批量梯度下降18)Momentum - 动量19)Adam Optimizer - Adam优化器20)Learning Rate Decay - 学习率衰减•Gradient Descent - 梯度下降1)Gradient Descent - 梯度下降2)Stochastic Gradient Descent (SGD) - 随机梯度下降3)Mini-Batch Gradient Descent - 小批量梯度下降4)Batch Gradient Descent - 批量梯度下降5)Learning Rate - 学习率6)Momentum - 动量7)Adaptive Moment Estimation (Adam) - 自适应矩估计8)RMSprop - 均方根传播9)Learning Rate Schedule - 学习率调度10)Convergence - 收敛11)Divergence - 发散12)Adagrad - 自适应学习速率方法13)Adadelta - 自适应增量学习率方法14)Adamax - 自适应矩估计的扩展版本15)Nadam - Nesterov Accelerated Adaptive Moment Estimation16)Learning Rate Decay - 学习率衰减17)Step Size - 步长18)Conjugate Gradient Descent - 共轭梯度下降19)Line Search - 线搜索20)Newton's Method - 牛顿法•Learning Rate - 学习率1)Learning Rate - 学习率2)Adaptive Learning Rate - 自适应学习率3)Learning Rate Decay - 学习率衰减4)Initial Learning Rate - 初始学习率5)Step Size - 步长6)Momentum - 动量7)Exponential Decay - 指数衰减8)Annealing - 退火9)Cyclical Learning Rate - 循环学习率10)Learning Rate Schedule - 学习率调度11)Warm-up - 预热12)Learning Rate Policy - 学习率策略13)Learning Rate Annealing - 学习率退火14)Cosine Annealing - 余弦退火15)Gradient Clipping - 梯度裁剪16)Adapting Learning Rate - 适应学习率17)Learning Rate Multiplier - 学习率倍增器18)Learning Rate Reduction - 学习率降低19)Learning Rate Update - 学习率更新20)Scheduled Learning Rate - 定期学习率•Batch Size - 批量大小1)Batch Size - 批量大小2)Mini-Batch - 小批量3)Batch Gradient Descent - 批量梯度下降4)Stochastic Gradient Descent (SGD) - 随机梯度下降5)Mini-Batch Gradient Descent - 小批量梯度下降6)Online Learning - 在线学习7)Full-Batch - 全批量8)Data Batch - 数据批次9)Training Batch - 训练批次10)Batch Normalization - 批量归一化11)Batch-wise Optimization - 批量优化12)Batch Processing - 批量处理13)Batch Sampling - 批量采样14)Adaptive Batch Size - 自适应批量大小15)Batch Splitting - 批量分割16)Dynamic Batch Size - 动态批量大小17)Fixed Batch Size - 固定批量大小18)Batch-wise Inference - 批量推理19)Batch-wise Training - 批量训练20)Batch Shuffling - 批量洗牌•Epoch - 训练周期1)Training Epoch - 训练周期2)Epoch Size - 周期大小3)Early Stopping - 提前停止4)Validation Set - 验证集5)Training Set - 训练集6)Test Set - 测试集7)Overfitting - 过拟合8)Underfitting - 欠拟合9)Model Evaluation - 模型评估10)Model Selection - 模型选择11)Hyperparameter Tuning - 超参数调优12)Cross-Validation - 交叉验证13)K-fold Cross-Validation - K折交叉验证14)Stratified Cross-Validation - 分层交叉验证15)Leave-One-Out Cross-Validation (LOOCV) - 留一法交叉验证16)Grid Search - 网格搜索17)Random Search - 随机搜索18)Model Complexity - 模型复杂度19)Learning Curve - 学习曲线20)Convergence - 收敛3.Machine Learning Techniques and Algorithms (机器学习技术与算法)•Decision Tree - 决策树1)Decision Tree - 决策树2)Node - 节点3)Root Node - 根节点4)Leaf Node - 叶节点5)Internal Node - 内部节点6)Splitting Criterion - 分裂准则7)Gini Impurity - 基尼不纯度8)Entropy - 熵9)Information Gain - 信息增益10)Gain Ratio - 增益率11)Pruning - 剪枝12)Recursive Partitioning - 递归分割13)CART (Classification and Regression Trees) - 分类回归树14)ID3 (Iterative Dichotomiser 3) - 迭代二叉树315)C4.5 (successor of ID3) - C4.5(ID3的后继者)16)C5.0 (successor of C4.5) - C5.0(C4.5的后继者)17)Split Point - 分裂点18)Decision Boundary - 决策边界19)Pruned Tree - 剪枝后的树20)Decision Tree Ensemble - 决策树集成•Random Forest - 随机森林1)Random Forest - 随机森林2)Ensemble Learning - 集成学习3)Bootstrap Sampling - 自助采样4)Bagging (Bootstrap Aggregating) - 装袋法5)Out-of-Bag (OOB) Error - 袋外误差6)Feature Subset - 特征子集7)Decision Tree - 决策树8)Base Estimator - 基础估计器9)Tree Depth - 树深度10)Randomization - 随机化11)Majority Voting - 多数投票12)Feature Importance - 特征重要性13)OOB Score - 袋外得分14)Forest Size - 森林大小15)Max Features - 最大特征数16)Min Samples Split - 最小分裂样本数17)Min Samples Leaf - 最小叶节点样本数18)Gini Impurity - 基尼不纯度19)Entropy - 熵20)Variable Importance - 变量重要性•Support Vector Machine (SVM) - 支持向量机1)Support Vector Machine (SVM) - 支持向量机2)Hyperplane - 超平面3)Kernel Trick - 核技巧4)Kernel Function - 核函数5)Margin - 间隔6)Support Vectors - 支持向量7)Decision Boundary - 决策边界8)Maximum Margin Classifier - 最大间隔分类器9)Soft Margin Classifier - 软间隔分类器10) C Parameter - C参数11)Radial Basis Function (RBF) Kernel - 径向基函数核12)Polynomial Kernel - 多项式核13)Linear Kernel - 线性核14)Quadratic Kernel - 二次核15)Gaussian Kernel - 高斯核16)Regularization - 正则化17)Dual Problem - 对偶问题18)Primal Problem - 原始问题19)Kernelized SVM - 核化支持向量机20)Multiclass SVM - 多类支持向量机•K-Nearest Neighbors (KNN) - K-最近邻1)K-Nearest Neighbors (KNN) - K-最近邻2)Nearest Neighbor - 最近邻3)Distance Metric - 距离度量4)Euclidean Distance - 欧氏距离5)Manhattan Distance - 曼哈顿距离6)Minkowski Distance - 闵可夫斯基距离7)Cosine Similarity - 余弦相似度8)K Value - K值9)Majority Voting - 多数投票10)Weighted KNN - 加权KNN11)Radius Neighbors - 半径邻居12)Ball Tree - 球树13)KD Tree - KD树14)Locality-Sensitive Hashing (LSH) - 局部敏感哈希15)Curse of Dimensionality - 维度灾难16)Class Label - 类标签17)Training Set - 训练集18)Test Set - 测试集19)Validation Set - 验证集20)Cross-Validation - 交叉验证•Naive Bayes - 朴素贝叶斯1)Naive Bayes - 朴素贝叶斯2)Bayes' Theorem - 贝叶斯定理3)Prior Probability - 先验概率4)Posterior Probability - 后验概率5)Likelihood - 似然6)Class Conditional Probability - 类条件概率7)Feature Independence Assumption - 特征独立假设8)Multinomial Naive Bayes - 多项式朴素贝叶斯9)Gaussian Naive Bayes - 高斯朴素贝叶斯10)Bernoulli Naive Bayes - 伯努利朴素贝叶斯11)Laplace Smoothing - 拉普拉斯平滑12)Add-One Smoothing - 加一平滑13)Maximum A Posteriori (MAP) - 最大后验概率14)Maximum Likelihood Estimation (MLE) - 最大似然估计15)Classification - 分类16)Feature Vectors - 特征向量17)Training Set - 训练集18)Test Set - 测试集19)Class Label - 类标签20)Confusion Matrix - 混淆矩阵•Clustering - 聚类1)Clustering - 聚类2)Centroid - 质心3)Cluster Analysis - 聚类分析4)Partitioning Clustering - 划分式聚类5)Hierarchical Clustering - 层次聚类6)Density-Based Clustering - 基于密度的聚类7)K-Means Clustering - K均值聚类8)K-Medoids Clustering - K中心点聚类9)DBSCAN (Density-Based Spatial Clustering of Applications with Noise) - 基于密度的空间聚类算法10)Agglomerative Clustering - 聚合式聚类11)Dendrogram - 系统树图12)Silhouette Score - 轮廓系数13)Elbow Method - 肘部法则14)Clustering Validation - 聚类验证15)Intra-cluster Distance - 类内距离16)Inter-cluster Distance - 类间距离17)Cluster Cohesion - 类内连贯性18)Cluster Separation - 类间分离度19)Cluster Assignment - 聚类分配20)Cluster Label - 聚类标签•K-Means - K-均值1)K-Means - K-均值2)Centroid - 质心3)Cluster - 聚类4)Cluster Center - 聚类中心5)Cluster Assignment - 聚类分配6)Cluster Analysis - 聚类分析7)K Value - K值8)Elbow Method - 肘部法则9)Inertia - 惯性10)Silhouette Score - 轮廓系数11)Convergence - 收敛12)Initialization - 初始化13)Euclidean Distance - 欧氏距离14)Manhattan Distance - 曼哈顿距离15)Distance Metric - 距离度量16)Cluster Radius - 聚类半径17)Within-Cluster Variation - 类内变异18)Cluster Quality - 聚类质量19)Clustering Algorithm - 聚类算法20)Clustering Validation - 聚类验证•Dimensionality Reduction - 降维1)Dimensionality Reduction - 降维2)Feature Extraction - 特征提取3)Feature Selection - 特征选择4)Principal Component Analysis (PCA) - 主成分分析5)Singular Value Decomposition (SVD) - 奇异值分解6)Linear Discriminant Analysis (LDA) - 线性判别分析7)t-Distributed Stochastic Neighbor Embedding (t-SNE) - t-分布随机邻域嵌入8)Autoencoder - 自编码器9)Manifold Learning - 流形学习10)Locally Linear Embedding (LLE) - 局部线性嵌入11)Isomap - 等度量映射12)Uniform Manifold Approximation and Projection (UMAP) - 均匀流形逼近与投影13)Kernel PCA - 核主成分分析14)Non-negative Matrix Factorization (NMF) - 非负矩阵分解15)Independent Component Analysis (ICA) - 独立成分分析16)Variational Autoencoder (VAE) - 变分自编码器17)Sparse Coding - 稀疏编码18)Random Projection - 随机投影19)Neighborhood Preserving Embedding (NPE) - 保持邻域结构的嵌入20)Curvilinear Component Analysis (CCA) - 曲线成分分析•Principal Component Analysis (PCA) - 主成分分析1)Principal Component Analysis (PCA) - 主成分分析2)Eigenvector - 特征向量3)Eigenvalue - 特征值4)Covariance Matrix - 协方差矩阵。
研究NLP100篇必读的论文---已整理可直接下载
研究NLP100篇必读的论⽂---已整理可直接下载100篇必读的NLP论⽂⾃⼰汇总的论⽂集,已更新链接:提取码:x7tnThis is a list of 100 important natural language processing (NLP) papers that serious students and researchers working in the field should probably know about and read.这是100篇重要的⾃然语⾔处理(NLP)论⽂的列表,认真的学⽣和研究⼈员在这个领域应该知道和阅读。
This list is compiled by .本榜单由编制。
I welcome any feedback on this list. 我欢迎对这个列表的任何反馈。
This list is originally based on the answers for a Quora question I posted years ago: .这个列表最初是基于我多年前在Quora上发布的⼀个问题的答案:[所有NLP学⽣都应该阅读的最重要的研究论⽂是什么?]( -are-the-most-important-research-paper -which-all-NLP-students-should- definitread)。
I thank all the people who contributed to the original post. 我感谢所有为原创⽂章做出贡献的⼈。
This list is far from complete or objective, and is evolving, as important papers are being published year after year.由于重要的论⽂年复⼀年地发表,这份清单还远远不够完整和客观,⽽且还在不断发展。
yolov6翻译 -回复
yolov6翻译-回复题目:Yolov6:一种先进的物体检测算法引言:物体检测是计算机视觉中的重要任务之一,它可以在图像或视频中自动识别和定位不同的物体。
近年来,随着深度学习的兴起,物体检测算法取得了巨大的进展。
在这篇文章中,我们将介绍一种先进的物体检测算法——Yolov6,并详细解释它的工作原理和优势。
一、背景概述物体检测算法可以分为两类:基于区域的方法和基于锚点的方法。
基于区域的方法先通过选择感兴趣区域(Region of Interest, ROI),然后再对这些区域进行分类和定位。
而基于锚点的方法则通过在图片上预定义一系列固定大小的锚点框,然后利用深度学习模型来预测每个框内的物体类别和位置。
Yolov6属于基于锚点的方法,是当前最先进的物体检测算法之一。
二、Yolov6的工作原理1. 特征提取Yolov6首先使用一个骨干网络(如Darknet)对输入图像进行特征提取。
这个骨干网络可以将输入图像转化为一系列具有语义信息的特征图。
这些特征图捕捉了图像中的不同层次的语义信息,为后续的物体检测提供了基础。
2. 锚点生成在图像上生成一组锚点,每个锚点都有一个特定的宽度和高度。
这些锚点将用于检测不同尺度和比例的物体。
Yolov6采用了网络聚类的方法来生成适合当前数据集的锚点。
通过聚类,Yolov6可以根据实际数据来确定每个锚点的大小和比例,从而更好地适应不同的物体。
3. 特征融合Yolov6将特征提取和锚点生成的结果进行融合。
具体来说,它在特征图的每个位置上为每个锚点生成一个预测框。
每个预测框包含了物体的位置和类别信息。
4. 预测根据预测框的置信度评分和类别概率,Yolov6对其中的物体进行分类和定位。
通过使用一系列的卷积和全连接层,Yolov6可以输出每个物体类别的概率和其位置的精确坐标。
同时,Yolov6还会利用非极大抑制(Non-Maximum Suppression, NMS)来消除多余的框和重叠的框。
slam算法工程师招聘笔试题与参考答案(某世界500强集团)2024年
