2013浙江舟山中考数学预测卷
浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解
浙江省各市2013年中考数学分类解析 专题2 代数式和因式分解一、选择题1. (2013年浙江杭州3分)下列计算正确的是【 】 A .m 3+m 2=m 5 B .m 3m 2=m 6 C .()()21m 1m m 1-+=-D .()4221m m 1-=--2. (2013年浙江杭州3分)若a b 3a b 7+=-=,,则ab =【 】 A .-10B .-40C .10D .403. (2013年浙江杭州3分)如图,设k =(a >b >0),则有【 】A.k>2 B.1<k<2 C.D.4. (2013年浙江舟山3分)下列运算正确的是【】A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3-+的结果是【】5. (2013年浙江金华、丽水3分)化简2a3aA.-a B.a C.5a D.-5a()2a3a23a a-+=-+=.故选B。
6. (2013年浙江宁波3分)下列计算正确的是【】A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a57. (2013年浙江湖州3分)计算6x3•x2的结果是【】A.6x B.6x5C.6x6D.6x98. (2013年浙江衢州3分)下列计算正确的是【】A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b29. (2013年浙江绍兴4分)计算3a•(2b)的结果是【】A.3ab B.6a C.6ab D.5ab10. (2013年浙江浙江嘉兴4分)下列运算正确的是【 】A .x 2+x 3=x 5B .2x 2﹣x 2=1C .x 2•x 3=x 6D .x 6÷x 3=x 311. (2013年浙江温州4分) 若分式x 3x 4-+的值为0,则x 的值是【 】 A . x 3= B . x 0= C . x 3=- D . x 4=-二、填空题1. (2013年浙江舟山4分)x 的取值范围是 ▲ .x 30x 3-≥⇒≥。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题02 代数
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题02 代数式和因式分解一、选择题1. (2003年浙江舟山、嘉兴4分)下列计算正确的是【】A .a+a=a2 B. (3a)2=6a2 C.(a+1)2=a2+1 D.a·a=a2【答案】D。
2. (2003年浙江舟山、嘉兴4分)已知a2b3=,则a bb+的值为【】A . 32B.43C.53D .353. (2004年浙江舟山、嘉兴4分)要使二次根式x1-有意义,那么x的取值范围是【】A.x>-1B. x<1C.x≥1 D .x≤14. (2004年浙江舟山、嘉兴4分)计算:1a1(1)a a-÷-的正确结果是【】A.a+1B.1C.a-1D.-15. (2005年浙江舟山、嘉兴4分)下列运算中,正确的是【】A .x2+x2=2x4 B. x2+x2=x4 C.x2x3=x6 D. x2x3=x5【答案】D。
【考点】合并同类项,同底幂乘法。
有意义,则字母x的取值范围是【】6. (2006年浙江舟山、嘉兴4分)要使根式x3A.x≠3 B.x≤3 C.x>3 D.x≥3【答案】D。
【考点】二次根式有意义的条件。
7. (2006年浙江舟山、嘉兴4分)下列计算正确的是【】.A.(ab)2=ab2 B.a2·a3=a4 C.a5+a5=2a5 D.(a2)3=a68. (2007年浙江舟山、嘉兴4分)因式分解(x-1)2-9的结果是【】A .(x+8)(x+1)B .(x+2)(x -4)C .(x -2)(x+4)D .(x -10)(x+8) 【答案】B 。
【考点】应用公式法因式分解,整体思想的应用。
9. (2008年浙江舟山、嘉兴4分)下列运算正确的是【 】 A .235a a a =B .22(ab)ab =C .329(a )a =D .632a a a ÷=10.(2009年浙江舟山、嘉兴4分)下列运算正确的是【 】A .()2a b 2a b --=--B .()2a b 2a b --=-+C .()2a b 2a 2b --=--D .()2a b 2a 2b --=-+【答案】D 。
2013年浙江省中考数学压轴题解析汇编
2013年浙江省各地市数学中考压轴题解析汇编【2013·浙江宁波·26题】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD。
过P、D、B三点作⊙Q与y轴的另一个交点为E,延长DQ 交⊙Q于点F,连结EF,BF。
(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时,①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由。
解:(1)设直线AB的函数解析式为y=kx+b,将点A∵EF=DE=OE+OD=2+OD ∴OH=2+OD 13(0,4)、B(4,0)代入得:OD=2+OD=4 ∵OB=OH+HB=2+OD+解得∴OD=,即点D坐标为(0,)∴直线AB的函数解析式为y=-x+4 由此可求得直线CD的解析式为y=x+ 33(2)① ∵B(4,0),C (-4,0)∴OB=OC=4 联立直线AB解析式可求得,点P坐标为(2,2)∴OD是BC的垂直平分线∴∠BDE=∠CDE ② 当BD∶BF=1∶2时,如图②。
∵∠CDE=∠ADP(对顶角) ∴∠BDE=∠ADP 过点F作FH⊥x轴于H。
② 连接EP。
与①同理可证Rt△BHF∽Rt△DOB ∵∠BDE=∠BAD+∠DBP则∴FH=8,HB=2OD ∠ADP=∠DPE+∠DEP,且∠BDE=∠ADP OBODBD∴∠BAD+∠DBP=∠DPE+∠DEP 连接EB。
与(2)同理可证得DE=EF ∵∠DBP=∠DEP ∴∠DPE=∠BAD ∵FH=OD+DE=OD+EF=OD+OH=OD+OB+HB=OD+OB+2OD=3OD+OB ∵∠DPE=∠DFE ∴∠DFE=∠BAD 44∵OA=OB ∴∠BAD=∠OBA=45°,即点D坐标为(0,-)∴8=3OD+4,得OD=33∴∠DFE=45°14由此可求得直线CD的解析式为y=-x- ∵DF是⊙Q的直径∴∠DEF=90°33∴△DEF是等腰直角三角形联立直线AB解析式可求得,点P坐标为(8,-4)22∴DF=DE,即y=x 综上,存在满足题述条件的Rt△BDF,点P坐标(3)① 当BD∶BF=2∶1时,如图①。
2013年舟山市中考数学试卷及解析
浙江省舟山市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)(2013•佛山)﹣2的相反数是()A.2B.﹣2 C .D.考点: 相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)(2005•浙江)如图,由三个小立方体搭成的几何体的俯视图是() A.B.C.D.考点: 简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2013•舟山)据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为()A.2771×107B.2.771×107C.2.771×104D.2.771×105考点: 科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2771万=27710000=2.771×107.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•嘉兴)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是()A.1.71 B.1.85 C.1.90 D.2.31考点: 众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(3分)(2013•嘉兴)下列运算正确的是()A.x2+x3=x5B.2x2﹣x2=1 C.x2•x3=x6D.x6÷x3=x3考点: 同底数幂的除法;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.(3分)(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cm B.cmC.cmD.7πcm考点: 弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.(3分)(2013•舟山)下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件考点: 全面调查与抽样调查;方差;随机事件;概率的意义.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、要了解一批灯泡的使用寿命,应采用抽样调查的方式,故本选项错误;B、若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故本选项错误;C、若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确,故本选项正确;D、“掷一枚硬币,正面朝上”是随机事件,故本选项错误;故选C.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)(2013•嘉兴)若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1 B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4考点: 二次函数的性质;一次函数图象上点的坐标特征.分析:先将(﹣2,0)代入一次函数解析式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.(3分)(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点: 垂径定理;勾股定理;圆周角定理.专题: 探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(3分)(2013•舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点考点: 一次函数图象上点的坐标特征.专题: 新定义.分析:如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2013•嘉兴)二次根式中,x的取值范围是x≥3.