(最新整理)因式分解法(十字相乘法).ppt
合集下载
十字相乘法因式分解课件
步骤二:寻找两个数,它们的乘积等于常数项
总结词
确定两个数的乘积与常数项相等
详细描述
在找到两个数的和与一次项的系数相等后,我们需要找到这两个数的乘积等于常数项的数。例如,在因式分解 “x^2 + 5x + 6”,我们需要找到两个数,它们的乘积为6。
步骤三:验证结果
总结词
验证分解结果的正确性
详细描述
十字相乘法因式分解
目录
CONTENTS
• 引言 • 十字相乘法的基本原理 • 十字相乘法的步骤 • 十字相乘法的应用 • 练习与挑战
01 引言
什么是十字相乘法
十字相乘法是一种数学方法,用于将 多项式因式分解为两个一次因式的乘 积。
该方法通过将多项式的常数项和一次 项系数分别分解为两个数的乘积,然 后交叉相乘得到一次项系数,从而找 到因式分解的两个一次因式。
代数式的化简
代数式化简的定义
将一个代数式通过变形、合并同 类项等方式简化。
十字相乘法的应用
在代数式化简过程中,有时需要通 过因式分解来简化代数式,而十字 相乘法是因式分解的一种常用方法 。
代数式化简的步骤
首先将代数式整理为易于因式分解 的形式,然后使用十字相乘法进行 因式分解,最后将因式分解后的代 数式进行简化。
在这个例子中,我们通过观察二次多项式的系数,找到两个数6和-1,它们的和 等于二次项的系数5,并且它们的乘积等于常数项-6,从而实现了因式分解。
03 十字相乘法的步骤
步骤一
总结词
确定两个数的和与一次项的系数相等
详细描述
在因式分解过程中,首先需要找到两个数,它们的和应等于一次项的系数。例 如,在因式分解“x^2 + 5x + 6”,我们需要找到两个数,它们的和为5。
因式分解——十字相乘法 —初中数学课件PPT
如果一个多项式适当分组,使分组 后各组之间有公因式或可应用公式,那 么这个多项式就可以用分组的方法分解 因式。
练一 练
mx+my-nx-ny ① ② ③④
①②,③④两组,得(mx+my)-(nx+ny)
解1:原式= (mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)
x2+px+q= x2+(a+b)x+ab= (x+a)(x+b)
x
a
x
ax +
b
bx = (a+b)x
步骤: ①竖分二次项与常数项; ②交叉相乘,和相加; ③检验确定,横写因式.
顺口溜: 竖分常数交叉验, 横写因式不能乱.
将下列各式因式分解: 1.x2+8x+12= (x+2)(x+6) 2.x2-11x-12= (x-12)(x+1) 3.x2-7x+12= (x-3)(x-4) 4.x2-4x-12= (x-6)(x+2) 5.x2+13x+12= (x+1)(x+12) 6.x2-x-12= (x-4)(x+3)
(4)(x-1)(x+2)(x-3)(x+4)+24 解:(x-1)(x+2)(x-3)(x+4)+24
= 9a4-(4a2-4a+1)
= (x2+x-2)(x2+x-12)+24
= 9a4-(2a-1) 2 = (3a2+2a-1)(3a2-2a+1)
= (x2+x) 2-14(x2+x)+48 = (x2+x-2+px+q进行因式分解, 应重点掌握以下三个问题:
练一 练
mx+my-nx-ny ① ② ③④
①②,③④两组,得(mx+my)-(nx+ny)
解1:原式= (mx+my)-(nx+ny) =m(x+y)-n(x+y) =(x+y)(m-n)
x2+px+q= x2+(a+b)x+ab= (x+a)(x+b)
x
a
x
ax +
b
bx = (a+b)x
步骤: ①竖分二次项与常数项; ②交叉相乘,和相加; ③检验确定,横写因式.
顺口溜: 竖分常数交叉验, 横写因式不能乱.