2024年招聘slam算法工程师笔试题与参考答案(某世界500强集团)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪个不属于SLAM(Simultaneous Localization and Mapping)算法的基本问题?A、定位B、建图C、导航D、路径规划2、在视觉SLAM中,常用的特征点检测算法不包括以下哪一项?A、SIFT(Scale-Invariant Feature Transform)B、SURF(Speeded Up Robust Features)C、ORB(Oriented FAST and Rotated BRIEF)D、BOW(Bag-of-Words)3、SLAM(同步定位与映射)系统中的“闭环检测”功能主要目的是什么?A. 提高地图的精度B. 减少计算量C. 优化路径规划D. 增强系统稳定性4、在视觉SLAM中,以下哪种方法通常用于提取特征点?A. SIFT(尺度不变特征变换)B. SURF(加速稳健特征)C. ORB(Oriented FAST and Rotated BRIEF)D. 以上都是5、SLAM(Simultaneous Localization and Mapping)算法的核心目标是什么?A. 实现无人驾驶车辆在未知环境中的自主导航B. 构建三维空间地图并实时更新C. 实现机器人路径规划D. 以上都是6、以下哪种传感器不适合用于SLAM系统?A. 激光雷达B. 摄像头C. 声呐D. 超声波传感器7、以下关于SLAM(同步定位与映射)系统的描述中,哪个是错误的?A. SLAM系统通常需要在未知环境中进行定位与建图。
B. SLAM系统通常需要使用传感器来获取环境信息。
C. SLAM系统可以实时生成地图并更新位置信息。
D. SLAM系统不需要进行初始化定位。
8、以下关于视觉SLAM(视觉同步定位与映射)系统的描述中,哪个是正确的?A. 视觉SLAM系统只依赖于视觉传感器进行定位与建图。
集成梯度特征归属方法-概述说明以及解释
集成梯度特征归属方法-概述说明以及解释1.引言1.1 概述在概述部分,你可以从以下角度来描述集成梯度特征归属方法的背景和重要性:集成梯度特征归属方法是一种用于分析和解释机器学习模型预测结果的技术。
随着机器学习的快速发展和广泛应用,对于模型的解释性需求也越来越高。
传统的机器学习模型通常被认为是“黑盒子”,即无法解释模型做出预测的原因。
这限制了模型在一些关键应用领域的应用,如金融风险评估、医疗诊断和自动驾驶等。
为了解决这个问题,研究人员提出了各种机器学习模型的解释方法,其中集成梯度特征归属方法是一种非常受关注和有效的技术。
集成梯度特征归属方法能够为机器学习模型的预测结果提供可解释的解释,从而揭示模型对于不同特征的关注程度和影响力。
通过分析模型中每个特征的梯度值,可以确定该特征在预测中扮演的角色和贡献度,从而帮助用户理解模型的决策过程。
这对于模型的评估、优化和改进具有重要意义。
集成梯度特征归属方法的应用广泛,不仅适用于传统的机器学习模型,如决策树、支持向量机和逻辑回归等,也可以应用于深度学习模型,如神经网络和卷积神经网络等。
它能够为各种类型的特征,包括数值型特征和类别型特征,提供有益的信息和解释。
本文将对集成梯度特征归属方法的原理、应用优势和未来发展进行详细阐述,旨在为读者提供全面的了解和使用指南。
在接下来的章节中,我们将首先介绍集成梯度特征归属方法的基本原理和算法,然后探讨应用该方法的优势和实际应用场景。
最后,我们将总结该方法的重要性,并展望未来该方法的发展前景。
1.2文章结构文章结构内容应包括以下内容:文章的结构部分主要是对整篇文章的框架进行概述,指导读者在阅读过程中能够清晰地了解文章的组织结构和内容安排。
第一部分是引言,介绍了整篇文章的背景和意义。
其中,1.1小节概述文章所要讨论的主题,简要介绍了集成梯度特征归属方法的基本概念和应用领域。
1.2小节重点在于介绍文章的结构,将列出本文各个部分的标题和内容概要,方便读者快速了解文章的大致内容。
人工智能中的自动化推理与证明技术
人工智能中的自动化推理与证明技术人工智能(Artificial Intelligence,AI)是当今科技领域的热门话题,其不断发展和普及正在深刻地改变着人类社会的方方面面。
在人工智能的众多分支领域中,自动化推理与证明技术(Automated Reasoning and Proof Technology)作为其中的重要组成部分,其在推理和证明过程中的应用正在逐渐受到重视和应用。
自动化推理与证明技术是指利用计算机技术,通过对逻辑规则和知识库的深度分析和推理,自动化地生成推论和证明结果的过程。
这种技术不仅在人工智能领域中具有重要意义,同时也在数学、计算机科学、哲学等领域中有着广泛的应用和价值。
在人工智能领域,自动化推理与证明技术主要通过逻辑推理、规则推理、知识表示等方式,帮助计算机系统模拟人类的推理和决策过程,实现智能化的功能。
通过对大量已知的事实和规则进行深度学习和分析,计算机系统可以自动化地生成推论和结论,从而为人类在决策、问题解决、智能控制等方面提供强大的支持和帮助。
自动化推理与证明技术的应用范围非常广泛,涵盖了人类社会生活中的各个领域。
在工业生产中,自动化推理技术可以帮助企业优化生产流程,提高效率和质量;在医疗健康领域,这种技术可以辅助医生进行诊断和治疗决策,提高医疗水平和效率;在交通运输领域,自动化推理技术可以帮助交通管理部门实现智能交通管控,缓解交通拥堵问题。
除了在应用领域中的重要作用外,自动化推理与证明技术在学术研究领域也具有重要意义。
通过对逻辑规则和知识库的深度分析和推理,研究人员可以深入探讨数学、哲学等领域中的一些复杂问题,推动学科的发展和进步。
例如,在人工智能领域中,研究人员通过对博弈论、逻辑推理等问题的深入研究,推动了智能算法和智能系统的发展和应用。
自动化推理与证明技术的发展壮大离不开相关领域的学术研究和产业实践的支持。
在学术界,研究人员们通过对不同领域中的逻辑规则和知识库的深入挖掘和分析,推动了自动化推理技术的不断创新和进步。
自注意力机制特征融合的例子
自注意力机制特征融合的例子自注意力机制(Self-Attention Mechanism)是一种用于处理序列数据的机制,能够对序列中的每个元素进行自适应加权,以便更好地捕捉元素之间的关系。
它在很多自然语言处理领域中都有广泛的应用,其中一个重要的应用就是特征融合。
下面将列举一些利用自注意力机制进行特征融合的例子。
1. 机器翻译:在机器翻译任务中,可以使用自注意力机制将源语言和目标语言的词向量序列进行特征融合,以便更好地理解源语言和生成目标语言。
2. 文本分类:在文本分类任务中,可以使用自注意力机制将文本中的每个词向量与其他词向量进行关联,以获取更准确的特征表示,从而提高分类性能。
3. 问答系统:在问答系统中,可以使用自注意力机制将问题和候选答案的表示进行特征融合,以便更好地匹配问题和答案,提高准确性。
4. 文档摘要:在文档摘要任务中,可以使用自注意力机制将文档中的句子进行特征融合,以获取重要句子的表示,从而生成更准确的摘要。
5. 语言建模:在语言建模任务中,可以使用自注意力机制将当前位置的词向量与前面的词向量进行特征融合,以获取更好的上下文表示,提高预测准确性。
6. 命名实体识别:在命名实体识别任务中,可以使用自注意力机制将输入句子中的每个词与其他词进行关联,以获取更准确的特征表示,从而提高识别性能。
7. 情感分析:在情感分析任务中,可以使用自注意力机制将文本中的每个词与其他词进行关联,以获取更准确的特征表示,从而提高情感分类的准确性。
8. 关系抽取:在关系抽取任务中,可以使用自注意力机制将输入句子中的每个词与其他词进行关联,以获取更准确的特征表示,从而提高关系抽取的准确性。
9. 文本生成:在文本生成任务中,可以使用自注意力机制将输入序列中的每个词与其他词进行关联,以获取更准确的特征表示,从而生成更流畅和连贯的文本。
10. 音乐生成:在音乐生成任务中,可以使用自注意力机制将音乐序列中的每个音符与其他音符进行关联,以获取更准确的特征表示,从而生成更优质的音乐。
特征更新的动态图卷积表面损伤点云分割方法
第41卷 第4期吉林大学学报(信息科学版)Vol.41 No.42023年7月Journal of Jilin University (Information Science Edition)July 2023文章编号:1671⁃5896(2023)04⁃0621⁃10特征更新的动态图卷积表面损伤点云分割方法收稿日期:2022⁃09⁃21基金项目:国家自然科学基金资助项目(61573185)作者简介:张闻锐(1998 ),男,江苏扬州人,南京航空航天大学硕士研究生,主要从事点云分割研究,(Tel)86⁃188****8397(E⁃mail)839357306@;王从庆(1960 ),男,南京人,南京航空航天大学教授,博士生导师,主要从事模式识别与智能系统研究,(Tel)86⁃130****6390(E⁃mail)cqwang@㊂张闻锐,王从庆(南京航空航天大学自动化学院,南京210016)摘要:针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高,局部特征分析能力较弱的传统算法对某些数据集无法达到理想的分割效果问题,选择采用相对损伤体积等特征进行损伤分类,将金属表面损伤分为6类,提出一种包含空间尺度区域信息的三维图注意力特征提取方法㊂将得到的空间尺度区域特征用于特征更新网络模块的设计,基于特征更新模块构建出了一种特征更新的动态图卷积网络(Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)用于点云语义分割㊂实验结果表明,该方法有助于更有效地进行点云分割,并提取点云局部特征㊂在金属表面损伤分割上,该方法的精度优于PointNet ++㊁DGCNN(Dynamic Graph Convolutional Neural Networks)等方法,提高了分割结果的精度与有效性㊂关键词:点云分割;动态图卷积;特征更新;损伤分类中图分类号:TP391.41文献标志码:A Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting⁃DGCNNZHANG Wenrui,WANG Congqing(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network,and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set.The relative damage volume and other features are selected to classify the metal surface damage,and the damage is divided into six categories.This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information.The obtained spatial scale area feature is used in the design of feature update network module.Based on the feature update module,a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation.The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud.In metal surface damage segmentation,the accuracy of this method is better than pointnet++,DGCNN(Dynamic Graph Convolutional Neural Networks)and other methods,which improves the accuracy and effectiveness of segmentation results.Key words :point cloud segmentation;dynamic graph convolution;feature adaptive shifting;damage classification 0 引 言基于深度学习的图像分割技术在人脸㊁车牌识别和卫星图像分析领域已经趋近成熟,为获取物体更226吉林大学学报(信息科学版)第41卷完整的三维信息,就需要利用三维点云数据进一步完善语义分割㊂三维点云数据具有稀疏性和无序性,其独特的几何特征分布和三维属性使点云语义分割在许多领域的应用都遇到困难㊂如在机器人与计算机视觉领域使用三维点云进行目标检测与跟踪以及重建;在建筑学上使用点云提取与识别建筑物和土地三维几何信息;在自动驾驶方面提供路面交通对象㊁道路㊁地图的采集㊁检测和分割功能㊂2017年,Lawin等[1]将点云投影到多个视图上分割再返回点云,在原始点云上对投影分割结果进行分析,实现对点云的分割㊂最早的体素深度学习网络产生于2015年,由Maturana等[2]创建的VOXNET (Voxel Partition Network)网络结构,建立在三维点云的体素表示(Volumetric Representation)上,从三维体素形状中学习点的分布㊂结合Le等[3]提出的点云网格化表示,出现了类似PointGrid的新型深度网络,集成了点与网格的混合高效化网络,但体素化的点云面对大量点数的点云文件时表现不佳㊂在不规则的点云向规则的投影和体素等过渡态转换过程中,会出现很多空间信息损失㊂为将点云自身的数据特征发挥完善,直接输入点云的基础网络模型被逐渐提出㊂2017年,Qi等[4]利用点云文件的特性,开发了直接针对原始点云进行特征学习的PointNet网络㊂随后Qi等[5]又提出了PointNet++,针对PointNet在表示点与点直接的关联性上做出改进㊂Hu等[6]提出SENET(Squeeze⁃and⁃Excitation Networks)通过校准通道响应,为三维点云深度学习引入通道注意力网络㊂2018年,Li等[7]提出了PointCNN,设计了一种X⁃Conv模块,在不显著增加参数数量的情况下耦合较远距离信息㊂图卷积网络[8](Graph Convolutional Network)是依靠图之间的节点进行信息传递,获得图之间的信息关联的深度神经网络㊂图可以视为顶点和边的集合,使每个点都成为顶点,消耗的运算量是无法估量的,需要采用K临近点计算方式[9]产生的边缘卷积层(EdgeConv)㊂利用中心点与其邻域点作为边特征,提取边特征㊂图卷积网络作为一种点云深度学习的新框架弥补了Pointnet等网络的部分缺陷[10]㊂针对非规律的表面损伤这种特征缺失类点云分割,人们已经利用各种二维图像采集数据与卷积神经网络对风扇叶片㊁建筑和交通工具等进行损伤检测[11],损伤主要类别是裂痕㊁表面漆脱落等㊂但二维图像分割涉及的损伤种类不够充分,可能受物体表面污染㊁光线等因素影响,将凹陷㊁凸起等损伤忽视,或因光照不均匀判断为脱漆㊂笔者提出一种基于特征更新的动态图卷积网络,主要针对三维点云分割,设计了一种新型的特征更新模块㊂利用三维点云独特的空间结构特征,对传统K邻域内权重相近的邻域点采用空间尺度进行区分,并应用于对金属部件表面损伤分割的有用与无用信息混杂的问题研究㊂对邻域点进行空间尺度划分,将注意力权重分组,组内进行特征更新㊂在有效鉴别外邻域干扰特征造成的误差前提下,增大特征提取面以提高局部区域特征有用性㊂1 深度卷积网络计算方法1.1 包含空间尺度区域信息的三维图注意力特征提取方法由迭代最远点采集算法将整片点云分割为n个点集:{M1,M2,M3, ,M n},每个点集包含k个点:{P1, P2,P3, ,P k},根据点集内的空间尺度关系,将局部区域划分为不同的空间区域㊂在每个区域内,结合局部特征与空间尺度特征,进一步获得更有区分度的特征信息㊂根据注意力机制,为K邻域内的点分配不同的权重信息,特征信息包括空间区域内点的分布和区域特性㊂将这些特征信息加权计算,得到点集的卷积结果㊂使用空间尺度区域信息的三维图注意力特征提取方式,需要设定合适的K邻域参数K和空间划分层数R㊂如果K太小,则会导致弱分割,因不能完全利用局部特征而影响结果准确性;如果K太大,会增加计算时间与数据量㊂图1为缺损损伤在不同参数K下的分割结果图㊂由图1可知,在K=30或50时,分割结果效果较好,K=30时计算量较小㊂笔者选择K=30作为实验参数㊂在分析确定空间划分层数R之前,简要分析空间层数划分所应对的问题㊂三维点云所具有的稀疏性㊁无序性以及损伤点云自身噪声和边角点多的特性,导致了点云处理中可能出现的共同缺点,即将离群值点云选为邻域内采样点㊂由于损伤表面多为一个面,被分割出的损伤点云应在该面上分布,而噪声点则被分布在整个面的两侧,甚至有部分位于损伤内部㊂由于点云噪声这种立体分布的特征,导致了离群值被选入邻域内作为采样点存在㊂根据采用DGCNN(Dynamic Graph Convolutional Neural Networks)分割网络抽样实验结果,位于切面附近以及损伤内部的离群值点对点云分割结果造成的影响最大,被错误分割为特征点的几率最大,在后续预处理过程中需要对这种噪声点进行优先处理㊂图1 缺损损伤在不同参数K 下的分割结果图Fig.1 Segmentation results of defect damage under different parameters K 基于上述实验结果,在参数K =30情况下,选择空间划分层数R ㊂缺损损伤在不同参数R 下的分割结果如图2所示㊂图2b 的结果与测试集标签分割结果更为相似,更能体现损伤的特征,同时屏蔽了大部分噪声㊂因此,选择R =4作为实验参数㊂图2 缺损损伤在不同参数R 下的分割结果图Fig.2 Segmentation results of defect damage under different parameters R 在一个K 邻域内,邻域点与中心点的空间关系和特征差异最能表现邻域点的权重㊂空间特征系数表示邻域点对中心点所在点集的重要性㊂同时,为更好区分图内邻域点的权重,需要将整个邻域细分㊂以空间尺度进行细分是较为合适的分类方式㊂中心点的K 邻域可视为一个局部空间,将其划分为r 个不同的尺度区域㊂再运算空间注意力机制,为这r 个不同区域的权重系数赋值㊂按照空间尺度多层次划分,不仅没有损失核心的邻域点特征,还能有效抑制无意义的㊁有干扰性的特征㊂从而提高了深度学习网络对点云的局部空间特征的学习能力,降低相邻邻域之间的互相影响㊂空间注意力机制如图3所示,计算步骤如下㊂第1步,计算特征系数e mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重㊂分别用Δp mk 和Δf mk 表示三维空间关系和局部特征差异,M 表示MLP(Multi⁃Layer Perceptrons)操作,C 表示concat 函数,其中Δp mk =p mk -p m ,Δf mk =M (f mk )-M (f m )㊂将两者合并后输入多层感知机进行计算,得到计算特征系数326第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图3 空间尺度区域信息注意力特征提取方法示意图Fig.3 Schematic diagram of attention feature extraction method for spatial scale regional information e mk =M [C (Δp mk ‖Δf mk )]㊂(1) 第2步,计算图权重系数a mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重包含比㊂其中k ∈{1,2,3, ,K },K 表示每个邻域所包含点数㊂需要对特征系数e mk 进行归一化,使用归一化指数函数S (Softmax)得到权重多分类的结果,即计算图权重系数a mk =S (e mk )=exp(e mk )/∑K g =1exp(e mg )㊂(2) 第3步,用空间尺度区域特征s mr 表示中心点m 的第r 个空间尺度区域的特征㊂其中k r ∈{1,2,3, ,K r },K r 表示第r 个空间尺度区域所包含的邻域点数,并在其中加入特征偏置项b r ,避免权重化计算的特征在动态图中累计单面误差指向,空间尺度区域特征s mr =∑K r k r =1[a mk r M (f mk r )]+b r ㊂(3) 在r 个空间尺度区域上进行计算,就可得到点m 在整个局部区域的全部空间尺度区域特征s m ={s m 1,s m 2,s m 3, ,s