考点: 二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.(4分)(2013•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.考点: 概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(4分)(2010•鞍山)因式分解:ab2﹣a=a(b+1)(b﹣1).考点: 提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a(b2﹣1),=a(b+1)(b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.(4分)(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.考点: 圆与圆的位置关系;旋转的性质.专题: 计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.(4分)(2013•嘉兴)杭州到北京的铁路长1487千米.火车的原平均速度为x千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3.考点: 由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.(4分)(2013•舟山)如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为6.考点: 正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB 上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形的性质来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道数学物理学科综合试题,难度较大.三、解答题(共8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(2013•嘉兴)(1)计算:|﹣4|﹣+(﹣2)0;(2)化简:a(b+1)﹣ab﹣1.考点: 整式的混合运算;实数的运算;零指数幂.专题: 计算题.分析:(1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式去括号合并即可得到结果.解答:解:(1)原式=4﹣3+1=2;(2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.(6分)(2013•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?考点: 全等三角形的判定与性质.分析:(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.(6分)(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?考点: 反比例函数与一次函数的交点问题.专题: 计算题.分析:(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解析式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.(8分)(2013•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?考点: 条形统计图;用样本估计总体;扇形统计图;中位数.分析:(1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;(2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;(3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:(1)随机调查的学生数是:10÷25%=40(人),零花钱是20圆的人数是:40×20%=8(人).;(2)50元的所占的比例是:=,则圆心角36°,中位数是30元;(3)学生的零用钱是:=32.5(元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)(2013•舟山)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).考点: 解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3米.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3米,∴大门的宽是:0.3×20≈6(米);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3米.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616(米),∴B1D1=2B1O1=0.05232米,∴伸缩门的宽是:0.05232×20=1.0464米;∴校门打开的宽度为:6﹣1.0464=4.9536≈5(米).故校门打开了5米.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.(10分)(2013•舟山)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?(1)①请帮小明在图2的画板内画出你的测量方案图(简要说明画法过程);②说出该画法依据的定理.(2)小明在此基础上进行了更深入的探究,想到两个操作:①在图3的画板内,在直线a与直线b上各取一点,使这两点与直线a、b的交点构成等腰三角形(其中交点为顶角的顶点),画出该等腰三角形在画板内的部分.②在图3的画板内,作出“直线a、b所成的跑到画板外面去的角”的平分线(在画板内的部分),只要求作出图形,并保留作图痕迹.请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外,只能画在画板内)考点: 作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:(1)方法一:利用平行线的性质;方法二:利用三角形内角和定理;(2)首先作等腰三角形△PBD,然后延长BD交直线a于点A,则ABPQ就是所求作的图形.作图依据是等腰三角形的性质与平行线的性质;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:(1)方法一:①如图2,画PC∥a,量出直线b与PC的夹角度数,即为直线a,b所成角的度数,②依据:两直线平行,同位角相等,方法二:①如图2,在直线a,b上各取一点A,B,连结AB,测得∠1,∠2的度数,则180°﹣∠1﹣∠2即为直线a,b所成角的度数;②依据:三角形内角和为180°;(2)如图3,以P为圆心,任意长为半径画弧,分别交直线b,PC于点B,D,连结BD并延长交直线a于点A,则ABPQ就是所求作的图形;(3)如图3,作线段AB的垂直平分线EF,则EF就是所求作的线.点评:本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)三角形内角和定理,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.(10分)(2013•舟山)某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?考点: 一元一次不等式的应用;一元一次方程的应用;二元一次方程组的应用.专题: 应用题.分析:(1)设年降水量为x万m3,每人年平均用水量为ym3,根据题意等量关系可得出方程组,解出即可;(2)设该镇居民人均每年需节约z m3水才能实现目标,由等量关系得出方程,解出即可;(3)该企业n年后能收回成本,根据投入1000万元设备,可得出不等式,解出即可.解答:解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,,解得:.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年需节约z m3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34,50﹣34=16m3.答:设该镇居民人均每年需节约16 m3水才能实现目标.(3)该企业n几年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×﹣40n≥1000,解得:n≥8.答:至少9年后企业能收回成本.点评:本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,得到等量关系与不等关系,难度一般.24.(12分)(2013•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?考点: 二次函数综合题.专题: 数形结合.分析:(1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;(2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;(3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分(如图1)和(图2)两种情况解答.解答:解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°, ∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得: ﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。
2013年浙江省各市中考数学分类解析专题12押轴题
浙江省各市2013年中考数学分类解析 专题12 押轴题一、选择题1. (2013年浙江杭州3分)给出下列命题及函数y=x ,y=x 2和y=1x①如果21>a>a a,那么0<a <1;②如果21a >a>a ,那么a >1;③如果21>a >a a,那么-1<a <0;④如果21a >>a a时,那么a <-1.则【 】A .正确的命题是①④B .错误的命题是②③④C .正确的命题是①②D .错误的命题只有③如果21>a >a a,那么a 值不存在,命题③错误;如果21a >>a a时,那么a <-1,命题④正确。
综上所述,正确的命题是①④。
故选A 。
2. .(2013年浙江舟山3分)对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】 A .在同一条直线上 B .在同一条抛物线上 C .在同一反比例函数图象上 D .是同一个正方形的四个顶点3. (2013年浙江金华、丽水3分)如图1,在Rt△ABC 中,∠ACB=900,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止。
