2017年中考数学专题复习新情景问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新情景问题
【专题点拨】
新情境应用问题有以下特点:
(1)问题的背景材料新而不陌生,提出的问题新而不怪;(2)注重考查阅读理解能力,许多这类的试题所涉及的数学知识不多也不难,但能读、读懂题目是问题解答的关键;(3)注重考查问题的转化能力.解答这类应用性问题的难点是能否将实际问题抽象转化为数学问题,在问题转化中的关键是对题目进行认真的阅读,冷静的思考,针对性的分析.
【解题策略】
从阅读情景入手→理解情景内容和要求→针对问题进行转化→将实际问题转化为数学问题→借助数学知识解答
【典例解析】
类型一:几何型新情景问题
例题1:(2016·江西·10分)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.【探究证明】
(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
(2)如图2,求证:∠OAB=∠OAE′.
【归纳猜想】
(3)图1、图2中的“叠弦角”的度数分别为15°,24°;
(4)图n中,“叠弦三角形”是等边三角形(填“是”或“不是”)
(5)图n中,“叠弦角”的度数为(用含n的式子表示)
【解析】几何变换综合题.(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;
(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;
(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;
(5)用(3)的方法求出正n边形的,“叠弦角”的度数.
【解答】解:(1)如图1,
∵四ABCD是正方形,
由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,
∴∠DAP=∠D'AO,
∴△APD≌△AOD'(ASA)
∴AP=AO,
∵∠OAP=60°,
∴△AOP是等边三角形,
(2)如图2,