mr },其中r ∈{1,2,3, ,R }㊂1.2 基于特征更新的动态图卷积网络动态图卷积网络是一种能直接处理原始三维点云数据输入的深度学习网络㊂其特点是将PointNet 网络中的复合特征转换模块(Feature Transform),改进为由K 邻近点计算(K ⁃Near Neighbor)和多层感知机构成的边缘卷积层[12]㊂边缘卷积层功能强大,其提取的特征不仅包含全局特征,还拥有由中心点与邻域点的空间位置关系构成的局部特征㊂在动态图卷积网络中,每个邻域都视为一个点集㊂增强对其中心点的特征学习能力,就会增强网络整体的效果[13]㊂对一个邻域点集,对中心点贡献最小的有效局部特征的边缘点,可以视为异常噪声点或低权重点,可能会给整体分割带来边缘溢出㊂点云相比二维图像是一种信息稀疏并且噪声含量更大的载体㊂处理一个局域内的噪声点,将其直接剔除或简单采纳会降低特征提取效果,笔者对其进行低权重划分,并进行区域内特征更新,增强抗噪性能,也避免点云信息丢失㊂在空间尺度区域中,在区域T 内有s 个点x 被归为低权重系数组,该点集的空间信息集为P ∈R N s ×3㊂点集的局部特征集为F ∈R N s ×D f [14],其中D f 表示特征的维度空间,N s 表示s 个域内点的集合㊂设p i 以及f i 为点x i 的空间信息和特征信息㊂在点集内,对点x i 进行小范围内的N 邻域搜索,搜索其邻域点㊂则点x i 的邻域点{x i ,1,x i ,2, ,x i ,N }∈N (x i ),其特征集合为{f i ,1,f i ,2, ,f i ,N }∈F ㊂在利用空间尺度进行区域划分后,对空间尺度区域特征s mt 较低的区域进行区域内特征更新,通过聚合函数对权重最低的邻域点在图中的局部特征进行改写㊂已知中心点m ,点x i 的特征f mx i 和空间尺度区域特征s mt ,目的是求出f ′mx i ,即中心点m 的低权重邻域点x i 在进行邻域特征更新后得到的新特征㊂对区域T 内的点x i ,∀x i ,j ∈H (x i ),x i 与其邻域H 内的邻域点的特征相似性域为R (x i ,x i ,j )=S [C (f i ,j )T C (f i ,j )/D o ],(4)其中C 表示由输入至输出维度的一维卷积,D o 表示输出维度值,T 表示转置㊂从而获得更新后的x i 的426吉林大学学报(信息科学版)第41卷特征㊂对R (x i ,x i ,j )进行聚合,并将特征f mx i 维度变换为输出维度f ′mx i =∑[R (x i ,x i ,j )S (s mt f mx i )]㊂(5) 图4为特征更新网络模块示意图,展示了上述特征更新的计算过程㊂图5为特征更新的动态图卷积网络示意图㊂图4 特征更新网络模块示意图Fig.4 Schematic diagram of feature update network module 图5 特征更新的动态图卷积网络示意图Fig.5 Flow chart of dynamic graph convolution network with feature update 动态图卷积网络(DGCNN)利用自创的边缘卷积层模块,逐层进行边卷积[15]㊂其前一层的输出都会动态地产生新的特征空间和局部区域,新一层从前一层学习特征(见图5)㊂在每层的边卷积模块中,笔者在边卷积和池化后加入了空间尺度区域注意力特征,捕捉特定空间区域T 内的邻域点,用于特征更新㊂特征更新会降低局域异常值点对局部特征的污染㊂网络相比传统图卷积神经网络能获得更多的特征信息,并且在面对拥有较多噪声值的点云数据时,具有更好的抗干扰性[16],在对性质不稳定㊁不平滑并含有需采集分割的突出中心的点云数据时,会有更好的抗干扰效果㊂相比于传统预处理方式,其稳定性更强,不会发生将突出部分误分割或漏分割的现象[17]㊂2 实验结果与分析点云分割的精度评估指标主要由两组数据构成[18],即平均交并比和总体准确率㊂平均交并比U (MIoU:Mean Intersection over Union)代表真实值和预测值合集的交并化率的平均值,其计算式为526第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法U =1T +1∑Ta =0p aa ∑Tb =0p ab +∑T b =0p ba -p aa ,(6)其中T 表示类别,a 表示真实值,b 表示预测值,p ab 表示将a 预测为b ㊂总体准确率A (OA:Overall Accuracy)表示所有正确预测点p c 占点云模型总体数量p all 的比,其计算式为A =P c /P all ,(7)其中U 与A 数值越大,表明点云分割网络越精准,且有U ≤A ㊂2.1 实验准备与数据预处理实验使用Kinect V2,采用Depth Basics⁃WPF 模块拍摄金属部件损伤表面获得深度图,将获得的深度图进行SDK(Software Development Kit)转化,得到pcd 格式的点云数据㊂Kinect V2采集的深度图像分辨率固定为512×424像素,为获得更清晰的数据图像,需尽可能近地采集数据㊂选择0.6~1.2m 作为采集距离范围,从0.6m 开始每次增加0.2m,获得多组采量数据㊂点云中分布着噪声,如果不对点云数据进行过滤会对后续处理产生不利影响㊂根据统计原理对点云中每个点的邻域进行分析,再建立一个特别设立的标准差㊂然后将实际点云的分布与假设的高斯分布进行对比,实际点云中误差超出了标准差的点即被认为是噪声点[19]㊂由于点云数据量庞大,为提高效率,选择采用如下改进方法㊂计算点云中每个点与其首个邻域点的空间距离L 1和与其第k 个邻域点的空间距离L k ㊂比较每个点之间L 1与L k 的差,将其中差值最大的1/K 视为可能噪声点[20]㊂计算可能噪声点到其K 个邻域点的平均值,平均值高出标准差的被视为噪声点,将离群噪声点剔除后完成对点云的滤波㊂2.2 金属表面损伤点云关键信息提取分割方法对点云损伤分割,在制作点云数据训练集时,如果只是单一地将所有损伤进行统一标记,不仅不方便进行结果分析和应用,而且也会降低特征分割的效果㊂为方便分析和控制分割效果,需要使用ArcGIS 将点云模型转化为不规则三角网TIN(Triangulated Irregular Network)㊂为精确地分类损伤,利用图6 不规则三角网模型示意图Fig.6 Schematic diagram of triangulated irregular networkTIN 的表面轮廓性质,获得训练数据损伤点云的损伤内(外)体积,损伤表面轮廓面积等㊂如图6所示㊂选择损伤体积指标分为相对损伤体积V (RDV:Relative Damege Volume)和邻域内相对损伤体积比N (NRDVR:Neighborhood Relative Damege Volume Ratio)㊂计算相对平均深度平面与点云深度网格化平面之间的部分,得出相对损伤体积㊂利用TIN 邻域网格可获取某损伤在邻域内的相对深度占比,有效解决制作测试集时,将因弧度或是形状造成的相对深度判断为损伤的问题㊂两种指标如下:V =∑P d k =1h k /P d -∑P k =1h k /()P S d ,(8)N =P n ∑P d k =1h k S d /P d ∑P n k =1h k S ()n -()1×100%,(9)其中P 表示所有点云数,P d 表示所有被标记为损伤的点云数,P n 表示所有被认定为损伤邻域内的点云数;h k 表示点k 的深度值;S d 表示损伤平面面积,S n 表示损伤邻域平面面积㊂在获取TIN 标准包络网视图后,可以更加清晰地描绘损伤情况,同时有助于量化损伤严重程度㊂笔者将损伤分为6种类型,并利用计算得出的TIN 指标进行损伤分类㊂同时,根据损伤部分体积与非损伤部分体积的关系,制定指标损伤体积(SDV:Standard Damege Volume)区分损伤类别㊂随机抽选5个测试组共50张图作为样本㊂统计非穿透损伤的RDV 绝对值,其中最大的30%标记为凹陷或凸起,其余626吉林大学学报(信息科学版)第41卷标记为表面损伤,并将样本分类的标准分界值设为SDV㊂在设立以上标准后,对凹陷㊁凸起㊁穿孔㊁表面损伤㊁破损和缺损6种金属表面损伤进行分类,金属表面损伤示意图如图7所示㊂首先,根据损伤是否产生洞穿,将损伤分为两大类㊂非贯通伤包括凹陷㊁凸起和表面损伤,贯通伤包括穿孔㊁破损和缺损㊂在非贯通伤中,凹陷和凸起分别采用相反数的SDV 作为标准,在这之间的被分类为表面损伤㊂贯通伤中,以损伤部分平面面积作为参照,较小的分类为穿孔,较大的分类为破损,而在边缘处因腐蚀㊁碰撞等原因缺角㊁内损的分类为缺损㊂分类参照如表1所示㊂图7 金属表面损伤示意图Fig.7 Schematic diagram of metal surface damage表1 损伤类别分类Tab.1 Damage classification 损伤类别凹陷凸起穿孔表面损伤破损缺损是否形成洞穿××√×√√RDV 绝对值是否达到SDV √√\×\\S d 是否达到标准\\×\√\2.3 实验结果分析为验证改进的图卷积深度神经网络在点云语义分割上的有效性,笔者采用TensorFlow 神经网络框架进行模型测试㊂为验证深度网络对损伤分割的识别准确率,采集了带有损伤特征的金属部件损伤表面点云,对点云进行预处理㊂对若干金属部件上的多个样本金属面的点云数据进行筛选,删除损伤占比低于5%或高于60%的数据后,划分并装包制作为点云数据集㊂采用CloudCompare 软件对样本金属上的损伤部分进行分类标记,共分为6种如上所述损伤㊂部件损伤的数据集制作参考点云深度学习领域广泛应用的公开数据集ModelNet40part㊂分割数据集包含了多种类型的金属部件损伤数据,这些损伤数据显示在510张总点云图像数据中㊂点云图像种类丰富,由各种包含损伤的金属表面构成,例如金属门,金属蒙皮,机械构件外表面等㊂用ArcGIS 内相关工具将总图进行随机点拆分,根据数据集ModelNet40part 的规格,每个独立的点云数据组含有1024个点,将所有总图拆分为510×128个单元点云㊂将样本分为400个训练集与110个测试集,采用交叉验证方法以保证测试的充分性[20],对多种方法进行评估测试,实验结果由单元点云按原点位置重新组合而成,并带有拆分后对单元点云进行的分割标记㊂分割结果比较如图8所示㊂726第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图8 分割结果比较图Fig.8 Comparison of segmentation results在部件损伤分割的实验中,将不同网络与笔者网络(FAS⁃DGCNN:Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)进行对比㊂除了采用不同的分割网络外,其余实验均采用与改进的图卷积深度神经网络方法相同的实验设置㊂实验结果由单一损伤交并比(IoU:Intersection over Union),平均损伤交并比(MIoU),单一损伤准确率(Accuracy)和总体损伤准确率(OA)进行评价,结果如表2~表4所示㊂将6种不同损伤类别的Accuracy 与IoU 进行对比分析,可得出结论:相比于基准实验网络Pointet++,笔者在OA 和MioU 方面分别在贯通伤和非贯通伤上有10%和20%左右的提升,在整体分割指标上,OA 能达到90.8%㊂对拥有更多点数支撑,含有较多点云特征的非贯通伤,几种点云分割网络整体性能均能达到90%左右的效果㊂而不具有局部特征识别能力的PointNet 在贯通伤上的表现较差,不具备有效的分辨能力,导致分割效果相对于其他损伤较差㊂表2 损伤部件分割准确率性能对比 Tab.2 Performance comparison of segmentation accuracy of damaged parts %实验方法准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6Ponitnet 82.785.073.880.971.670.1Pointnet++88.786.982.783.486.382.9DGCNN 90.488.891.788.788.687.1FAS⁃DGCNN 92.588.892.191.490.188.6826吉林大学学报(信息科学版)第41卷表3 损伤部件分割交并比性能对比 Tab.3 Performance comparison of segmentation intersection ratio of damaged parts %IoU 准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6PonitNet80.582.770.876.667.366.9PointNet++86.384.580.481.184.280.9DGCNN 88.786.589.986.486.284.7FAS⁃DGCNN89.986.590.388.187.385.7表4 损伤分割的整体性能对比分析 出,动态卷积图特征以及有效的邻域特征更新与多尺度注意力给分割网络带来了更优秀的局部邻域分割能力,更加适应表面损伤分割的任务要求㊂3 结 语笔者利用三维点云独特的空间结构特征,将传统K 邻域内权重相近的邻域点采用空间尺度进行区分,并将空间尺度划分运用于邻域内权重分配上,提出了一种能将邻域内噪声点降权筛除的特征更新模块㊂采用此模块的动态图卷积网络在分割上表现出色㊂利用特征更新的动态图卷积网络(FAS⁃DGCNN)能有效实现金属表面损伤的分割㊂与其他网络相比,笔者方法在点云语义分割方面表现出更高的可靠性,可见在包含空间尺度区域信息的注意力和局域点云特征更新下,笔者提出的基于特征更新的动态图卷积网络能发挥更优秀的作用,而且相比缺乏局部特征提取能力的分割网络,其对于点云稀疏㊁特征不明显的非贯通伤有更优的效果㊂参考文献:[1]LAWIN F J,DANELLJAN M,TOSTEBERG P,et al.Deep Projective 3D Semantic Segmentation [C]∥InternationalConference on Computer Analysis of Images and Patterns.Ystad,Sweden:Springer,2017:95⁃107.[2]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real⁃Time Object Recognition [C]∥Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:922⁃928.[3]LE T,DUAN Y.PointGrid:A Deep Network for 3D Shape Understanding [C]∥2018IEEE /CVF Conference on ComputerVision and Pattern Recognition (CVPR).Salt Lake City,USA:IEEE,2018:9204⁃9214.[4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]∥IEEEConference on Computer Vision and Pattern Recognition (CVPR).Hawaii,USA:IEEE,2017:652⁃660.[5]QI C R,SU H,MO K,et al,PointNet ++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [C]∥Advances in Neural Information Processing Systems.California,USA:SpringerLink,2017:5099⁃5108.[6]HU J,SHEN L,SUN G,Squeeze⁃and⁃Excitation Networks [C ]∥IEEE Conference on Computer Vision and PatternRecognition.Vancouver,Canada:IEEE,2018:7132⁃7141.[7]LI Y,BU R,SUN M,et al.PointCNN:Convolution on X⁃Transformed Points [C]∥Advances in Neural InformationProcessing Systems.Montreal,Canada:NeurIPS,2018:820⁃830.[8]ANH VIET PHAN,MINH LE NGUYEN,YEN LAM HOANG NGUYEN,et al.DGCNN:A Convolutional Neural Networkover Large⁃Scale Labeled Graphs [J].Neural Networks,2018,108(10):533⁃543.[9]任伟建,高梦宇,高铭泽,等.基于混合算法的点云配准方法研究[J].吉林大学学报(信息科学版),2019,37(4):408⁃416.926第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法036吉林大学学报(信息科学版)第41卷REN W J,GAO M Y,GAO M Z,et al.Research on Point Cloud Registration Method Based on Hybrid Algorithm[J]. Journal of Jilin University(Information Science Edition),2019,37(4):408⁃416.[10]ZHANG K,HAO M,WANG J,et al.Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features[EB/OL].[2022⁃03⁃15].https:∥/stamp/stamp.jsp?tp=&arnumber=9665104. [11]林少丹,冯晨,陈志德,等.一种高效的车体表面损伤检测分割算法[J].数据采集与处理,2021,36(2):260⁃269. LIN S D,FENG C,CHEN Z D,et al.An Efficient Segmentation Algorithm for Vehicle Body Surface Damage Detection[J]. Journal of Data Acquisition and Processing,2021,36(2):260⁃269.[12]ZHANG L P,ZHANG Y,CHEN Z Z,et al.Splitting and Merging Based Multi⁃Model Fitting for Point Cloud Segmentation [J].Journal of Geodesy and Geoinformation Science,2019,2(2):78⁃79.[13]XING Z Z,ZHAO S F,GUO W,et al.Processing Laser Point Cloud in Fully Mechanized Mining Face Based on DGCNN[J]. ISPRS International Journal of Geo⁃Information,2021,10(7):482⁃482.[14]杨军,党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报,2020,41(7):195⁃203. YANG J,DANG J S.Semantic Segmentation of3D Point Cloud Based on Contextual Attention CNN[J].Journal on Communications,2020,41(7):195⁃203.[15]陈玲,王浩云,肖海鸿,等.利用FL⁃DGCNN模型估测绿萝叶片外部表型参数[J].农业工程学报,2021,37(13): 172⁃179.CHEN L,WANG H Y,XIAO H H,et al.Estimation of External Phenotypic Parameters of Bunting Leaves Using FL⁃DGCNN Model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):172⁃179.[16]柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):35⁃60. CHAI Y J,MA J,LIU H.Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation[J].Laser and Optoelectronics Progress,2021,58(12):35⁃60.[17]张学典,方慧.BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络[J].小型微型计算机系统,2021, 42(11):32⁃40.ZHANG X D,FANG H.BTDGCNN:BallTree Dynamic Graph Convolution Neural Network for3D Point Cloud Topology[J]. Journal of Chinese Computer Systems,2021,42(11):32⁃40.[18]张佳颖,赵晓丽,陈正.基于深度学习的点云语义分割综述[J].激光与光电子学,2020,57(4):28⁃46. ZHANG J Y,ZHAO X L,CHEN Z.A Survey of Point Cloud Semantic Segmentation Based on Deep Learning[J].Lasers and Photonics,2020,57(4):28⁃46.[19]SUN Y,ZHANG S H,WANG T Q,et al.An Improved Spatial Point Cloud Simplification Algorithm[J].Neural Computing and Applications,2021,34(15):12345⁃12359.[20]高福顺,张鼎林,梁学章.由点云数据生成三角网络曲面的区域增长算法[J].吉林大学学报(理学版),2008,46 (3):413⁃417.GAO F S,ZHANG D L,LIANG X Z.A Region Growing Algorithm for Triangular Network Surface Generation from Point Cloud Data[J].Journal of Jilin University(Science Edition),2008,46(3):413⁃417.(责任编辑:刘俏亮)。