过点P 作PD⊥AB,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示。
当点P 运动5秒时,PD 的长是【 】A .1.5cmB .1.2cmC .1.8cmD .2cm4. (2013年浙江宁波3分)7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足【】A.a=52b B.a=3b C.a=72b D.a=4b5. (2013年浙江湖州3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是【】A.16 B.15 C.14 D.13【答案】C。
浙江省各市2013年中考数学分类解析 专题7 统计与概率
浙江省各市2013年中考数学分类解析专题7 统计与概率一、选择题1. (2013年浙江杭州3分)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是【】A.2010~2012年杭州市每年GDP增长率相同B.2012年杭州市的GDP比2008年翻一番C.2010年杭州市的GDP未达到5500亿元D.2008~2012年杭州市的GDP逐年增长故选D。
2. (2013年浙江舟山3分)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【】A.1.71 B.1.85 C.1.90 D.2.313. (2013年浙江舟山3分)下列说法正确的是【】A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差22==,,则甲组S0.1S0.2乙甲数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件4. (2013年浙江金华、丽水3分)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是【】A.16人B.14人C.4人D.6人5. (2013年浙江宁波3分)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是【】A.15B.13C.38D.586. (2013年浙江湖州3分)在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是【】A.3元B.5元C.6元D.10元7. (2013年浙江湖州3分)一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为【】A.12B.16C.23D.13是其发生的概率。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题04 图形
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析专题04 图形的变换一、选择题1. (2002年浙江舟山、嘉兴4分)圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是【】A.9πcm2B.18πcm2C.24πcm2D.36πcm2【答案】A。
【考点】圆台的计算。
2. (2003年浙江舟山、嘉兴4分)如果圆柱的轴截面是一个边长为4cm的正方形,那么圆柱的侧面积为【】A .16πcm2 B.18πcm2 C.20πcm2 D .24πcm2【答案】A。
【考点】圆柱的计算。
3. (2004年浙江舟山、嘉兴4分)已知圆锥底面半径为3,高为4,则圆锥侧面积为【】A.10πB.12πC.15πD.20π【答案】B。
【考点】圆锥和扇形的计算。
4. (2005年浙江舟山、嘉兴4分)圆锥的轴截面是【】A .等腰三角形 B.矩形 C .圆 D.弓形【答案】A。
【考点】圆锥的轴截面。
5. (2006年浙江舟山、嘉兴4分)已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为【】.A.15πcm2 B.20πcm2 C.12πcm2 D.30πcm2【答案】A。
【考点】圆锥和扇形的计算。
6. (2006年浙江舟山、嘉兴4分)假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法【】.A.7 B.8 C.9 D.10【答案】B。
【考点】探索规律题(图形的变化类),分类思想的应用。
7. (2010年浙江舟山、嘉兴4分)已知一个几何体的三视图如图所示,则该几何体是【】A.棱柱 B.圆柱 C.圆锥 D.球【答案】B。
【考点】由三视图判断几何体。
2013年浙江省舟山市数学中考卷
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个图形不是轴对称图形?()A. 正方形B. 等边三角形C. 半圆D.平行四边形2. 下列各数中,有理数是()A. √2B. √3C. √4D. √53. 已知x=3是方程x²+mx+6=0的一个根,则m的值为()A. 3B. 3C. 6D. 64. 下列函数中,是正比例函数的是()A. y=x²+1B. y=2x+1C. y=3xD. y=x²15. 下列说法正确的是()A. 平行线的性质是同位角相等B. 全等三角形的性质是两边和它们的夹角分别相等C. 勾股定理的逆定理:如果一个三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形D. 对角线互相平分的四边形是平行四边形二、判断题(每题1分,共5分)1. 0是绝对值最小的数。
()2. 任何两个实数都可以比较大小。
()3. 两个相似三角形的面积比等于相似比的平方。
()4. 任何数乘以0都得0。
()5. 两个平行线的同旁内角互补。
()三、填空题(每题1分,共5分)1. 已知|a|=3,则a=______。
2. 若a、b互为相反数,则a+b=______。
3. 已知a=2,b=3,则a²+b²=______。
4. 一元二次方程ax²+bx+c=0(a≠0)的根的判别式是______。
5. 一次函数y=kx+b的图象是一条______。
四、简答题(每题2分,共10分)1. 请写出平行线的性质。
2. 请写出全等三角形的判定条件。
3. 请解释勾股定理。
4. 请解释概率的基本性质。
5. 请写出三角函数的定义。
五、应用题(每题2分,共10分)1. 已知正方形的边长为2,求其对角线的长度。
2. 已知等边三角形的边长为3,求其面积。
3. 解方程:x²2x3=0。
4. 已知一次函数y=2x+1,求当x=3时,y的值。
5. 在一个等腰三角形中,底边长为8,高为6,求腰长。
2013九年级数学中考适应性测试题(舟山市陀区附答案)
2013九年级数学中考适应性测试题(舟山市陀区附答案)2013年普陀区初中九年级学业考试适应性测试数学试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题。
2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效,考试时不能使用计算器。
参考公式:二次函数图象的顶点坐标是。
温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.2的相反数是(▲)A.-2B.2C.-D.2.下列计算正确的是(▲)A.B.9=3C.3-1=-3D.2+3=53.据交通运输部统计,2013年春运期间,全国道路、水路、民航、铁路运送旅客总量超过了3400000000人次,该数用科学记数法可表示为(▲)A.B.C.D.4.如图是由个相同的正方体搭成的几何体,则其俯视图是(▲)5.使分式无意义的的值是(▲)A.B.C.D.6.如图,已知,若,,则等于(▲)A.B.C.D.7.市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表:小区绿化率(%)20253032小区个数2431则关于这10个小区的绿化率情况,下列说法错误的是(▲)A.中位数是25%B.众数是25%C.极差是13%D.平均数是26.2% 8.将一个半径为R,圆心角为90°的扇形围成一个圆锥的侧面(无重叠),设圆锥底面半径为r,则R与r的关系正确的是(▲)A.R=8rB.R=6rC.R=4rD.R=2r9.甲、乙两车分别从相距的两地同时出发,它们离A地的路程随时间变化的图象如图所示,则下列结论不正确的是(▲)A.甲车的平均速度为;B.乙车行驶小时到达地,稍作停留后返回地;C.经小时后,两车在途中相遇;D.乙车返回地的平均速度比去地的平均速度小。
2013舟山市高考数学适应性模拟押题试卷二(含答案理科)
2013舟山市高考数学适应性模拟押题试卷二(含答案理科)2013舟山市高考数学适应性模拟押题试卷二(含答案理科)本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上.参考公式:如果事件A,B互斥,那么柱体的体积公式如果事件A,B相互独立,那么其中S表示柱体的底面积,h表示柱体的高锥体的体积公式如果事件A在一次试验中发生的概率是p,那么n次独立重复试验中事件恰好发生k次的概率其中S表示锥体的底面积,h表示锥体的高球的表面积公式台体的体积公式球的体积公式其中分别表示台体的上底、下底面积,h表示台体的高其中R表示球的半径一、选择题:本题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.集合(▲)A.B.C.D.2.函数的最小正周期是(▲)A.B.C.D.3.是“对任意正数恒成立”的(▲)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.执行右边的程序框图,输出的值是(▲)A.B.C.D.5.某空间几何体的三视图及尺寸如图,则该几何体的体积是(▲)A.B.C.D.6.已知展开式中,第项的二项式系数与第项的二项式系数相等,则展开式共有(▲)A.项B.项C.项D.项7.上的一点(包括端点),则的取值范围是(▲)A.B.C.D.8.过双曲线的左焦点的切线,切点为,延长交双曲线右支于点,若则双曲线的离心率为(▲)A.B.C.D.9.已知函数的图象如图所示,则函数的图象可能是10.定义:若将数列,变换成数列,其中,且.则称为数列的“1次变换”;继续对数列进行这样的“1次变换”,得到数列,则称为数列的“2次变换”;依此类推,当得到的数列各项均为时变换结束.设数列,若数列的“次变换”得到的数列各项之和最小,则的最小值是(▲)A.B.C.D.绝密★考试结束前2013年舟山中学高三适应性考试试题数学(理科)非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本题共4小题,每小题7分,共28分。