将下列各式因式分解: 1.x2+8x+12= (x+2)(x+6) 2.x2-11x-12= (x-12)(x+1) 3.x2-7x+12= (x-3)(x-4) 4.x2-4x-12= (x-6)(x+2) 5.x2+13x+12= (x+1)(x+12) 6.x2-x-12= (x-4)(x+3)
(4)(x-1)(x+2)(x-3)(x+4)+24 解:(x-1)(x+2)(x-3)(x+4)+24
= 9a4-(4a2-4a+1)
= (x2+x-2)(x2+x-12)+24
= 9a4-(2a-1) 2 = (3a2+2a-1)(3a2-2a+1)
= (x2+x) 2-14(x2+x)+48 = (x2+x-2+px+q进行因式分解, 应重点掌握以下三个问题:
因式分解(十字相乘)课件
探索因式分解在其他学科中的应用, 如物理、化学等。
感谢您的观看
THANKS
十字相乘法是一种用于因式分解的数学方法,通过将一个多项式分解为两个因式的 乘积,从而简化问题。
它基于二次多项式的根与系数之间的关系,通过构造一个交叉相乘的方程组来找到 因式。
这种方法在代数、方程求解和数学竞赛等领域有广泛应用。
十字相乘法的应用
01
02
03
04
解决一元二次方程
通过十字相乘法,可以将一元 二次方程转化为两个一次方程
通过实例分析和练习,掌握十 字相乘法的运用。
结合实际问题和数学模型,加 深对因式分解的理解和应用。
课程安排
介绍因式分解的概念和意义 。
讲解因式分解的基本方法和 步骤。
02
01
重点介绍十字相乘法的原理
和应用。
03
通过实例演示和练习,巩固 所学知识。
04
05
总结课程重点和难点,提出 学习建议。
02
因式分解的基本概念
因式分解的步骤
总结词
因式分解通常按照一定的步骤进行。
详细描述
因式分解通常按照以下步骤进行:首先观察多项式的各项,尝试将其转化为整式的积的形式;然后提取公因式; 最后利用公式法或分组法进行因式分解。在每一步中,都需要仔细分析多项式的各项,并灵活运用数学规则和技 巧。
03
十字相乘法
什么是十字相乘法
因式分解(十字相乘)ppt 课件
目录 CONTENT
• 引言 • 因式分解的基本概念 • 十字相乘法 • 因式分解的实例解析 • 练习与巩固 • 总结与回顾
01
引言
课程目标
掌握因式分解的基本 原理和方法。
《分解因式-十字相乘法》ppt课件 (1)
整式乘法中,有
1、口答计算结果
(1)(x+3)(x+4)
(x+a)(x+b)=x2+(a+b)x+ab
(2)(x+3)(x-4)
(3) (x-3)(x+4)
(4) (x-3)(x-4)
2、提问:你有什么快速计算类似 以上多项式的方法吗?
观察与思考
( x 2)(x 3) x 3x 2 x 3 2 (1)
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b)
x x
ห้องสมุดไป่ตู้
a
b
这个方法也称为十字相乘法
即:只要一个形如x2+mx+n 的二次三项式的常数项可以 分解成两个有理数相乘,且这 两个有理数的和恰好等于一 次项的系数,这个多项式就能 用十字相乘法分解因式
x x
3
4
例1把下列各式分解因式
⑵
y2-
8y+15
y y
-3
-5
=(y-3)( y-5)
⑴ x2 + 7x+12=(x+3)(x+4) ⑵ y2- 8y+15 =(y-3)( y-5) ⑶x2 – 3x-4=(x+1)(x-4) ⑷y2 + 2y-8=(y-2)(y+4)
你能找到什么规律吗? 方法:先把常数项拆分成两个有理数相乘,再看这 两个有理数的和是否恰好等于一次项的系数.(不 仅要验证绝对值,更要验证符号) 当常数项为正数时,拆分成的两个有理数一定同号, 符号与一次项系数相同。 当常数项为负数时,拆分成的两个有理数异号; 绝对值大的数与一次项系数同号
1、口答计算结果
(1)(x+3)(x+4)
(x+a)(x+b)=x2+(a+b)x+ab
(2)(x+3)(x-4)
(3) (x-3)(x+4)
(4) (x-3)(x-4)
2、提问:你有什么快速计算类似 以上多项式的方法吗?