最大熵方法在英语名词短语识别中的应用研究
W‘ ANG X a — u n .Z io ja HA0 C u hn
( .H a gui nvri ,Fch f o p t , h m da ea 6 00 h a 1 unh a U ie t au yo C m ue Z u ainH nn4 30 ,C i ; sy r n 2 C lg f ix n , i i gH nn43 0 , h a . oeeo Xni g Xn a ea 5 03 C i ) l a xn n
ABS RACT : s t eb sso h y tx a  ̄y i ,B s NP r c g i o sa ot n t p i n l h ma h n a s T A h a i f e s n a n s t s a e e o nt n i n i ra t e E gi c i e t n — i mp s n s r
3D Convolutional Neural Networks for Human Action Recognition
Shuiwang Ji shuiwang.ji@ Arizona State University,Tempe,AZ85287,USAWei Xu xw@ Ming Yang myang@ Kai Yu kyu@ NEC Laboratories America,Inc.,Cupertino,CA95014,USAAbstractWe consider the fully automated recognitionof actions in uncontrolled environment.Mostexisting work relies on domain knowledge toconstruct complex handcrafted features frominputs.In addition,the environments areusually assumed to be controlled.Convolu-tional neural networks(CNNs)are a type ofdeep models that can act directly on the rawinputs,thus automating the process of fea-ture construction.However,such models arecurrently limited to handle2D inputs.In thispaper,we develop a novel3D CNN model foraction recognition.This model extracts fea-tures from both spatial and temporal dimen-sions by performing3D convolutions,therebycapturing the motion information encodedin multiple adjacent frames.The developedmodel generates multiple channels of infor-mation from the input frames,and thefinalfeature representation is obtained by com-bining information from all channels.Weapply the developed model to recognize hu-man actions in real-world environment,andit achieves superior performance without re-lying on handcrafted features.1.IntroductionRecognizing human actions in real-world environmentfinds applications in a variety of domains including in-telligent video surveillance,customer attributes,andshopping behavior analysis.However,accurate recog-nition of actions is a highly challenging task due to1/projects/trecvid/handcrafted features,demonstrating that the3D CNN model is more effective for real-world environments such as those captured in TRECVID data.The exper-iments also show that the3D CNN model significantly outperforms the frame-based2D CNN for most tasks. We also observe that the performance differences be-tween3D CNN and other methods tend to be larger when the number of positive training samples is small.2.3D Convolutional Neural Networks In2D CNNs,2D convolution is performed at the con-volutional layers to extract features from local neigh-borhood on feature maps in the previous layer.Then an additive bias is applied and the result is passed through a sigmoid function.Formally,the value of unit at position(x,y)in the j th feature map in the i th layer,denoted as v xyij,is given byv xyij=tanh b ij+ m P i−1 p=0Q i−1 q=0w pq ijm v(x+p)(y+q)(i−1)m ,(1)where tanh(·)is the hyperbolic tangent function,b ij is the bias for this feature map,m indexes over the set of feature maps in the(i−1)th layer connectedto the current feature map,w pqijkis the value at the position(p,q)of the kernel connected to the k th fea-ture map,and P i and Q i are the height and width of the kernel,respectively.In the subsampling lay-ers,the resolution of the feature maps is reduced by pooling over local neighborhood on the feature maps in the previous layer,thereby increasing invariance to distortions on the inputs.A CNN architecture can be constructed by stacking multiple layers of convolution and subsampling in an alternating fashion.The pa-rameters of CNN,such as the bias b ij and the kernelweight w pqijk,are usually trained using either super-vised or unsupervised approaches(LeCun et al.,1998; Ranzato et al.,2007).2.1.3D ConvolutionIn2D CNNs,convolutions are applied on the2D fea-ture maps to compute features from the spatial dimen-sions only.When applied to video analysis problems, it is desirable to capture the motion information en-coded in multiple contiguous frames.To this end,we propose to perform3D convolutions in the convolution stages of CNNs to compute features from both spa-tial and temporal dimensions.The3D convolution is achieved by convolving a3D kernel to the cube formed by stacking multiple contiguous frames together.By this construction,the feature maps in the convolution layer is connected to multiple contiguous frames in theDate\Class Total26921349784520056182030758533220954653621870819604416235821156135898485957281848051428 Total235561Method Measure3D CNN Precision0.02820.02560.01520.0230 AUC(×103)Precision0.11090.13560.09310.1132 AUC(×103)2D CNN Precision0.00970.01760.01920.0155 AUC(×103)Precision0.05050.09740.10200.0833 AUC(×103)SPM cubegray Precision0.00880.01920.01910.0157 AUC(×103)Precision0.05580.09610.09880.0836 AUC(×103)SPM cubeMEHI Precision0.01490.01660.01560.0157 AUC(×103)Precision0.08720.08250.10060.0901 AUC(×103)In this work,we considered the CNN model for ac-tion recognition.There are also other deep architec-tures,such as the deep belief networks(Hinton et al., 2006;Lee et al.,2009a),which achieve promising per-formance on object recognition tasks.It would be in-teresting to extend such models for action recognition. The developed3D CNN model was trained using su-pervised algorithm in this work,and it requires a large number of labeled samples.Prior studies show that the number of labeled samples can be significantly reduced when such model is pre-trained using unsupervised al-gorithms(Ranzato et al.,2007).We will explore the unsupervised training of3D CNN models in the future. AcknowledgmentsThe main part of this work was done during the intern-ship of thefirst author at NEC Laboratories America, Inc.,Cupertino,CA.ReferencesAhmed,A.,Yu,K.,Xu,W.,Gong,Y.,and Xing,E. Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks.In ECCV,pp.69–82,2008.Bengio,Y.Learning deep architectures for AI.Foun-dations and Trends in Machine Learning,2(1):1–127,2009.Bromley,J.,Guyon,I.,LeCun,Y.,Sackinger,E.,and Shah,R.Signature verification using a siamese time delay neural network.In NIPS.1993. Collobert,R.and Weston,J.A unified architecture for natural language processing:deep neural net-works with multitask learning.In ICML,pp.160–167,2008.Doll´a r,P.,Rabaud,V.,Cottrell,G.,and Belongie, S.Behavior recognition via sparse spatio-temporal features.In ICCV VS-PETS,pp.65–72,2005.Method Average 90949784799797.959.773.660.454.983.8937785578590988693538882929892858796––––––Efros,A.A.,Berg,A.C.,Mori,G.,and Malik,J. Recognizing action at a distance.In ICCV,pp.726–733,2003.Fukushima,K.Neocognitron:A self-organizing neural network model for a mechanism of pattern recogni-tion unaffected by shift in position.Biol.Cyb.,36: 193–202,1980.Hinton,G.E.and Salakhutdinov,R.R.Reducing the dimensionality of data with neural networks.Sci-ence,313(5786):504–507,July2006.Hinton,G.E.,Osindero,S.,and Teh,Y.A fast learn-ing algorithm for deep belief nets.Neural Computa-tion,18:1527–1554,2006.Jain,V.,Murray,J.F.,Roth,F.,Turaga,S.,Zhigulin, V.,Briggman,K.L.,Helmstaedter,M.N.,Denk, W.,and Seung,H.S.Supervised learning of image restoration with convolutional networks.In ICCV, 2007.Jhuang,H.,Serre,T.,Wolf,L.,and Poggio,T.A biologically inspired system for action recognition. In ICCV,pp.1–8,2007.Kim,H.-J.,Lee,J.S.,and Yang,H.-S.Human ac-tion recognition using a modified convolutional neu-ral network.In Proceedings of the4th International Symposium on Neural Networks,pp.715–723,2007. Laptev,I.and P´e rez,P.Retrieving actions in movies. In ICCV,pp.1–8,2007.Lazebnik,S.,Achmid,C.,and Ponce,J.Beyond bags of features:Spatial pyramid matching for recogniz-ing natural scene categories.In CVPR,pp.2169–2178,2006.LeCun,Y.,Bottou,L.,Bengio,Y.,and Haffner,P. Gradient-based learning applied to document recog-nition.Proceedings of the IEEE,86(11):2278–2324, 1998.LeCun,Y.,Huang,F.