浙江省舟山市2013年中考数学预测试卷(解析版)
浙江省舟山市2013年中考数学预测试卷一、选择题(共10小题,每小题3分,满分30分.)1.(3分)(2013•舟山模拟)﹣3的绝对值是()A.3B.﹣3 C.D.考点:绝对值.分析:根据一个负数的绝对值等于它的相反数得出.解答:解:|﹣3|=﹣(﹣3)=3.故选A.点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•舟山模拟)北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A.0.72×106平方米B.7.2×106平方米C.72×104平方米D.7.2×105平方米考点:科学记数法—表示较大的数..专题:应用题.分析:根据科学记数法的定义,写成a×10n的形式.a×10n中,a的整数部分只能取一位整数,1≤|a|<10,且n的数值比原数的位数少1,720 000的数位是6,则n的值为5.解答:解:720 000=7.2×105平方米.故选D.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.3.(3分)(2013•舟山模拟)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为a10÷a2=a10﹣2=a8,故本选项错误.故选B.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.4.(3分)(2013•舟山模拟)下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体考点:由三视图判断几何体..分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解答:解:A、球体的三视图都是圆,不符合题意;B、长方体的三视图都是矩形,不符合题意;C、圆锥体的主视图,左视图都是等腰三角形,俯视图是圆和中间一点,不符合题意;D、圆柱体的主视图,左视图都是长方形,俯视图是圆,符合题意.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.5.(3分)(2013•舟山模拟)已知反比例函数的图象经过点P(1,﹣2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限考点:反比例函数的性质..分析:先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.解答:解:设反比例函数的解析式为:y=,将(1,﹣2)代入上式,得k=﹣2<0;∴函数的图象位于第二、四象限.故选C.点评:本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6.(3分)(2013•舟山模拟)如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1:D.2:1考点:相似三角形的性质..分析:根据相似三角形面积的比等于相似比的平方即可得出.解答:解:∵两个相似三角形的相似比是1:2,∴(1:2)2=1:4.故选B.点评:本题是一道考查相似三角形性质的基本题目,比较简单.7.(3分)(2013•舟山模拟)下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.等腰直角三角形C.菱形D.等腰梯形考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念和各图的特点求解.解答:解:根据轴对称图形与中心对称图形的概念,知A、B、D只是轴对称图形;菱形是中心对称图形,也是轴对称图形.故选C.点评:掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,沿对称轴折叠后可两部分能够重合;中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.8.(3分)(2013•舟山模拟)如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()A.9,8 B.8,9 C.8,8.5 D.19,17考点:中位数;条形统计图;众数..专题:图表型.分析:解读统计图,获取信息,根据定义求解.解答:解:数据8出现了19次,最多,为众数;在第25位、26位的均是9,所以9为中位数.故选B.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.9.(3分)(2013•舟山模拟)甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()A.乙比甲晚出发1h B.甲比乙晚到B地2h C.甲的速度是4km/h D.乙的速度是8km/h考点:函数的图象..专题:行程问题.分析:根据图象上的特殊点的坐标和实际又因即可求出答案.解答:解:分析题意和图象可知:乙比甲晚出发1h;甲比乙晚到B地4﹣2=2 h;甲的速度是16÷4=4km/h;乙的速度是16÷1=16km/h.故选D.点评:本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(3分)(2013•舟山模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()A.(5,4)B.(4,5)C.(5,3)D.(3,5)考点:坐标与图形性质;勾股定理;垂径定理..专题:压轴题.分析:因为点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,所以OB=2,OC=8,BC=6,连接AD,则AD⊥OD,过点A作AE⊥OC于E,则ODAE是矩形,由垂径定理可知BE=EC=3,所以OE=AD=5,再连接AB,则AB=AD=5,利用勾股定理可求出AE=4,从而就求出了A的坐标.解答:解:连接AD,AB,AC,再过点A作AE⊥OC于E,则ODAE是矩形,∵点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,∴OB=2,OC=8,BC=6,∵⊙A与y轴相切于点D,∴AD⊥OD,∵由垂径定理可知:BE=EC=3,∴OE=AD=5,∴AB=AD=5,利用勾股定理知AE=4,∴A(5,4).故选A.点评:本题需综合利用垂径定理、勾股定理来解决问题.二、填空题:(共6小题,每小题4分,满分24分.)11.(4分)(2013•舟山模拟)已知∠α=50°,那么它的补角等于130 度.考点:余角和补角..专题:计算题.分析:根据补角定义直接解答.解答:解:∠α的补角等于:180°﹣50°=130度.故填130.点评:知道补角定义即可轻松解答.12.(4分)(2013•舟山模拟)9的平方根是±3.考点:平方根..分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.13.(4分)(2013•舟山模拟)分解因式:ax2﹣ay2= a(x+y)(x﹣y).考点:提公因式法与公式法的综合运用..分析:应先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).点评:本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.14.(4分)(2013•舟山模拟)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是甲球队.考点:方差;算术平均数..分析:根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.解答:解:∵S甲2<S乙2,∴甲队整齐.故填甲.点评:本题考查方差的意义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(4分)(2013•舟山模拟)如图,将一块含45°角的直角三角尺ABC在水平桌面上绕点B按顺时针方向旋转到A1BC1的位置,若AB=8cm,那么点A旋转到A1所经过的路线长为6πcm(结果保留π).考点:弧长的计算;旋转的性质..分析:由于点A旋转到A1所经过的路线长是以点B为圆心,AB为半径,旋转角度是180﹣45=135°,所以根据弧长公式即可求得经过的路线长.解答:解:∵点A旋转到A1所经过的路线长是以点B为圆心,AB为半径,旋转角度是180﹣45=135°,∴根据弧长公式可得:=6πcm.故填空答案:6π.点评:本题主要考查了弧长公式,准确理解题意也很重要.16.(2013•舟山模拟)如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac>0;②方程ax2+bx+c=0(4分)的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有②④(请写出所有正确结论的序号).考点:二次函数图象与系数的关系..专题:压轴题.分析:根据抛物线的开口向下判断出a<0,再根据与y轴的交点判断出c>0,然后判断出①错误;根据与x轴的交点坐标判断出②正确;取x=1的函数值判断出③错误;先求出抛物线对称轴为直线x=2,然后根据二次函数的增减性判断出④正确.解答:解:∵抛物线开口向下,∴a<0,∵与y轴的正半轴相交,∴c>0,∴ac<0,故①错误;∵抛物线与x轴的交点坐标为(﹣1,0),(5,0),∴方程ax2+bx+c=0的根是x1=﹣1,x2=5,故②正确;由图可知,当x=1时,函数值y>0,即a+b+c>0,故③错误;抛物线对称轴为直线x==2;当x<2时,y随着x的增大而增大,故④正确;综上所述,正确的结论是②④.故答案为:②④.点评:本题考查了的二次函数图象与系数的关系,系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点确定,还考查了抛物线的增减性.三、解答题(共7小题,满分66分.)17.(12分)(2013•舟山模拟)(1)先化简,再求值:(a﹣2)2+a(a+4),其中;(2)解方程:.考点:解分式方程;整式的混合运算—化简求值..专题:计算题.分析:(1)本题应对方程去括号,合并同类项,将整式化为最简式,然后把a的值代入即可;(2)本题应对方程去分母,合并同类项,将x的系数化为1即可.解答:解:(1)原式=a2﹣4a+4+a2+4a (4分)=2a2+4,当时,原式=2()2+4 (1分)=10;(2)x﹣1=2(x﹣3)(3分)x﹣1=2x﹣6∴x=5经检验:x=5是原方程的根.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点,解分式方程一定要验根.18.(8分)(2013•舟山模拟)已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.