观察与思考
( x 2)(x 3) x 3x 2 x 3 2 (1)
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
∴x2+(a+b)x+ab=(x+a)(x+b)
x x
ห้องสมุดไป่ตู้
a
b
这个方法也称为十字相乘法
即:只要一个形如x2+mx+n 的二次三项式的常数项可以 分解成两个有理数相乘,且这 两个有理数的和恰好等于一 次项的系数,这个多项式就能 用十字相乘法分解因式
x x
3
4
例1把下列各式分解因式
⑵
y2-
8y+15
y y
-3
-5
=(y-3)( y-5)
⑴ x2 + 7x+12=(x+3)(x+4) ⑵ y2- 8y+15 =(y-3)( y-5) ⑶x2 – 3x-4=(x+1)(x-4) ⑷y2 + 2y-8=(y-2)(y+4)
你能找到什么规律吗? 方法:先把常数项拆分成两个有理数相乘,再看这 两个有理数的和是否恰好等于一次项的系数.(不 仅要验证绝对值,更要验证符号) 当常数项为正数时,拆分成的两个有理数一定同号, 符号与一次项系数相同。 当常数项为负数时,拆分成的两个有理数异号; 绝对值大的数与一次项系数同号
因式分解(十字相乘)课件
提取公因式
将每一项的公因式提取出来, 将原多项式变成各项公因式的 乘积。
配方法
通过配方法,将不能直接提取 公因式的多项式进行因式分解。
分组分解
如果多项式中含有四个以上的 项,我们可以通过分组的方式 来进行因式分解。
常见的因式分解公式
1 平方差公式
a² - b² = (a + b)(a - b)
2 完全平方公式
因式分解(十字相乘)ppt课 件
因式分解是数学中重要的概念之一,它能够帮助我们解决各种代数问题,本 课程将详细介绍因式分解的定义、基本方法、常见公式和解题技巧。
因式分解的概念和定义
因式分解是将一个多项式拆分成多个较简单的乘积的过程,通过因式分解, 我们可以更好地理解一个多项式的结构和性质。
因式分解的基本方法和步骤
ห้องสมุดไป่ตู้
3 三项平方差公式
a² + 2ab + b² = (a + b)²
a³ - b³ = (a - b)(a² + ab + b²)
应用因式分解解决问题的例题
1
例题一
利用因式分解,求解二次方程2x² + x - 6 = 0的解。
2
例题二
利用因式分解,化简表达式(4x + 3)(2x - 5) + 7x。
总结和提醒
因式分解是解决代数问题的重要工具,通过学习和掌握因式分解的方法和技巧,我们可以更加轻松地解决各种 数学难题。
3
例题三
应用因式分解,计算多边形的面积。
因式分解的技巧和窍门
在进行因式分解时,需要灵活运用一些技巧和窍门,如提取公因式时寻找最大公约数,或使用配方法时查找合 适的形式进行配对。
《分解因式-十字相乘法》PPT23页
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
25、学习是劳动,是充满思想的劳动46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
因式分解(十字相乘法)最新.ppt
x2 (a b)x ab (x+a)(x+b)
例1: 把x2 5x 6分解因式;
解:原式= (x+2)(x+3)
x
2
.精品课件.
x
3
2x+3x=5x
(1).因式分解拆两边;
(2).交叉相乘验中间; 3x +2x=5x
(3).竖着分解横着写; (x+2)和(x+3)
x2 2x 15分解因式;
2. 分解x 2 2x 8的结果为 ( A )
A. a 4a 2; B. a 4a 2;
C. a 4a 2; D. a - 4a 2;
3. 若 多项项M分解的因式是(x - 2)(x - 3),则M是(C )
A. x2 5x 6;
B. x2 5x 6;
C. x2 5X 6;
.精品课件.
x 2 (a b)x ab x 2 px q
.精品课件.
x 2 (a b)x ab x 2 px q
.精品课件.