-J.,and Bottou,L.Learning methods for generic object recognition with invari-ance to pose and lighting.In CVPR,2004.Lee,H.,Grosse,R.,Ranganath,R.,and Ng,A.Y. Convolutional deep belief networks for scalable un-supervised learning of hierarchical representations. In ICML,pp.609–616,2009a.Lee,H.,Pham,P.,Largman,Y.,and Ng,A.Unsuper-vised feature learning for audio classification using convolutional deep belief networks.In NIPS,pp. 1096–1104.2009b.Lowe,D.G.Distinctive image features from scale in-variant keypoints.International Journal of Com-puter Vision,60(2):91–110,2004.Mobahi,H.,Collobert,R.,and Weston,J.Deep learn-ing from temporal coherence in video.In ICML,pp. 737–744,2009.Mutch,J.and Lowe,D.G.Object class recognition and localization using sparse features with limited receptivefields.International Journal of Computer Vision,80(1):45–57,October2008.Niebles,J.C.,Wang,H.,and Fei-Fei,L.Unsupervised learning of human action categories using spatial-temporal words.International Journal of Computer Vision,79(3):299–318,2008.Ning,F.,Delhomme,D.,LeCun,Y.,Piano,F.,Bot-tou,L.,and Barbano,P.Toward automatic phe-notyping of developing embryos from videos.IEEE Trans.on Image Processing,14(9):1360–1371,2005. Ranzato,M.,Huang,F.-J.,Boureau,Y.,and LeCun, Y.Unsupervised learning of invariant feature hier-archies with applications to object recognition.In CVPR,2007.Schindler,K.and Van Gool,L.Action snippets: How many frames does human action recognition require?In CVPR,2008.Sch¨u ldt,C.,Laptev,I.,and Caputo,B.Recognizing human actions:A local SVM approach.In ICPR, pp.32–36,2004.Serre,T.,Wolf,L.,and Poggio,T.Object recognition with features inspired by visual cortex.In CVPR, pp.994–1000,2005.Yang,M.,Lv,F.,Xu,W.,Yu,K.,and Gong,Y.Hu-man action detection by boosting efficient motion features.In IEEE Workshop on Video-oriented Ob-ject and Event Classification,2009.Yu,K.,Xu,W.,and Gong,Y.Deep learning with kernel regularization for visual recognition.In NIPS, pp.1889–1896,2008.。
nlp迭代的领域自适应方法代码
nlp迭代的领域自适应方法代码自然语言处理(NLP)是一个不断发展的领域,面临着许多挑战,如数据分布的差异。
为了解决这一问题,领域自适应方法应运而生。
本文将重点介绍NLP领域自适应方法中的迭代技术,并提供相应的代码实现。
一、领域自适应简介领域自适应(Domain Adaptation)是一种迁移学习方法,旨在解决源领域(Source Domain)和目标领域(Target Domain)之间的分布差异。
在NLP任务中,领域自适应方法可以帮助我们将在一个领域学到的知识应用到另一个领域,提高模型的泛化能力。
二、NLP迭代的领域自适应方法1.迭代对抗性训练(Iterative Adversarial Training)迭代对抗性训练是一种基于对抗性网络的领域自适应方法。
其主要思想是在训练过程中,通过不断更新生成器和判别器,使源领域和目标领域的特征分布逐渐接近。
代码实现:```pythonimport torchimport torch.nn as nnimport torch.optim as optim# 定义生成器、判别器和损失函数generator = ...discriminator = ...loss_function = ...# 迭代对抗性训练for epoch in range(num_epochs):for data in source_data_loader:# 训练生成器optimizer_generator.zero_grad()generated_data = generator(data)disc_output = discriminator(generated_data)loss_generator = loss_function(disc_output, True)loss_generator.backward()optimizer_generator.step()# 训练判别器optimizer_discriminator.zero_grad()real_output = discriminator(target_data)fake_output = discriminator(generated_data.detach())loss_discriminator = loss_function(real_output, True) + loss_function(fake_output, False)loss_discriminator.backward()optimizer_discriminator.step()```2.迭代自编码器(Iterative Autoencoder)迭代自编码器通过在源领域和目标领域之间共享编码器和解码器,实现领域自适应。
openai 推理能力 原理
一、Open本人简介Open本人是一家人工智能研究实验室,致力于推动和发展人工智能,并使其造福全人类。
其研究团队来自世界各地,拥有丰富的学术和工业经验。
Open本人的使命是确保人工智能技术的发展符合道德和社会利益,不会对人类带来负面影响。
二、Open本人推理能力的重要性人工智能的推理能力是指其根据已有知识和信息,进行逻辑推理和推断,从而得出新的结论或解决问题的能力。
在实际应用中,推理能力可以帮助人工智能系统更好地理解和处理复杂的自然语言、图像和其他数据,从而实现更高效、准确的智能决策和行为。
三、Open本人推理能力的原理Open本人推理能力的原理主要包括以下几个方面:1. 知识表示与推理:Open本人使用各种形式的知识表示方法,包括逻辑表达式、图结构、语义网络等,来存储和表达丰富的领域知识。
基于这些知识表示,人工智能系统可以进行逻辑推理、演绎推断等操作,从而获得新的知识或信息。
2. 信息抽取与融合:Open本人利用自然语言处理、机器学习和数据挖掘等技术,对大规模、多样化的信息进行抽取和融合,从中获取有效的语义信息。
在此基础上,人工智能系统可以进行信息推理和关联分析,实现更全面、准确的信息理解和应用。
3. 模式识别与推断:Open本人引入了深度学习、强化学习和概率模型等方法,来进行模式识别和推断。
通过对大量数据进行学习和训练,人工智能系统可以从中学习不同领域的模式和规律,进而进行更灵活、智能的推理和决策。
四、Open本人推理能力的应用Open本人推理能力的应用涉及多个领域和场景,包括但不限于:1. 自然语言理解与生成:Open本人可以利用推理能力,更好地理解和处理自然语言,包括文本理解、语义分析和对话生成等方面。
Open 本人还可以基于推理能力,生成更准确、连贯的自然语言文本和对话内容。
2. 图像理解与推断:Open本人可以通过推理能力,对图像进行深度理解和推断,包括图像分类、目标检测、场景理解等方面。
深度学习算法在面向行为分析的抑郁症辅助诊断中的研究进展
深度学习算法在面向行为分析的抑郁症辅助诊断中的研究进展研究进展:深度学习算法在面向行为分析的抑郁症辅助诊断中近年来,随着人们对心理健康的关注度不断提高,抑郁症的诊断和治疗成为研究的热点。
而深度学习算法作为一种能够从大规模数据中提取特征并实现自主学习的技术,被广泛应用于抑郁症的辅助诊断中。
本文将介绍深度学习算法在面向行为分析的抑郁症辅助诊断中的研究进展。
一、深度学习算法概述深度学习是一种基于神经网络模型的机器学习算法,其特点是多层次的结构和大规模数据的训练。
深度学习算法通过多层神经元的联结,实现了对数据中高级抽象特征的提取和模式的识别。
在抑郁症辅助诊断中,深度学习算法能够自动学习和判别抑郁症相关的行为特征,从而提供客观、科学的诊断依据。
二、面向行为分析的抑郁症辅助诊断面向行为分析的抑郁症辅助诊断是一种基于抑郁症患者日常行为记录的辅助诊断方法。
通过对患者的行为数据进行监测和分析,可以及时评估患者的情绪状态和行为变化,进而实现早期发现和干预。
深度学习算法在面向行为分析的抑郁症辅助诊断中的研究主要包括以下几个方面。
1. 行为特征提取深度学习算法可以通过对大量的行为数据进行训练,识别出与抑郁症相关的行为特征。
例如,基于深度卷积神经网络的模型可以自动提取图像数据中的情绪表达特征,从而识别出抑郁症患者的情绪状态。
此外,深度学习算法还可以对文本数据、语音数据等进行特征提取,进一步丰富了行为特征的维度。
2. 模式识别与分类深度学习算法在抑郁症辅助诊断中能够对行为数据中的模式进行识别和分类。
通过训练大规模数据集,深度学习算法可以学习到抑郁症患者与非抑郁症患者之间的行为差异,并能够在实时监测中快速判断患者的情绪状态。
这为及时干预和疾病治疗提供了重要的支持。
3. 模型优化与性能提升针对抑郁症辅助诊断中的特殊问题,研究人员不断优化深度学习算法的模型结构和参数设置,进一步提升算法的性能。
例如,通过引入注意力机制和多任务学习,研究者在模型中加入对抑郁症关键特征的关注,提高了模型在抑郁症辅助诊断中的准确性和稳定性。
自组织特征映射神经网络研究与应用
自组织特征映射神经网络研究与应用自组织特征映射神经网络,又称Kohonen网络,在机器学习领域中具有广泛的研究和应用价值。
它是由芬兰科学家Teuvo Kohonen于1982年提出的,用来解决模式分类和聚类问题。
本文将分别从网络结构、学习规则、应用场景等多个角度来介绍自组织特征映射神经网络的研究与应用。
一、网络结构自组织特征映射神经网络是一种有两层或多层的神经元组成的全连接网络,其特点是每个神经元与输入节点全连接,但只有部分神经元与输出节点连接,这些与输出节点相连接的神经元被称作胜者神经元。
胜者神经元的选择根据输入数据与神经元之间的权值距离进行,即越接近输入数据的神经元越容易胜出。
自组织特征映射神经网络的网络结构简单,但它可以通过适当调整参数,从而实现多种复杂的函数映射。
在具体应用中,还可以采用层级结构的自组织特征映射神经网络,对于复杂的数据集,可以通过层层处理,逐步提取其更高层次的特征。
二、学习规则自组织特征映射神经网络的学习规则是基于竞争性学习的,其原理是将输入数据投影到高维空间中的低维网格上,使其可以进行分类和聚类。
其学习过程中所用的算法有两种:批处理算法和在线算法。
批处理算法在每个Epoth后,在一个批次中对全部样本进行训练,并更新权值,从而可以获得更稳定的结果,但训练时间较长。
而在线算法则是对每个样本逐个进行学习,因此训练速度较快,但结果相对不稳定。
在学习过程中,自组织特征映射神经网络会通过不断调整权值,形成特征抽取与分类能力强的模型。
其学习的结果可以通过可视化方式,将数据点在网格上的分布呈现出来,形成热图的形式,便于分析与理解。
三、应用场景自组织特征映射神经网络在数据挖掘、图像处理、生物信息学等领域都有着广泛的应用。
在图像处理领域中,可以通过自组织特征映射神经网络对图像进行压缩和分类。
在数据挖掘方面,自组织特征映射神经网络可用于数据聚类和数据可视化。
通过自组织特征映射神经网络,大量数据可以被投射到低维空间,并形成可视化热图,从而能够更好地理解数据的分布规律。
基于神经网络的自然语言语义表征方法
基于神经网络的自然语言语义表征方法2023-11-10目录CATALOGUE•引言•自然语言语义表征的相关研究•基于神经网络的语义表示模型•基于神经网络的语义匹配算法•基于神经网络的语义生成算法•基于神经网络的自然语言语义表征方法的应用场景与展望01 CATALOGUE引言研究背景与意义背景随着互联网和大数据技术的发展,自然语言处理(NLP)成为人工智能领域的重要研究方向。
在NLP中,语义表征是理解语言的关键,而神经网络在过去的十年中取得了重大进展,为语义表征提供了新的解决方案。
意义语义表征是实现自然语言处理的关键,它能够将自然语言文本转化为计算机可理解的语义表示,从而支持机器对人类语言的自动理解、生成和对话等任务。
基于神经网络的自然语言语义表征方法在许多应用领域都具有广泛的应用前景,如智能客服、智能家居、自动驾驶等。
本文主要研究基于神经网络的自然语言语义表征方法,包括词向量表示、句向量表示和语义匹配等关键技术。
具体研究内容包括:1)如何利用神经网络学习词向量表示;2)如何构建句向量表示;3)如何利用句向量进行语义匹配。
研究内容本文采用基于深度学习的神经网络模型进行研究。
首先,利用词向量表示方法将文本中的单词转化为计算机可处理的向量;然后,通过构建句向量表示模型将文本中的句子转化为句向量;最后,利用语义匹配模型判断两个句子的语义相似度。
主要采用的技术包括词嵌入、循环神经网络(RNN)、长短时记忆网络(LSTM)、Transformer和注意力机制等。
研究方法研究内容与方法02CATALOGUE自然语言语义表征的相关研究该方法主要基于词汇的语义关系来构建语义网络,进而对自然语言进行语义表征。
基于词汇学的方法基于句法的方法基于语料库的方法该方法主要通过分析句子的语法结构来理解句子的语义,进而实现自然语言的语义表征。
该方法主要通过大量的语料库来学习语言的语义,进而实现自然语言的语义表征。
03传统的自然语言语义表征方法02011基于神经网络的自然语言语义表征方法23该方法通过训练神经网络来学习词汇的分布式表示,从而实现对自然语言语义的表征。
ChatGPT技术的训练过程详解
ChatGPT技术的训练过程详解ChatGPT是OpenAI开发的一种用于对话生成的人工智能模型,它基于GPT-3模型进行训练。
GPT-3是目前最大的自然语言处理模型之一,具有了解和产生人类语言的能力。
本文将详细讲解ChatGPT技术的训练过程。
为了训练ChatGPT,OpenAI采用了一种称为自监督学习的方法。
自监督学习是一种无监督学习的变体,在该方法中,模型从大量的未标记数据中学习表征和模式。
对于ChatGPT来说,这意味着模型通过观察针对各种不同问题的人类对话进行训练。
在开始训练之前,OpenAI首先收集了大量的对话数据。
这些数据来自于互联网上的公开聊天记录和其他在线对话场景,例如社交媒体、论坛、新闻评论等。
然后,他们进行了数据清洗和预处理,以确保训练数据的质量和一致性。
一旦准备好训练数据,OpenAI就会使用预训练的GPT-3模型作为起点。
他们将GPT-3模型用作初始模型,然后对其进行微调以适应对话生成的任务。
为了增加ChatGPT的可用性和适应性,OpenAI使用了一种称为模仿学习的方法。
模仿学习的思想是通过模仿人类的行为来训练模型。
在ChatGPT的情境中,模仿学习的目标是使模型生成与人类输入相似的回复。
为了实现这一点,OpenAI开发了一种称为对比学习的训练方法。
对比学习通过让模型评估和对比生成的不同回复来训练模型。
具体来说,通过给模型提供一个上下文环境和一个完整的人类对话历史,模型会生成多个备选回复。
然后,将其中一个回复标记为“正确”的,并将其与其他回复进行对比。
通过这种方式,模型可以学习生成更接近人类输入的回复。
在训练过程中,OpenAI还使用了一种称为自动回归的技术。
自动回归是一种生成模型的方法,在这种方法中,模型根据先前生成的标记来预测下一个标记。
对于ChatGPT来说,这意味着模型会逐步生成回复,并根据上下文和对话历史来预测下一个标记。
训练过程通常需要使用大型计算资源和时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Towards Automatic Recognition ofSpontaneous Facial Actions________________________________________________________________________MARIAN STEWART BARTLETT, JAVIER R. MOVELLAN, GWEN LITTLEWORT,BJORN BRAATHEN, MARK G. FRANK & TERRENCE J. SEJNOWSKICharles Darwin (1872/1998) was the first to fully recognize that facial expression is one of the most powerful and immediate means for human beings to communicate their emotions, intentions, and opinions to each other. In addition to providing information about affective state, facial expressions also provide information about cognitive state, such as interest, boredom, confusion, and stress, and conversational signals with information about speech emphasis and syntax. Facial expressions also contain information about whether an expression of emotion is posed or felt (Ekman, 2001; Frank, Ekman, & Friesen, 1993). In order to objectively measure the richness and complexity of facial expressions, behavioral scientists have found it necessary to develop objective coding standards. The Facial Action Coding System (FACS) from Ekman and Friesen (1978) is arguably the most comprehensive and influential of such standards. FACS is based on the anatomy of the human face, and codes expressions in terms of component movements, called “action units” (AUs). Ekman and Friesen defined 46 AUs to describe each independent movement of the face. FACS measures all visible facial muscle movements, including head