考点:平行四边形的判定与性质;三角形中位线定理..专题:计算题;证明题.分析:1、在▱ABCD中,AB=CD,AB∥CD,又E、F分别是边AB、CD的中点,所以BE=CF,因此四边形EBFD是平行四边形2、由AD=AE=2,∠A=60°知△ADE是等边三角形,又E、F分别是边AB、CD的中点,四边形EBFD是平行四边形,所以EB=BF=FD=DE=2,四边形EBFD是平行四边形的周长是2+2+2+2=8解答:解:(1)在▱ABCD中,AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴.∴BE=DF.∴四边形EBFD是平行四边形(2)∵AD=AE,∠A=60°,∴△ADE是等边三角形.∴DE=AD=2,又∵BE=AE=2,由(1)知四边形EBFD是平行四边形,∴四边形EBFD的周长=2(BE+DE)=8.点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.19.(8分)(2013•舟山模拟)甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?考点:游戏公平性;列表法与树状图法..分析:游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:(1)解法一:树状图(3分)∴P(两个球上的数字之和为6)=.(2分)解法二:列表2 3 41 (1,2)(1,3)(1,4)2 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)∴P(两个球上的数字之和为6)=.(2)不公平.(1分)∵P(小亮胜)=,P(小刚胜)=.(2分)∴P(小亮胜)≠P(小刚胜).∴这个游戏不公平.(2分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2013•舟山模拟)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D 作DE⊥AC于点E.(1)请说明DE是⊙O的切线;(2)若∠B=30°,AB=8,求DE的长.考点:切线的判定;解直角三角形..专题:综合题.分析:(1)要想证DE是⊙O的切线,只要连接OD,求证∠ODE=90°即可.(2)利用直角三角形和等边三角形的特点来求DE的长.解答:解:(1)连接OD,则OD=OB,∴∠B=ODB.(1分)∵AB=AC,∴∠B=∠C.(1分)∴∠ODB=∠C.∴OD∥AC.(2分)∴∠ODE=∠DEC=90°.(1分)∴DE是⊙O的切线.(1分)(2)连接AD,∵AB是⊙O的直径,∴∠ADB=90°.(1分)∴.(2分)又∵AB=AC,∴CD=BD=,∠C=∠B=30°.(2分)∴.(1分)点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.21.(8分)(2013•舟山模拟))某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.考点:一元一次不等式组的应用;二元一次方程组的应用..专题:方案型;图表型.分析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.解答:解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.(1分)解得:.(2分)答:甲种商品购进100件,乙种商品购进60件.(1分)(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.(2分)解不等式组,得65<a<68.(2分)∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.(1分)方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.(1分)点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.22.(10分)(2013•舟山模拟)已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H 分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;(2)如图2,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示);(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.考点:矩形的性质;全等三角形的判定与性质;菱形的性质;正方形的性质..专题:综合题.分析:(1)过点G作GM⊥BC于M,可以证明△MFG≌△BEF,就可以求出GM的长,进而就可以求出FC,求出面积.(2)证明△AHE≌△MFG.得到GM的长,根据三角形的面积公式就可以求出面积.(3)△GFC的面积不能等于2,根据面积就可以求出a的值,在△BEF中根据勾股定理就可以得到EF,进而在直角△AHE中求出AH.解答:解:(1)如图1,过点G作GM⊥BC于M.在正方形EFGH中,∠HEF=90°,EH=EF,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,又∵∠A=∠B=90°,∴△AHE≌△BEF,同理可证:△MFG≌△BEF,∴GM=BF=AE=2,∴FC=BC﹣BF=10,则S△GFC=10,(2)如图2,过点G作GM⊥BC于M.连接HF.∵AD∥BC,∴∠AHF=∠MFH,∵EH∥FG,∴∠EHF=∠GFH,∴∠AHE=∠MFG.又∵∠A=∠GMF=90°,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴(12﹣a)×2=(12﹣a)(3)△GFC的面积不能等于2.∵若S△GFC=2,则12﹣a=2,∴a=10.此时,在△BEF中,,在△AHE中,,∴AH>AD,即点H已经不在边AD上.故不可能有S△GFC=2;解法二:△GFC的面积不能等于2,∵点H在AD上,∴菱形边长EH的最大值为,∴BF的最大值为,又因为函数S△GFC=12﹣a的值随着a的增大而减小,所以S△GFC的最小值为.又∵,∴△GFC的面积不能等于2.点评:解决本题的关键是证明三角形全等.23.(12分)(2013•舟山模拟)已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.(1)求抛物线的函数表达式;(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题..专题:压轴题;动点型;开放型.分析:(1)已知了A,B的坐标,可用待定系数法求出函数的解析式.(2)①QP其实就是一次函数与二次函数的差,二次函数的解析式在(1)中已经求出,而一次函数可根据B,C的坐标,用待定系数法求出.那么让一次函数的解析式减去二次函数的解析式,得出的新的函数就是关于PQ,x的函数关系式,那么可根据函数的性质求出PQ的最大值以及相对应的x的取值.(3)分三种情况进行讨论:当∠QOA=90°时,Q与C重合,显然不合题意.因此这种情况不成立;当∠OAQ=90°时,P与A重合,因此P的坐标就是A的坐标;当∠OQA=90°时,如果设QP与x轴的交点为D,那么根据射影定理可得出DQ2=OD•DA.由此可得出关于x的方程即可求出x的值,然后将x代入二次函数式中即可得出P的坐标.解答:解:(1)∵抛物线过A(3,0),B(6,0),∴,解得:,∴所求抛物线的函数表达式是y=x2﹣x+2.(2)①∵当x=0时,y=2,∴点C的坐标为(0,2).设直线BC的函数表达式是y=kx+b.则有,解得:.∴直线BC的函数表达式是y=﹣x+2.∵0<x<6,点P、Q的横坐标相同,∴P Q=y Q﹣y P=(﹣x+2)﹣(x2﹣x+2)=﹣x2+x=﹣(x﹣3)2+1∴当x=3时,线段PQ的长度取得最大值.最大值是1.②解:当∠OAQ=90°时,点P与点A重合,∴P(3,0)当∠QOA=90°时,点P与点C重合,∴x=0(不合题意)当∠OQA=90°时,设PQ与x轴交于点D.∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD.又∵∠ODQ=∠QDA=90°,∴△ODQ∽△QDA.∴,即DQ2=OD•DA.∴(﹣x+2)2=x(3﹣x),10x2﹣39x+36=0,∴x1=,x2=,∴y1=×()2﹣+2=;y2=×()2﹣+2=;∴P(,)或P(,).∴所求的点P的坐标是P(3,0)或P(,)或P(,).点评:本题主要考查了二次函数的综合应用,用数形结合的思想来求解是解题的基本思路.。
浙江省舟山市中考数学试卷
浙江省舟山市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选多选、错选,均不得分)1.(3分)(2014年浙江舟山)﹣3的绝对值是()A.﹣3 B. 3 C. D.考点:绝对值.专题:计算题.分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣3|=3.故﹣3的绝对值是3.故选B.点评:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014年浙江舟山)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3.(3分)(2014年浙江舟山)2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A. 3.844×108B.3.844×107C.3.844×109D.38.44×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 400 000有9位,所以可以确定n=9﹣1=8.解答:解:384 400 000=3.844×108.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014年浙江舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况考点:扇形统计图.分析:利用扇形统计图的特点结合各选项利用排除法确定答案即可.解答:解:A、能够看出各项消费占总消费额的百分比,故选项正确;B、不能确定各项的消费金额,故选项错误;C、不能看出消费的总金额,故选项错误;D、不能看出增减情况,故选项错误.故选A.点评:本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.5.(3分)(2014年浙江舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B. 4 C. 6 D.8考点:垂径定理;勾股定理.