1. 分解a 2 a 12的结果为( B )
A. (a - 3)(a 4); B. a 3a 4; C. a 6a 2; D. a 6a 2;
7、整式:单项式与多项式统称整式。 .精品课(件.分母含有字母的代数式不是整式,而是分式。)
1.二次三项式-----课本P172:
(1)多项式 x2 2x 3 ,称为字母 的二次
三项式,其中
称为二次项, 为一次项,
为常数项.
(2)在多项式2a2b2 7ab 3,把 看作一个整体,
即
,就是关于 的二次三项式.
D. x2 5x 6;
(4). 分解a 2 3ab 2b2的结果为 ( D )
(完整版)十字相乘法PPT课件
(1)x2+(1+4)x+1×4 = (x + 1 )(x + 4)
(2)x2+[(-1)+(-2)]x+(-1) ×(-2)
观
= [x+( -1)][x+( -2 )]
察 与
(3)x2 + [(-2) + 1]x + (-2) ×1
思 考
= [x + ( -2)]( x + 1 )
公式推导
归纳总结
-__ __ x2 2x 3 =(x
3)(x + 1)
- - __ __ y2 9y 20 =(y
4)(y 5)
_-_ __ t2 10t 56=(t
4)(t + 14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数 符号)与p符号相同
(2)常数项是两个数之积
(3)一次项系数是常数项的两个因数之和
十字相乘法(借助十字交叉线分解因式的方法)
例一:
步骤:
x2 6x 7 (x 7)(x 1) ①竖分二次项与常数项
x
7 7
或
x 1 1
②交叉相乘,和相加 ③检验确定,横写因式 顺口溜:竖分常数交叉验,
x7x 6x
横写因式不能乱。
(2)解: x2-2x-15 =(x+3)(x-5)
2.常数项是负数时,它分解成两个异号因数,
x2 + ( a + b )x + a b = x2 + ax + bx + ab
因式分解之十字相乘法PPT文档共17页
因式分解之十字相乘法
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1、(3)
2x2 5xy 7 y2
2x
7y
x 1y
2xy 7xy 5xy
所以: 原式 (2x 7 y)(x y)
将下列各式用十字相乘法进行因式分解
(1)2x2 + 13x + 15 (2)3x2 - 15x - 18
( 3 ) 6x2 - 3x – 18 ( 4 ) 8x2- 14xy + 6y2
(2x+3)(x+4) = 2x2+11x+12
2x
3
1x
4
2x×4+1x×3=11x
结果中一次项系数是分解 后十字交叉相乘所得的和
(2x+3)(x- 4) = 2x2-5x+12
2x
3
1x
-4
2x×(-4)+1x×3=-5x
结果中一次项系数是分解 后十字交叉相乘所得的和
十字相乘法(竖分常数交叉 验, 横写因式不能乱。 )
例1、用十字相乘法分解因式 2x2-2x-12
法一:
2x2-2x-12 = (x-3)(2x+4)
x
-3 = 2 (x-3) (x+-2x
①竖分二次项与常数项 ②交叉相乘,和相加
③检验确定,横写因式
十字相乘法(竖分常数交
叉验, 横写因式不能乱。 )
例1、用十字相乘法分解因式 2x2-2x-12
x 8x 2
提示:当二次项系数为-1时 ,先提出 负号再因式分解 。
(其中绝对值较大的因数符号)与p符号相同
1、十字相乘法 (借助十字交叉线分解因式的方法)
2、用十字相乘法把形如x2 + px +q 二次三项式 分解因式
3、 x2+px+q=(x+a)(x+b) 其中q、p、a、b之 间的符号关系
q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符 号相同 当q<0时, q分解的因数a、b( 异号) (其中绝对值较大 的因数符号)与p符号相同
把下列各式分解因式
(1)4x2 + 11x + 6 (2)3x2 + 10x + 8
( 3 ) 6x2 - 7xy – 5y2 ( 4 ) 4x2- 18x + 18 ( 5 ) 4(a+b)2 + 4(a+b) - 15
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
一、计算:
(1) (x 5)(x 9) x2 14x 45