and eye movements, and not just those presumed to be related to emotion. When learning FACS, a coder is trained to identify the characteristic pattern of bulges, wrinkles, and movements for each facial AU. The AUs approximate individual facial muscle movements but there is not always a 1:1 correspondence.FACS has been used to verify the physiological presence of emotion in a number of studies, with high (over 75%) agreement (e.g., Ekman, Friesen, & Ancoli, 1980; Ekman, Levenson, & Friesen, 1983; Ekman, Davidson, & Friesen, 1990; Levenson, Ekman, & Friesen, 1990; Ekman, Friesen, & O’Sullivan, 1988). Because it is comprehensive, FACS also allows for the discovery of new patterns related to emotional or situational states. For example, using FACS Ekman et al (1990) and Davidson et al (1990) found that smiles which featured both orbicularis oculi (AU6), as well as zygomatic major action (AU12), were correlated with self-reports of enjoyment, as well as different patterns of brain activity, whereas smiles that featured only zygomatic major (AU12) were not. Subsequent research demonstrated that the presence of smiles that involve the orbicularis oculi (hereafter “enjoyment smiles”) on the part of a person who hassurvived the death of their romantic partner predicts successful coping with that traumatic loss (Bonnano & Keltner, 1997). Other work has shown a similar pattern. For example, infants show enjoyment smiles to the presence of their mothers, but not to strangers (Fox & Davidson, 1988). Mothers do not show as many enjoyment smiles to their difficult children compared to their non-difficult children (Bugental, 1986). Research based upon FACS has also shown that facial expressions can predict the onset and remission of depression, schizophrenia, and other psychopathology (Ekman & Rosenberg, 1997), can discriminate suicidally from non-suicidally depressed patients (Heller & Haynal, 1994), and can predict transient myocardial ischemia in coronary patients (Rosenberg et al., 2001). FACS has also been able to identify patterns of facial activity involved in alcohol intoxication that observers not trained in FACS failed to note (Sayette, Smith, Breiner, & Wilson, 1992).Although FACS is an ideal system for the behavioral analysis of facial action patterns, the process of applying FACS to videotaped behavior is currently done by hand and has been identified as one of the main obstacles to doing research on emotion (Frank, 2002, Ekman et al, 1993). FACS coding is currently performed by trained experts who make perceptual judgments of video sequences, often frame by frame. It requires approximately 100 hours to train a person to make these judgments reliably and pass a standardized test for reliability. It then typically takes over two hours to code comprehensively one minute of video. Furthermore, although humans can be trained to code reliably the morphology of facial expressions (which muscles are active) it is very difficult for them to code the dynamics of the expression (the activation and movement patterns of the muscles as a function of time). There is good evidence suggesting that such expression dynamics, not just morphology, may provide important information (Ekman & Friesen, 1982). For example, spontaneous expressions have a fast and smooth onset, with distinct facial actions peaking simultaneously, whereas posed expressions tend to have slow and jerky onsets, and the actions typically do not peak simultaneously (Frank, Ekman, & Friesen, 1993).Figure 1: The Facial Action Coding System decomposes facial expressions into component actions. The three individual brow region actions and selected combinations are illustrated. When subjects pose fear they often perform 1+2 (top right), whereas spontaneous fear reliably elicits1+2+4 (bottom right) (Ekman, 2001).Within the past decade, significant advances in computer vision open up the possibility of automatic coding of facial expressions at the level of detail required for such behavioral studies. Automated systems would have a tremendous impact on basic research by making facial expression measurement more accessible as a behavioral measure, and by providing data on the dynamics of facial behavior at a resolution that was previously unavailable. Such systems would also lay the foundations for computers that can understand this critical aspect of human communication. Computer systems with this capability have a wide range of applications in basic and applied research areas, including man-machine communication, security, law enforcement, psychiatry, education, and telecommunications.A number of ground breaking systems have appeared in the computer vision literature for facial expression recognition which use a wide variety of approaches, including optic flow (Mase, 1991;Yacoob & Davis, 1996; Rosenblum, Yacoob, & Davis, 1996; Essa & Pentland, 1997), tracking of high-level features (Tian, Kanade, & Cohn, 2001; Lien, Kanade, Cohn, & Li, 2000) methods that match images to physical models of the facial skin and musculature (Mase 1991; Terzopoulus & Waters, 1993; Li, Riovainen, & Forscheimer, 1993; Essa & Pentland, 1997), methods based on statistical learning of images (Cottrell & Metcalfe, 1991; Padgett & Cottrell, 1997; Lanitis, Taylor, & Cootes, 1997; Bartlett et al., 2000) and methods based on biologically inspired models of human vision (Zhang, Lyons, Schuster, & Akamatsu, 1998; Bartlett, 2001, Bartlett, Movellan, & Sejnowski, 2002). See Pantic (2000b) for a review.Much of the early work on computer vision applied to facial expressions focused on recognizing a few prototypical expressions of emotion produced on command (e.g., “smile”). More recently there has been an emergence of groups that analyze facial expressions into elementary components. For example Essa and Pentland (1997) and Yacoob and Davis (1996) proposed methods to analyze expressions using an animation-style coding system inspired by FACS. Eric Petajan’s group has also worked for many years on methods for automatic coding of facial expressions in the style of MPEG4 which codes movement of a set of facial feature points (Doenges, Lavagetto, Osterman, Pandzic and Petajan, 1997). While coding standards like MPEG4 are useful for animating facial avatars, behavioral research may require more comprehensive information. For example, MPEG4 does not encode some behaviorally relevant movements such as the contraction of the orbicularis oculi, which differentiates spontaneous from posed smiles (Ekman, 2001). It also does not measure changes in surface texture such as wrinkles, bulges, and shape changes that are critical for the definition of action units in the FACS system. For example, the vertical wrinkles and bulges between the brows are important for distinguishing AU 1 alone from AU 1+4 (see Figure 1b), both of which entail upward movement of the brows, but which can have different behavioral implications.We present here an approach for developing a fully automatic FACS coding system. The approach uses state of the art machine learning techniques that can be applied to recognition of any facial action. The techniques were tested on a small sample of facial actions, but can be readily applied to recognition of other facial actions given a sample of images on which to train the system. We are presently collaborating with Mark Frank to collect more training data (see Afterword.) In this paper we show preliminary results for I. Recognition of posed facial actions incontrolled conditions, and II. Recognition of spontaneous facial actions in freely behaving subjects.Two other groups have focused on automatic FACS recognition as a tool for behavioral research. One team, lead by Jeff Cohn and Takeo Kanade, present an approach based on traditional computer vision techniques such as using edge detection to extract contour-based image features and motion tracking of those features using optic flow. A comparative analysis of our approaches is available in (Bartlett et al, 2001; Cohn et al., 2001). Pantic & Rothcrantz (2000a) use robust facial feature detection followed by an expert system to infer facial actions from the geometry of the facial features. The approach presented here measures changes in facial texture that include not only changes in position of feature points, but also higher resolution changes in image texture such as those created by wrinkles, bulges, and changes in feature shapes. We explore methods that merge machine learning and biologically inspired models of human vision. Our approach differs from other groups in that instead of designing special purpose image features for each facial action, we explore general purpose learning mechanisms that can be applied to recognition of any facial action.Study I: Automatic FACS coding of posed facial actions, controlled conditionsA database of directed facial actions was collected by Paul Ekman and Joe Hager