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8,故选D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.6.(3分)(2014年浙江舟山)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6 D.(2a2)3=6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式先计算乘方运算,再计算除法运算即可得到结果;C、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断;D、原式利用幂的乘方及积的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,故选项错误;B、原式=a2÷a=a,故选项正确;C、原式=﹣a3•a2=﹣a5,故选项错误;D、原式=8a6,故选项错误.故选B.点评:此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.(3分)(2014年浙江舟山)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC 的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D. 22cm考点:平移的性质.分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.解答:解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=16cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=20cm.故选C.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.8.(3分)(2014年浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A. 1.5 B. 2 C. 2.5 D. 3考点:圆锥的计算.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.(3分)(2014年浙江舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG 延长线恰好经过点D,则CD的长为()A.2cm B.2cm C.4cm D. 4cm考点:翻折变换(折叠问题).分析:先证明EG是△DCH的中位线,继而得出DG=HG,然后证明△ADG≌△AHG,得出∠BAH=∠HAG=∠DAG=30°,在Rt△ABH中,可求出AB,也即是CD的长.解答:解:∵点E,F分别是CD和AB的中点,∴EF⊥AB,∴EF∥BC,∴EG是△DCH的中位线,∴DG=HG,由折叠的性质可得:∠AGH=∠ABH=90°,∴∠AGH=∠AGD=90°,在△AGH和△AGD中,,∴△ADG≌△AHG(SAS),∴AD=AH,∠DAG=∠HAG,由折叠的性质可得:∠BAH=∠HAG,∴∠BAH=∠HAG=∠DAG=∠BAD=30°,在Rt△ABH中,AH=AD=4,∠BAH=30°,∴HB=2,AB=2,∴CD=AB=2.故选B.点评:本题考查了翻折变换、三角形的中位线定理,解答本题的关键是判断出∠BAH=∠HAG=∠DAG=30°,注意熟练掌握翻折变换的性质.10.(3分)(2014年浙江舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或 D. 2或﹣或考点:二次函数的最值.专题:分类讨论.分析:根据对称轴的位置,分三种情况讨论求解即可.解答:解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时,二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.点评:本题考查了二次函数的最值问题,难点在于分情况讨论.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2014年浙江舟山)方程x2﹣3x=0的根为0或3.考点:解一元二次方程-因式分解法.分析:根据所给方程的系数特点,可以对左边的多项式提取公因式,进行因式分解,然后解得原方程的解.解答:解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.点评:本题考查了解一元二次方程的方法,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.(4分)(2014年浙江舟山)如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.13.(4分)(2014年浙江舟山)有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.考点:列表法与树状图法.分析:根据题意画出树状图,得出所有的可能,进而求出两人同坐3号车的概率.解答:解:由题意可画出树状图:,所有的可能有9种,两人同坐3号车的概率为:.故答案为:.点评:此题主要考查了树状图法求概率,列举出所有可能是解题关键.14.(4分)(2014年浙江舟山)如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为6.考点:旋转的性质;相似三角形的判定与性质.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.(4分)(2014年浙江舟山)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).考点:两条直线相交或平行问题.分析:依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.解答:解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为(1,4),(3,1).点评:本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.16.(4分)(2014年浙江舟山)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.考点:圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质.专题:推理填空题.分析:(1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD 的最小值就可求出EF的最小值.(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积.解答:解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.∴CD=CF.∴CE=CD=CF.∴结论“CE=CF”正确.②当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4.∴结论“线段EF的最小值为2”错误.(3)当AD=2时,连接OC,如图3所示.∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=4,AD=2,∴DO=2.∴AD=DO.∴∠ACD=∠OCD=30°.∵点E与点D关于AC对称,∴∠ECA=∠DCA.∴∠ECA=30°.∴∠ECO=90°.∴OC⊥EF.∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.∴结论“EF与半圆相切”正确.④当点F恰好落在上时,连接FB、AF,如图4所示.∵点E与点D关于AC对称,∴ED⊥AC.∴∠AGD=90°.∴∠AGD=∠ACB.∴ED∥BC.∴△FHC∽△FDE.∴=.∵FC=EF,∴FH=FD.∴FH=DH.∵DE∥BC,∴∠FHC=∠FDE=90°.∴BF=BD.∴∠FBH=∠DBH=30°.∴∠FBD=60°.∵AB是半圆的直径,∴∠AFB=90°.∴∠FAB=30°.∴FB=AB=4.∴DB=4.∴AD=AB﹣DB=4.∴结论“AD=2”错误.⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×4=16.∴EF扫过的面积为16.∴结论“EF扫过的面积为16”正确.故答案为:①、③、⑤.点评:本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度.三、解答题(本题有8小题,第17~19题每小题6分,第20,21题每小题6分,第22,23题每小题6分,第24题12分,共66分)17.(6分)(2014年浙江舟山)(1)计算:+()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)考点:实数的运算;整式的混合运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算即可得到结果.解答:解:(1)原式=2+4﹣4×=2+4﹣2=4;(2)原式=x2+4x+4﹣x2+3x=7x+4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014年浙江舟山)解方程:=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x﹣1)﹣4=x2﹣1,去括号得:x2﹣x﹣4=x2﹣1,解得:x=﹣3,经检验x=﹣3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.19.(6分)(2014年浙江舟山)某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):根据以上信息解答下列问题:学生孝敬父母情况统计表:选项频数频率A m 0.15B 60 pC n 0.4D 48 0.2(1)这次被调查的学生有多少人?(2)求表中m,n,p的值,并补全条形统计图.(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)用D选项的频数除以D选项的频率即可求出被调查的学生人数;(2)用被调查的学生人数乘以A选项的和C频率求出m和n,用B选项的频数除以被调查的学生人数求出p,再画图即可;(3)用该校的总人数乘以该校全体学生中选择B选项频率即可.解答:解:(1)这次被调查的学生有48÷0.2=240(人);(2)m=240×0.15=36,n=240×0.4=96,p==0.25,画图如下:(3)若该校有1600名学生,则该校全体学生中选择B选项的有1600×0.25=400(人).