(2) (x 12)(x 5) x2 7x 60 (3) (x 23)(x 6) x2 29x 138
(4) (x 4)(x 18) x2 14x 72
(x a)(x b) x2 (a b)x ab
法二:
2x2-2x-12 = (x+2)(2x-6)
x
2 = 2(x+2)(x-3)
2x
-6
x×(-6)+2x×2=-2x
(顺口溜:竖分常数交叉验,横写因式不能乱。)
例1、(2)
12x2 29x 15
3x
5
4x
3
(9x) (20x) 29x
所以: 原式 (3x 5)(4x 3)
十字相乘法(竖分常数交叉验, 横写因式不能乱。 )
观察:p与a、b符号关系
x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结:当q>0时,q分解的因数a、b( 同号 )
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5)
x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b( 异号 )
2x2 5xy 7 y2
2x
7y
x 1y
2xy 7xy 5xy
所以: 原式 (2x 7 y)(x y)
将下列各式用十字相乘法进行因式分解
(1)2x2 + 13x + 15 (2)3x2 - 15x - 18
( 3 ) 6x2 - 3x – 18 ( 4 ) 8x2- 14xy + 6y2
(2x+3)(x+4) = 2x2+11x+12
2x
3
1x
4
2x×4+1x×3=11x
结果中一次项系数是分解 后十字交叉相乘所得的和
(2x+3)(x- 4) = 2x2-5x+12
2x
3
1x
-4
2x×(-4)+1x×3=-5x
结果中一次项系数是分解 后十字交叉相乘所得的和
十字相乘法(竖分常数交叉 验, 横写因式不能乱。 )
例1、用十字相乘法分解因式 2x2-2x-12
法一:
2x2-2x-12 = (x-3)(2x+4)
x
-3 = 2 (x-3) (x+-2x
①竖分二次项与常数项 ②交叉相乘,和相加
③检验确定,横写因式
十字相乘法(竖分常数交
叉验, 横写因式不能乱。 )
例1、用十字相乘法分解因式 2x2-2x-12
x 8x 2
提示:当二次项系数为-1时 ,先提出 负号再因式分解 。
(其中绝对值较大的因数符号)与p符号相同
1、十字相乘法 (借助十字交叉线分解因式的方法)
2、用十字相乘法把形如x2 + px +q 二次三项式 分解因式
3、 x2+px+q=(x+a)(x+b) 其中q、p、a、b之 间的符号关系
q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符 号相同 当q<0时, q分解的因数a、b( 异号) (其中绝对值较大 的因数符号)与p符号相同
把下列各式分解因式
(1)4x2 + 11x + 6 (2)3x2 + 10x + 8
( 3 ) 6x2 - 7xy – 5y2 ( 4 ) 4x2- 18x + 18 ( 5 ) 4(a+b)2 + 4(a+b) - 15
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
一、计算:
(1) (x 5)(x 9) x2 14x 45
(2) (x 12)(x 5) x2 7x 60 (3) (x 23)(x 6) x2 29x 138
(4) (x 4)(x 18) x2 14x 72
(x a)(x b) x2 (a b)x ab
法二:
2x2-2x-12 = (x+2)(2x-6)
x
2 = 2(x+2)(x-3)
2x
-6
x×(-6)+2x×2=-2x
(顺口溜:竖分常数交叉验,横写因式不能乱。)
例1、(2)
12x2 29x 15
3x
5
4x
3
(9x) (20x) 29x
所以: 原式 (3x 5)(4x 3)
十字相乘法(竖分常数交叉验, 横写因式不能乱。 )
观察:p与a、b符号关系
x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结:当q>0时,q分解的因数a、b( 同号 )
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5)
x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b( 异号 )