at the University of California, San Francisco. The full database consists of 1100 image sequences containing over 150 distinct actions and action combinations, and 24 subjects. These images were collected in a constrained environment. Subjects deliberately faced the camera and held their heads as still as possible. Each sequence contained 7 frames, beginning with a neutral expression and ending with the action unit peak. For this investigation, we used 111 sequences from 20 subjects and attempted to classify 12 actions: 6 upper face actions (Aus 1, 2, 4, 5, 6, and 7) and 6 lower face actions (Aus 9, 10, 16, 17, 18, 20). Upper and lower-face actions were analyzed separately. A sample of facial actions from this database is shown in Figure 1b.We developed and compared techniques for automatically recognizing these facial actions by computer (Bartlett et al., 1996; Bartlett, Hager, Ekman, & Sejnowski, 1999; Donato, Bartlett, Hager, Ekman, & Sejnowski, 1999; Bartlett, Donato, Hager, Ekman, & Sejnowski, 2000). Our work focused on comparing the effectiveness of different image representations, or feature extraction methods, for facial action recognition. We compared image filters derived from supervised and unsupervised machine learning techniques. These data-driven filters were compared to Gabor filter banks, which closely model the response transfer function of simple cells in primary visual cortex. In addition, we also examined motion representations based on optic flow, and an explicit feature-extraction technique that measured facial wrinkles in specified locations (Bartlett et. al. 1999; Donato et al. 1999). These techniques are briefly reviewed here. More information is available in the journal papers cited above, and in Bartlett (2001).Adaptive methodsIn contrast to more traditional approaches to image analysis in which the relevant structure is decided by the human user and measured using hand-crafted techniques, adaptive methods learn about the image structure directly from the image ensemble. We draw upon principles of machine learning and information theory to adapt processing to the immediate task environment. Adaptive methods have proven highly successful for tasks such as recognizing facial identity (e.g. Brunelli & Poggio, 1993; Turk & Pentland, 1991; Penev & Atick, 1996; Belhumeur et al., 1997; Bartlett, Movellan, & Sejnowski, 2002; see Bartlett, 2001 for a review), and can be applied to recognizing any expression dimension given a set of training images.We compared four techniques for developing image filters adapted to the statistical structure of face images. (See Figure 2.) The techniques were Principal Component Analysis (PCA), often termed Eigenfaces (Turk & Pentland 1991), Local Feature Analysis (LFA) (Penev & Atick, 1996), Fisher’s linear discriminants (FLD), and Independent Component Analysis (ICA). Except for FLD, all of these techniques are unsupervised; image representations are developed without knowledge of the underlying action unit categories. Principal component analysis, Local Feature Analysis and Fisher discriminant analysis are a function of the pixel by pixel covariance matrix and thus insensitive to higher-order statistical structure. Independent component analysis is a generalization of PCA that learns the high-order relations between image pixels, not just pair-wise linear dependencies. We employed a learning algorithm for ICA developed in Terry Sejnowski's laboratory based on the principle of optimal information transfer between neurons (Bell & Sejnowski, 1995; Bartlett, Movellan, & Sejnowski, 2002).a. b. c. d.Figure 2. Sample image filters for the upper face. a. Eigenface (PCA). b. Independent component analysis (ICA) c. Gabor. d. Local Feature Analysis (LFA).Predefined image featuresGabor waveletsAn alternative to the adaptive methods described above are wavelet decompositions based on predefined families of image kernels. We employed Gabor kernels, which are 2-D sine waves modulated by a Gaussian. Gabor kernels model the response functions of cells in the primate visual cortex (Daugman, 1988), and have proven successful as a basis for recognizing facial identity in images (Lades et al., 1993).Explicit Feature MeasuresA more traditional approach to computer vision is to apply hand-crafted image features explicitly designed to measure components of the image that the engineer has decided are relevant. We applied a method developed by Jan Larson (Bartlett et. al., 1996) for measuring changes in facial wrinkling and eye opening. Facial wrinkling was measured by the sum of the squared derivatives of the image pixels along line segments in 4 facial regions predicted to contain wrinkles due to the facial actions in question. Eye opening was measured as the area of visible sclera. Changes in wrinkling or eye opening were measured by subtracting baseline measured for the neutral image. See Bartlett et al. (1999) for more information on this technique.Optic FlowThe majority of the work on automatic facial expression recognition has focused on facial motion analysis through optic flow estimation. Here, optic flow fields were calculated by employing a correlation-based technique developed by Singh (1992). Optic flow fields were classified by template matching. (See Donato et al., 1999, for more information).Classification ProcedureThe face was located in the first frame in each sequence using the centers of the eyes and mouth. These coordinates were obtained manually by a mouse click. The coordinates from Frame 1 were used to register the subsequent frames in the sequence. The aspect ratios of the faces were warped so that the eye and mouth centers coincided across all images. The three coordinates were then used to rotate the eyes to horizontal, scale, and finally crop a window of 60 x 90 pixels containing the upper or lower face. To control for variations in lighting, logistic thresholding and luminance scaling was performed (Movellan, 1995). Difference images were obtained by subtracting the neutral expression in the first image of each sequence from the subsequent images in the sequence. Individual frames of each action unit sequence were otherwise analyzed separately, with the exception of optic flow which analyzed three consecutive frames.Each image analysis algorithm produced a feature vector f. We employed a simple nearest neighbor classifier in which the similarity of a training feature vector f t and a novel feature vector f n was measured as the cosine of the angle between them. The test vector was assigned the class label of the training vector for which the cosine was highest. We also explored template matching, where the templates were the mean feature vectors for each class. Generalization to novel faces was evaluated using leave-one-out cross-validation.Human Subject ComparisonsThe performance of human subjects provided benchmarks for the performances of the automatedsystems. Naïve subjects benchmarked the difficulty of the visual classification task. The agreement rates of FACS experts benchmarked how close we were to the goal of replacing experthuman coders with an automated system. Naïve subjects were 10 adult volunteers with no priorknowledge of facial expression measurement. Upper and lower facial actions were tested separately. Subjects were provided with a guide sheet which gave an example of each of the 6lower or upper facial actions along with written descriptions from Ekman & Friesen (1978). Eachsubject was given a training session in which the facial actions were described and demonstrated,and visual cues were pointed out in the example images. The subject kept the guide sheet as a reference during the task. Face images were preprocessed identically to how they had been for theautomated systems, and then printed using a high resolution laser printer. Face images werepresented in pairs, with the neutral image and the test image presented side by side. Subjects made a 6-alternative forced choice on 93 pairs of upper face and 93 pairs of lower face actions.Expert subjects were 4 certified FACS coders. Expert subjects were not given additional trainingor a guide sheet.Overall FindingsImage decomposition with gray-level image filters outperformed explicit extraction of facialwrinkles or motion flow fields. Best performance was obtained with the Gabor waveletdecomposition and independent component analysis, each of which gave 96% accuracy for classifying the 12 facial actions (see Table 1). This performance equaled the agreement rates ofexpert human subjects on this set of images. The Gabor and ICA representations were bothsensitive to high-order dependencies among the pixels (Field, 1994; Simoncelli, 1997), and haverelationships to visual cortical neurons (Daugman, 1988; Bell & Sejnowski, 1997). See (Bartlett, 2001) for a more detailed discussion. We also obtained evidence that high spatial frequencies are important