点评:此题考查了条形统计图和频数、频率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.(8分)(2014年浙江舟山)已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.解答:(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFED为菱形,理由:∵△DOE≌△BOF,∴BF=DE,又∵BF∥DE,∴四边形EBFD是平行四边形,∵BO=DO,∠EOD=90°,∴EB=DE,∴四边形BFED为菱形.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识,得出BE=DE是解题关键.21.(8分)(2014年浙江舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A 型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.22.(10分)(2014年浙江舟山)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.考点:二次函数的应用;反比例函数的应用.分析:(1)①利用y=﹣200x2+400x=﹣200(x﹣1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y的值,进而得出能否驾车去上班.解答:解:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.点评:此题主要考查了反比例函数与二次函数综合应用,根据图象得出正确信息是解题关键.23.(10分)(2014年浙江舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.考点:四边形综合题.分析:(1)利用“等对角四边形”这个概念来计算.(2)①利用等边对等角和等角对等边来证明;②举例画图;(3)(Ⅰ)当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,利用勾股定理求解;(Ⅱ)当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,求出线段利用勾股定理求解.解答:解:(1)如图1∵等对角四边形ABCD,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣70°﹣80°﹣80°=130°;(2)①如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确,反例:如图3,∠A=∠C=90°,AB=AD,但CB≠CD,(3)(Ⅰ)如图4,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2(Ⅱ)如图5,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,∵DE⊥AB,∠DAB=60°AD=4,∴AE=2,DE=2,∴BE=AB﹣AE=5﹣2=3,∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2,∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.24.(12分)(2014年浙江舟山)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.考点:二次函数综合题.专题:综合题.分析:(1)首先可得点A的坐标为(m,m2),再由m的值,确定点B的坐标,继而可得点E的坐标及BE、OE的长度,易得△ABE∽△CBO,利用对应边成比例求出CO,根据轴对称的性质得出DO,继而可求解S的值;(2)分两种情况讨论,(I)当0<m<2时,将BE•DO转化为AE•BO,求解;(II)当m >2时,由(I)的解法,可得S关于m的函数解析式;(3)①首先可确定点A的坐标,根据===k,可得S△ADF=k•S△BDF•S△AEF=k•S△BEF,从而可得===k,代入即可得出k的值;②可得===k,因为点A的坐标为(m,m2),S=m,代入可得k与m的关系.解答:解:(1)∵点A在二次函数y=x2的图象上,AE⊥y轴于点E且AE=m,∴点A的坐标为(m,m2),当m=时,点A的坐标为(,1),∵点B的坐标为(0,2),∴BE=OE=1.∵AE⊥y轴,∴AE∥x轴,∴△ABE∽△CBO,∴==,∴CO=2,∵点D和点C关于y轴对称,∴DO=CO=2,∴S=BE•DO=×1×2=;(2)(I)当0<m<2时(如图1),∵点D和点C关于y轴对称,∴△BOD≌△BOC,∵△BEA∽△BOC,∴△BEA∽△BOD,∴=,即BE•DO=AE•BO=2m.∴S=BE•DO=×2m=m;(II)当m>2时(如图2),同(I)解法得:S=BE•DO=AE•OB=m,由(I)(II)得,S关于m的函数解析式为S=m(m>0且m≠2).(3)①如图3,连接AD,∵△BED的面积为,∴S=m=,∴点A的坐标为(,),∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∴k===;②k与m之间的数量关系为k=m2,如图4,连接AD,∵===k,∴S△ADF=k•S△BDF•S△AEF=k•S△BEF,∴===k,∵点A的坐标为(m,m2),S=m,∴k===m2(m>2).点评:本题考查了二次函数的综合,涉及了三角形的面积、比例的性质及相似三角形的判定与性质、全等三角形的性质,解答本题的关键是熟练数形结合思想及转化思想的运用,难度较大.。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题07 统计
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析 专题07 统计与概率一、选择题1. (2002年某某某某、某某4分)图甲、乙分别是我国1997~2000年全国初中生在校人数和全国初中学校数统计图.由图可知,从1997年至2000年,我国初中生在校人数【 】A.逐年增加,学校数也逐增加B.逐年增加,学校数却逐年减少C.逐年减少,学校数也逐年减少D.逐年减少,学校数却逐年增加 【答案】B 。
【考点】条形统计图。
2. (2004年某某某某、某某4分)某商店举办有奖销售活动,购物满100元者发对奖券一X 。
在10000X 奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物刚好满100元,那么他中一等奖的 概率是【 】A.1001 B.10001 C.100001 D .10000111【答案】B 。
【考点】概率。
3. (2005年某某某某、某某4分)“长三角”16个城市中,某某省有7个城市,图1和图2分别表示2004年这7个城市GDP(国民生产总值)的总量和增长速度,则下列对某某经济的评价,错误的是【】【答案】B。
【考点】条形统计图。
4. (2007年某某某某、某某4分)有一组数据如下:3,6,5,2,3,4,3,6.那么,这组数据的中位数是【】A.3或4 B.4 C【答案】D。
【考点】中位数。
5. (2007年某某某某、某某4分)将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是【 】 A .1216 B .172 C .136 D .112【答案】C 。
【考点】概率,勾股定理的逆定理。
6. (2008年某某某某、某某4分)已知甲、乙两组数据的平均数分别是x 80=甲,x 90=乙,方差分别是2S 10=甲,2S 5=乙,比较这两组数据,下列说法正确的是【 】 A .甲组数据较好 B .乙组数据较好C .甲组数据的极差较大D .乙组数据的波动较小 【答案】D 。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题10 四边
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析专题10 四边形一、选择题1. (2005年某某某某、某某4分)挪威数学家阿贝尔,年轻时就利用阶梯形,发现了一个重要的恒等式——阿贝尔公式:右图是一个简单的阶梯形,可用两种方法,每一种把图形分割成为两个矩形。
利用它们之间的面积关系,可以得到:a1b1+a2b2=【】A. a1(b1-b2)+(a1+a2)b12(b2-b1)+(a1+a2)b2C. a1(b1-b2)+(a1+a2)b22(b1-b2)+(a1+a2)b1【答案】C。
【考点】矩形的面积。
2. (2007年某某某某、某某4分)下图背景中的点均为大小相同的小正方形的顶点,其中画有两个四边形,下列叙述中正确的是【】A.这两个四边形面积和周长都不相同B.这两个四边形面积和周长都相同C.这两个四边形有相同的面积,但I的周长大于Ⅱ的周长D.这两个四边形有相同的面积,但I的周长小于Ⅱ的周长【答案】D。
【考点】网格问题,勾股定理。
3. (2008年某某某某、某某4分)如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为【】A.43B.34C.45D.35【答案】D。
【考点】正方形的性质,两圆外切的性质,勾股定理,锐角三角函数定义。
4. (2011年某某某某、某某3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD 面积是11cm2,则①②③④四个平行四边形周长的总和为【】(A)48cm (B)36cm(C)24cm (D)18cm【答案】A。
【考点】菱形的性质,平行四边形的性质。
二、填空题1.(2008年某某某某、某某5分)如图,菱形ABCD中,已知∠ABD=20°,则∠C的大小是▲ 度.【答案】140。
2013浙江省舟山市中考数学试题及答案(Word解析版)-推荐下载
正数;当原数的绝对值<1 时,n 是负数.
解答: 解:2771 万=27710000=2.771×107.
故选 B.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整
数,表示时关键要正确确定 a 的值以及 n 的值.
4.(3 分)(2013•嘉兴)在某次体育测试中,九(1)班 6 位同学的立定跳远成绩(单位:m)分别为:
万用科学记数法表示为( )
A 2771×107
.
考点: 科学记数法—表示较大的数.
B.2.771×107
分析: 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变
C.
C.
C.2.771×104
成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是
A
.
考点: 简单组合体的三视图.
分析: 找到从上面看所得到的图形即可.
B.
解答: 解:从上面看可得到两个相邻的正方形,故选 A.