for classifying facial actions. Classification with the three highest frequencies of the Gabor representation (15,18,21 cycles/face) was 93% compared to 84% withthe three lowest frequencies (9,12,15 cycles/face).Computational Analysis Eigenfaces79.3 +4 Local Feature Analysis81.1 +4 Independent Component Analysis95.5 +2 Fisher’s Linear Discriminant75.7 +4 Gabor Wavelet Decomposition95.5 +2 Optic Flow85.6 +3 Explicit Features (wrinkles)57.1 +6Human Subjects Naïve77.9 +3 Expert94.1 +2Table 1: Summary of results for recognition of directed facial actions. Performance is for novel subjects on frame 5. Values are percent agreement with FACS labels in the database.We also investigated combining multiple sources of information in a single classifier. Combining the wrinkle measurements with PCA in a three layer perceptron resulted in a 0.3 percentage point improvement in performance over PCA alone (Bartlett et al., 1999).In addition, we trained a dedicated system to distinguish felt from unfelt smiles (Littlewort-Ford, Bartlett, & Movellan, 2001) based on the findings of Ekman, Friesen, and O’Sullivan (1988) that felt smiles include the contraction of the orbicularis oculi. This system was trained on two FACS-coded databases of images, the DFAT-504 and the Ekman-Hager databases. There were 157 examples of smiles scored as containing both AU 12 (zygomatic major) and AU 6 (orbicularis oculi) and 72 examples of smiles scored as containing 12 but not AU 6. This system obtained 87% correct discrimination of felt from unfelt smiles. This is encouraging given that non-expert humans detected AU 6 about 50% of the time and false alarmed about 25% of the time on a 6-alternative forced choice (Bartlett et al., 1999).Study II: Automatic FACS coding of spontaneous facial expressions1Prior to 2000, work in automatic facial expression recognition was based on datasets of posed expressions collected under controlled conditions with subjects deliberately facing the camera at all times. In 2000-2001 our group at UCSD, along with the Cohn/Kanade group at CMU, undertook the first attempt that we know of to automate FACS coding of spontaneous facial expressions in freely behaving individuals (Bartlett et. al, 2001; Cohn et al. 2001). Extending these systems to spontaneous facial behavior was a critical step forward towards development of tools with practical applications in behavioral research.Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Spontaneous facial expressions are mediated by a distinct neural pathway from posed expressions. The pyramidal motor system, originating in the cortical motor strip, drives voluntary facial actions, whereas involuntary, emotional facial expressions originate subcortically and involve the basal ganglia, limbic system, and the cingulate motor area (e.g. Rinn, 1984). Psychophysical work has shown that spontaneous facial expressions differ from posed expressions in a number of ways (Ekman, 2001). Subjects often contract different facial muscles when asked to pose an emotion such as fear versus when they are actually experiencing fear. (See Figure 1.) In addition, the dynamics are different. Spontaneous expressions have a fast and smooth onset, with apex coordination, in which muscle contractions in different parts of the face peak at the same time. In posed expressions, the onset tends to be slow and jerky, and the muscle contractions typically do not peak simultaneously.The goal of this study was to classify facial actions in twenty subjects who participated in a high stakes mock crime experiment previously conducted by Mark Frank and Paul Ekman (Frank and Ekman, 1997). The results were evaluated by a team of computer vision experts (Yaser Yacoob, Pietro Perona) and behavioral experts (Paul Ekman, Mark Frank). These expertsproduced a report identifying the feasibility of this technology and the steps necessary for future progress.Factorizing rigid head motion from nonrigid facial deformationsThe most difficult technical challenge that came with spontaneous behavior was the presence of out-of-plane rotations due to the fact that people often nod or turn their head as they communicate with others. Our approach to expression recognition is based on statistical methods applied directly to filter bank image representations. While in principle such methods may be able to learn the invariances underlying out-of-plane rotations, the amount of data needed to learn such invariances was not available to us. Instead, we addressed this issue by means of deformable 3D face models.We fit 3D face models to the image plane, texture those models using the original image frame, then rotate the model to frontal views, warp it to a canonical face geometry, and then render the model back into the image plane. (See Figures 3-5.) This allowed us to factor out image variation due to rigid head rotations from variations due to nonrigid face deformations. The rigid transformations were encoded by the rotation and translation parameters of the 3D model. These parameters are retained for analysis of the relation of rigid head dynamics to emotional and cognitive state.Since our goal was to explore the use of 3D models to handle out-of-plane rotations for expression recognition, we first tested the system using hand-labeling to give the position of 8 facial landmarks.The average deviation between human coders was 1/5 of an iris. We are currently obtaining similar precision using automatic feature detectors (See Afterword).a. b.Figure 3: Head pose estimation. a. First camera parameters and face geometry are jointly estimated using an iterative least squares technique b. Next head pose is estimated in each frame using stochastic particle filtering. Each particle is a head model at a particular orientation and scale.When landmark positions in the image plane are known, the problem of 3D pose estimation is relatively easy to solve. We begin with a canonical wire-mesh face model and adapt it to the face of a particular individual by using 30 image frames in which 8 facial features have been labeled by hand. Using an iterative least squares triangulation technique, we jointly estimate camera parameters and the 3D coordinates of these 8 features. A scattered data interpolation technique is then used to modify the canonical 3D face model so that it fits the 8 feature positions (Pighin et al., 1998). Once camera parameters and 3D face geometry are known, we used a stochastic particle filtering approach (Kitagawa, 1996) to estimate the most likely rotation and translation parameters of the 3D face model in each video frame. (See Braathen, Bartlett, Littlewort, & Movellan, 2001).Action unit recognitionDatabase of spontaneous facial expressionsWe employed a dataset of spontaneous facial expressions from freely behaving individuals. The dataset consisted of 300 Gigabytes of 640 x 480 color images, 8 bits per pixels, 60 fields per second, 2:1 interlaced. The video sequences contained out of plane head rotation up to 75 degrees. There were 17 subjects: 3 Asian, 3 African American, and 11 Caucasians. Three subjects wore glasses. The facial behaviors in one minute of video per subject were scored frame by frame by 2 teams experts on the FACS system, one lead by Mark Frank at Rutgers, and another lead by Jeffrey Cohn at U. Pittsburgh.While the database we used was rather large for current digital video storage standards, in practice the number of spontaneous examples of each action unit in the database was relatively small. Hence, we prototyped the system on the three actions which had the most examples: Blinks (AU 45 in the FACS system) for which we used 168 examples provided by 10 subjects, Brow raises (AU 1+2) for which we had 48 total examples provided by 12 subjects, and Brow lower (AU 4) for which we had 14 total examples provided by 12 subjects. Negative examples for each category consisted of randomly selected sequences matched by subject and sequence length. These three facial actions have relevance to applications such as monitoring of alertness, anxiety, and confusion (Holland 1972, Karson, 1988; Orden, Jung & McKeig, 2000; Ekman, 2001).The system presented here employs general purpose learning mechanisms that can be applied to recognition of any facial action once sufficient training data is available. There is no need to develop special purpose feature measures to recognize additional facial actions.Recognition systemAn overview of the recognition system is illustrated in Figures 4 and 5. Head pose was estimated in the video sequences using a particle filter with 100 particles. Face images were then warped onto a face model with canonical face geometry, rotated to frontal, and then projected back into the image plane. This alignment was used to define and crop a subregion of the face image containing the eyes and brows. The vertical position of the eyes was 0.67 of the window height.。