点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
3.(3 分)(2013•舟山)据舟山市旅游局统计,2012 年舟山市接待境内外游客约 2771 万人次.数据 2771
B、2x2﹣x2=x2,原式计算错误,故本选项正确;
C、x2•x3=x5,原式计算错误,故本选项错误; D、x6÷x3=x3,原式计算正确,故本选项正确; 故选 D. 点评: 本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法 则. 6.(3 分)(2013•嘉兴)如图,某厂生产横截面直径为 7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头 侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°,则“蘑菇罐头”字样的长度为( )
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题03 方程
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析 专题03 方程(组)和不等式(组)一、选择题1. (2002年某某某某、某某4分)不等式3x 1->0的解是【 】A.x <31-B.x <31C.x >31-D.x >31【答案】D 。
【考点】解一元一次不等式。
【分析】13x 1x 3>>⇒。
故选D 。
2. (2002年某某某某、某某4分)二元二次方程组22x y 5x y 1⎧+=⎨-=⎩的一个解是【 】A.x 1y 2=-⎧⎨=-⎩B. x 1y 2=-⎧⎨=⎩C. x 1y 2=⎧⎨=-⎩D. x 1y 2=⎧⎨=⎩【答案】A 。
【考点】方程组的解。
3. (2003年某某某某、某某4分)若x 1,x 2是一元二次方程3x 2+x―1=0的两个根,则1211x x +的值是【 】A .2 B.1 C .-1 D .3 【答案】B 。
【考点】一元二次方程根与系数的关系,代数式求值,整体思想的应用。
∴1212121x x 113===11x x x x 3-++⋅-。
故选B 。
4. (2003年某某某某、某某4分)如图,用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖地长和宽分别是【】A .48cm,12cm B.48cm,16cm C.44cm,16cm D. 45cm,15cm【答案】D。
5. (2004年某某某某、某某4分)若方程x2-4x+m=0有两个相等的实数根,则m的值是【】A.4B.-4C. 14D.14【答案】A。
【考点】一元二次方程根的判别式。
6. (2005年某某某某、某某4分)已知关于x的一元二次方程x2-2x+a=0有实数根,则实数a的取值X围是【】A .a≤1 B.a<1 C. a≤-1 D. a≥1【答案】A。
【考点】一元二次方程根的判别别式。
7. (2005年某某某某、某某4分)方程组x y 7xy 12+=⎧⎨=⎩的一个解是【 】A .x 2y 5=⎧⎨=⎩B .x 6y 2=⎧⎨=⎩ C.x 4y 3=⎧⎨=⎩ D.x 3y 4=-⎧⎨=-⎩8. (2005年某某某某、某某4分)“某市位处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××。
2013年浙江省中考数学压轴题解析汇编
【2013·浙江宁波·26题】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD。
过P、D、B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF。
(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A,B两点)上时,①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2:1?(0(2(3【2013·浙江绍兴·24题】抛物线y=(x-3)(x+1)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,点D为顶点。
(1)求点B及点D的坐标;(2)连接BD,CD,抛物线的对称轴与x轴交于点E。
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标;②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标。
设CN=m,则MN=2m,HN=m,HM=3m【2013·浙江温州·24题】如图,在平面直角坐标系轴,直线AB 与x 轴、y 轴分别交于点A (6,0)、B (0,8),点C 的坐标为(0,m ),过点C 作CE ⊥AB 于点E ,点D 为x 轴上一动点,连接CD 、DE ,以CD 、DE 为边作平行四边形CDEF 。
(1)当0<m <8时,求CE 的长(用含m 的代数式表示);(2)当m=3时,是否存在点D ,使平行四边形CDEF 的顶点F 恰好落在y 轴上?若存在,求出点D 的坐标;若不存在,请说明理由;(3)点D 在整个运动过程中,若存在唯一的位置,使得平行四边形CDEF 为矩形,请求出所有满足条件的m(2(3与x 图a 过点P 作PQ ⊥y 轴于Q ,易证得△PQC ∽△BOA∴CQ PC OA AB = ∴CQ=950(8-m) ∴OQ=OC+CQ=m+950(8-m)。
【2013版中考12年】浙江省嘉兴市、舟山市2002-2013年中考数学试题分类解析 专题05 数量
【2013版中考12年】某某省某某市、某某市2002-2013年中考数学试题分类解析专题05 数量和位置变化一、选择题的自变量x的取值X围是【】1. (2003年某某某某、某某4分)函数y=x2A .x≤2 B.x<2 C.x≥2 D .x>2【答案】C。
【考点】函数自变量的取值X围,二次根式有意义的条件。
2. (2004年某某某某、某某4分)为解决药价虚高给老百姓带来的求医难的问题,国家决定对某药品价格分两次降价。
若设平均每次降价的百分率为x,该药品的原价是m元,降价后的价格是y 元,则y与x之间的函数关系式是【】A.y=2m(1-x)B.y=2m(1+x)C.y=m(1-x)2D.y=m(1+x)2【答案】C。
【考点】由实际问题列函数关系式(增长率问题)。
3. (2004年某某某某、某某4分)如图,等腰直角三角形ABC(∠C=Rt∠)的直角边长与正方形MNPQ的边长均为4cm,CA与MN在直线l上,开始时A点与M点重合;让△ABC向右平移;直到C 点与N点重合时为止。
设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致是【】A. B. C. D.【答案】B。
【考点】平移问题的函数图象,正方形和等腰直角三角形的性质。
4. (2007年某某某某、某某4分)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为【】A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)【答案】C。
【考点】平面直角坐标系中各象限点的特征。
5. (2008年某某某某、某某4分)一个函数的图象如图,给出以下结论:①当x 0=时,函数值最大;②当0x 2<<时,函数y 随x 的增大而减小;③存在00x 1<<,当0x x =时,函数值为0.其中正确的结论是【 】A .①②B .①③C .②③D .①②③【答案】C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省舟山市2013年中考数学预测试卷
一、选择题(共10小题,每小题3分,满分30分.)
2.(3分)(2013•舟山模拟)北京故宫的占地面积达到720 000平方米,这个数据用科学记
4.(3分)(2013•舟山模拟)下列四个几何体中,已知某个几何体的主视图、左视图、俯视
5.(3分)(2013•舟山模拟)已知反比例函数的图象经过点P(1,﹣2),则这个函数的图
,
:
8.(3分)(2013•舟山模拟)如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为()
9.(3分)(2013•舟山模拟)甲、乙两人沿相同的路线由A到B匀速行进,A、B两地间的路程为16km,他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示,则下列判断错误的是()
10.(3分)(2013•舟山模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()
二、填空题:(共6小题,每小题4分,满分24分.)
11.(4分)(2013•舟山模拟)已知∠α=50°,那么它的补角等于130度.
12.(4分)(2013•舟山模拟)9的平方根是±3.
13.(4分)(2013•舟山模拟)分解因式:ax2﹣ay2=a(x+y)(x﹣y).
14.(4分)(2013•舟山模拟)甲、乙两支足球队,每支球队队员身高数据的平均数都是1.70米,方差分别为S甲2=0.29,S乙2=0.35,其身高较整齐的是甲球队.
15.(4分)(2013•舟山模拟)如图,将一块含45°角的直角三角尺ABC在水平桌面上绕点B按顺时针方向旋转到A1BC1的位置,若AB=8cm,那么点A旋转到A1所经过的路线长为6πcm(结果保留π).
=6
16.(4分)(2013•舟山模拟)如图为二次函数y=ax2+bx+c的图象,在下列结论中:①ac >0;②方程ax2+bx+c=0的根是x1=﹣1,x2=5;③a+b+c<0;④当x<2时,y随着x的增大而增大.正确的结论有②④(请写出所有正确结论的序号).
=2
三、解答题(共7小题,满分66分.)
17.(12分)(2013•舟山模拟)(1)先化简,再求值:(a﹣2)2+a(a+4),其中;(2)解方程:.
(
18.(8分)(2013•舟山模拟)已知:如图,▱ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;
(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.
.
19.(8分)(2013•舟山模拟)甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.
(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?
=
=
=.
20.(8分)(2013•舟山模拟)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.
(1)请说明DE是⊙O的切线;
(2)若∠B=30°,AB=8,求DE的长.
CD=BD=
.
21.(8分)(2013•舟山模拟))某商店需要购进甲、乙两种商品共160件,其进价和售价如
1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
.
.
根据题意得
22.(10分)(2013•舟山模拟)已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图2,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示);
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
中,
,
的最大值为
.
23.(12分)(2013•舟山模拟)已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使△OAQ为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
,
x
,
.
x+2
(﹣x
x x
(
x+2
,,
×)﹣;
×)+2=;
,)或,)
,)或,。